1
|
Wei C, Bai Y, Li L, Li H, Peng P, Zhao Y, Sun X, Yu H. Drug Resistance and Molecular Typing Characteristics of Diarrheagenic Escherichia coli in Patients with Diarrhea in Chifeng, China. Microb Drug Resist 2025. [PMID: 40305150 DOI: 10.1089/mdr.2025.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Diarrheagenic Escherichia coli (DEC) can cause diarrhea and other gastrointestinal diseases, leading to severe dehydration, malnutrition, and even death. The increasing drug resistance and the emergence of multidrug-resistant bacteria present significant challenges to the public health. This study employed qPCR detection, the broth microdilution method, and pulsed-field gel electrophoresis (PFGE) technology to analyze virulence gene, drug resistance, and phylogenetic relationships in DEC isolated from 1,000 stool samples of patients with diarrhea in Chifeng City from 2021 to 2024. A total of 96 strains of DEC were detected, yielding a detection rate of 9.6%. Among these, enteroaggregative E. coli (EAEC) comprised 72.9% (70 strains), enteropathogenic E. coli accounted for 26.0% (25 strains), and enterohemorrhagic E. coli constituted 1.1% (1 strain). The resistance rates of DEC to tetracycline (TET), ampicillin, nalidixic acid, sulfamethoxazole, and streptomycin were recorded at 60.4%, 57.3%, 51.0%, 49.0%, and 42.7%, respectively, with 51.1% of DEC strains exhibiting multidrug resistance. The PFGE banding patterns of the 96 DEC strains were highly polymorphic, with similarity coefficients ranging from 33.6% to 100.0%. Notably, a higher similarity coefficient indicated greater similarity in drug resistance phenotypes among the strains. These results indicate that the predominant type of DEC infection in patients with diarrhea in Chifeng City is EAEC, with a TET resistance rate as high as 60.4%. Furthermore, the resistance spectrum is broad, and the DNA level exhibits significant polymorphism.
Collapse
Affiliation(s)
- Chunru Wei
- Chifeng Center for Disease Control and Prevention of Inner Mongolia Province, Chifeng, China
| | - Yanbo Bai
- Chifeng Center for Disease Control and Prevention of Inner Mongolia Province, Chifeng, China
| | - Lingxian Li
- Yuncheng Vocational Nursing College of Shanxi Province, Yuncheng, China
| | - Huying Li
- Zibo Vocational Institute of Shandong Province, Zibo, China
| | - Peng Peng
- Chifeng Center for Disease Control and Prevention of Inner Mongolia Province, Chifeng, China
| | - Yunyao Zhao
- Chifeng Center for Disease Control and Prevention of Inner Mongolia Province, Chifeng, China
| | - Xiujun Sun
- Chifeng Center for Disease Control and Prevention of Inner Mongolia Province, Chifeng, China
| | - Huixia Yu
- Chifeng Center for Disease Control and Prevention of Inner Mongolia Province, Chifeng, China
| |
Collapse
|
2
|
Okumu NO, Muloi DM, Moodley A, Watson J, Kiarie A, Ochieng L, Wasonga JO, Mutisya C, Alumasa L, Ngeranwa JJN, Cumming O, Cook EAJ. Antimicrobial resistance in community-acquired enteric pathogens among children aged ≤ 10-years in low-and middle-income countries: a systematic review and meta-analysis. Front Microbiol 2025; 16:1539160. [PMID: 40356650 PMCID: PMC12066647 DOI: 10.3389/fmicb.2025.1539160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a global health priority. This systematic review summarizes the prevalence of AMR in enteric pathogens originating from the community, specifically among ≤10-year-old children in low-and middle-income countries (LMICs). In addition, it presents the proportions of pooled resistance in Campylobacter spp., Escherichia coli, Shigella spp., and Salmonella spp. (CESS) to clinically relevant antibiotics. Methods Six online repositories, namely PubMed, Medline, Web of Science, Cochrane Library, CABI, and EMBASE were searched for articles published between January 2005 and September 2024. Random-effects meta-analysis models were constructed to estimate the pooled AMR proportions for CESS pathogens, and a subgroup analysis by region was also carried out. Results A total of 64 publications from 23 LMICs met our inclusion criteria. The pooled estimates of E. coli AMR for clinically important antibiotics were as follows: sulfamethoxazole/trimethoprim (SXT) 71% [95%CI: 57-82%]; ampicillin (AMP) 56% [95%CI: 44-67%]; ciprofloxacin (CIP) 10% [95%CI: 5-20%]; and ceftriaxone (CRO) 8% [95%CI: 2-31%]. The proportions of AMR detected in Shigella spp. were AMP 76% [95%CI: 60-87%]; nalidixic acid (NA) 9% [95%CI: 2-31%]; CIP 3% [95%CI: 0-15%]; and CRO 2% [95%CI: 0-19%]. The proportions of Salmonella spp. AMR were AMP 55% [95%CI: 35-73%] and SXT 25% [95%CI: 15-38%]. The proportions of Campylobacter spp. AMR were erythromycin (ERY) 33% [95%CI: 12-64%] and CIP 27% [95%CI: 8-61%]. There was high variability in the regional subgroup analysis, with high interstudy and regional heterogeneity I2 ≥ 75%. Conclusion Our results shed light on drug-resistant enteric bacterial pathogens in young children, providing evidence that CESS pathogens are becoming increasingly resistant to clinically important antimicrobials. Regional differences in resistance patterns between these community isolates highlight the need for strong national and regional surveillance to detect regional variations and inform treatment and appropriate antibiotic stewardship programs. The limitations of our findings include high regional variability, significant interstudy heterogeneity, and underrepresentation of certain LMICs. Systematic review registration https://inplasy.com/inplasy-2024-2-0051/, registration number: INPLASY202420051.
