1
|
Von Ruff ZD, Miller MJ, Moro T, Reidy PT, Ebert SM, Volpi E, Adams CM, Rasmussen BB. Resistance exercise training in older men reduces ATF4-activated and senescence-associated mRNAs in skeletal muscle. GeroScience 2025:10.1007/s11357-025-01564-2. [PMID: 40011348 DOI: 10.1007/s11357-025-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
Sarcopenia increases the risk of frailty, morbidity, and mortality in older adults. Resistance exercise training improves muscle size and function; however, the response to exercise training is variable in older adults. The objective of our study was to determine both the age-independent and age-dependent changes to the transcriptome following progressive resistance exercise training. Skeletal muscle biopsies were obtained before and after 12 weeks of resistance exercise training in 8 young (24 ± 3.3 years) and 10 older (72 ± 4.9 years) men. RNA was extracted from each biopsy and prepared for analysis via RNA sequencing. We performed differential mRNA expression, gene ontology, and gene set enrichment analyses. We report that when comparing post-training vs pre-training 226 mRNAs and 959 mRNAs were differentially expressed in the skeletal muscle of young and older men, respectively. Additionally, 94 mRNAs increased, and 17 mRNAs decreased in both young and old, indicating limited overlap in response to resistance exercise training. Furthermore, the differential gene expression was larger in older skeletal muscle. Finally, we report three novel findings: 1) resistance exercise training decreased the abundance of ATF4-activated and senescence-associated skeletal muscle mRNAs in older men; 2) resistance exercise-induced increases in lean mass correlate with increased mRNAs encoding mitochondrial proteins; and 3) increases in muscle strength following resistance exercise positively correlate with increased mRNAs involved in translation, rRNA processing, and polyamine metabolism. We conclude that resistance exercise training elicits a differential gene expression response in young and old skeletal muscle, including reduced ATF-4 activated and senescence-associated gene expression.
Collapse
Affiliation(s)
| | - Matthew J Miller
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- University of Iowa, Iowa City, IA, USA
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Paul T Reidy
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, USA
| | - Scott M Ebert
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Elena Volpi
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX, 78229, USA
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Blake B Rasmussen
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX, 78229, USA.
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Murach KA, Bagley JR. A primer on global molecular responses to exercise in skeletal muscle: Omics in focus. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101029. [PMID: 39961420 DOI: 10.1016/j.jshs.2025.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Advances in skeletal muscle omics has expanded our understanding of exercise-induced adaptations at the molecular level. Over the past 2 decades, transcriptome studies in muscle have detailed acute and chronic responses to resistance, endurance, and concurrent exercise, focusing on variables such as training status, nutrition, age, sex, and metabolic health profile. Multi-omics approaches, such as the integration of transcriptomic and epigenetic data, along with emerging ribosomal RNA sequencing advancements, have further provided insights into how skeletal muscle adapts to exercise across the lifespan. Downstream of the transcriptome, proteomic and phosphoproteomic studies have identified novel regulators of exercise adaptations, while single-cell/nucleus and spatial sequencing technologies promise to evolve our understanding of cellular specialization and communication in and around skeletal muscle cells. This narrative review highlights (a) the historical foundations of exercise omics in skeletal muscle, (b) current research at 3 layers of the omics cascade (DNA, RNA, and protein), and (c) applications of single-cell omics and spatial sequencing technologies to study skeletal muscle adaptation to exercise. Further elaboration of muscle's global molecular footprint using multi-omics methods will help researchers and practitioners develop more effective and targeted approaches to improve skeletal muscle health as well as athletic performance.
