1
|
Carvalho LRRA, Tydén M, Shimari M, Zhuge Z, Schiffer TA, de Oliveira Monteiro MM, Lundberg JO, Weitzberg E, Andersson DC, Fellström B, Carlström M. Protective Effects of the Food Supplement Flexovital in a Model of Cardiovascular-Kidney-Metabolic Syndrome in Mice. Nutrients 2024; 16:4105. [PMID: 39683499 DOI: 10.3390/nu16234105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: The prevalence of cardiovascular-kidney-metabolic (CKM) syndrome is increasing rapidly, and cardiovascular complications pose significant risks in individuals with kidney disease and metabolic dysfunction. Understanding the mechanisms of CKM disorders is crucial, as is the discovery of novel preventive treatments. This study aimed to examine the therapeutic effects of a specially formulated nitric oxide-enhancing food additive in a mouse model of CKM syndrome induced by unilateral nephrectomy (UNX) in combination with chronic Western diet (WD) feeding. Methods: C57BL/6J mice underwent UNX and were fed a WD high in salt, sugar, and fat for 12 weeks, compared to sham-operated mice on standard chow. One group of UNX+WD mice received Flexovital (FLX), a food additive containing extracts of Rhodiola rosea and beetroot, and the amino acids L-arginine and L-citrulline. CKM parameters were assessed both in vivo and ex vivo alongside histological and biochemical analyses. Results: The UNX+WD mice showed an increase in body fat mass, the fat/lean mass ratio, and adipocyte area, of which most were significantly reduced by FLX. Elevated fasting glucose levels were also reduced by FLX, which tended towards improving glucose clearance. Elevated arterial blood pressure and endothelial dysfunction in UNX+WD mice were significantly reduced by FLX. FLX improved GFR and reduced glomerular and tubular injuries in UNX+WD mice. Additionally, FLX increased the P/O ratios of oxidative phosphorylation in the isolated renal mitochondria of UNX+WD mice. Conclusions: In this model of CKM syndrome, FLX effectively prevented the onset and progression of CKM dysfunctions induced by UNX+WD, as well as the associated organ injuries. These promising results highlight the need for validation in upcoming human trials.
Collapse
Affiliation(s)
| | - Maria Tydén
- Department of Medical Sciences, Nephrology, Uppsala University, 75236 Uppsala, Sweden
| | - Miho Shimari
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| | | | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
- Cardiology Unit, Theme for Heart, Vascular and Neuro, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Bengt Fellström
- Department of Medical Sciences, Nephrology, Uppsala University, 75236 Uppsala, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
2
|
Chen Z, Qi L, Wang J, Nie K, Peng X, Chen L, Xia L. Research trends and hotpots on the relationship between high salt and hypertension: A bibliometric and visualized analysis. Medicine (Baltimore) 2023; 102:e35492. [PMID: 37832093 PMCID: PMC10578769 DOI: 10.1097/md.0000000000035492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION A high salt diet is a significant risk factor for hypertension, and scholarly investigations into this relationship have garnered considerable attention worldwide. However, bibliometric analyses in this field remain underdeveloped. This study aimed to conduct a bibliometric and visual analysis of research progress on the link between high salt and hypertension from 2011 to 2022 with the goal of identifying future research trends and providing valuable insights for this field. METHODS High salt and hypertension data were obtained from the Web of Science Core Collection database. Microsoft Excel, Scimago Graphica, CiteSpace, and VOSviewer software were employed to analyze publication output trends, the most productive countries or regions, journals, authors, co-cited references, and keywords. RESULTS After screening, 1470 papers met the inclusion criteria. Relevant publications increased annually by 3.66% from 2011 to 2022. The United States led in research productivity, with The Journal of Hypertension publishing the most papers, and David L. Mattson as the most prolific author. Oxidative stress has emerged as a prominent research topic, and extensive investigations have been conducted on related mechanisms. "Oxidative stress," "gut microbiota," and "kidney injury" are recent hotspots that are expected to remain so, and this study carefully characterizes the mechanism of high salt-induced hypertension based on these hotspots. CONCLUSION This study utilized bibliometric and visualization analysis to identify the development trends and hotspots of publications related to high salt and hypertension. The findings of this study offer valuable insights into the forefront of emerging trends and future directions in this field.