Collapse
Affiliation(s)
- Noah O. Okumu
- Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Biochemistry, Biotechnology and Microbiology, Kenyatta University, Nairobi, Kenya
| | - Dishon M. Muloi
- Health Program, International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Arshnee Moodley
- Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Julie Watson
- Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alice Kiarie
- Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Linnet Ochieng
- Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Joseph O. Wasonga
- Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Christine Mutisya
- Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Lorren Alumasa
- Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Joseph J. N. Ngeranwa
- Department of Biochemistry, Biotechnology and Microbiology, Kenyatta University, Nairobi, Kenya
| | - Oliver Cumming
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
3
|
Tayh G, Srairi S, Selmi R, Ben Chehida F, Mamlouk A, Daaloul-Jedidi M, Messadi L. Risk for public health of multiresistant Shiga toxin-producing Escherichia coli (STEC) in wild boar (Sus scrofa) in Tunisia. Microb Pathog 2025; 201:107366. [PMID: 39947355 DOI: 10.1016/j.micpath.2025.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Wild boar (Sus scrofa) is increasingly implicated as a reservoir of various pathogens, such as Shiga toxin-producing E. coli (STEC) that are transmissible to other wildlife, domestic animals and humans. This represents risks to both human and animal health by causing food-borne infections. This investigation set out to evaluate the antibiotic resistance profiles and virulence factor rates of STEC strains isolated from wild boars. MATERIAL AND METHODS A total of 110 fecal samples were taken from postmortem carcasses of wild boar that were collected during the hunting campaign. PCR was used to check for the presence of the STEC virulence genes stx1, while stx2, eaeA, and ehxA in E. coli isolates. The detection of STEC serogroups was carried out by PCR amplification. Additional virulence genes, phylogenetic groups and integrons were determined in the STEC strains. Antibiotic resistance was assessed in the isolates against 21 antimicrobial agents by disk-diffusion method. RESULTS STEC isolates were identified in 10.9 % (12/110) of the E. coli isolates and the serogroups were O157, O145, O45 and O26. Of the strains, 75 % contained the Shiga toxin-1 gene (stx1), stx2 and ehxA were identified in 66.7 % and 33.3 % respectively. Other virulence factors fimH, traT, iutA, cdt3, ibeA, aer and fyuA were found in 100 %, 50 %, 41.7 %, 41.7 %, 33.3 %, 25 % and 8.3 % of the strains, respectively. Integrons classes 1 and 2 were found in 58.3 % and 8.3 % of the strains, respectively. The majority of STEC isolates belonged to phylogroup B1 (58.4 %), followed by E (25 %), A (8.3 %), and D (8.3 %). CONCLUSIONS Our findings suggest that wild boars are an important reservoir of STEC isolates. Based on the presence of virulence factors encoding for toxins (stx1 and stx2), adhesins, and invasion among STEC strains in association with integrons as mobile genetic elements, these strains may have a high potential to cause human disease.
Collapse
Affiliation(s)
- Ghassan Tayh
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia.
| | - Sinda Srairi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Rachid Selmi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Faten Ben Chehida
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Aymen Mamlouk
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Monia Daaloul-Jedidi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Lilia Messadi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia.
| |
Collapse
|
4
|
Trovão LDO, Vieira MAM, Santos ACDM, Puño-Sarmiento JJ, Nunes PHS, Santos FF, Rocha VGP, Knöbl T, Navarro-Garcia F, Gomes TAT. Identification of a genomic cluster related to hypersecretion of intestinal mucus and mucinolytic activity of atypical enteropathogenic Escherichia coli (aEPEC). Front Cell Infect Microbiol 2024; 14:1393369. [PMID: 39703371 PMCID: PMC11656320 DOI: 10.3389/fcimb.2024.1393369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) strains are subdivided into typical (tEPEC) and atypical (aEPEC) according to the presence or absence of a virulence-associated plasmid called pEAF. Our research group has previously demonstrated that two aEPEC strains, 0421-1 and 3991-1, induce an increase in mucus production in a rabbit ileal loop model in vivo. This phenomenon was not observed with a tEPEC prototype strain. Few studies on aEPEC strains evaluating their capacity to induce intestinal mucus hypersecretion were done. This study aimed to investigate aEPEC strains regarding their genotypic and phenotypic characteristics, their ability to alter mucus production in an in vivo intestinal infection model, and their potential mucinolytic activity. To investigate the relationship between strains 0421-1 and 3991-1 and 11 other aEPEC strains, their serotypes, sequence types (ST), and virulence factors (VF), several sequencing and genomic analyses were carried out. The study also involved researching the reproduction of mucus hypersecretion in rabbits in vivo. We found that the two mucus-inducing strains and two other strains (1582-4 and 2531-13) shared the same phylogroup (A), ST (378), serotype (O101/O162:H33), and intimin subtype (ι2), were phylogenetically related, and induced mucus hypersecretion in vivo. A wide diversity of VFs was found among the strains, confirming their genomic heterogeneity. However, among the genes studied, no unique virulence factor or gene set was identified exclusively in the mucus-inducing strains, suggesting the multifactorial nature of this phenomenon. The two strains (1582-4 and 2531-13) closely related to the two aEPEC strains that induced mucus production in vivo also induced the phenomenon. The investigation of the mucinolytic activity revealed that all aEPEC strains used mucins as their carbon sources. Ten of the 13 aEPEC strains could cross a mucin layer, and only four adhered better to agar containing mucin than to agar without mucin. The present study paves the way for subsequent investigations into the molecular mechanisms regarding cellular interactions and responses, as well as the correlation between virulence factors and the induction of mucus production/expression during aEPEC infections.
Collapse
Affiliation(s)
- Liana de Oliveira Trovão
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mônica Aparecida Midolli Vieira
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Carolina de Mello Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juan Josue Puño-Sarmiento
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pedro Henrique Soares Nunes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Laboratório Alerta, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Terezinha Knöbl
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Navarro-Garcia
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Tânia Aparecida Tardelli Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Luiz BM, Cergole-Novella MC, Dantas STA, de Lira DRP, de Souza GFR, Fernandes IDA, Orsi H, Solveira G, Rall VLM, Dos Santos LF, Hernandes RT. Enteroaggregative Escherichia coli (EAEC) isolates obtained from non-diarrheic children carry virulence factor-encoding genes from Extraintestinal Pathogenic E. Coli (ExPEC). Braz J Microbiol 2024; 55:3551-3561. [PMID: 39083223 PMCID: PMC11711792 DOI: 10.1007/s42770-024-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 01/11/2025] Open
Abstract
Enteroaggregative E. coli (EAEC) is one of the most frequent pathogens isolated from diarrheal patients as well as from healthy individuals in Brazil and has recently also been implicated as an extraintestinal pathogenic E. coli (ExPEC) associated with bloodstream and urinary tract infections. In this study, 37 EAEC isolates, obtained from fecal samples of non-diarrheic children, were molecularly and phenotypically characterized to access the pathogenic features of these isolates. The EAEC isolates were assigned into the phylogroups A (54.1%), D (29.7%), B1 (13.5%) and B2 (2.7%); and harbored genes responsible for encoding the major pilin subunit of the aggregative adherence fimbriae (AAFs) or aggregate-forming pili (AFP) adhesins as follows: aggA (24.3%), agg3A (5.4%), agg4A (27.0%), agg5A (32.4%) and afpA (10.8%). The most frequent O:H serotypes were O15:H2 (8.1%), O38:H25 (5.4%) and O86:H2 (5.4%). Twenty-one isolates (56.8%) produce the aggregative adherence (AA) pattern on HeLa cells, and biofilm formation was more efficient among EAEC isolates harboring the aggA and agg5A genes. PFGE analysis showed that 31 (83.8%) of the isolates were classified into 10 distinct clusters, which reinforces the high diversity found among the isolates studied. Of note, 40.5% (15/37) of the EAEC isolates have a genetic profile compatible with E. coli isolates with intrinsic potential to cause extraintestinal infections in healthy individuals, and therefore, classified as EAEC/ExPEC hybrids. In conclusion, we showed the presence of EAEC/ExPEC hybrids in the intestinal microbiota of non-diarrheic children, possibly representing the source of some endogenous extraintestinal infections.