Collapse
Affiliation(s)
- Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA.
| | - James R Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, College of Health and Social Sciences, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
3
|
Borowik AK, Murach KA, Miller BF. The expanding roles of myonuclei in adult skeletal muscle health and function. Biochem Soc Trans 2024; 52:1-14. [PMID: 39700019 DOI: 10.1042/bst20241637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Skeletal muscle cells (myofibers) require multiple nuclei to support a cytoplasmic volume that is larger than other mononuclear cell types. It is dogmatic that mammalian resident myonuclei rely on stem cells (specifically satellite cells) for adding new DNA to muscle fibers to facilitate cytoplasmic expansion that occurs during muscle growth. In this review, we discuss the relationship between cell size and supporting genetic material. We present evidence that myonuclei may undergo DNA synthesis as a strategy to increase genetic material in myofibers independent from satellite cells. We then describe the details of our experiments that demonstrated that mammalian myonuclei can replicate DNA in vivo. Finally, we present our findings in the context of expanding knowledge about myonuclear heterogeneity, myonuclear mobility and shape. We also address why myonuclear replication is potentially important and provide future directions for remaining unknowns. Myonuclear DNA replication, coupled with new discoveries about myonuclear transcription, morphology, and behavior in response to stress, may provide opportunities to leverage previously unappreciated skeletal muscle biological processes for therapeutic targets that support muscle mass, function, and plasticity.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, U.S.A
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
- Oklahoma City VA Medical Center, Oklahoma City, OK, U.S.A
| |
Collapse
|
4
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Sattarifard H, Safaei A, Khazeeva E, Rastegar M, Davie JR. Mitogen- and stress-activated protein kinase (MSK1/2) regulated gene expression in normal and disease states. Biochem Cell Biol 2023; 101:204-219. [PMID: 36812480 DOI: 10.1139/bcb-2022-0371] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The mitogen- and stress-activated protein kinases (MSK) are epigenetic modifiers that regulate gene expression in normal and disease cell states. MSK1 and 2 are involved in a chain of signal transduction events bringing signals from the external environment of a cell to specific sites in the genome. MSK1/2 phosphorylate histone H3 at multiple sites, resulting in chromatin remodeling at regulatory elements of target genes and the induction of gene expression. Several transcription factors (RELA of NF-κB and CREB) are also phosphorylated by MSK1/2 and contribute to induction of gene expression. In response to signal transduction pathways, MSK1/2 can stimulate genes involved in cell proliferation, inflammation, innate immunity, neuronal function, and neoplastic transformation. Abrogation of the MSK-involved signaling pathway is among the mechanisms by which pathogenic bacteria subdue the host's innate immunity. Depending on the signal transduction pathways in play and the MSK-targeted genes, MSK may promote or hinder metastasis. Thus, depending on the type of cancer and genes involved, MSK overexpression may be a good or poor prognostic factor. In this review, we focus on mechanisms by which MSK1/2 regulate gene expression, and recent studies on their roles in normal and diseased cells.
Collapse
Affiliation(s)
- Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Akram Safaei
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Enzhe Khazeeva
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| |
Collapse
|
6
|
Zhao YQ, Deng XW, Xu GQ, Lin J, Lu HZ, Chen J. Mechanical homeostasis imbalance in hepatic stellate cells activation and hepatic fibrosis. Front Mol Biosci 2023; 10:1183808. [PMID: 37152902 PMCID: PMC10157180 DOI: 10.3389/fmolb.2023.1183808] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Chronic liver disease or repeated damage to hepatocytes can give rise to hepatic fibrosis. Hepatic fibrosis (HF) is a pathological process of excessive sedimentation of extracellular matrix (ECM) proteins such as collagens, glycoproteins, and proteoglycans (PGs) in the hepatic parenchyma. Changes in the composition of the ECM lead to the stiffness of the matrix that destroys its inherent mechanical homeostasis, and a mechanical homeostasis imbalance activates hepatic stellate cells (HSCs) into myofibroblasts, which can overproliferate and secrete large amounts of ECM proteins. Excessive ECM proteins are gradually deposited in the Disse gap, and matrix regeneration fails, which further leads to changes in ECM components and an increase in stiffness, forming a vicious cycle. These processes promote the occurrence and development of hepatic fibrosis. In this review, the dynamic process of ECM remodeling of HF and the activation of HSCs into mechanotransduction signaling pathways for myofibroblasts to participate in HF are discussed. These mechanotransduction signaling pathways may have potential therapeutic targets for repairing or reversing fibrosis.
