1
|
Pino MF, Dijkstra P, Whytock KL, Ahn C, Yu G, Sanford JA, Hansen J, Hutchinson C, Gritsenko M, Piehowski P, Adkins JN, Carnero EA, Sealfon S, Zaslavsky E, Nair V, Smith SR, Sparks LM. Exercise alters molecular profiles of inflammation and substrate metabolism in human white adipose tissue. Am J Physiol Endocrinol Metab 2025; 328:E478-E492. [PMID: 39933702 DOI: 10.1152/ajpendo.00339.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
White adipose tissue (WAT) plays a significant role in whole body energy homeostasis, and its excess typifies obesity. In addition to WAT quantity, perturbations in the basic cellular processes of WAT (i.e., quality) are also associated with obesity and metabolic disease. Exercise training alleviates metabolic perturbations associated with obesity; however, the underlying molecular mechanisms that drive these metabolic adaptations in WAT are not well described. Abdominal subcutaneous WAT biopsies were collected after an acute bout of exercise (1 day after) at baseline and following 3 wk of supervised aerobic training in sedentary overweight women (n = 6) without alterations in body weight and fat mass. RNA-seq, global proteomics, and phosphoproteomics in WAT revealed training-induced changes in 1,527 transcripts, 154 proteins, and 144 phosphosites, respectively. Training decreased abundance of transcripts and proteins involved in inflammation and components of the extracellular matrix and increased abundance of transcripts and proteins related to fatty acid esterification and lipolysis. In summary, short-term aerobic training significantly reduces local inflammation and increases lipid metabolism in WAT of sedentary overweight women-independent of alterations in body and fat mass. As such, some of the health benefits of aerobic training may occur through molecular alterations in WAT (i.e., enhanced quality) rather than a sheer reduction in WAT quantity.NEW & NOTEWORTHY This is the first study to utilize a multiomic (RNAseq, proteomics, and phosphoproteomics) approach to investigate molecular adaptations in WAT after a short-term intervention in sedentary overweight women. We show that supervised aerobic training reduces molecular markers of inflammation and proteins regulating ECM and increases abundance of transcripts and proteins involved in lipolysis and fatty acid re-esterification, indicating that molecular adaptations in WAT occur independent of alterations in body weight or fat mass.
Collapse
Affiliation(s)
- Maria F Pino
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Pieter Dijkstra
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Cheehoon Ahn
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Gongxin Yu
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - James A Sanford
- Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Josh Hansen
- Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Chelsea Hutchinson
- Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Marina Gritsenko
- Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Joshua N Adkins
- Pacific Northwest National Laboratory, Richland, Washington, United States
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon United States
| | - Elvis A Carnero
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Stuart Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Venugopalan Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Steve R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| |
Collapse
|
2
|
Katz DH, Lindholm ME, Ashley EA. Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Physiology (Bethesda) 2025; 40:0. [PMID: 39136551 DOI: 10.1152/physiol.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 11/21/2024] Open
Abstract
Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation. Furthermore, it offers a detailed discussion of known molecular signals and systemic regulators activated during various forms of exercise and their role in orchestrating health benefits. Critically, the increasing use of multiomic technologies is explored with an emphasis on how multiomic and multitissue studies contribute to a more profound understanding of exercise biology. These data inform anticipated future advancement in the field and highlight the prospect of integrating exercise with pharmacology for personalized disease prevention and treatment.
Collapse
Affiliation(s)
- Daniel H Katz
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Maléne E Lindholm
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Euan A Ashley
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
3
|
Jönsson J, Perfilyev A, Kugelberg U, Skog S, Lindström A, Ruhrmann S, Ofori JK, Bacos K, Rönn T, Öst A, Ling C. Impact of excess sugar on the whole genome DNA methylation pattern in human sperm. Epigenomics 2025; 17:89-104. [PMID: 39707713 PMCID: PMC11792836 DOI: 10.1080/17501911.2024.2439782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
AIMS, PATIENTS & METHODS Dietary factors may regulate the epigenome. We aimed to explore whether a diet intervention, including excess sugar, affects the methylome in human sperm, and to describe the sperm methylome. We used Whole Genome Bisulfite Sequencing (WGBS) to analyze DNA methylation in sperm taken at three time points from 15 males during a diet intervention; i) at baseline, ii) after one week on a standardized diet, and iii) after an additional week on a high-sugar diet providing 150% of their estimated total energy expenditure. RESULTS We identified seven nominal diet-associated differentially methylated regions in sperm (p < 0.05). The diet was nominally associated with methylation of 143 sites linked to fertility (e.g. AHRR, GNAS, and HDAC4), 313 sites in imprinted genes (e.g. GLIS3, PEG10, PEG3, and SNURF), and 42 sites in top 1%-expressed genes (e.g. CHD2) (p < 0.05). In sperm, 3'UTRs and introns had the highest levels of methylation, while 5'UTRs and CpG islands had the lowest levels. Non-expressed genes in human sperm were hypomethylated in exons compared with transcribed genes. CONCLUSIONS In human sperm, DNA methylation levels were linked to gene expression, and excess sugar had modest effects on methylation on imprinted and highly expressed genes, and genes affecting fertility.
Collapse
Affiliation(s)
- Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Axel Lindström
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
4
|
Ahn C, Zhang T, Yang G, Rode T, Varshney P, Ghayur SJ, Chugh OK, Jiang H, Horowitz JF. Years of endurance exercise training remodel abdominal subcutaneous adipose tissue in adults with overweight or obesity. Nat Metab 2024; 6:1819-1836. [PMID: 39256590 DOI: 10.1038/s42255-024-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024]
Abstract
Abnormalities in the structure and metabolic function of abdominal subcutaneous adipose tissue (aSAT) underlie many obesity-related health complications. Endurance exercise improves cardiometabolic health in adults with overweight or obesity, but the effects of endurance training on aSAT are unclear. We included male and female participants who were regular exercisers with overweight or obesity who exercised for >2 years, and cross-sectionally compared them with well-matched non-exercisers with overweight or obesity. Here we show aSAT from exercisers has a higher capillary density, lower Col6a abundance and fewer macrophages compared with non-exercisers. This is accompanied by a greater abundance of angiogenic, ribosomal, mitochondrial and lipogenic proteins. The abundance of phosphoproteins involved in protein translation, lipogenesis and direct regulation of transcripts is also greater in aSAT collected from exercisers. Exploratory ex vivo experiments demonstrate greater angiogenic capacity and higher lipid-storage capacity in samples cultured from aSAT collected from exercisers versus non-exercisers. Regular exercise may play a role in remodelling aSAT structure and proteomic profile in ways that may contribute to preserved cardiometabolic health.
Collapse
Affiliation(s)
- Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gayoung Yang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Pallavi Varshney
- Human Bioenergetics Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Sophia J Ghayur
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Shi H, Hao X, Sun Y, Zhao Y, Wang Y, Cao X, Gong Z, Ji S, Lu J, Yan Y, Yu X, Luo X, Wang J, Wang H. Exercise-inducible circulating extracellular vesicle irisin promotes browning and the thermogenic program in white adipose tissue. Acta Physiol (Oxf) 2024; 240:e14103. [PMID: 38288566 DOI: 10.1111/apha.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
AIM Exercise can reduce body weight and promote white fat browning, but the underlying mechanisms remain largely unknown. This study investigated the role of fibronectin type III domain-containing protein 5 (FNDC5)/Irisin, a hormone released from exercising muscle, in the browning of white fat in circulating extracellular vesicles (EVs). METHODS Mice were subjected to a 4 weeks of running table exercise, and fat browning was analyzed via histology, protein blotting and qPCR. Circulating EVs were extracted by ultrahigh-speed centrifugation, and ELISA was used to measure the irisin concentration in the circulating EVs. Circulating EVs that differentially expressed irisin were applied to adipocytes, and the effect of EV-irisin on adipocyte energy metabolism was analyzed by immunofluorescence, protein blotting, and cellular oxygen consumption rate analysis. RESULTS During sustained exercise, the mice lost weight and developed fat browning. FNDC5 was induced, cleaved, and secreted into irisin, and irisin levels subsequently increased in the plasma during exercise. Interestingly, irisin was highly expressed in circulating EVs that effectively promoted adipose browning. Mechanistically, the circulating EV-irisin complex is transported intracellularly by the adipocyte membrane receptor integrin αV, which in turn activates the AMPK signaling pathway, which is dependent on mitochondrial uncoupling protein 1 to cause mitochondrial plasmonic leakage and promote heat production. After inhibition of the AMPK signaling pathway, the effects of the EV-irisin on promoting fat browning were minimal. CONCLUSION Exercise leads to the accumulation of circulating EV-irisin, which enhances adipose energy metabolism and thermogenesis and promotes white fat browning in mice, leading to weight loss.
Collapse
Affiliation(s)
- Hongwei Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Xiaojing Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Yaqin Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Yating Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Yue Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Xiaorui Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Zeen Gong
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Shusen Ji
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Juan Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| |
Collapse
|
6
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Dollet L, Lundell LS, Chibalin AV, Pendergrast LA, Pillon NJ, Lansbury EL, Elmastas M, Frendo-Cumbo S, Jalkanen J, de Castro Barbosa T, Cervone DT, Caidahl K, Dmytriyeva O, Deshmukh AS, Barrès R, Rydén M, Wallberg-Henriksson H, Zierath JR, Krook A. Exercise-induced crosstalk between immune cells and adipocytes in humans: Role of oncostatin-M. Cell Rep Med 2024; 5:101348. [PMID: 38151020 PMCID: PMC10829726 DOI: 10.1016/j.xcrm.2023.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
The discovery of exercise-regulated circulatory factors has fueled interest in organ crosstalk, especially between skeletal muscle and adipose tissue, and the role in mediating beneficial effects of exercise. We studied the adipose tissue transcriptome in men and women with normal glucose tolerance or type 2 diabetes following an acute exercise bout, revealing substantial exercise- and time-dependent changes, with sustained increase in inflammatory genes in type 2 diabetes. We identify oncostatin-M as one of the most upregulated adipose-tissue-secreted factors post-exercise. In cultured human adipocytes, oncostatin-M enhances MAPK signaling and regulates lipolysis. Oncostatin-M expression arises predominantly from adipose tissue immune cell fractions, while the corresponding receptors are expressed in adipocytes. Oncostatin-M expression increases in cultured human Thp1 macrophages following exercise-like stimuli. Our results suggest that immune cells, via secreted factors such as oncostatin-M, mediate a crosstalk between skeletal muscle and adipose tissue during exercise to regulate adipocyte metabolism and adaptation.