Collapse
Affiliation(s)
- Bruna M Luiz
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | | | - Stéfani T A Dantas
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Daiany R P de Lira
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | | | | | - Henrique Orsi
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Guilherme Solveira
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Vera L M Rall
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Luís F Dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil.
| |
Collapse
|
6
|
Tayh G, Nsibi F, Chemli K, Daâloul-Jedidi M, Abbes O, Messadi L. Occurrence, antibiotic resistance and molecular characterisation of Shiga toxin-producing Escherichia coli isolated from broiler chickens in Tunisia. Br Poult Sci 2024; 65:751-761. [PMID: 38967914 DOI: 10.1080/00071668.2024.2368906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 07/06/2024]
Abstract
1. Shiga toxin-producing Escherichia coli (STEC) strains are associated with disease outbreaks which cause a public health problem. The aim of this study was to determine the frequency of STEC strains, their virulence factors, phylogenetic groups and antimicrobial resistance profiles in broiler chickens.2. A total of 222 E.coli isolates were collected from the caecum of chickens intended to be slaughtered. Antibiotic susceptibility was tested against 21 antimicrobial agents and ESBL phenotype was assessed by double-disk synergy test. The presence of STEC virulence genes stx1, stx2,eaeA and ehxA was detected by PCR. The identification of STEC serogroups was realised by PCR amplification. Additive virulence genes, phylogenetic groups and integrons were examined among the STEC isolates.3. Out of 222 E.coli isolates, 72 (32%) were identified as STEC strains and the most predominant serogroups were O103, O145 and O157. Shiga toxin gene 1 (stx1) was found in 84.7% (61/72) of the STEC strains, and eae and stx2 were detected in 38.8% and 13.8%, respectively. The ESBL phenotype was documented in 48.6% (35/72) of isolates. Most of the isolates (90.3%) carried class 1 integron with the gene cassette encoding resistance to trimethoprim (dfrA) and streptomycin (aadA) in 31.9% of the isolates. Class 2 integron was identified in 36.1% of isolates.4. Broilers can be considered as a reservoir of STEC strains which have high virulence factors and integrons that might be transmitted to other chickens, environments and humans. It is important to undertake surveillance and efficient control measures in slaughterhouses and farms to control measures of STEC bacteria.
Collapse
Affiliation(s)
- G Tayh
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - F Nsibi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - K Chemli
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - M Daâloul-Jedidi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - O Abbes
- DICK Company, Poulina Group Holding, Ben Arous, Tunisia
| | - L Messadi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| |
Collapse
|
7
|
Hambolu DA, Olatoye OI, Besong MA, Call DR. Low-cost biosecurity measures are associated with reduced detection of non-Typhoidal Salmonella in Nigerian poultry while inappropriate antibiotic use is widespread. Sci Rep 2024; 14:20974. [PMID: 39251698 PMCID: PMC11385543 DOI: 10.1038/s41598-024-72317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/05/2024] [Indexed: 09/11/2024] Open
Abstract
Large-scale poultry production in low- and middle-income countries may be a source of adulterated products (e.g., Salmonella contamination, antibiotic residues) that can be disseminated over wide areas. We employed a cross-sectional survey of 199 randomly selected poultry farms in Lagos State, Nigeria, to estimate the prevalence of non-typhoidal Salmonella (NTS), and biosecurity and antibiotic use practices. Pooled fecal samples were collected from laying chickens and from poultry handlers. Selective culture, biochemical assays, and PCR (invA) were used to isolate and confirm NTS isolates. NTS was detected at 14% of farms (28/199) and from 10% of farm workers (6/60). Multivariate logistic regression analysis indicated that antiseptic foot dips reduced the odds ratio (OR) for detecting NTS in chicken feces [OR: 0.55; 95% confidence interval (CI) 0.07-0.58]. Most farms (94.5%, 188/199) used antibiotics for treatment and prophylaxis, but no farms (0/199) exercised withdrawal before sale of products. Most farms (86.4%, 172/199) reported using antibiotic cocktails that included medically important colistin, ciprofloxacin, chloramphenicol, and gentamicin. Egg production in Lagos State relies heavily on antibiotics and antibiotic residues are likely passed to consumers through poultry products, but there is evidence that low-cost biosecurity controls are effective for limiting the presence of NTS on farms.
Collapse
Affiliation(s)
- Dupe Arinola Hambolu
- Department of Veterinary and Pest Control Services, Federal Ministry of Agriculture and Food Security, Abuja, Nigeria
| | - Olufemi Isaac Olatoye
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- Paul G. Allen School for Global Health, Washington State University, 240 SE Ott Road, Pullman, WA, 99164-7090, USA
| | - Mathias Ayuk Besong
- Department of Veterinary and Pest Control Services, Federal Ministry of Agriculture and Food Security, Abuja, Nigeria
| | - Douglas Ruben Call
- Paul G. Allen School for Global Health, Washington State University, 240 SE Ott Road, Pullman, WA, 99164-7090, USA.
| |
Collapse
|
8
|
Titus KS, Magu D, Wanzala P. Subjects' Sociodemographics Influence the Transmission Patterns of Diarrheagenic Escherichia coli Pathotypes among Children under 5 Years in Nakuru County. Ann Afr Med 2024; 23:132-139. [PMID: 39028160 PMCID: PMC11210731 DOI: 10.4103/aam.aam_41_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/07/2023] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Diarrheagenic Escherichiacoli (DEC) infections constitute the leading causes of morbidity and mortality among children in Sub-Saharan Africa. However, little has so far been done to properly reveal the pathogenic endowments of DEC in these populations. AIMS AND OBJECTIVES We evaluated 4 DEC strains among children under 5 years. MATERIALS AND METHODS A cross-sectional study design was employed among 384 positive cases. RESULTS There was a significant decline in infections associated with DEC as the children grew older (χ2[12] = 87.366: P = [0.000]. A total of 56 (14.6%) cases were 0-12 months, 168 (43.8%) were 13-24 months, 88 (22.9%) were 25-36 months, 40 (10.4%) were 37-48 months, and 32 (8.3%) were 49-60 months. A total of 248 (64.6%) male subjects exhibited more susceptibility to DEC infections than their female counterparts (n = 136 [35.4%]) (χ2[3] =13.313: P = [0.004]. Subjects from urban areas (n = 248 [64.6%]), significantly bored the brunt of infections than those from rural areas (n = 136 [35.4%]) (χ2[3] = 35.147: P = [0.000]. The prevalence of DEC appeared significantly higher during rainy seasons (n = 269 [70.1%]). CONCLUSION Young age, male gender, crowding, and rainy season play a central role in the transmission of DEC pathotypes.