Collapse
Affiliation(s)
- Yuan-Quan Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi-Wen Deng
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Guo-Qi Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Lin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hua-Ze Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
7
|
Jáni M, Zacková L, Piler P, Andrýsková L, Brázdil M, Marečková K. Birth outcomes, puberty onset, and obesity as long-term predictors of biological aging in young adulthood. Front Nutr 2023; 9:1100237. [PMID: 36704790 PMCID: PMC9873383 DOI: 10.3389/fnut.2022.1100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Background Biological aging and particularly the deviations between biological and chronological age are better predictors of health than chronological age alone. However, the predictors of accelerated biological aging are not very well understood. The aim was to determine the role of birth outcomes, time of puberty onset, body mass index (BMI), and body fat in accelerated biological aging in the third decade of life. Methods We have conducted a second follow-up of the Czech part of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC-CZ) prenatal birth cohort in young adulthood (52% male; age 28-30; n = 262) to determine the role of birth outcomes, pubertal timing, BMI, and body fat on biological aging. Birth outcomes included birth weight, length, and gestational age at birth. Pubertal timing was determined by the presence of secondary sexual characteristics at the age of 11 and the age of first menarche in women. Biological age was estimated using the Klemera-Doubal Method (KDM), which applies 9-biomarker algorithm including forced expiratory volume in one second (FEV1), systolic blood pressure, glycated hemoglobin, total cholesterol, C-reactive protein, creatinine, urea nitrogen, albumin, and alkaline phosphatase. Accelerated/decelerated aging was determined as the difference between biological and chronological age (BioAGE). Results The deviations between biological and chronological age in young adulthood ranged from -2.84 to 4.39 years. Accelerated biological aging was predicted by higher BMI [in both early (R2 adj = 0.05) and late 20s (R2 adj = 0.22)], subcutaneous (R2 adj = 0.21) and visceral fat (R2 adj = 0.25), puberty onset (η p 2 = 0.07), birth length (R2 adj = 0.03), and the increase of BMI over the 5-year period between the two follow-ups in young adulthood (R2 adj = 0.09). Single hierarchical model revealed that shorter birth length, early puberty onset, and greater levels of visceral fat were the main predictors, together explaining 21% of variance in accelerated biological aging. Conclusion Our findings provide comprehensive support of the Life History Theory, suggesting that early life adversity might trigger accelerated aging, which leads to earlier onset of puberty but decreasing fitness in adulthood, reflected by more visceral fat and higher BMI. Our findings also suggest that reduction of BMI in young adulthood slows down biological aging.
Collapse
Affiliation(s)
- Martin Jáni
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia,Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Lenka Zacková
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia,Department of Neurology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Milan Brázdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia,Department of Neurology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Klára Marečková
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia,*Correspondence: Klára Mare čková,
| |
Collapse
|
8
|
Going nuclear: Molecular adaptations to exercise mediated by myonuclei. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 5:2-9. [PMID: 36994170 PMCID: PMC10040379 DOI: 10.1016/j.smhs.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle fibers are multinucleated, and muscle fiber nuclei (myonuclei) are believed to be post-mitotic and are typically situated near the periphery of the myofiber. Due to the unique organization of muscle fibers and their nuclei, the cellular and molecular mechanisms regulating myofiber homeostasis in unstressed and stressed conditions (e.g., exercise) are unique. A key role myonuclei play in regulating muscle during exercise is gene transcription. Only recently have investigators had the capability to identify molecular changes at high resolution exclusively in myonuclei in response to perturbations in vivo. The purpose of this review is to describe how myonuclei modulate their transcriptome, epigenetic status, mobility and shape, and microRNA expression in response to exercise in vivo. Given the relative paucity of high-fidelity information on myonucleus-specific contributions to exercise adaptation, we identify specific gaps in knowledge and provide perspectives on future directions of research.