Collapse
Affiliation(s)
- Lucile Dollet
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Leonidas S Lundell
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Logan A Pendergrast
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth L Lansbury
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Merve Elmastas
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jutta Jalkanen
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Daniel T Cervone
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Oksana Dmytriyeva
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Institute of Molecular and Cellular Pharmacology, CNRS and Université Côte d'Azur, Valbonne, France
| | - Mikael Rydén
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Inland Norway University of Applied Sciences, Lillehammer, Norway.
| |
Collapse
|
8
|
Sabaratnam R, Hansen DR, Svenningsen P. White adipose tissue mitochondrial bioenergetics in metabolic diseases. Rev Endocr Metab Disord 2023; 24:1121-1133. [PMID: 37558853 DOI: 10.1007/s11154-023-09827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
White adipose tissue (WAT) is an important endocrine organ that regulates systemic energy metabolism. In metabolically unhealthy obesity, adipocytes become dysfunctional through hypertrophic mechanisms associated with a reduced endocrine function, reduced mitochondrial function, but increased inflammation, fibrosis, and extracellular remodelling. A pathologic WAT remodelling promotes systemic lipotoxicity characterized by fat accumulation in tissues such as muscle and liver, leading to systemic insulin resistance and type 2 diabetes. Several lines of evidence from human and animal studies suggest a link between unhealthy obesity and adipocyte mitochondrial dysfunction, and interventions that improve mitochondrial function may reduce the risk of obesity-associated diseases. This review discusses the importance of mitochondrial function and metabolism in human adipocyte biology and intercellular communication mechanisms within WAT. Moreover, a selected interventional approach for better adipocyte mitochondrial metabolism in humans is reviewed. A greater understanding of mitochondrial bioenergetics in WAT might provide novel therapeutic opportunities to prevent or restore dysfunctional adipose tissue in obesity-associated diseases.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Department of Clinical Research, University of Southern Denmark, Odense C, DK-5000, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark.
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| | - Didde Riisager Hansen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| |
Collapse
|
9
|
Guo Y, Zhang Q, Zheng L, Shou J, Zhuang S, Xiao W, Chen P. Depot-specific adaption of adipose tissue for different exercise approaches in high-fat diet/streptozocin-induced diabetic mice. Front Physiol 2023; 14:1189528. [PMID: 37485056 PMCID: PMC10358987 DOI: 10.3389/fphys.2023.1189528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Background: Adipose tissue pathology plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Understanding the impact of exercise training on adipose tissue adaptation is of paramount importance in enhancing metabolic health. In this study, we aimed to investigate the effects of various exercise modalities on three distinct adipose tissue depots, namely, interscapular brown adipose tissue (iBAT), subcutaneous white adipose tissue (sWAT), and epididymal white adipose tissue (eWAT), in a murine model of diabetes. Methods: Male C57BL/6J mice received a 12-week high-fat diet and a single injection of streptozotocin, followed by an 8-week exercise intervention. The exercise intervention included swimming, resistance training, aerobic exercise, and high-intensity interval training (HIIT). Results: We found that exercise training reduced body weight and body fat percentage, diminished adipocyte size and increased the expression of mitochondria-related genes (PGC1, COX4, and COX8B) in three adipose tissue depots. The effects of exercise on inflammatory status include a reduction in crown-like structures and the expression of inflammatory factors, mainly in eWAT. Besides, exercise only induces the browning of sWAT, which may be related to the expression of the sympathetic marker tyrosine hydroxylase. Among the four forms of exercise, HIIT was the most effective in reducing body fat percentage, increasing muscle mass and reducing eWAT adipocyte size. The expression of oxidative phosphorylation and thermogenesis-related genes in sWAT and eWAT was highest in the HIIT group. Conclusion: When targeting adipose tissue to improve diabetes, HIIT may offer superior benefits and thus represents a more advantageous choice.
Collapse
Affiliation(s)
- Yifan Guo
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Qilong Zhang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai, China
| | - Jian Shou
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuzhao Zhuang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
10
|
Song G, Chen J, Deng Y, Sun L, Yan Y. TMT Labeling Reveals the Effects of Exercises on the Proteomic Characteristics of the Subcutaneous Adipose Tissue of Growing High-Fat-Diet-Fed Rats. ACS OMEGA 2023; 8:23484-23500. [PMID: 37426235 PMCID: PMC10324099 DOI: 10.1021/acsomega.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
Aim: Growing period is an important period for fat remodeling. High-fat diet and exercise are reasons for adipose tissue (AT) remodeling, but existing evidence is not enough. Therefore, the effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on the proteomic characteristics of the subcutaneous AT of growing rats on normal diet or high-fat diet (HFD) were determined. Methods: Four-week-old male Sprague-Dawley rats (n = 48) were subdivided into six groups: normal diet control group, normal diet-MICT group, normal diet-HIIT group, HFD control group, HFD-MICT group, and HFD-HIIT group. Rats in the training group ran on a treadmill 5 days a week for 8 weeks (MICT: 50 min at 60-70% VO2max intensity; HIIT: 7 min of warm-up and recovery at 70% VO2max intensity, 6 sets of 3 min of 30% VO2max followed by 3 min 90% VO2max). Following physical assessment, inguinal subcutaneous adipose tissue (sWAT) was collected for proteome analysis using tandem mass tag labeling. Results: MICT and HIIT attenuated body fat mass and lean body mass but did not affect weight gain. Proteomics revealed the impact of exercise on ribosome, spliceosome, and the pentose phosphate pathway. However, the effect was reversed on HFD and normal diet. The differentially expressed proteins (DEPs) affected by MICT were related to oxygen transport, ribosome, and spliceosome. In comparison, the DEPs affected by HIIT were related to oxygen transport, mitochondrial electron transport, and mitochondrion protein. In HFD, HIIT was more likely to cause changes in immune proteins than MICT. However, exercise did not seem to reverse the protein effects of HFD. Conclusion: The exercise stress response in the growing period was stronger but increased the energy metabolism and metabolism. MICT and HIIT can reduce fat, increase muscle percentage, and improve maximum oxygen uptake in rats fed with HFD. However, in rats with normal diet, MICT and HIIT triggered more immune responses of sWAT, especially HIIT. In addition, spliceosomes may be the key factors in AT remodeling triggered by exercise and diet.
Collapse
Affiliation(s)
- Ge Song
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Junying Chen
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Guangdong
Ersha Sports Training Center, Guangzhou 510105, China
| | - Yimin Deng
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Fuzhou
Medical College of Nanchang University, Fuzhou 344000, China
| | - Lingyu Sun
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yi Yan
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Laboratory
of Sports Stress and Adaptation of General Administration of Sport, Beijing100084, China
- Laboratory
of Physical Fitness and Exercise, Ministry
of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
11
|
Dreher SI, Irmler M, Pivovarova-Ramich O, Kessler K, Jürchott K, Sticht C, Fritsche L, Schneeweiss P, Machann J, Pfeiffer AFH, Hrabě de Angelis M, Beckers J, Birkenfeld AL, Peter A, Niess AM, Weigert C, Moller A. Acute and long-term exercise adaptation of adipose tissue and skeletal muscle in humans: a matched transcriptomics approach after 8-week training-intervention. Int J Obes (Lond) 2023; 47:313-324. [PMID: 36774413 PMCID: PMC10113153 DOI: 10.1038/s41366-023-01271-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Exercise exerts many health benefits by directly inducing molecular alterations in physically utilized skeletal muscle. Molecular adaptations of subcutaneous adipose tissue (SCAT) might also contribute to the prevention of metabolic diseases. AIM To characterize the response of human SCAT based on changes in transcripts and mitochondrial respiration to acute and repeated bouts of exercise in comparison to skeletal muscle. METHODS Sedentary participants (27 ± 4 yrs) with overweight or obesity underwent 8-week supervised endurance exercise 3×1h/week at 80% VO2peak. Before, 60 min after the first and last exercise bout and 5 days post intervention, biopsies were taken for transcriptomic analyses and high-resolution respirometry (n = 14, 8 female/6 male). RESULTS In SCAT, we found 37 acutely regulated transcripts (FC > 1.2, FDR < 10%) after the first exercise bout compared to 394, respectively, in skeletal muscle. Regulation of only 5 transcripts overlapped between tissues highlighting their differential response. Upstream and enrichment analyses revealed reduced transcripts of lipid uptake, storage and lipogenesis directly after exercise in SCAT and point to β-adrenergic regulation as potential major driver. The data also suggest an exercise-induced modulation of the circadian clock in SCAT. Neither term was associated with transcriptomic changes in skeletal muscle. No evidence for beigeing/browning was found in SCAT along with unchanged respiration. CONCLUSIONS Adipose tissue responds completely distinct from adaptations of skeletal muscle to exercise. The acute and repeated reduction in transcripts of lipid storage and lipogenesis, interconnected with a modulated circadian rhythm, can counteract metabolic syndrome progression toward diabetes.
Collapse
Affiliation(s)
- Simon I Dreher
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Olga Pivovarova-Ramich
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Potsdam, Germany
- Research Group Molecular Nutritional Medicine, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558, Nuthetal, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Katharina Kessler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Potsdam, Germany
| | - Karsten Jürchott
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353, Berlin, Germany
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Louise Fritsche
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
| | - Patrick Schneeweiss
- Sports Medicine, University Hospital Tübingen, 72076, Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, University of Tübingen, Tübingen, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Andreas F H Pfeiffer
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Potsdam, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354, Freising, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354, Freising, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
| | - Andreas M Niess
- Sports Medicine, University Hospital Tübingen, 72076, Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, University of Tübingen, Tübingen, Germany
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany.
| | - Anja Moller
- German Center for Diabetes Research (DZD), 85784, Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
12
|
van Meijel RLJ, Vliex LMM, Hartwig S, Lehr S, Al-Hasani H, Blaak EE, Goossens GH. The impact of mild hypoxia exposure on myokine secretion in human obesity. Int J Obes (Lond) 2023; 47:520-527. [PMID: 36997723 DOI: 10.1038/s41366-023-01294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND/OBJECTIVE Compelling evidence indicates that myokines act in an autocrine, paracrine and endocrine manner to alter metabolic homeostasis. The mechanisms underlying exercise-induced changes in myokine secretion remain to be elucidated. Since exercise acutely decreases oxygen partial pressure (pO2) in skeletal muscle (SM), the present study was designed to test the hypothesis that (1) hypoxia exposure impacts myokine secretion in primary human myotubes and (2) exposure to mild hypoxia in vivo alters fasting and postprandial plasma myokine concentrations in humans. METHODS Differentiated primary human myotubes were exposed to different physiological pO2 levels for 24 h, and cell culture medium was harvested to determine myokine secretion. Furthermore, we performed a randomized single-blind crossover trial to investigate the impact of mild intermittent hypoxia exposure (MIH: 7-day exposure to 15% O2, 3x2h/day vs. normoxia: 21% O2) on in vivo SM pO2 and plasma myokine concentrations in 12 individuals with overweight and obesity (body-mass index ≥ 28 kg/m2). RESULTS Hypoxia exposure (1% O2) increased secreted protein acidic and rich in cysteine (SPARC, p = 0.043) and follistatin like 1 (FSTL1, p = 0.021), and reduced leukemia inhibitory factor (LIF) secretion (p = 0.009) compared to 3% O2 in primary human myotubes. In addition, 1% O2 exposure increased interleukin-6 (IL-6, p = 0.004) and SPARC secretion (p = 0.021), whilst reducing fatty acid binding protein 3 (FABP3) secretion (p = 0.021) compared to 21% O2. MIH exposure in vivo markedly decreased SM pO2 (≈40%, p = 0.002) but did not alter plasma myokine concentrations. CONCLUSIONS Hypoxia exposure altered the secretion of several myokines in primary human myotubes, revealing hypoxia as a novel modulator of myokine secretion. However, both acute and 7-day MIH exposure did not induce alterations in plasma myokine concentrations in individuals with overweight and obesity. CLINICAL TRIALS IDENTIFIER This study is registered at the Netherlands Trial Register (NL7120/NTR7325).