Collapse
Affiliation(s)
- K Suge Titus
- Department of Environmental Health and Disease Control, School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Department of Pharmacology and Pharmacognosy, Kabarak University, Nakuru, Kenya
| | - Dennis Magu
- Department of Environmental Health and Disease Control, School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Peter Wanzala
- Department of Pharmacology and Pharmacognosy, Kabarak University, Nakuru, Kenya
- Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
9
|
Tadielo LE, Dos Santos EAR, Possebon FS, Schmiedt JA, Juliano LCB, Cerqueira-Cézar CK, de Oliveira JP, Sampaio ANDCE, Melo PRL, Caron EFF, Pinto JPDAN, Bersot LDS, Pereira JG. Characterization of microbial ecology, Listeria monocytogenes, and Salmonella sp. on equipment and utensil surfaces in Brazilian poultry, pork, and dairy industries. Food Res Int 2023; 173:113422. [PMID: 37803760 DOI: 10.1016/j.foodres.2023.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to evaluate the level of counting by indicator microorganisms, identify the microbial ecology, detect Listeria monocytogenes and Salmonella sp., and determine the presence of virulence genes and biofilm formation. A total of 480 samples were collected from the surfaces of the equipment and utensils using sterile swabs for the detection of L. monocytogenes and Salmonella sp. and counting mesophilic aerobes, Enterobacteriaceae, Escherichia coli, and Pseudomonas sp. The microbial ecology was evaluated by sequencing the 16S rRNA gene. Genes for virulence and biofilm formation were analyzed and adhesion capacity was evaluated for L. monocytogenes and Salmonella sp. The mesophilic aerobe count was the highest in the dairy processing facility, followed by the pork and poultry slaughterhouses. L. monocytogenes was detected in all facilities, with the highest detection in the pork slaughterhouse, followed by the poultry and dairy facilities. Salmonella sp. was only detected in the dairy. Isolates of L. monocytogenes and Salmonella sp. showed poor adhesion to polystyrene surfaces, virulence genes, and biofilm formation. The frequent contaminants in the slaughterhouses were Pseudomonas, Acinetobacter, and Aeromonas in poultry, Acinetobacter, Pseudomonas, and Brevundimonas in pork, and Pseudomonas, Kocuria, and Staphylococcus in dairy. Our results provide useful information to understand the microbiological risks associated with contamination.
Collapse
Affiliation(s)
- Leonardo Ereno Tadielo
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Emanoelli Aparecida Rodrigues Dos Santos
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Fábio Sossai Possebon
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Jhennifer Arruda Schmiedt
- Federal University of Paraná (UFPR), Palotina Campus, Department of Veterinary Sciences, Rua Pioneiro, 2153, Jardim Dallas, 85950-000 Palotina, PR, Brazil
| | - Lara Cristina Bastos Juliano
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Camila Koutsodontis Cerqueira-Cézar
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Janaina Prieto de Oliveira
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Aryele Nunes da Cruz Encide Sampaio
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Patrícia Regina Lopes Melo
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Evelyn Fernanda Flores Caron
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - José Paes de Almeida Nogueira Pinto
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Luciano Dos Santos Bersot
- Federal University of Paraná (UFPR), Palotina Campus, Department of Veterinary Sciences, Rua Pioneiro, 2153, Jardim Dallas, 85950-000 Palotina, PR, Brazil.
| | - Juliano Gonçalves Pereira
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil.
| |
Collapse
|
10
|
Akinlabi OC, Dada RA, Nwoko ESQA, Okeke IN. PCR diagnostics are insufficient for the detection of Diarrhoeagenic Escherichia coli in Ibadan, Nigeria. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001539. [PMID: 37549136 PMCID: PMC10406320 DOI: 10.1371/journal.pgph.0001539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Understanding the contribution of different diarrhoeagenic Escherichia coli pathotypes to disease burden is critical to mapping risk and informing vaccine development. Targeting select virulence genes by PCR is the diagnostic approach of choice in high-burden, least-resourced African settings. We compared the performance of a commonly-used multiplex protocol to whole genome sequencing (WGS). PCR was applied to 3,815 E. coli isolates from 120 children with diarrhoea and 357 healthy controls. Three or more isolates per specimen were also Illumina-sequenced. Following quality assurance, ARIBA and Virulencefinder database were used to identify virulence targets. Root cause analysis of deviant PCR results was performed by examining target sensitivity using BLAST, Sanger sequencing false-positive amplicons, and identifying lineages prone to false-positivity using in-silico multilocus sequence typing and a Single Nucleotide Polymorphism phylogeny constructed using IQTree. The sensitivity and positive predictive value of PCR compared to WGS ranged from 0-77.8% while specificity ranged from 74.5-94.7% for different pathotypes. WGS identified more enteroaggregative E. coli (EAEC), fewer enterotoxigenic E. coli (ETEC) and none of the Shiga toxin-producing E. coli detected by PCR, painting a considerably different epidemiological picture. Use of the CVD432 target resulted in EAEC under-detection, and enteropathogenic E. coli eae primers mismatched more recently described intimin alleles common in our setting. False positive ETEC were over-represented among West Africa-predominant ST8746 complex strains. PCR precision varies with pathogen genome so primers optimized for use in one part of the world may have noticeably lower sensitivity and specificity in settings where different pathogen lineages predominate.
Collapse
Affiliation(s)
- Olabisi C. Akinlabi
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, University of Ibadan, Oyo, Nigeria
| | - Rotimi A. Dada
- Faculty of Pharmacy, Bowen University Iwo and Department of Pharmaceutical Microbiology, College of Health Sciences, Medical Laboratory Science Programme, Ahmadu Bello University, Zaria, Nigeria
| | - El-shama Q. A. Nwoko
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, University of Ibadan, Oyo, Nigeria
| | - Iruka N. Okeke
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, University of Ibadan, Oyo, Nigeria
| |
Collapse
|
11
|
Neupane R, Bhathena M, Das G, Long E, Beard J, Solomon H, Simon JL, Nisar YB, MacLeod WB, Hamer DH. Antibiotic resistance trends for common bacterial aetiologies of childhood diarrhoea in low- and middle-income countries: A systematic review. J Glob Health 2023; 13:04060. [PMID: 37475599 PMCID: PMC10359834 DOI: 10.7189/jogh.13.04060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Background Diarrhoea is the second most common cause of death among children under the age of five worldwide. The World Health Organization (WHO) recommends treating diarrhoea with oral rehydration therapy, intravenous fluids for severe dehydration, and zinc supplements. Antibiotics are only recommended to treat acute, invasive diarrhoea. Rising antibiotic resistance has led to a decrease in the effectiveness of treatments for diarrhoea. Methods A systematic literature review in PubMed, Web of Science, and EMBASE was conducted to identify articles relevant to antibiotic-resistant childhood diarrhoea. Articles in English published between 1990 to 2020 that described antibiotic resistance patterns of common pathogens causing childhood diarrhoea in low- and middle-income countries were included. The studies were limited to papers that categorized children as 0-5 years or 0-10 years old. The proportion of isolates with resistance to major classes of antibiotics stratified by major WHO global regions and time was determined. Results Quantitative data were extracted from 44 articles that met screening criteria; most focused on children under five years. Escherichia coli isolates had relatively high resistance rates to ampicillin and tetracycline in the African (AFR), American (AMR), and Eastern Mediterranean Regions (EMR). There was moderate to high resistance to ampicillin and third generation cephalosporins among Salmonella spp in the AFR, EMR, and the Western Pacific Region (WPR). Resistance rates for ampicillin, co-trimoxazole, and chloramphenicol for Shigella in the AFR started at an alarmingly high rate ( ~ 90%) in 2006 and fluctuated over time. There were limited antibiotic resistance data for Aeromonas, Yersinia, and V. cholerae. The 161 isolates of Campylobacter analysed showed initially low rates of fluoroquinolone resistance with high rates of resistance in recent years, especially in the Southeast Asian Region. Conclusions Resistance to inexpensive antibiotics for treatment of invasive diarrhoea in children under ten years is widespread (although data on 6- to 10-year-old children are limited), and resistance rates to fluoroquinolones and later-generation cephalosporins are increasing. A strong regional surveillance system is needed to carefully monitor trends in antibiotic resistance, future studies should include school-aged children, and interventions are needed to reduce inappropriate use of antibiotics for the treatment of community-acquired, non-invasive diarrhoea. Registration This systematic review was registered in Prospero (registration number CRD42020204004) in August 2020.