Collapse
Affiliation(s)
- Zhixuan Chen
- State Administration of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, Sichuan, China
| | - Luming Qi
- State Administration of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, Sichuan, China
| | - Jie Wang
- State Administration of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, Sichuan, China
| | - Kaidi Nie
- State Administration of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, Sichuan, China
| | - Xile Peng
- State Administration of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, Sichuan, China
| | - Li Chen
- State Administration of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, Sichuan, China
| | - Lina Xia
- State Administration of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Huang J, Ladeiras D, Yu Y, Ming XF, Yang Z. Detrimental Effects of Chronic L-Arginine Rich Food on Aging Kidney. Front Pharmacol 2021; 11:582155. [PMID: 33542686 PMCID: PMC7851093 DOI: 10.3389/fphar.2020.582155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
The impaired L-arginine/nitric oxide pathway is a well-recognized mechanism for cardiovascular and renal diseases with aging. Therefore, supplementation of L-arginine is widely proposed to boost health or as adjunct therapy for the patients. However, clinical data, show adverse effects and even enhanced mortality in patients receiving long-term L-arginine supplementation. The effects of long-term L-arginine supplementation on kidney aging and the underlying mechanisms remain elusive. Moreover, high protein and high amino acid diet has been thought detrimental for kidney. We therefore investigated effects of chronic dietary L-arginine supplementation on kidney aging. In both young (4 months) and old (18-24 months) mice, animals either receive standard chow containing 0.65% L-arginine or diet supplemented with L-arginine to 2.46% for 16 weeks. Inflammation and fibrosis markers and albuminuria are then analyzed. Age-associated increases in tnf-α, il-1β, and il-6, vcam-1, icam-1, mcp1, inos, and macrophage infiltration, collagen expression, and S6K1 activation are observed, which is not favorably affected, but rather further enhanced, by L-arginine supplementation. Importantly, L-arginine supplementation further enhances age-associated albuminuria and mortality particularly in females, accompanied by elevated renal arginase-II (Arg-II) levels. The enhanced albuminuria by L-arginine supplementation in aging is not protected in Arg-II-/- mice. In contrast, L-arginine supplementation increases ROS and decreases nitric oxide production in old mouse aortas, which is reduced in Arg-II-/- mice. The results do not support benefits of long-term L-arginine supplementation. It rather accelerates functional decline of kidney and vasculature in aging. Thus, the long-term dietary L-arginine supplementation should be avoided particularly in elderly population.
Collapse
Affiliation(s)
- Ji Huang
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Diogo Ladeiras
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Yi Yu
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xiu-Fen Ming
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Zhihong Yang
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Han W, Wang M, Zhai X, Gan Q, Guan S, Qu X. Chemical renal denervation-induced upregulation of the ACE2/Ang (1-7)/Mas axis attenuates blood pressure elevation in spontaneously hypertensive rats. Clin Exp Hypertens 2020; 42:661-668. [PMID: 32476477 DOI: 10.1080/10641963.2020.1772812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenzheng Han
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University , Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine , Shanghai, China
| | - Ming Wang
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University , Shanghai, China
| | - Xinrong Zhai
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University , Shanghai, China
| | - Qian Gan
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University , Shanghai, China
| | - Shaofeng Guan
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University , Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine , Shanghai, China
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University , Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine , Shanghai, China
| |
Collapse
|
5
|
Carlstrom M, Montenegro MF. Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. J Intern Med 2019; 285:2-18. [PMID: 30039620 DOI: 10.1111/joim.12818] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disorders including hypertension and associated renal disease are major health problems affecting more than 1.5 billion people worldwide. Apart from nonmodifiable factors such as ageing, family history and gender, both sedentary lifestyle and unhealthy dietary habits are considered as major risk factors. The disorders are interrelated suggesting common pathological pathways. Mechanistically, oxidative stress and compromised function of the nitric oxide synthase (NOS) system leading to endothelial dysfunction and reduction in nitric oxide (NO) bioavailability have been widely implicated and associated with development and progression of disease. New strategies that correct this redox imbalance and increase NO bioactivity may have major clinical implications. The inorganic anions, nitrate and nitrite, are endogenously formed by oxidization of NOS-derived NO, but there are also high amounts of nitrate in our daily diet. In this regard, accumulated evidence over the past two decades demonstrates that these anions can be recycled back to NO and other bioactive nitrogen oxides, thus offering an attractive alternative strategy for therapeutic exploitation. In this review, we describe how dietary stimulation of the nitrate-nitrite-NO pathway affects cardiovascular and renal functions in health and disease via modulation of oxidative stress and NO bioavailability. Clinical studies addressing potential effects on the renal system are still limited, but blood pressure-lowering effects of nitrate supplementation have been demonstrated in healthy and hypertensive subjects as well as in patients with chronic kidney disease. However, larger clinical studies are warranted to reveal whether chronic nitrate treatment can slow-down the progression of cardiorenal disease and associated complications.
Collapse
Affiliation(s)
- M Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - M F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Carlström M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf) 2018; 224:e13080. [PMID: 29694703 DOI: 10.1111/apha.13080] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.