Collapse
|
9
|
Baraldo M, Zorzato S, Dondjang AHT, Geremia A, Nogara L, Dumitras AG, Canato M, Marcucci L, Nolte H, Blaauw B. Inducible deletion of raptor and mTOR from adult skeletal muscle impairs muscle contractility and relaxation. J Physiol 2022; 600:5055-5075. [PMID: 36255030 DOI: 10.1113/jp283686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle weakness has been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and is accompanied by altered mammalian target of rapamycin (mTOR) signalling. We wanted to elucidate the functional role of mTOR in muscle contractility. Most loss-of-function studies for mTOR signalling have used the drug rapamycin to inhibit some of the signalling downstream of mTOR. However, given that rapamycin does not inhibit all mTOR signalling completely, we generated a double knockout for mTOR and for the scaffold protein of mTORC1, raptor, in skeletal muscle. We found that double knockout in mice results in a more severe phenotype compared with deletion of raptor or mTOR alone. Indeed, these animals display muscle weakness, increased fibre denervation and a slower muscle relaxation following tetanic stimulation. This is accompanied by a shift towards slow-twitch fibres and changes in the expression levels of calcium-related genes, such as Serca1 and Casq1. Double knockout mice show a decrease in calcium decay kinetics after tetanus in vivo, suggestive of a reduced calcium reuptake. In addition, RNA sequencing analysis revealed that many downregulated genes, such as Tcap and Fhod3, are linked to sarcomere organization. These results suggest a key role for mTOR signalling in maintaining proper fibre relaxation in skeletal muscle. KEY POINTS: Skeletal muscle wasting and weakness have been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and are accompanied by altered mammalian target of rapamycin (mTOR) signalling. Mammalian target of rapamycin plays a crucial role in the maintenance of muscle mass and functionality. We found that the loss of both mTOR and raptor results in contractile abnormalities, with severe muscle weakness and delayed relaxation following tetanic stimulation. These results are associated with alterations in the expression of genes involved in sarcomere organization and calcium handling and with an impairment in calcium reuptake after contraction. Taken together, these results provide a mechanistic insight into the role of mTOR in muscle contractility.
Collapse
Affiliation(s)
- Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sabrina Zorzato
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Achille Homère Tchampda Dondjang
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ana Georgia Dumitras
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Dai M, Hillmeister P. Exercise-mediated autophagy in cardiovascular diseases. Acta Physiol (Oxf) 2022; 236:e13890. [PMID: 36177522 DOI: 10.1111/apha.13890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Mengjun Dai
- Center for Internal Medicine 1, Department for Angiology, Faculty of Health Sciences (FGW), Deutsches Angiologie Zentrum (DAZB), Brandenburg Medical School (MHB) Theodor Fontane, University Clinic Brandenburg, Brandenburg/Havel, Germany.,Corporate member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Hillmeister
- Center for Internal Medicine 1, Department for Angiology, Faculty of Health Sciences (FGW), Deutsches Angiologie Zentrum (DAZB), Brandenburg Medical School (MHB) Theodor Fontane, University Clinic Brandenburg, Brandenburg/Havel, Germany
| |
Collapse
|
11
|
Al-Hetty HRAK, Ismaeel GL, Mohammad WT, Toama MA, Kandeel M, Saleh MM, Turki Jalil A. SRF/MRTF-A and liver cirrhosis: Pathologic associations. J Dig Dis 2022; 23:614-619. [PMID: 36601855 DOI: 10.1111/1751-2980.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Liver cirrhosis results from prolonged and extensive liver fibrosis in which fibrotic tissues replace functional hepatic cells. Chronic liver disease due to various viral, chemical, or metabolic factors initiates hepatic fibrogenesis. Cirrhosis is associated with multiple clinical complications and a poor patient prognosis; therefore, developing novel antifibrotic therapies to prevent cirrhosis is of high priority. Mounting evidence points to the key role of serum response factor (SRF) and myocardin-related transcription factor (MRTF)-A in the pathogenesis of liver fibrosis. SRF is a transcription factor and MRTF-A is a co-activator of SRF and normally resides in the cytoplasm. Upon the induction of fibrotic pathways, MRTF-A translocates into the nucleus and forms the active SRF/MRTF-A complex, leading to the expression of a multitude of fibrotic proteins and components of extracellular matrix. Silencing or inhibiting MRTF-A impedes hepatic stellate cell transdifferentiation into myofibroblasts and slows down the deposition of extracellular matrix in the liver, making it a potential therapeutic target. Here, we review the recent findings regarding the role of the SRF/MRTF-A complex in liver fibrosis and its therapeutic potential for the management of cirrhosis.
