1
|
Zhu L, Li C, Wang D. Photodynamic inactivation of antibiotic-resistant bacteria in whole blood using riboflavin photodynamic method. Front Microbiol 2024; 15:1404468. [PMID: 39015739 PMCID: PMC11250595 DOI: 10.3389/fmicb.2024.1404468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Treating bacteremia caused by antibiotic-resistant bacteria is a global concern. Antibacterial photodynamic inactivation is a promising strategy to combat it. However, it's challenging to achieve the inactivation of antibiotic-resistant bacteria in whole blood because of its opacity and complexity. We investigated a riboflavin photodynamic method to effectively inactivate antibiotic-resistant bacteria in whole blood. Four strains of antibiotic-resistant bacteria were isolated, identified, and cultured in this research: methicillin-resistant Staphylococcus aureus (MRSA), pan-drug-resistant Acinetobacter baumannii (PDRAB), ESBLs-producing Escherichia coli (EPEC) and pan-drug-resistant Klebsiella pneumoniae (PDRKP). To simulate bacteremia, antibiotic-resistant bacteria was added into whole blood. Whole blood was treated using riboflavin photodynamic method with ultraviolet irradiation (308 nm and 365 nm). The ultraviolet irradiation dose was divided into 18 J/cm2, 36 J/cm2, and 54 J/cm2. Microbial count of antibiotic-resistant bacteria in whole blood was used for evaluating inactivation effectiveness. The roles of red blood cells, lymphocytes, coagulation factors, and platelets in whole blood were assessed. In results, inactivation effectiveness increased as the ultraviolet dose increased from 18 J/cm2 to 54 J/cm2. At the dose of 18 J/cm2, inactivation effectiveness of four antibiotic-resistant bacteria were more than 80%, while only 67% of MRSA. The antibacterial effect was enhanced by the combination of riboflavin photodynamic treatment and antibiotic. The red blood cell function was susceptible to ultraviolet dose. At the dose of 18 J/cm2, hemolysis rate was less than 0.8% and there was no change in levels of ATP and 2,3-DPG. At the same dose, the proliferation, cell killing, and cytokine secretion activities of lymphocytes decreased 20-70%; Factor V and Factor VIII activities decreased 50%; Fibrinogen and platelet function loss significantly but reparable. Consequently, we speculated that riboflavin photodynamic method with a ultraviolet dose of 18 J/cm2 was effective in inactivating four antibiotic-resistant bacteria in whole blood while whole blood function was preserved. We also provided a novel extracorporeal circulation phototherapy mode for treating bacteremia caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Liguo Zhu
- Department of Blood Transfusion, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Changqing Li
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, Chengdu, China
| | - Deqing Wang
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Krikunova PV, Tolordava ER, Arkharova NA, Karimov DN, Bukreeva TV, Shirinian VZ, Khaydukov EV, Pallaeva TN. Riboflavin Crystals with Extremely High Water Solubility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5504-5512. [PMID: 38278768 DOI: 10.1021/acsami.3c15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
New insights into the unique biochemical properties of riboflavin (Rf), also known as vitamin B2, are leading to the development of its use not only as a vitamin supplement but also as a potential anti-inflammatory, immunomodulatory, antioxidant, anticancer, and antiviral agent, where it may play a role as an inhibitor of viral proteinases. At the same time, the comparison of the pharmacoactivity of Rf with its known metabolites, namely, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is very complicated due to its poor water solubility: 0.1-0.3 g/L versus 67 g/L for FMN and 50 g/L for FAD, which is the limiting factor for its administration in clinical practice. In this study, we report the recrystallization procedure of the type A Rf crystals into the slightly hydrophobic type B/C and a new hydrophilic crystal form that has been termed the P type. Our method of Rf crystal modification based on recrystallization from dilute alkaline solution provides an unprecedented extremely high water solubility of Rf, reaching 23.5 g/L. A comprehensive study of the physicochemical properties of type P riboflavin showed increased photodynamic therapeutic activity compared to the known types A and B/C against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium. Importantly, our work not only demonstrates a simple and inexpensive method for the synthesis of riboflavin with high solubility, which should lead to increased bioactivity, but also opens up opportunities for improving both known and new therapeutic applications of vitamin B2.