Collapse
Affiliation(s)
- Raghavee Neupane
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Myra Bhathena
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Gopika Das
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Elizabeth Long
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jennifer Beard
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Hiwote Solomon
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jon L Simon
- Department of Maternal, Newborn, Child and Adolescent Health and Ageing, World Health Organization, Geneva, Switzerland
| | - Yasir B Nisar
- Department of Maternal, Newborn, Child and Adolescent Health and Ageing, World Health Organization, Geneva, Switzerland
| | - William B MacLeod
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Section of Infectious Diseases, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Disease Laboratory, Boston University, Boston, Massachusetts, USA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Orsi H, Guimarães FF, Leite DS, Guerra ST, Joaquim SF, Pantoja JCF, Hernandes RT, Lucheis SB, Ribeiro MG, Langoni H, Rall VLM. Characterization of mammary pathogenic Escherichia coli reveals the diversity of Escherichia coli isolates associated with bovine clinical mastitis in Brazil. J Dairy Sci 2023; 106:1403-1413. [PMID: 36567244 DOI: 10.3168/jds.2022-22126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022]
Abstract
Mammary pathogenic Escherichia coli (MPEC) is one of the most common pathogens associated with clinical mastitis. We analyzed isolates obtained from milk samples of cows with clinical mastitis, collected from 10 farms in Brazil, to verify molecular and phenotypic characteristics. A total of 192 (4.5%) mammary pathogenic E. coli isolates were obtained from 4,275 milk samples analyzed, but we tested 161. We assigned most of these isolates to E. coli phylogroups B1 (52.8%) and A (36.6%), although phylogroups B2, C, D, E, and unknown also occurred. All isolates were assessed for the presence of several genes encoding virulence factors, such as adhesins (sfaDE, papC, afaBC III, ecpA, fimH, papA, and iha), toxins (hlyA, cnf1, sat, vat, and cdt), siderophores (iroN, irp2, iucD, ireA, and sitA), an invasion protein (ibeA), and serum resistance proteins (traT, KpsMTII, and ompT), and isolates from phylogroups B1, B2, and E showed up to 8 genes. Two isolates harbored the locus of enterocyte effacement (escN+) and lack the bundle-forming pilus (bfpB-) operon, which corresponds to a molecular profile of a subgroup of diarrheagenic E. coli (aEPEC), thus being classified as hybrid MPEC/aEPEC isolates. These isolates displayed a localized adherence-like pattern of adherence in HeLa cells and were able to promote F-actin polymerization underneath adherent bacteria. Based on the pulsed-field gel electrophoresis analyses, considerable genetic variability was observed. A low index of antimicrobial resistance was observed and 2 extended-spectrum β-lactamase-producing E. coli were identified, both harboring blaCTX-M15 gene, and were classified as ST10 and ST993 using multilocus sequence typing. A total of 148 (91.2%) isolates were weak biofilm producers or formed no biofilm. Because raw milk is still frequently consumed in Brazil, the occurrence of virulence factor-encoding genes from extraintestinal or diarrheagenic E. coli added to the presence of extended-spectrum β-lactamase-producing isolates can turn this veterinary medicine problem into a public health concern.
Collapse
Affiliation(s)
- Henrique Orsi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Felipe F Guimarães
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Domingos S Leite
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, SP 13083 970, Brazil
| | - Simony T Guerra
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Sâmea F Joaquim
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Jose C F Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Rodrigo T Hernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Simone B Lucheis
- Paulista Agency of Agribusiness Technology, Bauru, SP 17030 000, Brazil
| | - Márcio G Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil.
| |
Collapse
|
13
|
Genetic and Antimicrobial Resistance Profiles of Mammary Pathogenic E. coli (MPEC) Isolates from Bovine Clinical Mastitis. Pathogens 2022; 11:pathogens11121435. [PMID: 36558768 PMCID: PMC9781227 DOI: 10.3390/pathogens11121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mammary pathogenic E. coli (MPEC) is one of the main pathogens of environmental origin responsible for causing clinical mastitis worldwide. Even though E. coli are strongly associated with transient or persistent mastitis and the economic impacts of this disease, the virulence factors involved in the pathogenesis of MPEC remain unknown. Our aim was to characterize 110 MPEC isolates obtained from the milk of cows with clinical mastitis, regarding the virulence factor-encoding genes present, adherence patterns on HeLa cells, and antimicrobial resistance profile. The MPEC isolates were classified mainly in phylogroups A (50.9%) and B1 (38.2%). None of the isolates harbored genes used for diarrheagenic E. coli classification, but 26 (23.6%) and 4 (3.6%) isolates produced the aggregative or diffuse adherence pattern, respectively. Among the 22 genes investigated, encoding virulence factors associated with extraintestinal pathogenic E. coli pathogenesis, fimH (93.6%) was the most frequent, followed by traT (77.3%) and ompT (68.2%). Pulsed-field gel electrophoresis analysis revealed six pulse-types with isolates obtained over time, thus indicating persistent intramammary infections. The genes encoding beta-lactamases detected were as follows: blaTEM (35/31.8%); blaCTX-M-2/blaCTX-M-8 (2/1.8%); blaCTX-M-15 and blaCMY-2 (1/0.9%); five isolates were classified as extended spectrum beta-lactamase (ESBL) producers. As far as we know, papA, shf, ireA, sat and blaCTX-M-8 were detected for the first time in MPEC. In summary, the genetic profile of the MPEC studied was highly heterogeneous, making it impossible to establish a common genetic profile useful for molecular MPEC classification. Moreover, the detection of ESBL-producing isolates is a serious public health concern.