Collapse
Affiliation(s)
- Rens L J van Meijel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lars M M Vliex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Partner Duesseldorf, München-Neuherberg, Duesseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Partner Duesseldorf, München-Neuherberg, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Partner Duesseldorf, München-Neuherberg, Duesseldorf, Germany
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Li Y, Kong M, Wang J, Han P, Zhang N, Yang X, Wang J, Hu Y, Duo Y, Liu D. Exercise-induced circulating exosomes potentially prevent pelvic organ prolapse in clinical practice via inhibition of smooth muscle apoptosis. Heliyon 2022; 9:e12583. [PMID: 37077375 PMCID: PMC10106923 DOI: 10.1016/j.heliyon.2022.e12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background This study aimed to explore the potential mechanisms of exercise to prevent pelvic organ prolapse (POP) and search for diagnostic indictors for POP. Methods We used two clinical POP datasets with patients' information (GSE12852 and GSE53868), a dataset consisting of altered microRNA expression in circulating blood after exercise (GSE69717) for bioinformatic analysis and clinical diagnostic analysis, while a series of cellular experiments were conducted for preliminary mechanical validation. Results Our results show that AXUD1 is highly expressed in the smooth muscle of the ovary and is a key pathogenic gene in POP, while miR-133b is a key molecule in the regulation of POP by exercise-induced serum exosomes. The AUCs of AXUD1 for POP diagnosis were 0.842 and 0.840 in GSE12852 and GSE53868 respectively. At cut-off value = 9.627, the sensitivity and specificity of AXUD1 for predicating POP is 1.000 and 0.833 respectively for GSE53868, while at cut-off value = 3324.640, the sensitivity and specificity of AXUD1 for predicating POP is 0.941 and 0.812 separately for GSE12852. Analysis and experiments confirmed that miR-133b can directly regulate AXUD1. miR-133b mediated C2C12 myoblasts proliferation and inhibited hydrogen peroxide-induced apoptosis. Conclusions Our study proved that AXUD1 is a good clinical diagnostic indicator for POP and provided a theoretical basis for future prevention of POP through exercise and a potential target for intervention in muscle dysfunction.
Collapse
|
14
|
Luo Z, He Z, Qin H, Chen Y, Qi B, Lin J, Sun Y, Sun J, Su X, Long Z, Chen S. Exercise-induced IL-15 acted as a positive prognostic implication and tumor-suppressed role in pan-cancer. Front Pharmacol 2022; 13:1053137. [PMID: 36467072 PMCID: PMC9712805 DOI: 10.3389/fphar.2022.1053137] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/07/2022] [Indexed: 09/12/2023] Open
Abstract
Objective: Exercise can produce a large number of cytokines that may benefit cancer patients, including Interleukin 15 (IL-15). IL-15 is a cytokine that has multiple functions in regulating the adaptive and innate immune systems and tumorigenesis of lung and breast cancers. However, the roles of IL-15 in other types of cancer remain unknown. In this article, we try to systematically analyze if IL-15 is a potential molecular biomarker for predicting patient prognosis in pan-cancer and its connection with anti-cancer effects of exercise. Methods: The expression of IL-15 was detected by The Cancer Genome Atlas (TCGA) database, Human protein Atlas (HPA), and Genotype Tissue-Expression (GTEX) database. Analysis of IL-15 genomic alterations and protein expression in human organic tissues was analyzed by the cBioPortal database and HPA. The correlations between IL-15 expression and survival outcomes, clinical features, immune-associated cell infiltration, and ferroptosis/cuproptosis were analyzed using the TCGA, ESTIMATE algorithm, and TIMER databases. Gene Set Enrichment Analysis (GSEA) was performed to evaluate the biological functions of IL-15 in pan-cancer. Results: The differential analysis suggested that the level of IL-15 mRNA expression was significantly downregulated in 12 tumor types compared with normal tissues, which is similar to the protein expression in most cancer types. The high expression of IL-15 could predict the positive survival outcome of patients with LUAD (lung adenocarcinoma), COAD (colon adenocarcinoma), COADREAD (colon and rectum adenocarcinoma), ESCA (esophageal carcinoma), SKCM (skin cutaneous melanoma), UCS (uterine carcinosarcoma), and READ (rectum adenocarcinoma). Moreover, amplification was found to be the most frequent mutation type of IL-15 genomic. Furthermore, the expression of IL-15 was correlated to the infiltration levels of various immune-associated cells in pan-cancer assessed by the ESTIMATE algorithm and TIMER database. In addition, IL-15 is positively correlated with ferroptosis/cuproptosis-related genes (ACSL4 and LIPT1) in pan-cancer. Levels of IL-15 were reported to be elevated in humans for 10-120 min following an acute exercise. Therefore, we hypothesized that the better prognosis of pan-cancer patients with regular exercise may be achieved by regulating level of IL-15. Conclusion: Our results demonstrated that IL-15 is a potential molecular biomarker for predicting patient prognosis, immunoreaction, and ferroptosis/cuproptosis in pan-cancer and partly explained the anti-cancer effects of exercise.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Haocheng Qin
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Ziwen Long
- Department of Gastric Cancer Sugery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Liu W, Huang Z, Xia J, Cui Z, Li L, Qi Z, Liu W. Gene expression profile associated with Asmt knockout-induced depression-like behaviors and exercise effects in mouse hypothalamus. Biosci Rep 2022; 42:BSR20220800. [PMID: 35771226 PMCID: PMC9284346 DOI: 10.1042/bsr20220800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep disorder caused by abnormal circadian rhythm is one of the main symptoms and risk factors of depression. As a known hormone regulating circadian rhythms, melatonin (MT) is also namely N-acetyl-5-methoxytryptamine. N-acetylserotonin methyltransferase (Asmt) is the key rate-limiting enzyme of MT synthesis and has been reportedly associated with depression. Although 50-90% of patients with depression have sleep disorders, there are no effective treatment ways in the clinic. Exercise can regulate circadian rhythm and play an important role in depression treatment. In the present study, we showed that Asmt knockout induced depression-like behaviors, which were ameliorated by swimming exercise. Moreover, swimming exercise increased serum levels of MT and 5-hydroxytryptamine (5-HT) in Asmt knockout mice. In addition, the microarray data identified 10 differentially expressed genes (DEGs) in KO mice compared with WT mice and 29 DEGs in KO mice after swimming exercise. Among the DEGs, the direction and magnitude of change in epidermal growth factor receptor pathway substrate 8-like 1 (Eps8l1) and phospholipase C-β 2 (Plcb2) were confirmed by qRT-PCR partly. Subsequent bioinformatic analysis showed that these DEGs were enriched significantly in the p53 signaling pathway, long-term depression and estrogen signaling pathway. In the protein-protein interaction (PPI) networks, membrane palmitoylated protein 1 (Mpp1) and p53-induced death domain protein 1 (Pidd1) were hub genes to participate in the pathological mechanisms of depression and exercise intervention. These findings may provide new targets for the treatment of depression.
Collapse
Affiliation(s)
- Wenbin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhuochun Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhiming Cui
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Lingxia Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
16
|
Georgiev A, Granata C, Roden M. The role of mitochondria in the pathophysiology and treatment of common metabolic diseases in humans. Am J Physiol Cell Physiol 2022; 322:C1248-C1259. [PMID: 35508191 DOI: 10.1152/ajpcell.00035.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Common metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease significantly contribute to morbidity and mortality worldwide. They frequently associate with insulin resistance and altered mitochondrial functionality. Insulin-responsive tissues can show changes in mitochondrial features such as oxidative capacity, mitochondrial content and turnover, which do not necessarily reflect abnormalities but rather adaption to a certain metabolic condition. Lifestyle modifications and classic or novel drugs can modify these alterations and help treating these metabolic diseases. This review addresses the role of mitochondria in human metabolic diseases and discusses potential future research directions.
Collapse
Affiliation(s)
- Asen Georgiev
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Cesare Granata
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Michael Roden
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Abstract
Physical activity and its sustained and purposeful performance-exercise-promote a broad and diverse set of metabolic and cardiovascular health benefits. Regular exercise is the most effective way to improve cardiorespiratory fitness, a measure of one's global cardiovascular, pulmonary and metabolic health, and one of the strongest predictors of future health risk. Here, we describe how exercise affects individual organ systems related to cardiometabolic health, including the promotion of insulin and glucose homeostasis through improved efficiency in skeletal muscle glucose utilization and enhanced insulin sensitivity; beneficial changes in body composition and adiposity; and improved cardiac mechanics and vascular health. We subsequently identify knowledge gaps that remain in exercise science, including heterogeneity in exercise responsiveness. While the application of molecular profiling technologies in exercise science has begun to illuminate the biochemical pathways that govern exercise-induced health promotion, much of this work has focused on individual organ systems and applied single platforms. New insights into exercise-induced secreted small molecules and proteins that impart their effects in distant organs ("exerkines") highlight the need for an integrated approach towards the study of exercise and its global effects; efforts that are ongoing.
Collapse
Affiliation(s)
| | - Prashant Rao
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jeremy M. Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
18
|
Ahn C, Ryan BJ, Schleh MW, Varshney P, Ludzki AC, Gillen JB, Van Pelt DW, Pitchford LM, Howton SM, Rode T, Hummel SL, Burant CF, Little JP, Horowitz JF. Exercise training remodels subcutaneous adipose tissue in adults with obesity even without weight loss. J Physiol 2022; 600:2127-2146. [PMID: 35249225 PMCID: PMC9058215 DOI: 10.1113/jp282371] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022] Open
Abstract
Excessive adipose tissue mass underlies much of the metabolic health complications in obesity. Although exercise training is known to improve metabolic health in individuals with obesity, the effects of exercise training without weight loss on adipose tissue structure and metabolic function remain unclear. Thirty-six adults with obesity (body mass index = 33 ± 3 kg · m-2 ) were assigned to 12 weeks (4 days week-1 ) of either moderate-intensity continuous training (MICT; 70% maximal heart rate, 45 min; n = 17) or high-intensity interval training (HIIT; 90% maximal heart rate, 10 × 1 min; n = 19), maintaining their body weight throughout. Abdominal subcutaneous adipose tissue (aSAT) biopsy samples were collected once before and twice after training (1 day after last exercise and again 4 days later). Exercise training modified aSAT morphology (i.e. reduced fat cell size, increased collagen type 5a3, both P ≤ 0.05, increased capillary density, P = 0.05) and altered protein abundance of factors that regulate aSAT remodelling (i.e. reduced matrix metallopeptidase 9; P = 0.02; increased angiopoietin-2; P < 0.01). Exercise training also increased protein abundance of factors that regulate lipid metabolism (e.g. hormone sensitive lipase and fatty acid translocase; P ≤ 0.03) and key proteins involved in the mitogen-activated protein kinase pathway when measured the day after the last exercise session. However, most of these exercise-mediated changes were no longer significant 4 days after exercise. Importantly, MICT and HIIT induced remarkably similar adaptations in aSAT. Collectively, even in the absence of weight loss, 12 weeks of exercise training induced changes in aSAT structure, as well as factors that regulate metabolism and the inflammatory signal pathway in adults with obesity. KEY POINTS: Exercise training is well-known to improve metabolic health in obesity, although how exercise modifies the structure and metabolic function of adipose tissue, in the absence of weight loss, remains unclear. We report that both 12 weeks of moderate-intensity continuous training (MICT) and 12 weeks of high-intensity interval training (HIIT) induced modifications in adipose tissue structure and factors that regulate adipose tissue remodelling, metabolism and the inflammatory signal pathway in adults with obesity, even without weight loss (with no meaningful differences between MICT and HIIT). The modest modifications in adipose tissue structure in response to 12 weeks of MICT or HIIT did not lead to changes in the rate of fatty acid release from adipose tissue. These results expand our understanding about the effects of two commonly used exercise training prescriptions (MICT and HIIT) on adipose tissue remodelling that may lead to advanced strategies for improving metabolic health outcomes in adults with obesity.