Collapse
Affiliation(s)
| | - Eteri R Tolordava
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow 123098, Russia
| | | | - Denis N Karimov
- FSRC "Crystallography and Photonics" RAS, Moscow 119333, Russia
| | | | - Valerii Z Shirinian
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | | | | |
Collapse
|
3
|
Cela EM, Urquiza D, Gómez MI, Gonzalez CD. New Weapons to Fight against Staphylococcus aureus Skin Infections. Antibiotics (Basel) 2023; 12:1477. [PMID: 37887178 PMCID: PMC10603739 DOI: 10.3390/antibiotics12101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
The treatment of Staphylococcus aureus skin and soft tissue infections faces several challenges, such as the increased incidence of antibiotic-resistant strains and the fact that the antibiotics available to treat methicillin-resistant S. aureus present low bioavailability, are not easily metabolized, and cause severe secondary effects. Moreover, besides the susceptibility pattern of the S. aureus isolates detected in vitro, during patient treatment, the antibiotics may never encounter the bacteria because S. aureus hides within biofilms or inside eukaryotic cells. In addition, vascular compromise as well as other comorbidities of the patient may impede proper arrival to the skin when the antibiotic is given parenterally. In this manuscript, we revise some of the more promising strategies to improve antibiotic sensitivity, bioavailability, and delivery, including the combination of antibiotics with bactericidal nanomaterials, chemical inhibitors, antisense oligonucleotides, and lytic enzymes, among others. In addition, alternative non-antibiotic-based experimental therapies, including the delivery of antimicrobial peptides, bioactive glass nanoparticles or nanocrystalline cellulose, phototherapies, and hyperthermia, are also reviewed.
Collapse
Affiliation(s)
- Eliana M. Cela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Dolores Urquiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
| | - Marisa I. Gómez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Cintia D. Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
4
|
Manns RPC, Achiron A, Knyazer B, Elhaddad O, Darcy K, Yahalomi T, Tole D, Avadhanam VS. Use of corneal cross-linking beyond keratoconus: a systemic literature review. Graefes Arch Clin Exp Ophthalmol 2023; 261:2435-2453. [PMID: 36881260 DOI: 10.1007/s00417-023-05994-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 03/08/2023] Open
Abstract
PURPOSE The success of corneal collagen cross-linking in altering keratoconus' clinical course has driven a search for further uses of this procedure. This literature review aims to analyze the scientific evidence available for the benefit of cross-linking in the management of ophthalmic diseases other than progressive keratoconus or ectasia induced by corneal refractive procedures. METHODS A systemic literature review. RESULTS We reviewed 97 studies. We found that collagen cross-linking can limit the progression of several other corneal ectasias, thus reducing and limiting the need for keratoplasty. Collagen cross-linking also can reduce the refractive power of the cornea and can be considered for a moderate degree of bacterial keratitis or when the organism is unidentified, which is refractive to antibiotics alone. However, the comparative rarity of these procedures has limited the extent of evidence. In fungal, Acanthamoeba, and herpes virus keratitis, the evidence is inconclusive of the safety and efficacy of cross-linking. CONCLUSION Current clinical data is limited, and laboratory data has not fully correlated with published clinical data.