Collapse
Affiliation(s)
| | | | | | - Mariam Alaa Toama
- College of Health and Medical Technologies, National University of Science and Technology, Dhi-Qar, Iraq
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Anbar, Iraq
| | | |
Collapse
|
12
|
Zuela-Sopilniak N, Lammerding J. Can't handle the stress? Mechanobiology and disease. Trends Mol Med 2022; 28:710-725. [PMID: 35717527 PMCID: PMC9420767 DOI: 10.1016/j.molmed.2022.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mechanobiology is a rapidly growing research area focused on how mechanical forces and properties influence biological systems at the cell, molecular, and tissue level, and how those biological systems, in turn, control mechanical parameters. Recently, it has become apparent that disrupted mechanobiology has a significant role in many diseases, from cardiovascular disease to muscular dystrophy and cancer. An improved understanding of this intricate process could be harnessed toward developing alternative and more targeted treatment strategies, and to advance the fields of regenerative and personalized medicine. Modulating the mechanical properties of the cellular microenvironment has already been used successfully to boost antitumor immune responses and to induce cardiac and spinal regeneration, providing inspiration for further research in this area.
Collapse
Affiliation(s)
- Noam Zuela-Sopilniak
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Persson PB, Persson AB. Physiological research in an attention economy. Acta Physiol (Oxf) 2022; 234:e13797. [PMID: 35146919 DOI: 10.1111/apha.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Pontus B. Persson
- Institute of Vegetative Physiology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Anja B. Persson
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
14
|
Bothe TL, Dippel LJ, Pilz N. The Art of Planning-How many samples are enough? Acta Physiol (Oxf) 2022; 234:e13746. [PMID: 34907659 DOI: 10.1111/apha.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Tomas L. Bothe
- Institute of Vegetative Physiology Charité –Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Laura Josefa Dippel
- Institute of Vegetative Physiology Charité –Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Niklas Pilz
- Institute of Vegetative Physiology Charité –Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
15
|
Geremia A, Sartori R, Baraldo M, Nogara L, Balmaceda V, Dumitras GA, Ciciliot S, Scalabrin M, Nolte H, Blaauw B. Activation of Akt-mTORC1 signalling reverts cancer-dependent muscle wasting. J Cachexia Sarcopenia Muscle 2022; 13:648-661. [PMID: 34741441 PMCID: PMC8818597 DOI: 10.1002/jcsm.12854] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cancer-related muscle wasting occurs in most cancer patients. An important regulator of adult muscle mass and function is the Akt-mTORC1 pathway. While Akt-mTORC1 signalling is important for adult muscle homeostasis, it is also a major target of numerous cancer treatments. Which role Akt-mTORC1 signalling plays during cancer cachexia in muscle is currently not known. Here, we aimed to determine how activation or inactivation of the pathway affects skeletal muscle during cancer cachexia. METHODS We used inducible, muscle-specific Raptor ko (mTORC1) mice to determine the effect of reduced mTOR signalling during cancer cachexia. On the contrary, in order to understand if skeletal muscles maintain their anabolic capacity and if activation of Akt-mTORC1 signalling can reverse cancer cachexia, we generated mice in which we can inducibly activate Akt specifically in skeletal muscles. RESULTS We found that mTORC1 signalling is impaired during cancer cachexia, using the Lewis lung carcinoma and C26 colon cancer model, and is accompanied by a reduction in protein synthesis rates of 57% (P < 0.01). Further reduction of mTOR