Collapse
Affiliation(s)
- M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
7
|
Emans TW, Janssen BJ, Joles JA, Krediet CP. Nitric Oxide Synthase Inhibition Induces Renal Medullary Hypoxia in Conscious Rats. J Am Heart Assoc 2018; 7:e009501. [PMID: 30371226 PMCID: PMC6201463 DOI: 10.1161/jaha.118.009501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022]
Abstract
Background Renal hypoxia, implicated as crucial factor in onset and progression of chronic kidney disease, may be attributed to reduced nitric oxide because nitric oxide dilates vasculature and inhibits mitochondrial oxygen consumption. We hypothesized that chronic nitric oxide synthase inhibition would induce renal hypoxia. Methods and Results Oxygen-sensitive electrodes, attached to telemeters, were implanted in either renal cortex (n=6) or medulla (n=7) in rats. After recovery and stabilization, baseline oxygenation ( pO 2) was recorded for 1 week. To inhibit nitric oxide synthase, N-ω-nitro-l-arginine (L-NNA; 40 mg/kg/day) was administered via drinking water for 2 weeks. A separate group (n=8), instrumented with blood pressure telemeters, followed the same protocol. L-NNA rapidly induced hypertension (165±6 versus 108±3 mm Hg; P<0.001) and proteinuria (79±12 versus 17±2 mg/day; P<0.001). Cortical pO 2, after initially dipping, returned to baseline and then increased. Medullary pO 2 decreased progressively (up to -19±6% versus baseline; P<0.05). After 14 days of L-NNA, amplitude of diurnal medullary pO 2 was decreased (3.7 [2.2-5.3] versus 7.9 [7.5-8.4]; P<0.01), whereas amplitudes of blood pressure and cortical pO 2 were unaltered. Terminal glomerular filtration rate (1374±74 versus 2098±122 μL/min), renal blood flow (5014±336 versus 9966±905 μL/min), and sodium reabsorption efficiency (13.0±0.8 versus 22.8±1.7 μmol/μmol) decreased (all P<0.001). Conclusions For the first time, we show temporal development of renal cortical and medullary oxygenation during chronic nitric oxide synthase inhibition in unrestrained conscious rats. Whereas cortical pO 2 shows transient changes, medullary pO 2 decreased progressively. Chronic L-NNA leads to decreased renal perfusion and sodium reabsorption efficiency, resulting in progressive medullary hypoxia, suggesting that juxtamedullary nephrons are potentially vulnerable to prolonged nitric oxide depletion.
Collapse
Affiliation(s)
- Tonja W. Emans
- Internal Medicine‐NephrologyAmsterdam UMC / Academic Medical Centre at the University of AmsterdamThe Netherlands
- Nephrology and HypertensionUniversity Medical Centre UtrechtThe Netherlands
| | - Ben J. Janssen
- Pharmacology and ToxicologyMaastricht UniversityThe Netherlands
| | - Jaap A. Joles
- Nephrology and HypertensionUniversity Medical Centre UtrechtThe Netherlands
| | - C.T. Paul Krediet
- Internal Medicine‐NephrologyAmsterdam UMC / Academic Medical Centre at the University of AmsterdamThe Netherlands
| |
Collapse
|
8
|
Peleli M, Flacker P, Zhuge Z, Gomez C, Wheelock CE, Persson AEG, Carlstrom M. Renal denervation attenuates hypertension and renal dysfunction in a model of cardiovascular and renal disease, which is associated with reduced NADPH and xanthine oxidase activity. Redox Biol 2017; 13:522-527. [PMID: 28734244 PMCID: PMC5520954 DOI: 10.1016/j.redox.2017.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is considered a central pathophysiological event in cardiovascular disease, including hypertension. Early age reduction in renal mass is associated with hypertension and oxidative stress in later life, which is aggravated by increased salt intake. The aim of the present study was to examine if renal sympathetic denervation can exert blood pressure lowering effects in uninephrectomized (UNX) rats (3-week old) fed with high salt (HS, 4%; w/w) diet for 4 weeks. Moreover, we investigated if renal denervation is associated with changes in NADPH and xanthine oxidase-derived reactive oxygen species. Rats with UNX + HS had reduced renal function, elevated systolic and diastolic arterial pressures, which was accompanied by increased heart weight, and cardiac superoxide production compared to sham operated Controls. UNX + HS was also associated with higher expression and activity of NADPH and xanthine oxidase in the kidney. Renal denervation in rats with UNX + HS attenuated the development of hypertension and cardiac hypertrophy, but also improved glomerular filtration rate and reduced proteinuria. Mechanistically, renal denervation was associated with lower expression and activity of both NADPH oxidase and xanthine oxidase in the kidney, but also reduced superoxide production in the heart. In conclusion, our study shows for the first time that renal denervation has anti-hypertensive, cardio- and reno-protective effects in the UNX + HS model, which can be associated with decreased NADPH oxidase- and xanthine oxidase-derived reactive oxygen species (i.e., superoxide and hydrogen peroxide) in the kidney. Uninephrectomy + high salt intake (UNX + HS) is linked with hypertension and renal dysfunction. UNX + HS increases renal NADPH oxidase-mediated O2•− and H2O2 production. UNX + HS increases renal xanthine oxidase-mediated H2O2 production. Renal denervation attenuates development of hypertension and renal dysfunction. Renal denervation is associated with lower NADPH and xanthine oxidase activity.