Collapse
|
14
|
Budiarto BR, Mustopa AZ, Ningrum RA, Amilia N, Saepudin E. Gold nanoparticles (AuNP)-based aptasensor for enteropathogenic Escherichia coli detection. Mol Biol Rep 2022; 49:9355-9363. [PMID: 35896842 DOI: 10.1007/s11033-022-07786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diarrhea is a major cause of severe gastrointestinal illness in the infant especially in many developing countries. Although this molecular technique has been accepted as standard technique to detect Diarrhea-causing EPEC, the practical aspect of this technique for in-site rapid screening purposes is still facing a major challenge. In this study, we characterized EPEC specific aptamers and applied it as an AuNP-based aptasensor for point of care (POC) diagnosis purpose. METHODS As many as six selected DNA aptamers was screened using target bacteria and the bound aptamer was measured by qPCR technique. Moreover, Kd value for each optimal bound aptamer was measured by using the same technique. Colorimetry assay was applied to test specificity and LOD of AuNP-based aptasensor. RESULTS Two DNA aptamers have been successfully obtained to detect Enteropathogenic Escherichia coli K.1.1. DNA aptamer S8-7 exhibited constant dissociation (Kd) value of 17.08 nM, while DNA aptamer S10-5 exhibited Kd value of 34.14 nM. AuNP-based aptasensor showed high selectivity and specificity for EPEC K.1.1 with a limit of detection (LOD) value of 105 CFU/mL. Truncation study on DNA aptamer S8-7 showed that elimination of primer binding sequence only slightly increased both performance of detection and LOD value of AuNP-based aptasensor. CONCLUSION Further study is necessary to improve AuNP-aptasensor performance such as through mutagenesis approach on targeted DNA aptamers before AuNP-based aptasensor can be applied as a biosensor in point of care (POC) diagnosis.
Collapse
Affiliation(s)
- Bugi Ratno Budiarto
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Raya Bogor Street KM.46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Raya Bogor Street KM.46, Cibinong, Bogor, West Java, 16911, Indonesia.
| | - Ratih Asmana Ningrum
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Raya Bogor Street KM.46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Nurul Amilia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, 16424, Indonesia.,Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, South Tangerang, 15412, Indonesia
| | - Endang Saepudin
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, 16424, Indonesia
| |
Collapse
|
15
|
Tadielo LE, Bellé TH, Rodrigues dos Santos EA, Schmiedt JA, Cerqueira-Cézar CK, Nero LA, Yamatogi RS, Pereira JG, Bersot LDS. Pure and mixed biofilms formation of Listeria monocytogenes and Salmonella Typhimurium on polypropylene surfaces. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Molecular Study to Detect Escherichia coli in Diarrheic Children and its Antibiotic Resistance. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diarrheal diseases can lead to infections and cause morbidity and mortality in children. Diarrheagenic Escherichia coli (DEC) is an etiological agent, which is considered the major causative agent of diarrhea in children in some developing countries. The aims of this work were to estimate Escherichia coli (E. coli) causing diarrhea in children less than 5 years old, and to detect some biofilm virulence factors and the effect of some antibiotics. For the methodology, a total of 112 specimens were collected from children from two health centers, Al-Zahraa Teaching Hospital and Public Health Laboratory (located in Al-Kut city/ and the Wasit province in Iraq). All specimens were grown on simple and rich media. A total of 43 (38.4%) E. coli isolates were identified using different traditional methods, such as biochemical tests and 16S rRNA sequencing. Polymerase chain reaction (PCR) testing was used to detect some virulence factor genes that play an important role in the pathogenesis of diarrheic E. coli e.g., 16S rRNA, bfpA, and eaeA. In this study, several antibiotics were used to estimate the sensitivity and resistivity of E. coli isolates. A total of 43 isolates were fully identified as E. coli. These samples were used to detect the virulence factor genes, and 31 (72.1%) and 29 (29.4%) isolates carried bfpA and eaeA, respectively. The preponderance of E. coli isolates were completely resistant to penicillin 43 (100%). Additionally, 33 (76.7%) and 27 (62.8%) isolates were resistant to cephalothin and amoxycillin-clavulanic acid, respectively. Furthermore, the isolates of E. coli isolates showed different levels of sensitivity to antibiotics, including polymyxin B 40 (93%), norfloxacin 38 (88.4%), gentamycin 26 (60.4%), and meropenem 22 (51.2%). In conclusion, diarrheagenic E. coli isolates were the prevalent among diarrheic children. Most isolates showed varying results for the presence of virulence factors. In addition, all isolates were resistant to penicillin and sensitive to polymyxin B.
Collapse
|
17
|
Bai Z, Zhang S, Wang X, Aslam MZ, Wang W, Li H, Dong Q. Genotyping Based on CRISPR Loci Diversity and Pathogenic Potential of Diarrheagenic Escherichia coli. Front Microbiol 2022; 13:852662. [PMID: 35308371 PMCID: PMC8924505 DOI: 10.3389/fmicb.2022.852662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Diarrheagenic Escherichia coli (DEC) can cause epidemic diarrhea worldwide. The pathogenic potential of different strains is diverse and the continuous emergence of pathogenic strains has brought serious harm to public health. Accurately distinguishing and identifying DEC with different virulence is necessary for epidemiological surveillance and investigation. Clustered regularly interspaced short palindromic repeats (CRISPR) typing is a new molecular method that can distinguish pathogenic bacteria excellently and has shown great promise in DEC typing. The purpose of this study was to investigate the discrimination of CRISPR typing method for DEC and explore the pathogenicity potential of DEC based on CRISPR types (CT). The whole genome sequences of 789 DEC strains downloaded from the database were applied CRISPR typing and serotyping. The D value (Simpson’s index) with 0.9709 determined that CRISPR typing had a higher discrimination. Moreover, the same H antigen strains with different O seemed to share more identical spacers. Further analyzing the strains CRISPR types and the number of virulence genes, it was found that there was a significant correlation between the CRISPR types and the number of virulence genes (p < 0.01). The strains with the largest number of virulence genes concentrated in CT25 and CT56 and the number of virulence genes in CT264 was the least, indicating that the pathway potential of different CRISPR types was variable. Combined with the Caco-2 cell assay of the laboratory strains, the invasion capacity of STEC strains of different CRISPR types was different and there was no significant difference in the invasion rate between different CRISPR type strains (p > 0.05). In the future, with the increase of the number of strains that can be studied experimentally, the relationship between CRISPR types and adhesion and invasion capacities will be further clarified.
Collapse
Affiliation(s)
- Zhiye Bai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shiqin Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Muhammad Zohaib Aslam
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality and Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongmei Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Tanabe RHS, Dias RCB, Orsi H, de Lira DRP, Vieira MA, dos Santos LF, Ferreira AM, Rall VLM, Mondelli AL, Gomes TAT, Camargo CH, Hernandes RT. Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms 2022; 10:microorganisms10030645. [PMID: 35336220 PMCID: PMC8950336 DOI: 10.3390/microorganisms10030645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Pathogenic Escherichia coli are divided into two groups: diarrheagenic (DEC) and extraintestinal pathogenic (ExPEC) E. coli. ExPEC causing urinary tract infections (UTIs) are termed uropathogenic E. coli (UPEC) and are the most common cause of UTIs worldwide. (2) Methods: Here, we characterized 112 UPEC in terms of phylogroup, serotype, the presence of virulence factor-encoding genes, and antimicrobial resistance. (3) Results: The majority of the isolates were assigned into the phylogroup B2 (41.07%), and the serogroups O6 (12.5%) and O25 (8.9%) were the most frequent. Five hybrid UPEC (4.5%), with markers from two DEC pathotypes, i.e., atypical enteropathogenic (aEPEC) and enteroaggregative (EAEC) E. coli, were identified, and designated UPEC/aEPEC (one isolate) and UPEC/EAEC (four isolates), respectively. Three UPEC/EAEC harbored genes from the pap operon, and the UPEC/aEPEC carried ibeA. The highest resistance rates were observed for ampicillin (46.4%) and trimethoprim/sulfamethoxazole (34.8%), while 99.1% of the isolates were susceptible to nitrofurantoin and/or fosfomycin. Moreover, 9.8% of the isolates were identified as Extended Spectrum β-Lactamase producers, including one hybrid UPEC/EAEC. (4) Conclusion: Our data reinforce that hybrid UPEC/DEC are circulating in the city of Botucatu, Brazil, as uropathogens. However, how and whether these combinations of genes influence their pathogenicity is a question that remains to be elucidated.