signalling, as seen in Raptor ko animals, leads to a 1.5-fold increase in autophagic flux (P > 0.001), but does not further increase muscle wasting. On the other hand, activation of Akt-mTORC1 signalling in already cachectic animals completely reverses the 15-20% loss in muscle mass and force (P < 0.001). Interestingly, Akt activation only in skeletal muscle completely normalizes the transcriptional deregulation observed in cachectic muscle, despite having no effect on tumour size or spleen mass. In addition to stimulating muscle growth, it is also sufficient to prevent the increase in protein degradation normally observed in muscles from tumour-bearing animals. CONCLUSIONS Here, we show that activation of Akt-mTORC1 signalling is sufficient to completely revert cancer-dependent muscle wasting. Intriguingly, these results show that skeletal muscle maintains its anabolic capacities also during cancer cachexia, possibly giving a rationale behind some of the beneficial effects observed in exercise in cancer patients.
Collapse
Affiliation(s)
- Alessia Geremia
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Martina Baraldo
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Leonardo Nogara
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Georgia Ana Dumitras
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Marco Scalabrin
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Bert Blaauw
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
16
|
Abstract
Trainability is an adaptive response to given exercise loads and must be localized to the targeted physiological function since exercise-induced acute and chronic adaptations are systemic. Lack of adaptation or moderate level of adaptation in one organ or one physiological function would not mean that other organs or functions would not benefit from exercise training. The most beneficial training load could easily be different for skeletal muscle, brain, the gastro-intestinal track, or the immune systems. Hence, the term of non-responders should be used with caution and just referred to a given organ, cell type, molecular signaling, or function. The present paper aims to highlight some, certainly not all, issues on trainability especially related to muscle and cardiovascular system. The specificity of trainability and the systemic nature of exercise-induced adaptation are discussed, and the paper aims to provide suggestions on how to improve performance when faced with non-responders.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- *Correspondence: Zsolt Radak,
| | - Albert W. Taylor
- Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Ageing and Obesity Shared Patterns: From Molecular Pathogenesis to Epigenetics. Diseases 2021; 9:diseases9040087. [PMID: 34940025 PMCID: PMC8700721 DOI: 10.3390/diseases9040087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
In modern societies, ageing and obesity represent medical challenges for healthcare professionals and caregivers. Obesity and ageing share common features including the related cellular and molecular pathways as well as the impacts they have as risk factors for a variety of diseases and health problems. Both of these health problems also share exercise and a healthy lifestyle as the best therapeutic options. Importantly, ageing and obesity also have common epigenetic changes (histone modification, DNA methylation, noncoding RNAs, and chromatin remodeling) that are also impacted by exercise. This suggests that epigenetic pathways are among the mechanisms via which exercise induces its benefits, including ageing and obesity improvements. Exploring these interrelations and based on the fact that both ageing and obesity represent risk factors for each other, would lead to optimizing the available therapeutic approaches towards improved obesity management and healthy ageing.