Collapse
Affiliation(s)
- Maria Peleli
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Flacker
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Pediatric Surgery Section, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Zhengbing Zhuge
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Gomez
- Division of Physiological Chemistry 2, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - A Erik G Persson
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mattias Carlstrom
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Yang T, Zollbrecht C, Winerdal ME, Zhuge Z, Zhang XM, Terrando N, Checa A, Sällström J, Wheelock CE, Winqvist O, Harris RA, Larsson E, Persson AEG, Fredholm BB, Carlström M. Genetic Abrogation of Adenosine A3 Receptor Prevents Uninephrectomy and High Salt-Induced Hypertension. J Am Heart Assoc 2016; 5:JAHA.116.003868. [PMID: 27431647 PMCID: PMC5015411 DOI: 10.1161/jaha.116.003868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Early‐life reduction in nephron number (uninephrectomy [UNX]) and chronic high salt (HS) intake increase the risk of hypertension and chronic kidney disease. Adenosine signaling via its different receptors has been implicated in modulating renal, cardiovascular, and metabolic functions as well as inflammatory processes; however, the specific role of the A3 receptor in cardiovascular diseases is not clear. In this study, gene‐modified mice were used to investigate the hypothesis that lack of A3 signaling prevents the development of hypertension and attenuates renal and cardiovascular injuries following UNX in combination with HS (UNX‐HS) in mice. Methods and Results Wild‐type (A3+/+) mice subjected to UNX‐HS developed hypertension compared with controls (mean arterial pressure 106±3 versus 82±3 mm Hg; P<0.05) and displayed an impaired metabolic phenotype (eg, increased adiposity, reduced glucose tolerance, hyperinsulinemia). These changes were associated with both cardiac hypertrophy and fibrosis together with renal injuries and proteinuria. All of these pathological hallmarks were significantly attenuated in the A3−/− mice. Mechanistically, absence of A3 receptors protected from UNX‐HS–associated increase in renal NADPH oxidase activity and Nox2 expression. In addition, circulating cytokines including interleukins 1β, 6, 12, and 10 were increased in A3+/+ following UNX‐HS, but these cytokines were already elevated in naïve A3−/− mice and did not change following UNX‐HS. Conclusions Reduction in nephron number combined with chronic HS intake is associated with oxidative stress, chronic inflammation, and development of hypertension in mice. Absence of adenosine A3 receptor signaling was strongly protective in this novel mouse model of renal and cardiovascular disease.
Collapse
Affiliation(s)
- Ting Yang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Malin E Winerdal
- Unit of Translational Immunology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xing-Mei Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Niccolo Terrando
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Sällström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ola Winqvist
- Unit of Translational Immunology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - A Erik G Persson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Carlström M, Cananau C, Checa A, Wide K, Sartz L, Svensson A, Wheelock CE, Westphal S, Békássy Z, Bárány P, Lundberg JO, Hansson S, Weitzberg E, Krmar RT. Peritoneal dialysis impairs nitric oxide homeostasis and may predispose infants with low systolic blood pressure to cerebral ischemia. Nitric Oxide 2016; 58:1-9. [PMID: 27234508 DOI: 10.1016/j.niox.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/14/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND & PURPOSE Infants on chronic peritoneal dialysis (PD) have an increased risk of developing neurological morbidities; however, the underlying biological mechanisms are poorly understood. In this clinical study, we investigated whether PD-mediated impairment of nitric oxide (NO) bioavailability and signaling, in patients with persistently low systolic blood pressure (SBP), can explain the occurrence of cerebral ischemia. METHODS & RESULTS Repeated blood pressure measurements, serial neuroimaging studies, and investigations of systemic nitrate and nitrite levels, as well as NO signaling, were performed in ten pediatric patients on PD. We consistently observed the loss of both inorganic nitrate (-17 ± 3%, P < 0.05) and nitrite (-34 ± 4%, P < 0.05) during PD, which may result in impairment of the nitrate-nitrite-NO pathway. Indeed, PD was associated with significant reduction of cyclic guanosine monophosphate levels (-59.4 ± 15%, P < 0.05). This reduction in NO signaling was partly prevented by using a commercially available PD solution supplemented with l-arginine. Although PD compromised nitrate-nitrite-NO signaling in all cases, only infants with persistently low SBP developed ischemic cerebral complications. CONCLUSIONS Our data suggests that PD impairs NO homeostasis and predisposes infants with persistently low SBP to cerebral ischemia. These findings improve current understanding of the pathogenesis of infantile cerebral ischemia induced by PD and may lead to the new treatment strategies to reduce neurological morbidities.