Collapse
Affiliation(s)
- Richard P C Manns
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Lower Maudlin St., Bristol, BS1 2LX, UK
| | - Asaf Achiron
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Lower Maudlin St., Bristol, BS1 2LX, UK
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boris Knyazer
- Department of Ophthalmology, Soroka University Medical Center, The Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Omar Elhaddad
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Lower Maudlin St., Bristol, BS1 2LX, UK
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kieran Darcy
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Lower Maudlin St., Bristol, BS1 2LX, UK
| | - Tal Yahalomi
- Department of Ophthalmology, Samson Assuta Ashdod Hospital and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| | - Derek Tole
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Lower Maudlin St., Bristol, BS1 2LX, UK
| | - Venkata S Avadhanam
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Lower Maudlin St., Bristol, BS1 2LX, UK.
| |
Collapse
|
5
|
de Paiva ADCM, Ferreira MDC, da Fonseca ADS. Photodynamic therapy for treatment of bacterial keratitis. Photodiagnosis Photodyn Ther 2022; 37:102717. [PMID: 35021106 DOI: 10.1016/j.pdpdt.2022.102717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
Microbial keratitis is the main cause of corneal opacification and the fourth leading cause of blindness worldwide, with bacteria the major infectious agent. Recently, bacterial keratitis has become a serious threat due to routine use of antibiotics leading to selection of resistant and multidrug-resistant bacteria strains. New approaches for treatment of bacterial keratitis are necessary to outcome the increasing antibiotic resistance. Antimicrobial photodynamic therapy is based on three agents: photosensitizer, oxygen, and light radiation. This therapy has been successful for treatment of infections in different tissues and organs as well as against different type of infectious agents and no resistance development. Also, new photosensitizers are being developed that has increased the spectrum of therapeutic protocols for treatment of a number of infectious diseases. Thus, antimicrobial photodynamic therapy has an extraordinary potential for treatment of those bacterial keratitis cases that actually are not solved by traditional antibiotic therapy.
Collapse
Affiliation(s)
- Alexandre de Carvalho Mendes de Paiva
- Hospital Universitário Gaffrée e Guinle, Universidade Federal do Estado do Rio de Janeiro, Rua Mariz e Barros, 775, Maracanã, Rio de Janeiro 20270002, Brazil
| | - Michelle da Costa Ferreira
- Faculdade de Odontologia, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 157, Vila Isabel, Rio de Janeiro 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro 20211040, Brazil; Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, 4º andar, Vila Isabel, Rio de Janeiro 20551030, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro 25964004, Brazil.
| |
Collapse
|
6
|
Suvorov N, Pogorilyy V, Diachkova E, Vasil’ev Y, Mironov A, Grin M. Derivatives of Natural Chlorophylls as Agents for Antimicrobial Photodynamic Therapy. Int J Mol Sci 2021; 22:ijms22126392. [PMID: 34203767 PMCID: PMC8232654 DOI: 10.3390/ijms22126392] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
The rapid growth of drug-resistant bacteria all over the world has given rise to a major research challenge, namely a search for alternative treatments to which bacteria will be unable to develop resistance. Photodynamic therapy is an approach of this kind. It involves the use of photosensitizers in combination with visible light at a certain wavelength to excite the former and generate reactive oxygen species. Various synthetic heterocyclic compounds are used as photosensitizers. Of these, derivatives of natural chlorophylls have a special place due to their properties. This review deals with the use of such compounds in antimicrobial PDT.
Collapse
Affiliation(s)
- Nikita Suvorov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
- Correspondence: (N.S.); (E.D.)
| | - Viktor Pogorilyy
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
| | - Ekaterina Diachkova
- Department of Oral Surgery of Bororovsky Institute of Dentistry, II.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia
- Correspondence: (N.S.); (E.D.)