Collapse
|
18
|
Affiliation(s)
- Karin M. Kirschner
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Vegetative Physiology Berlin Germany
| |
Collapse
|
19
|
Bothe TL, Patzak A, Schubert R, Pilz N. Getting it right matters! Covid-19 pandemic analogies to everyday life in medical sciences. Acta Physiol (Oxf) 2021; 233:e13714. [PMID: 34228893 PMCID: PMC8420604 DOI: 10.1111/apha.13714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tomas L. Bothe
- Institute of Vegetative Physiology Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Andreas Patzak
- Institute of Vegetative Physiology Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Rudolf Schubert
- Physiology, Institute of Theoretical Medicine Medical Faculty University of Augsburg Augsburg Germany
| | - Niklas Pilz
- Institute of Vegetative Physiology Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
20
|
Affiliation(s)
- Tomas L Bothe
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Vegetative Physiology Berlin Germany
| | - Andreas Patzak
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Vegetative Physiology Berlin Germany
| |
Collapse
|
21
|
van Ingen MJA, Kirby TJ. LINCing Nuclear Mechanobiology With Skeletal Muscle Mass and Function. Front Cell Dev Biol 2021; 9:690577. [PMID: 34368139 PMCID: PMC8335485 DOI: 10.3389/fcell.2021.690577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle demonstrates a high degree of adaptability in response to changes in mechanical input. The phenotypic transformation in response to mechanical cues includes changes in muscle mass and force generating capabilities, yet the molecular pathways that govern skeletal muscle adaptation are still incompletely understood. While there is strong evidence that mechanotransduction pathways that stimulate protein synthesis play a key role in regulation of muscle mass, there are likely additional mechano-sensitive mechanisms important for controlling functional muscle adaptation. There is emerging evidence that the cell nucleus can directly respond to mechanical signals (i.e., nuclear mechanotransduction), providing a potential additional level of cellular regulation for controlling skeletal muscle mass. The importance of nuclear mechanotransduction in cellular function is evident by the various genetic diseases that arise from mutations in proteins crucial to the transmission of force between the cytoskeleton and the nucleus. Intriguingly, these diseases preferentially affect cardiac and skeletal muscle, suggesting that nuclear mechanotransduction is critically important for striated muscle homeostasis. Here we discuss our current understanding for how the nucleus acts as a mechanosensor, describe the main cytoskeletal and nuclear proteins involved in the process, and propose how similar mechanoresponsive mechanisms could occur in the unique cellular environment of a myofiber. In addition, we examine how nuclear mechanotransduction fits into our current framework for how mechanical stimuli regulates skeletal muscle mass.
Collapse
Affiliation(s)
- Maria J A van Ingen
- Biomolecular Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
22
|
Affiliation(s)
- Pontus B. Persson
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthInstitute of Vegetative Physiology Berlin Germany
| |
Collapse
|
23
|
Persson PB, Persson AB. Growth. Acta Physiol (Oxf) 2021; 231:e13617. [PMID: 33484232 DOI: 10.1111/apha.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Pontus B. Persson
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthInstitute of Vegetative Physiology Berlin Germany
| | - Anja B. Persson
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
24
|
Abstract
Skeletal muscle hypertrophy can be induced by hormones and growth factors acting directly as positive regulators of muscle growth or indirectly by neutralizing negative regulators, and by mechanical signals mediating the effect of resistance exercise. Muscle growth during hypertrophy is controlled at the translational level, through the stimulation of protein synthesis, and at the transcriptional level, through the activation of ribosomal RNAs and muscle-specific genes. mTORC1 has a central role in the regulation of both protein synthesis and ribosomal biogenesis. Several transcription factors and co-activators, including MEF2, SRF, PGC-1α4, and YAP promote the growth of the myofibers. Satellite cell proliferation and fusion is involved in some but not all muscle hypertrophy models.
Collapse
Affiliation(s)
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Italy
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | | | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
25
|
Onuh JO, Qiu H. Serum response factor-cofactor interactions and their implications in disease. FEBS J 2020; 288:3120-3134. [PMID: 32885587 PMCID: PMC7925694 DOI: 10.1111/febs.15544] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Serum response factor (SRF), a member of the Mcm1, Agamous, Deficiens, and SRF (MADS) box transcription factor, is widely expressed in all cell types and plays a crucial role in the physiological function and development of diseases. SRF regulates its downstream genes by binding to their CArG DNA box by interacting with various cofactors. However, the underlying mechanisms are not fully understood, therefore attracting increasing research attention due to the importance of this topic. This review's objective is to discuss the new progress in the studies of the molecular mechanisms involved in the activation of SRF and its impacts in physiological and pathological conditions. Notably, we summarized the recent studies on the interaction of SRF with its two main types of cofactors belonging to the myocardin families of transcription factors and the members of the ternary complex factors. The knowledge of these mechanisms will create new opportunities for understanding the dynamics of many traits and disease pathogenesis especially, cardiovascular diseases and cancer that could serve as targets for pharmacological control and treatment of these diseases.