Collapse
Affiliation(s)
- Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Carmen Cananau
- Dept. Radiology, Karolinska University Hospital, Huddinge, Sweden
| | - Antonio Checa
- Dept. of Medical Biochemistry and Biophysics, Div. of Physiological Chemistry 2, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Wide
- Dept. of Clinical Science, Intervention and Technology, Div. of Pediatrics, Karolinska University Hospital, Huddinge, Sweden
| | - Lisa Sartz
- Dept. of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders Svensson
- Dept. Radiology, Karolinska University Hospital, Huddinge, Sweden
| | - Craig E Wheelock
- Dept. of Medical Biochemistry and Biophysics, Div. of Physiological Chemistry 2, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Westphal
- Dept. of Pediatrics, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | - Zivile Békássy
- Dept. of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Peter Bárány
- Dept. of Renal Medicine, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sverker Hansson
- Dept. of Pediatrics, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rafael T Krmar
- Dept. of Clinical Science, Intervention and Technology, Div. of Pediatrics, Karolinska University Hospital, Huddinge, Sweden.
| |
Collapse
|
11
|
Peleli M, Hezel M, Zollbrecht C, Persson AEG, Lundberg JO, Weitzberg E, Fredholm BB, Carlström M. In adenosine A2B knockouts acute treatment with inorganic nitrate improves glucose disposal, oxidative stress, and AMPK signaling in the liver. Front Physiol 2015; 6:222. [PMID: 26300787 PMCID: PMC4528163 DOI: 10.3389/fphys.2015.00222] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/22/2015] [Indexed: 11/23/2022] Open
Abstract
Rationale: Accumulating studies suggest that nitric oxide (NO) deficiency and oxidative stress are central pathological mechanisms in type 2 diabetes (T2D). Recent findings demonstrate therapeutic effects by boosting the nitrate-nitrite-NO pathway, which is an alternative pathway for NO formation. This study aimed at investigating the acute effects of inorganic nitrate on glucose and insulin signaling in adenosine A2B receptor knockout mice (A−/−2B), a genetic mouse model of impaired metabolic regulation. Methods: Acute effects of nitrate treatment were investigated in aged wild-type (WT) and A−/−2B mice. One hour after injection with nitrate (0.1 mmol/kg, i.p.) or placebo, metabolic regulation was evaluated by intraperitoneal glucose and insulin tolerance tests. NADPH oxidase-mediated superoxide production and AMPK phosphorylation were measured in livers obtained from non-treated or glucose-treated mice, with or without prior nitrate injection. Plasma was used to determine insulin resistance (HOMA-IR) and NO signaling. Results: A−/−2B displayed increased body weight, reduced glucose clearance, and attenuated overall insulin responses compared with age-matched WT mice. Nitrate treatment increased circulating levels of nitrate, nitrite and cGMP in the A−/−2B, and improved glucose clearance. In WT mice, however, nitrate treatment did not influence glucose clearance. HOMA-IR increased following glucose injection in the A−/−2B, but remained at basal levels in mice pretreated with nitrate. NADPH oxidase activity in livers from A−/−2B, but not WT mice, was reduced by nitrate treatment. Livers from A−/−2B displayed reduced AMPK phosphorylation compared with WT mice, and this was increased by nitrate treatment. Finally, injection with the anti-diabetic agent metformin induced similar therapeutic effects in the A−/−2B as observed with nitrate. Conclusion: The A−/−2B mouse is a genetic mouse model of metabolic syndrome. Acute treatment with nitrate improved the metabolic profile in it, at least partly via reduction in oxidative stress and improved AMPK signaling in the liver.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Michael Hezel
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - A Erik G Persson
- Department of Medical Cell Biology, Uppsala University Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
12
|
Yang T, Gao X, Sandberg M, Zollbrecht C, Zhang XM, Hezel M, Liu M, Peleli M, Lai EY, Harris RA, Persson AEG, Fredholm BB, Jansson L, Carlström M. Abrogation of adenosine A1 receptor signalling improves metabolic regulation in mice by modulating oxidative stress and inflammatory responses. Diabetologia 2015; 58:1610-20. [PMID: 25835725 DOI: 10.1007/s00125-015-3570-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Adenosine is an important regulator of metabolism; however, the role of the A1 receptor during ageing and obesity is unclear. The aim of this study was to investigate the effects of A1 signalling in modulating metabolic function during ageing. METHODS Age-matched young and aged A 1 (also known as Adora1)-knockout (A1(-/-)) and wild-type (A1(+/+)) mice were used. Metabolic regulation was evaluated by body composition, and glucose and insulin tolerance tests. Isolated islets and islet arterioles were used to detect islet endocrine and vascular function. Oxidative stress and inflammation status were measured in metabolic organs and systemically. RESULTS Advanced age was associated with both reduced glucose clearance and insulin sensitivity, as well as increased visceral adipose tissue (VAT) in A1(+/+) compared with A1(-/-) mice. Islet morphology and insulin content were similar between genotypes, but relative changes in in vitro insulin release following glucose stimulation were reduced in aged A1(+/+) compared with A1(-/-) mice. Islet arteriolar responses to angiotensin II were stronger in aged A1(+/+) mice, this being associated with increased NADPH oxidase activity. Ageing resulted in multiple changes in A1(+/+) compared with A1(-/-) mice, including enhanced NADPH oxidase-derived O2(-) formation and NADPH oxidase isoform 2 (Nox2) protein expression in pancreas and VAT; elevated levels of circulating insulin, leptin and proinflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-12); and accumulation of CD4(+) T cells in VAT. This was associated with impaired insulin signalling in VAT from aged A1(+/+) mice. CONCLUSIONS/INTERPRETATION These studies emphasise that A1 receptors regulate metabolism and islet endocrine and vascular functions during ageing, including via the modulation of oxidative stress and inflammatory responses, among other things.