| | - Yuri Vasil’ev
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia;
| | - Andrey Mironov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
| |
Collapse
|
7
|
Lusche I, Dirk C, Frentzen M, Meister J. Cavity Disinfection With a 445 nm Diode Laser Within the Scope of Restorative Therapy - A Pilot Study. J Lasers Med Sci 2021; 11:417-426. [PMID: 33425292 DOI: 10.34172/jlms.2020.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Cavity disinfection is necessary to prevent a progressive infection of the crown dentin and pulp. Increasing intolerance and resistance to antiseptics and antibiotics as well as the controversy over the effects of those on the dental hard tissue and composite have prompted the investigation of alternative treatment options. The objective of this pilot study is to evaluate the antibacterial potential of a diode laser with a wavelength of 445 nm in the cavity preparation using the bacterium Streptococcus salivarius associated with caries in conjunction with the characteristics and influences of dentin on light transmission. Methods: The bactericidal effect of the laser irradiation was determined in culture experiments by using caries-free human dentin samples on bacteria-inoculated agar. For this, dentin discs (horizontally cut coronal dentin) of 500 µm and 1000 µm thicknesses were produced and irradiated with the laser with irradiation parameters of 0.7-1 W in a cw-mode and exposure times of between 5-30 s. Based on the different sample thicknesses, the penetration depth effect of the irradiation was ascertained after the subsequent incubation of the bacteria-inoculated agar. Additional influential parameters on the irradiation transmission were investigated, including surface moisture, tooth color as well as the presence of a smear layer on the dentin surface. Results: The optical transmission values of the laser radiation for dentin were significantly dependent on the sample thickness (P = 0.006) as well as its moisture content (P = 0.013) and were independent of the presence of a smear layer. There was a 40% reduction in bacteria after the radiography of the 500-µm-thick dentin samples, which was shown as the lowest laser dose (443 J/cm2). Conclusion: These findings indicate that the diode laser with light emission at a wavelength of 445 nm is interesting for the supportive cavity disinfection within the scope of caries therapy and show potential for clinical applications.
Collapse
Affiliation(s)
- Inés Lusche
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Cornelius Dirk
- Oral Technology, Bonn University, Wilhelmsplatz 5, 53111 Bonn, Germany
| | - Matthias Frentzen
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Jörg Meister
- Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Applied Medical Laser Research and Biomedical Optics (AMLaReBO), Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Antimicrobial Photoinactivation Approach Based on Natural Agents for Control of Bacteria Biofilms in Spacecraft. Int J Mol Sci 2020; 21:ijms21186932. [PMID: 32967302 PMCID: PMC7554952 DOI: 10.3390/ijms21186932] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
A spacecraft is a confined system that is inhabited by a changing microbial consortium, mostly originating from life-supporting devices, equipment collected in pre-flight conditions, and crewmembers. Continuous monitoring of the spacecraft’s bioburden employing culture-based and molecular methods has shown the prevalence of various taxa, with human skin-associated microorganisms making a substantial contribution to the spacecraft microbiome. Microorganisms in spacecraft can prosper not only in planktonic growth mode but can also form more resilient biofilms that pose a higher risk to crewmembers’ health and the material integrity of the spacecraft’s equipment. Moreover, bacterial biofilms in space conditions are characterized by faster formation and acquisition of resistance to chemical and physical effects than under the same conditions on Earth, making most decontamination methods unsafe. There is currently no reported method available to combat biofilm formation in space effectively and safely. However, antibacterial photodynamic inactivation based on natural photosensitizers, which is reviewed in this work, seems to be a promising method.
Collapse
|
9
|
Dharmaratne P, Sapugahawatte DN, Wang B, Chan CL, Lau KM, Lau CB, Fung KP, Ng DK, Ip M. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review. Eur J Med Chem 2020; 200:112341. [PMID: 32505848 DOI: 10.1016/j.ejmech.2020.112341] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Abstract
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.
Collapse
Affiliation(s)
- Priyanga Dharmaratne
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | | | - Baiyan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | - Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kit-Man Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Clara Bs Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kwok Pui Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; CUHK-Zhejiang University Joint Laboratory on Natural Products and Toxicology Research, China.