Collapse
Affiliation(s)
- Cheehoon Ahn
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| | - Benjamin J. Ryan
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| | - Michael W. Schleh
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| | - Pallavi Varshney
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| | - Alison C. Ludzki
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| | - Jenna B. Gillen
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
- Faculty of Kinesiology and Physical Education University of Toronto Toronto Ontario M5S 2C9 Canada
| | - Douglas W. Van Pelt
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| | - Lisa M. Pitchford
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| | - Suzette M. Howton
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| | - Thomas Rode
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| | - Scott L. Hummel
- Division of Cardiology Department of Internal Medicine University of Michigan Ann Arbor Michigan 48109
- Ann Arbor Veterans Affairs Health System Ann Arbor Michigan 48109
| | - Charles F. Burant
- Division of Metabolism, Endocrinology, and Diabetes Department of Internal Medicine University of Michigan Ann Arbor MI 48109
| | - Jonathan P. Little
- School of Health and Exercise Sciences University of British Columbia Okanagan Campus Kelowna British Columbia V1V 1V7 Canada
| | - Jeffrey F. Horowitz
- Substrate Metabolism Laboratory School of Kinesiology University of Michigan Ann Arbor Michigan 48109
| |
Collapse
|
19
|
Kurgan N, Islam H, Matusiak JBL, Baranowski BJ, Stoikos J, Fajardo VA, MacPherson REK, Gurd BJ, Klentrou P. Subcutaneous adipose tissue sclerostin is reduced and Wnt signaling is enhanced following 4-weeks of sprint interval training in young men with obesity. Physiol Rep 2022; 10:e15232. [PMID: 35312183 PMCID: PMC8935536 DOI: 10.14814/phy2.15232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/01/2023] Open
Abstract
Sclerostin is a Wnt/β-catenin antagonist, mainly secreted by osteocytes, and most known for its role in reducing bone formation. Studies in rodents suggest sclerostin can also regulate adipose tissue mass and metabolism, representing bone-adipose tissue crosstalk. Exercise training has been shown to reduce plasma sclerostin levels; but the effects of exercise on sclerostin and Wnt/β-catenin signaling specifically within adipose tissue has yet to be examined. The purpose of this study was to examine subcutaneous WAT (scWAT) sclerostin content and Wnt signaling in response to exercise training in young men with obesity. To this end, 7 male participants (BMI = 35 ± 4; 25 ± 4 years) underwent 4 weeks of sprint interval training (SIT) involving 4 weekly sessions consisting of a 5-min warmup, followed by 8 × 20 s intervals at 170% of work rate at VO2peak , separated by 10 s of rest. Serum and scWAT were sampled at rest both pre- and post-SIT. Despite no changes in serum sclerostin levels, we found a significant decrease in adipose sclerostin content (-37%, p = 0.04), an increase in total β-catenin (+52%, p = 0.03), and no changes in GSK3β serine 9 phosphorylation. There were also concomitant reductions in serum TNF-α (-0.36 pg/ml, p = 0.03) and IL-6 (-1.44 pg/ml, p = 0.05) as well as an increase in VO2peak (+5%, p = 0.03) and scWAT COXIV protein content (+95%, p = 0.04). In conclusion, scWAT sclerostin content was reduced and β-catenin content was increased following SIT in young men with excess adiposity, suggesting a role of sclerostin in regulating human adipose tissue in response to exercise training.
Collapse
Affiliation(s)
- Nigel Kurgan
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Hashim Islam
- School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | | | - Bradley J. Baranowski
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Department of Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Joshua Stoikos
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Val A. Fajardo
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | | | - Brendon J. Gurd
- Department of KinesiologyQueens UniversityKingstonOntarioCanada
| | - Panagiota Klentrou
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
20
|
Song S, Lee E, Kim H. Does Exercise Affect Telomere Length? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicina (B Aires) 2022; 58:medicina58020242. [PMID: 35208566 PMCID: PMC8879766 DOI: 10.3390/medicina58020242] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background and objectives: Telomere length is an indicator of biological aging, and it shortens during cell division. A short telomere length is associated with various age-related diseases and mortality. It is suggested that physical activity has a positive effect on the rate of telomere length shortening. Materials and Methods: Related studies, published in electronic databases, were searched with keywords, including exercise, telomere length, and randomized controlled trial. The data were weighted and pooled through a fixed-effect model. Results: Of the total 49 studies searched, 7 studies with 939 participants were considered suitable, and were analyzed qualitatively and quantitatively. Exercise is beneficial to telomere length. Aerobic exercise was effective as the type of exercise (MD, −0.03; 95% CI, −0.04 to −0.01). In addition, exercise for more than 6 months, with a change in lifestyle, is beneficial for telomere length (MD, −0.02; 95% CI, −0.04 to −0.01). Conclusions: The type and duration of exercise for positive improvement in telomere length is aerobic exercise for more than 6 months.
Collapse
Affiliation(s)
- Seonghyeok Song
- Ez Rehabilitation Medical Center, 302 Gwanggyojungang-ro, Yongin 16943, Korea;
| | - Eunsang Lee
- Department of Physical Therapy, Gwangju Health University, 73 Bungmun-daero 419beon-gil, Gwangju 62287, Korea;
| | - Hyunjoong Kim
- Neuromusculoskeletal Science Laboratory, 306 Jangsin-ro, Gwangju 62287, Korea
- Correspondence:
| |
Collapse
|
21
|
Elsayyad LK, Shafie A, Almehmadi M, Gharib AF, El Askary A, Alsayad T, Muhsen A, Allam H. Effect of Exercise-Induced Lipolysis on Serum Vitamin D Level in Obese Children: A Clinical Controlled Trial. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Low Vitamin D levels associated with obesity have reached an epidemic level all over the world. It has been supposed that the low serum level of Vitamin D3 in obese subjects may be due to an increase in the uptake of Vitamin D3 by adipose tissue.
AIM: The current study aimed to investigate the effect of a specially designed exercise program for boosting lipolysis on the Vitamin D level in obese children.
METHODS: Thirty obese male children participated in the study. Their age was ranged from 9 to 11 years. The participants were assigned to two groups, Group I (GI) who received endurance exercise (ENE) only and Group II (GII) who received the specially designed exercise for increasing lipolysis (ENE preceded by resistance exercise). Free fatty acids (FFA), glycerol, and 25(OH)D were assessed before and immediately after exercise.
RESULTS: FFA and glycerol showed a significant increase in both groups following exercise, while 25(OH)D showed a significant increase only in GII. GII showed significantly higher levels of FFA, glycerol, and 25(OH)D following exercise when it was compared to GI.
CONCLUSION: The application of resistance training before ENE could improve the Vitamin D status through increasing the lipolytic activities more than the application of endurance exercise alone.
Collapse
|
22
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
23
|
Perego S, Sansoni V, Ziemann E, Lombardi G. Another Weapon against Cancer and Metastasis: Physical-Activity-Dependent Effects on Adiposity and Adipokines. Int J Mol Sci 2021; 22:ijms22042005. [PMID: 33670492 PMCID: PMC7922129 DOI: 10.3390/ijms22042005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Physically active behavior has been associated with a reduced risk of developing certain types of cancer and improved psychological conditions for patients by reducing anxiety and depression, in turn improving the quality of life of cancer patients. On the other hand, the correlations between inactivity, sedentary behavior, and overweight and obesity with the risk of development and progression of various cancers are well studied, mainly in middle-aged and elderly subjects. In this article, we have revised the evidence on the effects of physical activity on the expression and release of the adipose-tissue-derived mediators of low-grade chronic inflammation, i.e., adipokines, as well as the adipokine-mediated impacts of physical activity on tumor development, growth, and metastasis. Importantly, exercise training may be effective in mitigating the side effects related to anti-cancer treatment, thereby underlining the importance of encouraging cancer patients to engage in moderate-intensity activities. However, the strong need to customize and adapt exercises to a patient’s abilities is apparent. Besides the preventive effects of physically active behavior against the adipokine-stimulated cancer risk, it remains poorly understood how physical activity, through its actions as an adipokine, can actually influence the onset and development of metastases.
Collapse
Affiliation(s)
- Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Correspondence: ; Tel.: +39-0266214068
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| |
Collapse
|
24
|
Allerton TD, Savoie JJ, Fitch MD, Hellerstein MK, Stephens JM, White U. Exercise reduced the formation of new adipocytes in the adipose tissue of mice in vivo. PLoS One 2021; 16:e0244804. [PMID: 33471817 PMCID: PMC7817033 DOI: 10.1371/journal.pone.0244804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Exercise has beneficial effects on metabolism and health. Although the skeletal muscle has been a primary focus, exercise also mediates robust adaptations in white adipose tissue. To determine if exercise affects in vivo adipocyte formation, fifty-two, sixteen-week-old C57BL/6J mice were allowed access to unlocked running wheels [Exercise (EX) group; n = 13 males, n = 13 females] or to locked wheels [Sedentary (SED) group; n = 13 males, n = 13 females] for 4-weeks. In vivo adipocyte formation was assessed by the incorporation of deuterium (2H) into the DNA of newly formed adipocytes in the inguinal and gonadal adipose depots. A two-way ANOVA revealed that exercise significantly decreased new adipocyte formation in the adipose tissue of mice in the EX group relative to the SED group (activity effect; P = 0.02). This reduction was observed in male and female mice (activity effect; P = 0.03). Independent analysis of the depots showed a significant reduction in adipocyte formation in the inguinal (P = 0.05) but not in the gonadal (P = 0.18) of the EX group. We report for the first time that exercise significantly reduced in vivo adipocyte formation in the adipose tissue of EX mice using a physiologic metabolic 2H2O-labeling protocol.