Collapse
Affiliation(s)
- Ting Yang
- Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz Väg 2, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang T, Peleli M, Zollbrecht C, Giulietti A, Terrando N, Lundberg JO, Weitzberg E, Carlström M. Inorganic nitrite attenuates NADPH oxidase-derived superoxide generation in activated macrophages via a nitric oxide-dependent mechanism. Free Radic Biol Med 2015; 83:159-66. [PMID: 25724690 DOI: 10.1016/j.freeradbiomed.2015.02.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022]
Abstract
Oxidative stress contributes to the pathogenesis of many disorders, including diabetes and cardiovascular disease. Immune cells are major sources of superoxide (O2(∙-)) as part of the innate host defense system, but exaggerated and sustained O2(∙-) generation may lead to progressive inflammation and organ injuries. Previous studies have proven organ-protective effects of inorganic nitrite, a precursor of nitric oxide (NO), in conditions manifested by oxidative stress and inflammation. However, the mechanisms are still not clear. This study aimed at investigating the potential role of nitrite in modulating NADPH oxidase (NOX) activity in immune cells. Mice peritoneal macrophages or human monocytes were activated by lipopolysaccharide (LPS), with or without coincubation with nitrite. O2(∙-) and peroxynitrite (ONOO(-)) formation were detected by lucigenin-based chemiluminescence and fluorescence techniques, respectively. The intracellular NO production was measured by DAF-FM DA fluorescence. NOX isoforms and inducible NO synthase (iNOS) expression were detected by qPCR. LPS increased both O2(∙-) and ONOO(-) production in macrophages, which was significantly reduced by nitrite (10µmol/L). Mechanistically, the effects of nitrite are (1) linked to increased NO generation, (2) similar to that observed with the NO donor DETA-NONOate, and (3) can be abolished by the NO scavenger carboxy-PTIO or by the xanthine oxidase (XO) inhibitor febuxostat. Nox2 expression was increased in activated macrophages, but was not influenced by nitrite. However, nitrite attenuated LPS-induced upregulation of iNOS expression. Similar to that observed in mice macrophages, nitrite also reduced O2(∙-) generation in LPS-activated human monocytes. In conclusion, XO-mediated reduction of nitrite attenuates NOX activity in activated macrophages, which may modulate the inflammatory response.
Collapse
Affiliation(s)
- Ting Yang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Peleli
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alessia Giulietti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, Faculty of Medicine, Marche Polytechnic University, Ancona, Italy
| | - Niccolo Terrando
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Persson AEG, Carlström M. Renal purinergic signalling in health and disease. Acta Physiol (Oxf) 2015; 213:805-7. [PMID: 25613023 DOI: 10.1111/apha.12459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. E. G. Persson
- Department of Medical Cellbiology; Uppsala University; Uppsala Sweden
| | - M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
16
|
Singh RR, Denton KM. Role of the kidney in the fetal programming of adult cardiovascular disease: an update. Curr Opin Pharmacol 2015; 21:53-9. [PMID: 25588322 DOI: 10.1016/j.coph.2014.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
It is well established that an adverse in utero environment can impinge upon fetal development and place the offspring on a track leading to future cardiovascular disease. Significantly, this may occur in the absence of any outward manifestations at birth. In this brief review, we focus on potential renal mechanisms that lead to adaptations in glomerular and tubular function that initiate hypertension of developmental origin and examine potential therapeutic interventions. This report updates recent data in this field.