| | - Dennis Kp Ng
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
10
|
Zhu L, Li C, Wang D. A novel ultraviolet illumination used in riboflavin photochemical method to inactivate drug-resistant bacteria in blood components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111782. [PMID: 32062389 DOI: 10.1016/j.jphotobiol.2020.111782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ultraviolet (UV) fluorescent lamp (FL) was applied in mainstream riboflavin photochemical method (RPM) to inactivate pathogens in blood components. Low UV irradiance emitted by UV-FL resulted in more time to achieve effective inactivation. MATERIALS AND METHODS A novel light emitting diode (LED) UV illumination with adjustable irradiance was developed by us. Two strains of drug-resistant bacteria (DRB), pan-drug resistant Acinetobacter baumannii (PDRAB) and methicillin-resistant Staphylococcus aureus (MRSA) were cultured and used for evaluating the inactivation effectiveness of RPM using UV-LED or UV-FL against DRB in plasma or platelets. Three plasma factors and four platelet parameters were measured after treatments. RESULTS There was a linear relationship between UV-LED irradiance and electric current, the minimum UV irradiance was 24 mW/cm2, and the maximum was 258 mW/cm2. At the same UV dose of 15 J/cm2, inactivation effectiveness of UV-LED with 258 mW/cm2 against PDRAB in plasma or platelets were comparable to that of UV-FL with 16 mW/cm2, both above 98%. UV-FL treatment required 10-15 min, but UV-LED only required 1-2 min. However, MRSA showed a resistance to UV-LED (inactivation effectiveness was around 40%) compared with UV-FL (inactivation effectiveness was above 98%). The retention of fibrinogen, factor V, factor VII in plasma and platelet counts in platelets with UV-LED treatment were significantly higher than UV-FL at the same UV dose. CONCLUSION The treatment of RPM using UV-LED with high UV irradiance was able to dramatically shorten inactivation time against PDRAB in plasma or platelets and improve retention of blood components compared with UV-FL.
Collapse
Affiliation(s)
- Liguo Zhu
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, No.26 Huacai Road, Chenghua District, Chengdu, China.
| | - Changqing Li
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, No.26 Huacai Road, Chenghua District, Chengdu, China.
| | - Deqing Wang
- Department of Blood Transfusion, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China.
| |
Collapse
|
11
|
Idrus EA, Utti EM, Mattila JS, Krootila K. Photoactivated chromophore corneal cross-linking (PACK-CXL) for treatment of severe keratitis. Acta Ophthalmol 2019; 97:721-726. [PMID: 30593737 DOI: 10.1111/aos.14001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 11/16/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE To report our experience with photoactivated chromophore corneal cross-linking (PACK-CXL) for treating keratitis patients. METHODS This retrospective study consists of 27 eyes of 26 patients with infectious keratitis treated with PACK-CXL at the Helsinki University Hospital between 2009 and 2017. Patients were treated with antibiotics/antifungal medications and underwent PACK-CXL procedure due to lack of clinical response or severe corneal melts. For twenty patients, amniotic membrane transplant (AMT) was done during the same day. Follow-up after cross-linking ranged from 1 week to 12 months. RESULTS Sixteen infections were related to contact lens wear. Of the 19 eyes showing positive culture, the predominant micro-organism was Pseudomonas aeruginosa (9 cases). The average re-epithelization time was 13 days and in 15 cases (56%) the re-epithelization occurred within one week. In 26 eyes, visual acuity increased and seven patients (26%) had a final visual acuity more or equal to 0.5 (20/40) Snellen. CONCLUSIONS PACK-CXL seems to be a safe and potential option for treating patient with infectious keratitis who do not respond to antibiotic therapy.