Collapse
Affiliation(s)
- Timothy D. Allerton
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Jonathan J. Savoie
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Mark D. Fitch
- University of California at Berkeley, Berkeley, CA, United States of America
| | - Marc K. Hellerstein
- University of California at Berkeley, Berkeley, CA, United States of America
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Ursula White
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| |
Collapse
|
25
|
Hoffmann C, Schneeweiss P, Randrianarisoa E, Schnauder G, Kappler L, Machann J, Schick F, Fritsche A, Heni M, Birkenfeld A, Niess AM, Häring HU, Weigert C, Moller A. Response of Mitochondrial Respiration in Adipose Tissue and Muscle to 8 Weeks of Endurance Exercise in Obese Subjects. J Clin Endocrinol Metab 2020; 105:5895511. [PMID: 32827042 DOI: 10.1210/clinem/dgaa571] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/19/2020] [Indexed: 01/04/2023]
Abstract
CONTEXT Exercise training improves glycemic control and increases mitochondrial content and respiration capacity in skeletal muscle. Rodent studies suggest that training increases mitochondrial respiration in adipose tissue. OBJECTIVE To assess the effects of endurance training on respiratory capacities of human skeletal muscle and abdominal subcutaneous adipose tissue and to study the correlation with improvement in insulin sensitivity. DESIGN Using high-resolution respirometry, we analyzed biopsies from 25 sedentary (VO2 peak 25.1 ± 4.0 VO2 mL/[kg*min]) subjects (16 female, 9 male; 29.8 ± 8.4 years) with obesity (body mass index [BMI] 31.5 ± 4.3 kg/m2), who did not have diabetes. They performed a supervised endurance training over 8 weeks (3 × 1 hour/week at 80% VO2 peak). RESULTS Based on change in insulin sensitivity after intervention (using the Matsuda insulin sensitivity index [ISIMats]), subjects were grouped in subgroups as responders (>15% increase in ISIMats) and low-responders. The response in ISIMats was correlated to a reduction of subcutaneous and visceral adipose tissue volume. Both groups exhibited similar increases in fitness, respiratory capacity, and abundance of mitochondrial enzymes in skeletal muscle fibers. Respiratory capacities in subcutaneous adipose tissue were not altered by the intervention. Compared with muscle fibers, adipose tissue respiration showed a preference for β-oxidation and complex II substrates. Respiratory capacities were higher in adipose tissue from female participants. CONCLUSION Our data show that the improvement of peripheral insulin sensitivity after endurance training is not directly related to an increase in mitochondrial respiratory capacities in skeletal muscle and occurs without an increase in the respiratory capacity of subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Christoph Hoffmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Schneeweiss
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, Tübingen, Germany
| | - Elko Randrianarisoa
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
| | - Günter Schnauder
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Fritz Schick
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Andreas M Niess
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
| | - Anja Moller
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Sanford JA, Nogiec CD, Lindholm ME, Adkins JN, Amar D, Dasari S, Drugan JK, Fernández FM, Radom-Aizik S, Schenk S, Snyder MP, Tracy RP, Vanderboom P, Trappe S, Walsh MJ, Adkins JN, Amar D, Dasari S, Drugan JK, Evans CR, Fernandez FM, Li Y, Lindholm ME, Nogiec CD, Radom-Aizik S, Sanford JA, Schenk S, Snyder MP, Tomlinson L, Tracy RP, Trappe S, Vanderboom P, Walsh MJ, Lee Alekel D, Bekirov I, Boyce AT, Boyington J, Fleg JL, Joseph LJ, Laughlin MR, Maruvada P, Morris SA, McGowan JA, Nierras C, Pai V, Peterson C, Ramos E, Roary MC, Williams JP, Xia A, Cornell E, Rooney J, Miller ME, Ambrosius WT, Rushing S, Stowe CL, Jack Rejeski W, Nicklas BJ, Pahor M, Lu CJ, Trappe T, Chambers T, Raue U, Lester B, Bergman BC, Bessesen DH, Jankowski CM, Kohrt WM, Melanson EL, Moreau KL, Schauer IE, Schwartz RS, Kraus WE, Slentz CA, Huffman KM, Johnson JL, Willis LH, Kelly L, Houmard JA, Dubis G, Broskey N, Goodpaster BH, Sparks LM, Coen PM, Cooper DM, Haddad F, Rankinen T, Ravussin E, Johannsen N, Harris M, Jakicic JM, Newman AB, Forman DD, Kershaw E, Rogers RJ, Nindl BC, Page LC, Stefanovic-Racic M, Barr SL, Rasmussen BB, et alSanford JA, Nogiec CD, Lindholm ME, Adkins JN, Amar D, Dasari S, Drugan JK, Fernández FM, Radom-Aizik S, Schenk S, Snyder MP, Tracy RP, Vanderboom P, Trappe S, Walsh MJ, Adkins JN, Amar D, Dasari S, Drugan JK, Evans CR, Fernandez FM, Li Y, Lindholm ME, Nogiec CD, Radom-Aizik S, Sanford JA, Schenk S, Snyder MP, Tomlinson L, Tracy RP, Trappe S, Vanderboom P, Walsh MJ, Lee Alekel D, Bekirov I, Boyce AT, Boyington J, Fleg JL, Joseph LJ, Laughlin MR, Maruvada P, Morris SA, McGowan JA, Nierras C, Pai V, Peterson C, Ramos E, Roary MC, Williams JP, Xia A, Cornell E, Rooney J, Miller ME, Ambrosius WT, Rushing S, Stowe CL, Jack Rejeski W, Nicklas BJ, Pahor M, Lu CJ, Trappe T, Chambers T, Raue U, Lester B, Bergman BC, Bessesen DH, Jankowski CM, Kohrt WM, Melanson EL, Moreau KL, Schauer IE, Schwartz RS, Kraus WE, Slentz CA, Huffman KM, Johnson JL, Willis LH, Kelly L, Houmard JA, Dubis G, Broskey N, Goodpaster BH, Sparks LM, Coen PM, Cooper DM, Haddad F, Rankinen T, Ravussin E, Johannsen N, Harris M, Jakicic JM, Newman AB, Forman DD, Kershaw E, Rogers RJ, Nindl BC, Page LC, Stefanovic-Racic M, Barr SL, Rasmussen BB, Moro T, Paddon-Jones D, Volpi E, Spratt H, Musi N, Espinoza S, Patel D, Serra M, Gelfond J, Burns A, Bamman MM, Buford TW, Cutter GR, Bodine SC, Esser K, Farrar RP, Goodyear LJ, Hirshman MF, Albertson BG, Qian WJ, Piehowski P, Gritsenko MA, Monore ME, Petyuk VA, McDermott JE, Hansen JN, Hutchison C, Moore S, Gaul DA, Clish CB, Avila-Pacheco J, Dennis C, Kellis M, Carr S, Jean-Beltran PM, Keshishian H, Mani D, Clauser K, Krug K, Mundorff C, Pearce C, Ivanova AA, Ortlund EA, Maner-Smith K, Uppal K, Zhang T, Sealfon SC, Zaslavsky E, Nair V, Li S, Jain N, Ge Y, Sun Y, Nudelman G, Ruf-zamojski F, Smith G, Pincas N, Rubenstein A, Anne Amper M, Seenarine N, Lappalainen T, Lanza IR, Sreekumaran Nair K, Klaus K, Montgomery SB, Smith KS, Gay NR, Zhao B, Hung CJ, Zebarjadi N, Balliu B, Fresard L, Burant CF, Li JZ, Kachman M, Soni T, Raskind AB, Gerszten R, Robbins J, Ilkayeva O, Muehlbauer MJ, Newgard CB, Ashley EA, Wheeler MT, Jimenez-Morales D, Raja A, Dalton KP, Zhen J, Suk Kim Y, Christle JW, Marwaha S, Chin ET, Hershman SG, Hastie T, Tibshirani R, Rivas MA. Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell 2020; 181:1464-1474. [PMID: 32589957 PMCID: PMC8800485 DOI: 10.1016/j.cell.2020.06.004] [Show More Authors] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
Exercise provides a robust physiological stimulus that evokes cross-talk among multiple tissues that when repeated regularly (i.e., training) improves physiological capacity, benefits numerous organ systems, and decreases the risk for premature mortality. However, a gap remains in identifying the detailed molecular signals induced by exercise that benefits health and prevents disease. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to address this gap and generate a molecular map of exercise. Preclinical and clinical studies will examine the systemic effects of endurance and resistance exercise across a range of ages and fitness levels by molecular probing of multiple tissues before and after acute and chronic exercise. From this multi-omic and bioinformatic analysis, a molecular map of exercise will be established. Altogether, MoTrPAC will provide a public database that is expected to enhance our understanding of the health benefits of exercise and to provide insight into how physical activity mitigates disease.
Collapse
|
27
|
Vidal P, Stanford KI. Exercise-Induced Adaptations to Adipose Tissue Thermogenesis. Front Endocrinol (Lausanne) 2020; 11:270. [PMID: 32411099 PMCID: PMC7201000 DOI: 10.3389/fendo.2020.00270] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise training results in beneficial adaptations to numerous tissues and offers protection against metabolic disorders including obesity and type 2 diabetes. Multiple studies have indicated that both white (WAT) and brown (BAT) adipose tissue may play an important role to mediate the beneficial effects of exercise. Studies from both rodents and humans have identified exercise-induced changes in WAT including increased mitochondrial activity and glucose uptake, an altered endocrine profile, and in rodents, a beiging of the WAT. Studies investigating the effects of exercise on BAT have resulted in conflicting data in terms of mitochondrial activity, glucose uptake, and thermogenic activity in rodents and humans, and remain an important area of investigation. This review discusses the exercise-induced adaptations to white and brown adipose tissue, distinguishing important differences between rodents and humans and highlighting the latest studies in the field and their implications.
Collapse
|
28
|
Brandao CFC, de Carvalho FG, Souza ADO, Junqueira-Franco MVM, Batitucci G, Couto-Lima CA, Fett CA, Papoti M, Freitas ECD, Alberici LC, Marchini JS. Physical training, UCP1 expression, mitochondrial density, and coupling in adipose tissue from women with obesity. Scand J Med Sci Sports 2019; 29:1699-1706. [PMID: 31282585 DOI: 10.1111/sms.13514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/10/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Exercise training may improve energy expenditure, thermogenesis, and oxidative capacities. Therefore, we hypothesized that physical training enhances white adipose tissue mitochondrial oxidative capacity from obese women. OBJECTIVE To evaluate mitochondrial respiratory capacity, mitochondrial content, and UCP1 gene expression in white adipose tissue from women with obesity before and after the physical training program. METHODS Women (n = 14, BMI 33 ± 3 kg/m2 , 35 ± 6 years, mean ± SD) were submitted to strength and aerobic exercises (75%-90% maximum heart rate and multiple repetitions), 3 times/week during 8 weeks. All evaluated subjects were paired, before and after training for resting metabolic rate (RMR), substrate oxidation (lipid and carbohydrate) by indirect calorimeter, deuterium oxide body composition, and aerobic maximum velocity (Vmax ) test. At the beginning and at the ending of the protocol, abdominal subcutaneous adipose tissue was collected to measure the mitochondrial respiration by high-resolution respirometry, mitochondrial content by citrate synthase (CS) activity, and UCP1 gene expression by RT-qPCR. RESULTS Combined physical training increased RMR, lipid oxidation, and Vmax but did not change body weight/composition. In WAT, exercise increased CS activity, decreased mitochondrial uncoupled respiration and mRNA of UCP1. RMR was positively correlated with fat-free mass. CONCLUSION Physical training promotes an increase in mitochondrial content without changing tissue respiratory capacity, a reduction in mitochondrial uncoupling degree and UCP1 mRNA expression in WAT. Finally, it improved the resting metabolic rate, lipid oxidation and physical performance, independent of the body changing free, or fat mass in obese women.