Collapse
Affiliation(s)
- Reetu R Singh
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
17
|
Song J, Lu Y, Lai EY, Wei J, Wang L, Chandrashekar K, Wang S, Shen C, Juncos LA, Liu R. Oxidative status in the macula densa modulates tubuloglomerular feedback responsiveness in angiotensin II-induced hypertension. Acta Physiol (Oxf) 2015; 213:249-58. [PMID: 25089004 DOI: 10.1111/apha.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
AIM Tubuloglomerular feedback (TGF) is an important mechanism in control of signal nephron glomerular filtration rate. The oxidative stress in the macula densa, primarily determined by the interactions between nitric oxide (NO) and superoxide (O2-), is essential in maintaining the TGF responsiveness. However, few studies examining the interactions between and amount of NO and O2- generated by the macula densa during normal and hypertensive states. METHODS In this study, we used isolated perfused juxtaglomerular apparatus to directly measure the amount and also studied the interactions between NO and O2- in macula densa in both physiological and slow pressor Angiotensin II (Ang II)-induced hypertensive mice. RESULTS We found that slow pressor Ang II at a dose of 600 ng kg(-1) min(-1) for two weeks increased mean arterial pressure by 26.1 ± 5.7 mmHg. TGF response increased from 3.4 ± 0.2 μm in control to 5.2 ± 0.2 μm in hypertensive mice. We first measured O2- generation by the macula densa and found it was undetectable in control mice. However, O2- generation by the macula densa increased to 21.4 ± 2.5 unit min(-1) in Ang II-induced hypertensive mice. We then measured NO generation and found that NO generation by the macula densa was 138.5 ± 9.3 unit min(-1) in control mice. The NO was undetectable in the macula densa in hypertensive mice infused with Ang II. CONCLUSIONS Under physiological conditions, TGF response is mainly controlled by the NO generated in the macula densa; in Ang II induced hypertension, the TGF response is mainly controlled by the O2- generated by the macula densa.
Collapse
Affiliation(s)
- J. Song
- State Key Laboratory of Cardiovascular Disease; Fuwai Hospital; National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - Y. Lu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University; Hanzhou China
| | - J. Wei
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - K. Chandrashekar
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - S. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - C. Shen
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. A. Juncos
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - R. Liu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| |
Collapse
|
18
|
Affiliation(s)
- Michael S Lipkowitz
- Division of Nephrology & Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University Medical Center, Washington, DC
| | - Christopher S Wilcox
- Division of Nephrology & Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University Medical Center, Washington, DC.
| |
Collapse
|
19
|
Aksu U, Yanar K, Terzioglu D, Erkol T, Ece E, Aydin S, Uslu E, Çakatay U. Effect of tempol on redox homeostasis and stress tolerance in mimetically aged Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 87:13-25. [PMID: 25044374 DOI: 10.1002/arch.21176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol, a membrane permeable antioxidant, affects the type and magnitude of oxidative damage and stress tolerance through mimetic aging process in Drosophila. Drosophila colonies were randomly divided into three groups: (1) no D-galactose, no tempol; (2) D-galactose without tempol; (3) D-galactose, but with tempol. Mimetic aging was induced by d-galactose administration. The tempol-administered flies received tempol at the concentration of 0.2% in addition to d-galactose. Thiobarbituric acid reacting substance (TBARS) concentrations, advanced oxidation protein products (AOPPs), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), sialic acid (SA) were determined. Additionally, stress tolerances were tested. Mimetically aged group without tempol led to a significant decrease in tolerance to heat, cold, and starvation (P < 0.05), but tempol was used for these parameters. The Cu,Zn-SOD activity and SA concentrations were lower in both mimetically aged and tempol-administered Drosophila groups compared to control (P < 0.05), whereas there were no significantly difference between mimetically aged and tempol-administered groups. Mimetically aged group without tempol led to a significant increase in tissue TBARS and AOPPs concentrations (P < 0.05). Coadministration of tempol could prevent these alterations. Scavenging ROS using tempol also restores redox homeostasis in mimetically aged group. Tempol partly restores age-related oxidative injury and increases stress tolerance.