Collapse
Affiliation(s)
- Rodrigo H. S. Tanabe
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Regiane C. B. Dias
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Henrique Orsi
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Daiany R. P. de Lira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Melissa A. Vieira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Luís F. dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Adriano M. Ferreira
- Hospital das Clínicas da Faculdade de Medicina de Botucatu, Botucatu 18607-741, SP, Brazil;
| | - Vera L. M. Rall
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Alessandro L. Mondelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Tânia A. T. Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP-EPM), São Paulo 04023-062, SP, Brazil;
| | - Carlos H. Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Rodrigo T. Hernandes
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
- Correspondence: ; Tel.: +55-14-3880-0446
| |
Collapse
|
19
|
Abdalla SE, Abia ALK, Amoako DG, Perrett K, Bester LA, Essack SY. Food animals as reservoirs and potential sources of multidrug-resistant diarrheagenic E. coli pathotypes: Focus on intensive pig farming in South Africa. Onderstepoort J Vet Res 2022; 89:e1-e13. [PMID: 35144444 PMCID: PMC8832000 DOI: 10.4102/ojvr.v89i1.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Background Diarrheagenic E. coli (DEC) strains are a major cause of diarrheal diseases in both developed and developing countries. Healthy asymptomatic animals may be reservoirs of zoonotic DEC, which may enter the food chain via the weak points in hygiene practices. Aim We investigated the prevalence of DEC along the pig production continuum from farm-to-fork. Methods A total of 417 samples were collected from specific points along the pig production system, that is, farm, transport, abattoir and food. E. coli was isolated and enumerated using Colilert. Ten isolates from each Quanti-tray were selected randomly and phenotypically identified using eosin methylene blue agar selective media. Real-time polymerase chain reaction (PCR) was used to confirm the species and to classify them into the various diarrheagenic pathotypes. Antimicrobial susceptibility was determined against a panel of 20 antibiotics using the Kirby-Bauer disk diffusion method and EUCAST guideline. Results The final sample size consisted of 1044 isolates, of which 45.40% (474/1044) were DEC and 73% (762/1044) were multidrug-resistant. Enteroinvasive E. coli (EIEC) was the most predominant DEC at all the sampling sites. Conclusion The presence of DEC in food animal production environments and food of animal origin could serve as reservoirs for transmitting these bacteria to humans, especially in occupationally exposed workers and via food. Adherence to good hygienic practices along the pig production continuum is essential for mitigating the risk of transmission and infection, and ensuring food safety.
Collapse
Affiliation(s)
- Shima E Abdalla
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban.
| | | | | | | | | | | |
Collapse
|
20
|
Emami A, Pirbonyeh N, Javanmardi F, Bazargani A, Moattari A, Keshavarzi A, Akbari A. Molecular diversity survey on diarrheagenic Escherichia coli isolates among children with gastroenteritis in Fars, Iran. Future Microbiol 2021; 16:1309-1318. [PMID: 34755537 DOI: 10.2217/fmb-2020-0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To differentiate Escherichia coli isolates from diarrheal pediatric patients in clinical laboratories. Materials & methods: Patients with watery diarrhea were selected for sampling and tested for diarrheagenic E. coli (DEC) by API kit. DEC isolates were tested for phylotyping, pathotyping and presence of determined virulence-encoding genes by specific molecular methods. Results: About 50% of isolates were detected as DECs (>55 and >31% were categorized B2 and D phylotypes respectively). Enterotoxigenic E. coli was the most and enteroinvasive E. coli was the lowest prevalent pathotypes. csg and fim genes were the most present virulence factors. Conclusion: Typing of E. coli isolates from stool specimens will help to determine the diversity of diarrheal pathogens and take proper decisions to reduce the health burden of diarrheal diseases.
Collapse
Affiliation(s)
- Amir Emami
- Department of Microbiology, Burn & Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Pirbonyeh
- MSc of Microbiology, Burn & Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences Shiraz, Iran
| | - Fatemeh Javanmardi
- Department of Microbiology, Burn & Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Bazargani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences Shiraz, Iran
| | - Afagh Moattari
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences Shiraz, Iran
| | - Abdolkhalegh Keshavarzi
- Department of Surgery, Burn & Wound Healing Research Center,Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbari
- Department of Anesthesiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Huang Z, He Z, Wei Z, Wang W, Li Z, Xia X, Qin D, Zhang L, Guo J, Li J, Diao B, Zhan Z, Zhang J, Zeng M, Kan B. Correlation Between Prevalence of Selected Enteropathogens and Diarrhea in Children: A Case-Control Study in China. Open Forum Infect Dis 2021; 8:ofab445. [PMID: 34631918 PMCID: PMC8496764 DOI: 10.1093/ofid/ofab445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The application of nucleic acid detection methods improves the ability of laboratories to detect diarrheal pathogens, but it also poses new challenges for the interpretation of results. It is often difficult to attribute a diarrhea episode to the detected pathogens. Here we investigated the prevalence of 19 enteropathogens among diarrheal and nondiarrheal children and provided support for understanding the clinical significance of the pathogens. METHODS A total of 710 fecal samples were collected from children under 5 years old in 2 different regions of China from May 2017 to March 2018, comprising 383 mild to moderate diarrheal cases and 327 nondiarrheal controls. The enteropathogens were detected using real-time polymerase chain reaction (PCR) or real-time reverse transcription PCR (RT-PCR). RESULTS Enteropathogens were detected in 68.9% of cases and 41.3% of controls. Rotavirus A (adjusted OR [aOR], 9.91; 95% CI, 4.99-19.67), norovirus GI and GII (aOR, 3.82; 95% CI, 2.12-6.89), and Campylobacter jejuni (aOR, 20.12; 95% CI, 2.57-157.38) were significantly associated with diarrhea (P < .05). Adenovirus, norovirus GII, rotavirus A, and enteroaggregative Escherichia coli (pCVD432) gave lower cycle threshold (Ct) values in cases than in controls (P < .05). Rotavirus A and norovirus GII were associated with diarrhea when the Ct values were ≤30 and ≤25, respectively. CONCLUSIONS The types and loads of enteropathogens are likely to influence the interpretation of the clinical significance of positive results.