Collapse
Affiliation(s)
| | - Flavia Giolo de Carvalho
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Gabriela Batitucci
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
| | - Carlos Antonio Couto-Lima
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Marcelo Papoti
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ellen Cristini de Freitas
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
| | - Luciane Carla Alberici
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julio Sergio Marchini
- Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
29
|
Giolo De Carvalho F, Sparks LM. Targeting White Adipose Tissue with Exercise or Bariatric Surgery as Therapeutic Strategies in Obesity. BIOLOGY 2019; 8:E16. [PMID: 30875990 PMCID: PMC6466059 DOI: 10.3390/biology8010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022]
Abstract
Adipose tissue is critical to whole-body energy metabolism and has become recognized as a bona fide endocrine organ rather than an inert lipid reservoir. As such, adipose tissue is dynamic in its ability to secrete cytokines, free fatty acids, lipokines, hormones and other factors in response to changes in environmental stimuli such as feeding, fasting and exercise. While excess adipose tissue, as in the case of obesity, is associated with metabolic complications, mass itself is not the only culprit in obesity-driven metabolic abnormalities, highlighting the importance of healthy and metabolically adaptable adipose tissue. In this review, we discuss the fundamental cellular processes of adipose tissue that become perturbed in obesity and the impact of exercise on these processes. While both endurance and resistance exercise can promote positive physiological adaptations in adipose tissue, endurance exercise has a more documented role in remodeling adipocytes, increasing adipokine secretion and fatty acid mobilization and oxidation during post-exercise compared with resistance exercise. Exercise is considered a viable therapeutic strategy for the treatment of obesity to optimize body composition, in particular as an adjuvant therapy to bariatric surgery; however, there is a gap in knowledge of the molecular underpinnings of these exercise-induced adaptations, which could provide more insight and opportunity for precision-based treatment strategies.
Collapse
Affiliation(s)
- Flávia Giolo De Carvalho
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes 3900, Ribeirao Preto, SP 14040-907, Brazil.
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Advent Health, 301 East Princeton Street, Orlando, FL 32804, USA.
| |
Collapse
|
30
|
Dollet L, Zierath JR. Interplay between diet, exercise and the molecular circadian clock in orchestrating metabolic adaptations of adipose tissue. J Physiol 2019; 597:1439-1450. [PMID: 30615204 DOI: 10.1113/jp276488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Disruption of circadian rhythmicity induced by prolonged light exposure, altered sleep patterns and shift work is associated with the development of obesity and related metabolic disorders, including type 2 diabetes and cardiovascular diseases. White and brown adipose tissue activity shows circadian rhythmicity, with daily variations in the regulation of metabolic processes such as lipolysis, glucose and lipid uptake, and adipokine secretion. The role of the circadian clock in the regulation of energy homeostasis has raised interest in clock-related strategies to mitigate metabolic disturbances associated with type 2 diabetes, including 'resynchronizing' metabolism through diet or targeting a particular time of a day to potentiate the effect of a pharmacological or physiological treatment. Exercise is an effective intervention to prevent insulin resistance and type 2 diabetes. Beyond its effect on skeletal muscle, exercise training also has a profound effect on adipose tissue. Adipose tissue partly mediates the beneficial effect of exercise on glucose and energy homeostasis, via its metabolic and endocrine function. The interaction between zeitgeber time and diet or exercise is likely to influence the metabolic response of adipose tissue and therefore impact the whole-body phenotype. Understanding the impact of circadian clock systems on human physiology and how this is regulated by exercise in a tissue-specific manner will yield new insights for the management of metabolic disorders.
Collapse
Affiliation(s)
- Lucile Dollet
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Mika A, Macaluso F, Barone R, Di Felice V, Sledzinski T. Effect of Exercise on Fatty Acid Metabolism and Adipokine Secretion in Adipose Tissue. Front Physiol 2019; 10:26. [PMID: 30745881 PMCID: PMC6360148 DOI: 10.3389/fphys.2019.00026] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Increased physical activity is an optimal way to maintain a good health. During exercise, triacylglycerols, an energy reservoir in adipose tissue, are hydrolyzed to free fatty acids (FAs) which are then released to the circulation, providing a fuel for working muscles. Thus, regular physical activity leads to a reduction of adipose tissue mass and improves metabolism. However, the reduction of lipid reservoir is also associated with many other interesting changes in adipose tissue FA metabolism. For example, a prolonged exercise contributes to a decrease in lipoprotein lipase activity and resultant reduction of FA uptake. This results in the improvement of mitochondrial function and upregulation of enzymes involved in the metabolism of polyunsaturated fatty acids. The exercise-induced changes in adipocyte metabolism are associated with modifications of FA composition. The modifications are adipose tissue depot-specific and follow different patterns in visceral and subcutaneous adipose tissue. Moreover, exercise affects adipokine release from adipose tissue, and thus, may mitigate inflammation and improve insulin sensitivity. Another consequence of exercise is the recently described phenomenon of adipose tissue “beiging,” i.e., a switch from energy-storing white adipocyte phenotype to thermogenic FA oxidizing beige adipocytes. This process is regulated by myokines released during the exercise. In this review, we summarize published evidence for the exercise-related changes in FA metabolism and adipokine release in adipose tissue, and their potential contribution to beneficial cardiovascular and metabolic effects of physical activity.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland.,Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Filippo Macaluso
- Department of Biomedicine, Neurosciences, and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.,SMART Engineering Solutions & Technologies (SMARTEST) Research Center, eCampus University, Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neurosciences, and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Valentina Di Felice
- Department of Biomedicine, Neurosciences, and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
32
|
Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, Monraz-Preciado F, Ordoñez-Ortega S, Becerril-Elias V, Baay-Guzmán G, Obando-Monge R, García-García E, Palacios-González B, Villarreal-Molina MT, Sierra-Salazar M, Antuna-Puente B. Exercise Induces White Adipose Tissue Browning Across the Weight Spectrum in Humans. Front Physiol 2018; 9:1781. [PMID: 30618796 PMCID: PMC6297830 DOI: 10.3389/fphys.2018.01781] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 01/02/2023] Open
Abstract
While the effect of exercise on white adipose tissue browning and metabolic improvement in rodents is clear, there are few studies in humans with inconclusive results. Thus, the aim of the study was to assess whether an exercise intervention promotes subcutaneous adipose tissue browning in humans, and whether this response is associated with metabolic improvement in three groups of individuals defined by body mass index (BMI) (kg/m2). Sedentary adult subjects with different BMI were enrolled in a 12-week bicycle-training program (3 times per week, intensity 70-80% HRmax). Brown and beige gene expression in subcutaneous adipose tissue (scWAT) biopsies, and serum glucose, insulin, lipid, adipokine, and myokine levels were compared before and after the exercise intervention. Thirty-three non-diabetic subjects (mean age 30.4 ± 4.6 years; 57.57% female; 13 normal weight, 10 overweight and 10 with obesity) completed the exercise intervention. Without any significant change in body composition, exercise improved several metabolic parameters, most notably insulin resistance and particularly in the overweight group. Circulating adiponectin, apelin, and irisin exercise-induced changes predicted 60% of the insulin sensitivity improvement. After exercise UCP1, TBX1, CPT1B scWAT expression significantly increased, along with P2RX5 significant positive staining. These changes are compatible with scWAT browning, however, they were not associated with glucose metabolism improvement. In conclusion, 12-weeks of exercise training produced brown/beige gene expression changes in abdominal scWAT of non-diabetic individuals with different BMI, which did not contribute to the metabolic improvement. However, this result should not be interpreted as a lack of effect of browning on metabolic parameters. These findings suggest that a bigger effect is needed and should not preclude the development of more effective strategies of browning. Furthermore, exercise-induced changes in adiponectin, apelin, and irisin predicted insulin sensitivity improvement, supporting the important role of adipokines and myokines in metabolism homeostasis.
Collapse
Affiliation(s)
- Berenice Otero-Díaz
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marcela Rodríguez-Flores
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Verónica Sánchez-Muñoz
- Centro de Nutrición y Obesidad, The American British Cowdray (ABC) Medical Center, Mexico City, Mexico
| | - Fernando Monraz-Preciado
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Samuel Ordoñez-Ortega
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Vicente Becerril-Elias
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Rodolfo Obando-Monge
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Eduardo García-García
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | | | | | - Mauricio Sierra-Salazar
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Barbara Antuna-Puente
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
33
|
Stinkens R, Brouwers B, Jocken JW, Blaak EE, Teunissen-Beekman KF, Hesselink MK, van Baak MA, Schrauwen P, Goossens GH. Exercise training-induced effects on the abdominal subcutaneous adipose tissue phenotype in humans with obesity. J Appl Physiol (1985) 2018; 125:1585-1593. [DOI: 10.1152/japplphysiol.00496.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rodent studies have indicated that physical exercise may improve adipose tissue function. We investigated the effects of a 12-wk supervised, progressive exercise training program on adipocyte morphology and abdominal subcutaneous adipose tissue function in metabolically well-phenotyped subjects with obesity. Men with obesity ( n = 21) participated in a 12-wk supervised, progressive, combined exercise training program consisting of aerobic exercise (30 min at 70% of maximal power output 2 times/wk) and resistance exercise (3 × 10 repetitions at 60% of 1 repeated maximum 1 time/wk), with adjustment of exercise intensity every 4 wk. At baseline and after intervention, abdominal subcutaneous adipose tissue biopsies were collected to determine 1) adipocyte morphology, 2) gene expression of markers for lipolysis, inflammation, browning, adipokines, and mitochondrial biogenesis/function, 3) protein expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes, and 4) ex vivo basal and β2-adrenergic stimulated lipolysis. The exercise training program, which increased maximal aerobic capacity ( P < 0.001) and muscle strength ( P < 0.001), slightly reduced adipose tissue mass (~0.7 kg, P = 0.021) but did not affect abdominal subcutaneous adipocyte size ( P = 0.744), adipose tissue gene expression of markers for mitochondrial biogenesis and function, browning, lipolysis, inflammation and adipokines, total OXPHOS protein content ( P = 0.789), or β2-adrenergic sensitivity of lipolysis ( P = 0.555). A 12-wk supervised, progressive exercise training program did not alter abdominal subcutaneous adipocyte morphology and adipose tissue gene/protein expression of markers related to adipose tissue function or β2-adrenergic sensitivity of lipolysis in male subjects with obesity.NEW & NOTEWORTHY Studies that investigated the effects of exercise training on adipose tissue function in well-phenotyped humans are scarce. We demonstrate that 12 wk of supervised exercise training improved physical fitness and peripheral insulin sensitivity but did not alter abdominal subcutaneous adipocyte morphology, adipose tissue gene and protein expression of markers related to adipose tissue function, or β2-adrenergic receptor-mediated lipolysis in men with obesity. A prolonged and/or more intense training program may be required to improve human adipose tissue function.
Collapse
Affiliation(s)
- Rudi Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Bram Brouwers
- Department of Nutrition and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Johan W. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Karianna F. Teunissen-Beekman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Matthijs K. Hesselink
- Department of Nutrition and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marleen A. van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gijs H. Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
34
|
Oliveira GP, Porto WF, Palu CC, Pereira LM, Petriz B, Almeida JA, Viana J, Filho NNA, Franco OL, Pereira RW. Effects of Acute Aerobic Exercise on Rats Serum Extracellular Vesicles Diameter, Concentration and Small RNAs Content. Front Physiol 2018; 9:532. [PMID: 29881354 PMCID: PMC5976735 DOI: 10.3389/fphys.2018.00532] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Physical exercise stimulates organs, mainly the skeletal muscle, to release a broad range of molecules, recently dubbed exerkines. Among them, RNAs, such as miRNAs, piRNAs, and tRNAs loaded in extracellular vesicles (EVs) have the potential to play a significant role in the way muscle and other organs communicate to translate exercise into health. Low, moderate and high intensity treadmill protocols were applied to rat groups, aiming to investigate the impact of exercise on serum EVs and their associated small RNA molecules. Transmission electron microscopy, resistive pulse sensing, and western blotting were used to investigate EVs morphology, size distribution, concentration and EVs marker proteins. Small RNA libraries from EVs RNA were sequenced. Exercise did not change EVs size, while increased EVs concentration. Twelve miRNAs were found differentially expressed after exercise: rno-miR-128-3p, 103-3p, 330-5p, 148a-3p, 191a-5p, 10b-5p, 93-5p, 25-3p, 142-5p, 3068-3p, 142-3p, and 410-3p. No piRNA was found differentially expressed, and one tRNA, trna8336, was found down-regulated after exercise. The differentially expressed miRNAs were predicted to target genes involved in the MAPK pathway. A single bout of exercise impacts EVs and their small RNA load, reinforcing the need for a more detailed investigation into EVs and their load as mediators of health-promoting exercise.