Collapse
Affiliation(s)
- Ugur Aksu
- Department of Biology, Science Faculty, Zoology Division, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zietzer A, Hillmeister P. Leucocyte telomere length as marker for cardiovascular ageing. Acta Physiol (Oxf) 2014; 211:251-6. [PMID: 24666613 DOI: 10.1111/apha.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. Zietzer
- Charité - Universitaetsmedizin Berlin; Center for Cardiovascular Research & Experimental and Clinical Research Center; Richard-Thoma-Laboratories for Arteriogenesis; Berlin Germany
| | - P. Hillmeister
- Charité - Universitaetsmedizin Berlin; Center for Cardiovascular Research & Experimental and Clinical Research Center; Richard-Thoma-Laboratories for Arteriogenesis; Berlin Germany
| |
Collapse
|
21
|
Affiliation(s)
- S. Reuter
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| | - A. Patzak
- Institut für Vegetative Physiologie; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - R. Mrowka
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| |
Collapse
|
22
|
Konstantinidis G, Head GA, Evans RG, Nguyen-Huu TP, Venardos K, Croft KD, Mori TA, Kaye DM, Rajapakse NW. Endothelial cationic amino acid transporter-1 overexpression can prevent oxidative stress and increases in arterial pressure in response to superoxide dismutase inhibition in mice. Acta Physiol (Oxf) 2014; 210:845-53. [PMID: 24428817 DOI: 10.1111/apha.12215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/30/2013] [Accepted: 12/11/2013] [Indexed: 12/28/2022]
Abstract
AIM Oxidative stress may play an important role in the pathogenesis of hypertension. The aim of our study is to examine whether increased expression of the predominant endothelial l-arginine transporter, cationic amino acid transporter-1 (CAT1), can prevent oxidative stress-induced hypertension. METHODS Wild-type mice (WT; n = 9) and endothelial CAT1 overexpressing (CAT+) mice (n = 6) had telemetry probes implanted for the measurement of mean arterial pressure (MAP), heart rate (HR) and locomotor activity. Minipumps were implanted for infusion of the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETCA; 30 mg kg(-1) day(-1) ; 14 days) or its saline vehicle. Baseline levels of MAP, HR and locomotor activity were determined before and during chronic DETCA administration. Mice were then killed, and their plasma and kidneys collected for analysis of F2 -isoprostane levels. RESULTS Basal MAP was less in CAT+ (92 ± 2 mmHg; n = 6) than in WT (98 ± 2 mmHg; n = 9; P < 0.001). During DETCA infusion, MAP was increased in WT (by 4.2 ± 0.5%; P < 0.001) but not in CAT+, when compared to appropriate controls (PDETCA*genotype = 0.006). DETCA infusion increased total plasma F2 -isoprostane levels (by 67 ± 11%; P = 0.05) in WT but not in CAT+. Total renal F2 -isoprostane levels were greater during DETCA infusion in WT (by 72%; P < 0.001), but not in CAT+, compared to appropriate controls. CONCLUSION Augmented endothelial l-arginine transport attenuated the prohypertensive effects of systemic and renal oxidative stress, suggesting that manipulation of endothelial CAT1 may provide a new therapeutic approach for the treatment of cardiovascular disease associated with oxidative stress.
Collapse
Affiliation(s)
- G. Konstantinidis
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
- Department of Physiology; Monash University; Melbourne Vic. Australia
| | - G. A. Head
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - R. G. Evans
- Department of Physiology; Monash University; Melbourne Vic. Australia
| | - T.-P. Nguyen-Huu
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - K. Venardos
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - K. D. Croft
- School of Medicine and Pharmacology; Royal Perth Hospital Unit; University of Western Australia; Perth WA Australia
| | - T. A. Mori
- School of Medicine and Pharmacology; Royal Perth Hospital Unit; University of Western Australia; Perth WA Australia
| | - D. M. Kaye
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - N. W. Rajapakse
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
- Department of Physiology; Monash University; Melbourne Vic. Australia
| |
Collapse
|
23
|
Persson AB, Persson PB. Dealing with radicals. Acta Physiol (Oxf) 2014; 210:2-4. [PMID: 24279518 DOI: 10.1111/apha.12193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Bondke Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
24
|
Terrando N, Gómez-Galán M, Yang T, Carlström M, Gustavsson D, Harding RE, Lindskog M, Eriksson LI. Aspirin-triggered resolvin D1 prevents surgery-induced cognitive decline. FASEB J 2013; 27:3564-71. [PMID: 23709617 DOI: 10.1096/fj.13-230276] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hospitalization for major surgery or critical illness often associates with cognitive decline. Inflammation and dysregulation of the innate immune system can exert broad effects in the periphery and central nervous system (CNS), yet the mechanisms underlying memory impairment after surgery remain poorly understood and without effective therapy. Endogenous regulation of acute inflammation is providing novel approaches to treat several disease states including sepsis, pain, obesity and diabetes. Resolvins are potent endogenous lipid mediators biosynthesized during the resolution phase of acute inflammation that display immunoresolvent actions. Here, using a mouse model of surgery-induced cognitive decline we report that orthopedic surgery affects hippocampal neuronal-glial function, including synaptic transmission and plasticity. Systemic prophylaxis with aspirin-triggered resolvin D1 (AT-RvD1: 7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, as little as 100 ng dose per mouse) improved memory decline following surgery and abolished signs of synaptic dysfunction. Moreover, delayed administration 24 h after surgery also attenuated signs of neuronal dysfunction postoperatively. AT-RvD1 also limited peripheral damage by modulating the release of systemic interleukin (IL)-6 and improved other clinical markers of tissue injury. Collectively, these results demonstrate a novel role of AT-RvD1 in modulating the proinflammatory milieu after aseptic injury and protecting the brain from neuroinflammation, synaptic dysfunction and cognitive decline. These findings provide novel and safer approaches to treat postoperative cognitive decline and potentially other forms of memory dysfunctions.
Collapse
Affiliation(s)
- Niccolò Terrando
- Karolinska Institutet, Department of Physiology and Pharmacology, Nanna Svart väg 2, Stockholm, 171 77, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|