Collapse
Affiliation(s)
- John Oloche Onuh
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
26
|
Solagna F, Nogara L, Dyar KA, Greulich F, Mir AA, Türk C, Bock T, Geremia A, Baraldo M, Sartori R, Farup J, Uhlenhaut H, Vissing K, Krüger M, Blaauw B. Exercise-dependent increases in protein synthesis are accompanied by chromatin modifications and increased MRTF-SRF signalling. Acta Physiol (Oxf) 2020; 230:e13496. [PMID: 32408395 PMCID: PMC7507144 DOI: 10.1111/apha.13496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
AIM Resistance exercise increases muscle mass over time. However, the early signalling events leading to muscle growth are not yet well-defined. Here, we aim to identify new signalling pathways important for muscle remodelling after exercise. METHODS We performed a phosphoproteomics screen after a single bout of exercise in mice. As an exercise model we used unilateral electrical stimulation in vivo and treadmill running. We analysed muscle biopsies from human subjects to verify if our findings in murine muscle also translate to exercise in humans. RESULTS We identified a new phosphorylation site on Myocardin-Related Transcription Factor B (MRTF-B), a co-activator of serum response factor (SRF). Phosphorylation of MRTF-B is required for its nuclear translocation after exercise and is accompanied by the transcription of the SRF target gene Fos. In addition, high-intensity exercise also remodels chromatin at specific SRF target gene loci through the phosphorylation of histone 3 on serine 10 in myonuclei of both mice and humans. Ablation of the MAP kinase member MSK1/2 is sufficient to prevent this histone phosphorylation, reduce induction of SRF-target genes, and prevent increases in protein synthesis after exercise. CONCLUSION Our results identify a new exercise signalling fingerprint in vivo, instrumental for exercise-induced protein synthesis and potentially muscle growth.
Collapse
Affiliation(s)
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Kenneth A. Dyar
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC) Helmholz Zentrum MunichHelmholtz Diabetes Center (HMGU) Munich Germany
| | - Franziska Greulich
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC) Helmholz Zentrum MunichHelmholtz Diabetes Center (HMGU) Munich Germany
| | - Ashfaq A. Mir
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC) Helmholz Zentrum MunichHelmholtz Diabetes Center (HMGU) Munich Germany
| | - Clara Türk
- Research laboratory for Biochemical Pathology Department of Clinical Medicine & Department of Biomedicine Aarhus University Aarhus Denmark
| | - Theresa Bock
- Research laboratory for Biochemical Pathology Department of Clinical Medicine & Department of Biomedicine Aarhus University Aarhus Denmark
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Roberta Sartori
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Jean Farup
- Research laboratory for Biochemical Pathology Department of Clinical Medicine & Department of Biomedicine Aarhus University Aarhus Denmark
| | - Henriette Uhlenhaut
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC) Helmholz Zentrum MunichHelmholtz Diabetes Center (HMGU) Munich Germany
- Chair for Metabolic Programming TUM School of Life SciencesZIEL‐Institute for Food & Health Freising Germany
| | - Kristian Vissing
- Department of Public Health, Section for Sport Science Aarhus University Aarhus Denmark
| | - Marcus Krüger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of Cologne Cologne Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| |
Collapse
|
27
|
Blaauw B. Activity-dependent increases of protein synthesis in skeletal muscle: Sensing the energy levels? J Physiol 2020; 598:2537-2538. [PMID: 32415782 DOI: 10.1113/jp280081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, Padova & Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|