Collapse
Affiliation(s)
- Getúlio P Oliveira
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - William F Porto
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Cintia C Palu
- Bioinformatics, NSilico Life Science Ltd., Cork, Ireland.,University College Cork, Cork, Ireland
| | - Lydyane M Pereira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bernardo Petriz
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Centro Universitário UDF, Brasília, Brazil
| | - Jeeser A Almeida
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Juliane Viana
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nezio N A Filho
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília, Brazil
| | - Rinaldo W Pereira
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
35
|
Fabre O, Ingerslev LR, Garde C, Donkin I, Simar D, Barrès R. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics 2018; 10:1033-1050. [PMID: 29671347 PMCID: PMC6190185 DOI: 10.2217/epi-2018-0039] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: To determine the genomic mechanisms by which adipose tissue responds to acute and chronic exercise. Methods: We profiled the transcriptomic and epigenetic response to acute exercise in human adipose tissue collected before and after endurance training. Results: Although acute exercises were performed at same relative intensities, the magnitude of transcriptomic changes after acute exercise was reduced by endurance training. DNA methylation remodeling induced by acute exercise was more prominent in trained versus untrained state. We found an overlap between gene expression and DNA methylation changes after acute exercise for 32 genes pre-training and six post-training, notably at adipocyte-specific genes. Conclusion: Training status differentially affects the epigenetic and transcriptomic response to acute exercise in human adipose tissue.
Collapse
Affiliation(s)
- Odile Fabre
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Garde
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Donkin
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Simar
- Mechanisms of Disease & Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Romain Barrès
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME. Exercise-induced 'browning' of adipose tissues. Metabolism 2018; 81:63-70. [PMID: 29155135 PMCID: PMC5893183 DOI: 10.1016/j.metabol.2017.11.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
Global rates of obesity continue to rise and are necessarily the consequence of a long-term imbalance between energy intake and energy expenditure. This is the result of an expansion of adipose tissue due to both the hypertrophy of existing adipocytes and hyperplasia of adipocyte pre-cursors. Exercise elicits numerous physiological benefits on adipose tissue, which are likely to contribute to the associated cardiometabolic benefits. More recently it has been demonstrated that exercise, through a range of mechanisms, induces a phenotypic switch in adipose tissue from energy storing white adipocytes to thermogenic beige adipocytes. This has generated the hypothesis that the process of adipocyte 'browning' may partially underlie the improved cardiometabolic health in physically active populations. Interestingly, 'browning' also occurs in response to various stressors and could represent an adaptive response. In the context of exercise, it is not clear whether the appearance of beige adipocytes is metabolically beneficial or whether they occur as a transient adaptive process to exercise-induced stresses. The present review discusses the various mechanisms (e.g. fatty acid oxidation during exercise, decreased thermal insulation, stressors and angiogenesis) by which the exercise-induced 'browning' process may occur.
Collapse
Affiliation(s)
- Peter Aldiss
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK
| | - James Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Mark Pope
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Helen Budge
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael E Symonds
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Disease Centre and Biomedical Research Centre School of Medicine, University Hospital, University of Nottingham, Nottingham, UK, NG7 2UH.
| |
Collapse
|
37
|
Abstract
The beneficial effects of exercise on skeletal muscle and the cardiovascular system have long been known. Recent studies have focused on investigating the effects of exercise on adipose tissue and the effects that these exercise-induced adaptations have on overall metabolic health. Examination of exercise-induced adaptations in both white adipose tissue (WAT) and brown adipose tissue (BAT) has revealed marked differences in each tissue with exercise. In WAT, there are changes to both subcutaneous WAT (scWAT) and visceral WAT (vWAT), including decreased adipocyte size and lipid content, increased expression of metabolic genes, altered secretion of adipokines and increased mitochondrial activity. Adaptations specific to scWAT include lipidomic remodeling of phospholipids and, in rodents, the beiging of scWAT. The changes to BAT are less clear: studies evaluating the effect of exercise on the BAT of humans and rodents have revealed contradictory data, making this an important area of current investigation. In this Review, we discuss the exercise-induced changes to WAT and BAT that have been reported by different studies and highlight the current questions in this field.
Collapse
Affiliation(s)
- Adam C Lehnig
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
38
|
Tsiloulis T, Carey AL, Bayliss J, Canny B, Meex RCR, Watt MJ. No evidence of white adipocyte browning after endurance exercise training in obese men. Int J Obes (Lond) 2017; 42:721-727. [PMID: 29188818 DOI: 10.1038/ijo.2017.295] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES The phenomenon of adipocyte 'beiging' involves the conversion of non-classic brown adipocytes to brown-like adipose tissue with thermogenic, fat-burning properties, and this phenomenon has been shown in rodents to slow the progression of obesity-associated metabolic diseases. Rodent studies consistently report adipocyte beiging after endurance exercise training, indicating that increased thermogenic capacity in these adipocytes may underpin the improved health benefits of exercise training. The aim of this study was to determine whether prolonged endurance exercise training induces beige adipogenesis in subcutaneous adipose tissues of obese men. SUBJECTS/METHODS Molecular markers of beiging were examined in adipocytes obtained from abdominal subcutaneous (AbSC) and gluteofemoral (GF) subcutaneous adipose tissues before and after 6 weeks of endurance exercise training in obese men (n=6, 37.3±2.3 years, 30.1±2.3 kg m-2). RESULTS The mRNAs encoding the brown or beige adipocyte-selective proteins were very lowly expressed in AbSC and GF adipose tissues and exercise training did not alter the mRNA expression of UCP1, CD137, CITED, TBX1, LHX8 and TCF21. Using immunohistochemistry, neither multilocular adipocytes, nor UCP1 or CD137-positive adipocytes were detected in any sample. MicroRNAs known to regulate brown and/or beige adipose development were highly expressed in white adipocytes but endurance exercise training did not impact their expression. CONCLUSIONS The present study reaffirms emerging data in humans demonstrating no evidence of white adipose tissue beiging in response to exercise training, and supports a growing body of work demonstrating divergence of brown/beige adipose location, molecular characterization and physiological function between rodents and humans.
Collapse
Affiliation(s)
- T Tsiloulis
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - A L Carey
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Bayliss
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - B Canny
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia.,School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - R C R Meex
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia.,Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - M J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
39
|
Hoffman NJ. Omics and Exercise: Global Approaches for Mapping Exercise Biological Networks. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029884. [PMID: 28348175 DOI: 10.1101/cshperspect.a029884] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The application of global "-omics" technologies to exercise has introduced new opportunities to map the complexity and interconnectedness of biological networks underlying the tissue-specific responses and systemic health benefits of exercise. This review will introduce major research tracks and recent advancements in this emerging field, as well as critical gaps in understanding the orchestration of molecular exercise dynamics that will benefit from unbiased omics investigations. Furthermore, significant research hurdles that need to be overcome to effectively fill these gaps related to data collection, computation, interpretation, and integration across omics applications will be discussed. Collectively, a cross-disciplinary physiological and omics-based systems approach will lead to discovery of a wealth of novel exercise-regulated targets for future mechanistic validation. This frontier in exercise biology will aid the development of personalized therapeutic strategies to improve athletic performance and human health through precision exercise medicine.
Collapse
Affiliation(s)
- Nolan J Hoffman
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
40
|
Goodpaster BH, Sparks LM. Metabolic Flexibility in Health and Disease. Cell Metab 2017; 25:1027-1036. [PMID: 28467922 PMCID: PMC5513193 DOI: 10.1016/j.cmet.2017.04.015] [Citation(s) in RCA: 628] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Metabolic flexibility is the ability to respond or adapt to conditional changes in metabolic demand. This broad concept has been propagated to explain insulin resistance and mechanisms governing fuel selection between glucose and fatty acids, highlighting the metabolic inflexibility of obesity and type 2 diabetes. In parallel, contemporary exercise physiology research has helped to identify potential mechanisms underlying altered fuel metabolism in obesity and diabetes. Advances in "omics" technologies have further stimulated additional basic and clinical-translational research to further interrogate mechanisms for improved metabolic flexibility in skeletal muscle and adipose tissue with the goal of preventing and treating metabolic disease.
Collapse
Affiliation(s)
- Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, 301 East Princeton Street, Orlando, FL 32804, USA.
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, 301 East Princeton Street, Orlando, FL 32804, USA
| |
Collapse
|
41
|
Liu D, Wang R, Grant AR, Zhang J, Gordon PM, Wei Y, Chen P. Immune adaptation to chronic intense exercise training: new microarray evidence. BMC Genomics 2017; 18:29. [PMID: 28056786 PMCID: PMC5216585 DOI: 10.1186/s12864-016-3388-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/07/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endurance exercise training, especially the high-intensity training, exhibits a strong influence on the immune system. However, the mechanisms underpinning the immune-regulatory effect of exercise remain unclear. Consequently, we chose to investigate the alterations in the transcriptional profile of blood leukocytes in young endurance athletes as compared with healthy sedentary controls, using Affymetrix human gene 1.1 ST array. RESULTS Group differences in the transcriptome were analyzed using Intensity-based Hierarchical Bayes method followed by a Logistic Regression-based gene set enrichment method. We identified 72 significant transcripts differentially expressed in the leukocyte transcriptome of young endurance athletes as compared with non-athlete controls with a false discovery rate (FDR) < 0.05, comprising mainly the genes encoding ribosomal proteins and the genes involved in mitochondrial oxidative phosphorylation. Gene set enrichment analysis identified three major gene set clusters: two were up-regulated in athletes including gene translation and ribosomal protein production, and mitochondria oxidative phosphorylation and biogenesis; one gene set cluster identified as transcriptionally downregulated in athletes was related to inflammation and immune activity. CONCLUSION Our data indicates that in young healthy individuals, intense endurance exercise training (exemplifed by athletic training) can chronically induce transcriptional changes in the peripheral blood leukocytes, upregulating genes related to protein production and mitochondrial energetics, and downregulating genes involved in inflammatory response. The findings of the study also provide support for the notion that peripheral blood can be used as a surrogate tissue to study the systemic effect of exercise training.