Collapse
Affiliation(s)
- Elfa Alidrus Idrus
- Ophthalmology unit Merauke Government Public Hospital Merauke Papua Indonesia
- Ophthalmology Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Elina Maria Utti
- Ophthalmology Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Jaakko S Mattila
- Ophthalmology Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Kari Krootila
- Ophthalmology Helsinki University Hospital and University of Helsinki Helsinki Finland
| |
Collapse
|
12
|
Akasov RA, Sholina NV, Khochenkov DA, Alova AV, Gorelkin PV, Erofeev AS, Generalova AN, Khaydukov EV. Photodynamic therapy of melanoma by blue-light photoactivation of flavin mononucleotide. Sci Rep 2019; 9:9679. [PMID: 31273268 PMCID: PMC6609768 DOI: 10.1038/s41598-019-46115-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive and lethal form of cancer. Photodynamic therapy (PDT) is a clinically approved technique for cancer treatment, including non-melanoma skin cancer. However, the most of conventional photosensitizers are of low efficacy against melanoma due to the possible dark toxicity at high drug concentrations, melanin pigmentation, and induction of anti-oxidant defense mechanisms. In the current research we propose non-toxic flavin mononucleotide (FMN), which is a water-soluble form of riboflavin (vitamin B2) as a promising agent for photodynamic therapy of melanoma. We demonstrated selective accumulation of FMN in melanoma cells in vivo and in vitro in comparison with keratinocytes and fibroblasts. Blue light irradiation with dose 5 J/cm2 of melanoma cells pre-incubated with FMN led to cell death through apoptosis. Thus, the IC50 values of human melanoma A375, Mel IL, and Mel Z cells were in a range of FMN concentration 10–30 µM that can be achieved in tumor tissue under systemic administration. The efficiency of reactive oxygen species (ROS) generation under FMN blue light irradiation was measured in single melanoma cells by a label-free technique using an electrochemical nanoprobe in a real-time control manner. Melanoma xenograft regression in mice was observed as a result of intravenous injection of FMN followed by blue-light irradiation of tumor site. The inhibition of tumor growth was 85–90% within 50 days after PDT treatment.
Collapse
Affiliation(s)
- R A Akasov
- I.M. Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia. .,Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997, Miklukho-Maklaya str. 16/10, Moscow, Russia. .,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia. .,National University of Science and Technology «MISIS», Leninskiy Prospect 4, 119991, Moscow, Russia.
| | - N V Sholina
- I.M. Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia.,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia.,FSBSI "N.N. Blokhin National medical research center for oncology" of Ministry of Health of the Russian Federation, 115478, Kashirskoe Shosse 24, Moscow, Russia
| | - D A Khochenkov
- Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia.,FSBSI "N.N. Blokhin National medical research center for oncology" of Ministry of Health of the Russian Federation, 115478, Kashirskoe Shosse 24, Moscow, Russia.,Togliatti State University, 445020, Belorusskaya str. 14, Togliatti, Russia
| | - A V Alova
- Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| | - P V Gorelkin
- Medical Nanotechnology LLC, Stroiteley 4-5-47, 119311, Moscow, Russia
| | - A S Erofeev
- Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia.,National University of Science and Technology «MISIS», Leninskiy Prospect 4, 119991, Moscow, Russia
| | - A N Generalova
- Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997, Miklukho-Maklaya str. 16/10, Moscow, Russia.,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia
| | - E V Khaydukov
- I.M. Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia.,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia.,Volgograd State University, 400062, Universitetskiy Prospect, 100, Volgograd, Russia
| |
Collapse
|
13
|
Makdoumi K, Hedin M, Bäckman A. Different photodynamic effects of blue light with and without riboflavin on methicillin-resistant Staphylococcus aureus (MRSA) and human keratinocytes in vitro. Lasers Med Sci 2019; 34:1799-1805. [PMID: 30929100 DOI: 10.1007/s10103-019-02774-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of infections in humans. Photodynamic therapy using blue light (450 nm) could possibly be used to reduce MRSA on different human tissue surfaces without killing the human cells. It could be less harmful than 300-400 nm light or common disinfectants. We applied blue light ± riboflavin (RF) to MRSA and keratinocytes, in an in vitro liquid layer model, and compared the effect to elimination using common disinfection fluids. MRSA dilutions (8 × 105/mL) in wells were exposed to blue light (450 nm) ± RF at four separate doses (15, 30, 56, and 84 J/cm2). Treated samples were cultivated on blood agar plates and the colony forming units (CFU) determined. Adherent human cells were cultivated (1 × 104/mL) and treated in the same way. The cell activity was then measured by Cell Titer Blue assay after 24- and 48-h growth. The tested disinfectants were chlorhexidine and hydrogen peroxide. Blue light alone (84 J/cm2) eliminated 70% of MRSA. This dose and riboflavin eradicated 99-100% of MRSA. Keratinocytes were not affected by blue light alone at any dose. A dose of 30 J/cm2 in riboflavin solution inactivated keratinocytes completely. Disinfectants inactivated all cells. Blue light alone at 450 nm can eliminate MRSA without inactivation of human keratinocytes. Hence, a high dose of blue light could perhaps be used to treat bacterial infections without loss of human skin cells. Photodynamic therapy using riboflavin and blue light should be explored further as it may perhaps be possible to exploit in treatment of skin diseases associated with keratinocyte hyperproliferation.
Collapse
Affiliation(s)
- Karim Makdoumi
- Department of Ophthalmology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden. .,Department of Ophthalmology, Örebro University Hospital, SE-701 85, Örebro, Sweden.
| | - Marie Hedin
- Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anders Bäckman
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
14
|
Zhao ZC, Zhou Y, Tan G, Li J. Research progress about the effect and prevention of blue light on eyes. Int J Ophthalmol 2018; 11:1999-2003. [PMID: 30588436 PMCID: PMC6288536 DOI: 10.18240/ijo.2018.12.20] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
In recent years, people have become increasingly attentive to light pollution influences on their eyes. In the visible spectrum, short-wave blue light with wavelength between 415 nm and 455 nm is closely related to eye light damage. This high energy blue light passes through the cornea and lens to the retina causing diseases such as dry eye, cataract, age-related macular degeneration, even stimulating the brain, inhibiting melatonin secretion, and enhancing adrenocortical hormone production, which will destroy the hormonal balance and directly affect sleep quality. Therefore, the effect of Blu-rays on ocular is becoming an important concern for the future. We describe blue light's effects on eye tissues, summarize the research on eye injury and its physical prevention and medical treatment.
Collapse
Affiliation(s)
- Zhi-Chun Zhao
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an 710004, Shaanxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Ying Zhou
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Gang Tan
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Juan Li
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
15
|
Gwynne PJ, Gallagher MP. Light as a Broad-Spectrum Antimicrobial. Front Microbiol 2018; 9:119. [PMID: 29456527 PMCID: PMC5801316 DOI: 10.3389/fmicb.2018.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/18/2018] [Indexed: 01/05/2023] Open
Abstract
Antimicrobial resistance is a significant and growing concern. To continue to treat even simple infections, there is a pressing need for new alternative and complementary approaches to antimicrobial therapy. One possible addition to the current range of treatments is the use of narrow-wavelength light as an antimicrobial, which has been shown to eliminate a range of common pathogens. Much progress has already been made with blue light but the potential of other regions of the electromagnetic spectrum is largely unexplored. In order that the approach can be fully and most effectively realized, further research is also required into the effects of energy dose, the harmful and beneficial impacts of light on eukaryotic tissues, and the role of oxygen in eliciting microbial toxicity. These and other topics are discussed within this perspective.
Collapse
Affiliation(s)
- Peter J Gwynne
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
16
|
Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, Dai T. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat 2017; 33-35:1-22. [PMID: 29145971 DOI: 10.1016/j.drup.2017.10.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
As an innovative non-antibiotic approach, antimicrobial blue light in the spectrum of 400-470nm has demonstrated its intrinsic antimicrobial properties resulting from the presence of endogenous photosensitizing chromophores in pathogenic microbes and, subsequently, its promise as a counteracter of antibiotic resistance. Since we published our last review of antimicrobial blue light in 2012, there have been a substantial number of new studies reported in this area. Here we provide an updated overview of the findings from the new studies over the past 5 years, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antimicrobial blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobial blue light by microbes, and a novel interstitial delivery approach of antimicrobial blue light. The potential new applications of antimicrobial blue light are also discussed.
Collapse
Affiliation(s)
- Yucheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Center, Aviation General Hospital, Beijing, China; Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yuguang Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center of Digital Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Clinton K Murray
- Infectious Disease Service, San Antonio Military Medical Center, JBSA-Fort Sam Houston, TX, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|