Collapse
Affiliation(s)
- Dongmei Liu
- School of Kinesiology, Shanghai University of Sport, Qinyuanhuan Road, #650, Yangpu District, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Qinyuanhuan Road, #650, Yangpu District, Shanghai, China
| | - Ana R. Grant
- Department of Computational Medicine & Bioinformatics / Bioinformatics Core, University of Michigan Medical School, Ann Arbor, MI USA
| | - Jinming Zhang
- College of sports medicine and rehabilitation, Taishan Medical University, Shandong Province, China
| | - Paul M. Gordon
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX USA
| | - Yuqin Wei
- School of Kinesiology, Shanghai University of Sport, Qinyuanhuan Road, #650, Yangpu District, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Qinyuanhuan Road, #650, Yangpu District, Shanghai, China
| |
Collapse
|
42
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Tsiloulis T, Pike J, Powell D, Rossello FJ, Canny BJ, Meex RCR, Watt MJ. Impact of endurance exercise training on adipocyte microRNA expression in overweight men. FASEB J 2017; 31:161-171. [PMID: 27682205 DOI: 10.1096/fj.201600678r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/16/2016] [Indexed: 01/05/2025]
Abstract
Adipocytes are major regulators of metabolism, and endurance exercise training improves adipocyte function; however, the molecular mechanisms that regulate chronic adaptive responses remain unresolved. microRNAs (miRNAs) influence adipocyte differentiation and metabolism. Accordingly, we aimed to determine whether adipocyte miRNA expression is responsive to exercise training and to identify exercise-responsive miRNAs that influence adipocyte metabolism. Next-generation sequencing was used to profile miRNA expression of adipocytes that were isolated from abdominal subcutaneous (ABD) and gluteofemoral (GF) adipose tissue of overweight men before and after 6 wk of endurance exercise training. Differentially expressed miRNAs were overexpressed or silenced in 3T3-L1 adipocytes, and lipid metabolism was examined. Next-generation sequencing identified 526 miRNAs in adipocytes, and there were no statistical differences in miRNA expression when comparing pre- and post-training samples for ABD and GF adipocytes. miR-10b expression was increased in ABD compared with GF adipocytes, whereas miR-204, miR-3613, and miR-4532 were more highly expressed in GF compared with ABD adipocytes. Blocking miR-10b in adipocytes suppressed β-adrenergic lipolysis but generally had a minor effect on lipid metabolism. Thus, unlike their critical role in adipogenesis, stable changes in miRNA expression do not play a prominent role in the regulation of adipocyte function in response to endurance exercise training.-Tsiloulis, T., Pike, J., Powell, D., Rossello, F. J., Canny, B. J., Meex, R. C. R., Watt, M. J. Impact of endurance exercise training on adipocyte microRNA expression in overweight men.
Collapse
Affiliation(s)
- Thomas Tsiloulis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Joshua Pike
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - David Powell
- Monash Bioinformatics Platform, Faculty of Biomedical and Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; and
| | - Benedict J Canny
- Department of Physiology, Monash University, Clayton, Victoria, Australia
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Ruth C R Meex
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia;
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
44
|
Affiliation(s)
- N. Tuvia
- Laboratory of Chronobiology; Institute for Medical Immunology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | | |
Collapse
|
45
|
Sepa-Kishi DM, Ceddia RB. Exercise-Mediated Effects on White and Brown Adipose Tissue Plasticity and Metabolism. Exerc Sport Sci Rev 2016; 44:37-44. [PMID: 26509483 DOI: 10.1249/jes.0000000000000068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exercise training increases the thermogenic capacity of white adipose tissue (WAT), an effect known as "browning" of the WAT. Here, we discuss how this affects whole-body energy homeostasis. We put forth the hypothesis that browning of the subcutaneous WAT allows the organism to adjust its metabolic rate according to energy availability while coping with increased heat production through exercise.
Collapse
Affiliation(s)
- Diane M Sepa-Kishi
- Muscle Health Research Center-School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
46
|
Garcia-Vivas JM, Galaviz-Hernandez C, Fernandez-Retana J, Pedroza-Torres A, Perez-Plasencia C, Lopez-Camarillo C, Marchat LA. Transcriptomic Profiling of Adipose Tissue in Obese Women in Response to Acupuncture Catgut Embedding Therapy with Moxibustion. J Altern Complement Med 2016; 22:658-668. [PMID: 27403531 DOI: 10.1089/acm.2015.0200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Complementary and alternative medicine, such as Traditional Chinese Medicine, represents an efficient therapeutic option for obesity control. It was previously reported that acupuncture catgut embedding therapy (ACET) with moxibustion reduces body weight and reverts insulin resistance in obese women. This study aimed to evidence changes in adipokines and gene expression in adipose tissue that could explain the effects of ACET with moxibustion. DESIGN Overweight/obese women were treated with ACET with moxibustion or sham acupuncture as control. Peripheral blood samples and fat biopsies were taken before and after intervention. Circulating adipokines (leptin, adiponectin, tumor necrosis factor alpha, and resistin) were quantified by enzyme-linked immunosorbent assay. Gene expression in adipose tissue was determined by cDNA microarray assays and assessed by quantitative reverse transcription real-time polymerase chain reaction. RESULTS ACET with moxibustion did not modify circulating adipokines levels. However, correlations with anthropometric and biochemical parameters were affected. Interestingly, transcriptional changes in adipose tissue revealed the modulation of genes participating in homeostasis control, lipid metabolism, olfactory transduction, and gamma-aminobutyric acid signaling pathway. CONCLUSIONS The effects of ACET with moxibustion on body weight and insulin resistance were associated with the regulation of biochemical events that are altered in obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Cesar Lopez-Camarillo
- 4 Genomics Sciences Program, Universidad Autónoma de la Ciudad de México , Mexico City, Mexico
| | - Laurence A Marchat
- 1 Biotechnology Program, ENMH, Instituto Politécnico Nacional , Mexico City, Mexico
- 5 Molecular Biomedicine Program, ENMH, Instituto Politécnico Nacional , Mexico City, Mexico
| |
Collapse
|
47
|
Böhm A, Weigert C, Staiger H, Häring HU. Exercise and diabetes: relevance and causes for response variability. Endocrine 2016; 51:390-401. [PMID: 26643313 PMCID: PMC4762932 DOI: 10.1007/s12020-015-0792-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
Abstract
Exercise as a key prevention strategy for diabetes and obesity is commonly accepted and recommended throughout the world. Unfortunately, not all individuals profit to the same extent, some exhibit exercise resistance. This phenomenon of non-response to exercise is found for several endpoints, including glucose tolerance and insulin sensitivity. Since these non-responders are of notable quantity, there is the need to understand the underlying mechanisms and to identify predictors of response. This displays the basis to develop personalized training intervention regimes. In this review, we summarize the current knowledge on response variability, with focus on human studies and improvement of glucose homeostasis as outcome.
Collapse
Affiliation(s)
- Anja Böhm
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Cora Weigert
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Harald Staiger
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| |
Collapse
|
48
|
Phelan JJ, Feighery R, Eldin OS, Meachair SÓ, Cannon A, Byrne R, MacCarthy F, O'Toole D, Reynolds JV, O'Sullivan J. Examining the connectivity between different cellular processes in the Barrett tissue microenvironment. Cancer Lett 2015; 371:334-46. [PMID: 26688097 DOI: 10.1016/j.canlet.2015.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
In Barrett associated tumorigenesis, oxidative phosphorylation and glycolysis are reprogrammed early in the disease sequence and act mutually to promote disease progression. However, the link between energy metabolism and its connection with other central cellular processes within the Barrett microenvironment is unknown. The aim of this study was to examine the relationship between metabolism (ATP5B/GAPDH), hypoxia (HIF1α), inflammation (IL1β/SERPINA3), p53 and obesity status using in-vivo and ex-vivo models of Barrett oesophagus. At the protein level, ATP5B (r = 0.71, P < 0.0001) and p53 (r = 0.455, P = 0.015) were found to be strongly associated with hypoxia. In addition, levels of ATP5B (r = 0.53, P = 0.0031) and GAPDH (r = -0.39, P = 0.0357) were positively associated with p53 expression. Moreover, we demonstrate that ATP5B (r = 0.8, P < 0.0001) and GAPDH (r = 0.43, P = 0.022) were positively associated with IL1β expression. Interestingly, obesity was negatively associated with oxidative phosphorylation (r = -0.6016, P = 0.0177) but positively associated with glycolysis (r = 0.743, P = 0.0015). Comparable correlations were exhibited in the ex-vivo explant tissue between metabolism, p53, hypoxia, inflammation and angiogenesis (P < 0.05). We have shown that metabolism is closely linked with many cellular processes in the Barrett tissue microenvironment.
Collapse
Affiliation(s)
- J J Phelan
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - R Feighery
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - O S Eldin
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - S Ó Meachair
- Centre for Health Decision Science (CHeDS), School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
| | - A Cannon
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - R Byrne
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - F MacCarthy
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - D O'Toole
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - J V Reynolds
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - J O'Sullivan
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
49
|
Ekman C, Elgzyri T, Ström K, Almgren P, Parikh H, Dekker Nitert M, Rönn T, Manderson Koivula F, Ling C, Tornberg ÅB, Wollmer P, Eriksson KF, Groop L, Hansson O. Less pronounced response to exercise in healthy relatives to type 2 diabetic subjects compared with controls. J Appl Physiol (1985) 2015; 119:953-60. [PMID: 26338460 DOI: 10.1152/japplphysiol.01067.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/27/2015] [Indexed: 01/03/2023] Open
Abstract
Healthy first-degree relatives with heredity of type 2 diabetes (FH+) are known to have metabolic inflexibility compared with subjects without heredity for diabetes (FH-). In this study, we aimed to test the hypothesis that FH+ individuals have an impaired response to exercise compared with FH-. Sixteen FH+ and 19 FH- insulin-sensitive men similar in age, peak oxygen consumption (V̇o2 peak), and body mass index completed an exercise intervention with heart rate monitored during exercise for 7 mo. Before and after the exercise intervention, the participants underwent a physical examination and tests for glucose tolerance and exercise capacity, and muscle biopsies were taken for expression analysis. The participants attended, on average, 39 training sessions during the intervention and spent 18.8 MJ on exercise. V̇o2 peak/kg increased by 14%, and the participants lost 1.2 kg of weight and 3 cm waist circumference. Given that the FH+ group expended 61% more energy during the intervention, we used regression analysis to analyze the response in the FH+ and FH- groups separately. Exercise volume had a significant effect on V̇o2 peak, weight, and waist circumference in the FH- group, but not in the FH+ group. After exercise, expression of genes involved in metabolism, oxidative phosphorylation, and cellular respiration increased more in the FH- compared with the FH+ group. This suggests that healthy, insulin-sensitive FH+ and FH- participants with similar age, V̇o2 peak, and body mass index may respond differently to an exercise intervention. The FH+ background might limit muscle adaptation to exercise, which may contribute to the increased susceptibility to type 2 diabetes in FH+ individuals.
Collapse
Affiliation(s)
- C Ekman
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden
| | - T Elgzyri
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden
| | - K Ström
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - P Almgren
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden
| | - H Parikh
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden; Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marloes Dekker Nitert
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden
| | - T Rönn
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | - C Ling
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Å B Tornberg
- Department of Health Sciences, Division of Physiotherapy, Lund University, Lund, Sweden; Genetic Molecular Epidemiology Unit, Lund University Diabetes Center, Clinical Research Centre, Malmö, Sweden; and
| | - P Wollmer
- Department of Health Sciences, Division of Physiotherapy, Lund University, Lund, Sweden; Department of Clinical Sciences, Clinical Physiology and Nuclear Medicine Unit, Lund University, Malmö, Sweden
| | - K F Eriksson
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden
| | - L Groop
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden
| | - O Hansson
- Department of Clinical Sciences, Clinical Research Centre, Malmö University Hospital, Lund University, Malmö, Sweden;
| |
Collapse
|
50
|
Affiliation(s)
- M. Ludwig
- Institut fuer Vegetative Physiologie; Charité Universitaetsmedizin Berlin; Berlin Germany
| | - A. Högner
- Institut fuer Vegetative Physiologie; Charité Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|