Collapse
Affiliation(s)
- Zheng Huang
- Shanghai Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Zixiang He
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, China
| | - Zhongqiu Wei
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Xia
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, China
| | - Di Qin
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, China
| | - Ling Zhang
- Shanghai Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Jiayin Guo
- Shanghai Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhifei Zhan
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mei Zeng
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
22
|
Munhoz DD, Santos FF, Mitsunari T, Schüroff PA, Elias WP, Carvalho E, Piazza RMF. Hybrid Atypical Enteropathogenic and Extraintestinal Escherichia coli (aEPEC/ExPEC) BA1250 Strain: A Draft Genome. Pathogens 2021; 10:475. [PMID: 33919948 PMCID: PMC8070890 DOI: 10.3390/pathogens10040475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/02/2023] Open
Abstract
Diarrheagenic Escherichia coli is the major bacterial etiological agent of severe diarrhea and a major concern of public health. These pathogens have acquired genetic characteristics from other pathotypes, leading to unusual and singular genetic combinations, known as hybrid strains and may be more virulent due to a set of virulence factors from more than one pathotype. One of the possible combinations is with extraintestinal E. coli (ExPEC), a leading cause of urinary tract infection, often lethal after entering the bloodstream and atypical enteropathogenic E. coli (aEPEC), responsible for death of thousands of people every year, mainly children under five years old. Here we report the draft genome of a strain originally classified as aEPEC (BA1250) isolated from feces of a child with acute diarrhea. Phylogenetic analysis indicates that BA1250 genome content is genetically closer to E. coli strains that cause extraintestinal infections, other than intestinal infections. A deeper analysis showed that in fact this is a hybrid strain, due to the presence of a set of genes typically characteristic of ExPEC. These genomic findings expand our knowledge about aEPEC heterogeneity allowing further studies concerning E. coli pathogenicity and may be a source for future comparative studies, virulence characteristics, and evolutionary biology.
Collapse
Affiliation(s)
- Danielle D. Munhoz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Fernanda F. Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Thais Mitsunari
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Paulo A. Schüroff
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| |
Collapse
|
23
|
Persistence of Yersinia enterocolitica bio-serotype 4/O:3 in a pork production chain in Minas Gerais, Brazil. Food Microbiol 2020; 94:103660. [PMID: 33279085 DOI: 10.1016/j.fm.2020.103660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
Yersinia enterocolitica bio-serotype 4/O:3 was previously identified in a pork production chain in Brazil and the obtained isolates presented high identity by pulsed-field gel electrophoresis (PFGE, XbaI). For the current study, an additional 147 porcine samples (tonsils = 100, palate = 30, head meat = 17) were collected from the same pork production chain 2-years later and 14 (9.5%) tested positive for Y. enterocolitica. Isolates (n = 24, 1 to 2 per positive sample) were bio-serotype 4/O:3 and harbored virulence genes ail, inv, wbbU, virF, myfA, ystA, ymoA, hreP and sat, and the multidrug resistance related genes emrD, marC and yfhD. PFGE (XbaI) demonstrated no differences among isolates (100% similarity) and were identical to some Y. enterocolitica isolates (n = 13) obtained previously from the same pork chain. A second PFGE analysis (NotI) confirmed the high degree of similarity among isolates obtained over time, demonstrating the persistence of an apparent clonal Y. enterocolitica bio-serotype 4/O:3 in this particular pork production chain in Brazil.
Collapse
|
24
|
Rapid identification of diarrheagenic Escherichia coli based on barcoded magnetic bead hybridization. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Hernandes RT, Hazen TH, dos Santos LF, Richter TKS, Michalski JM, Rasko DA. Comparative genomic analysis provides insight into the phylogeny and virulence of atypical enteropathogenic Escherichia coli strains from Brazil. PLoS Negl Trop Dis 2020; 14:e0008373. [PMID: 32479541 PMCID: PMC7289442 DOI: 10.1371/journal.pntd.0008373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/11/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Atypical enteropathogenic Escherichia coli (aEPEC) are one of the most frequent intestinal E. coli pathotypes isolated from diarrheal patients in Brazil. Isolates of aEPEC contain the locus of enterocyte effacement, but lack the genes of the bundle-forming pilus of typical EPEC, and the Shiga toxin of enterohemorrhagic E. coli (EHEC). The objective of this study was to evaluate the phylogeny and the gene content of Brazilian aEPEC genomes compared to a global aEPEC collection. Methodology Single nucleotide polymorphism (SNP)-based phylogenomic analysis was used to compare 106 sequenced Brazilian aEPEC with 221 aEPEC obtained from other geographic origins. Additionally, Large-Scale BLAST Score Ratio was used to determine the shared versus unique gene content of the aEPEC studied. Principal Findings Phylogenomic analysis demonstrated the 106 Brazilian aEPEC were present in phylogroups B1 (47.2%, 50/106), B2 (23.6%, 25/106), A (22.6%, 24/106), and E (6.6%, 7/106). Identification of EPEC and EHEC phylogenomic lineages demonstrated that 42.5% (45/106) of the Brazilian aEPEC were in four of the previously defined lineages: EPEC10 (17.9%, 19/106), EPEC9 (10.4%, 11/106), EHEC2 (7.5%, 8/106) and EPEC7 (6.6%, 7/106). Interestingly, an additional 28.3% (30/106) of the Brazilian aEPEC were identified in five novel lineages: EPEC11 (14.2%, 15/106), EPEC12 (4.7%, 5/106), EPEC13 (1.9%, 2/106), EPEC14 (5.7%, 6/106) and EPEC15 (1.9%, 2/106). We identified 246 genes that were more frequent among the aEPEC isolates from Brazil compared to the global aEPEC collection, including espG2, espT and espC (P<0.001). Moreover, the nleF gene was more frequently identified among Brazilian aEPEC isolates obtained from diarrheagenic patients when compared to healthy subjects (69.7% vs 41.2%, P<0.05). Conclusion The current study demonstrates significant genomic diversity among aEPEC from Brazil, with the identification of Brazilian aEPEC isolates to five novel EPEC lineages. The greater prevalence of some virulence genes among Brazilian aEPEC genomes could be important to the specific virulence strategies used by aEPEC in Brazil to cause diarrheal disease. Atypical EPEC (aEPEC) is one of the most frequent diarrheagenic Escherichia coli pathotypes isolated from patients in Brazil and is associated with diarrheal outbreaks. This study is the first to sequence the genomes of a collection of aEPEC isolates from a South American country, Brazil, and compare their phylogenetic relationships and gene content with a global collection of aEPEC. This approach identified Brazilian aEPEC genomes in previously characterized EPEC/EHEC phylogenomic lineages and resulted in the identification of five novel EPEC phylogenomic lineages, designated EPEC11 to EPEC15. We also observed that virulence genes, such as espG2, espT and espC were more frequently identified among the Brazilian aEPEC genomes, demonstrating potential differences in the virulence repertoire of this pathogen in Brazil.
Collapse
Affiliation(s)
- Rodrigo T. Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Botucatu, SP, Brasil
- * E-mail:
| | - Tracy H. Hazen
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Taylor K. S. Richter
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jane M. Michalski
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
26
|
Dias RCB, Tanabe RHS, Vieira MA, Cergole-Novella MC, Dos Santos LF, Gomes TAT, Elias WP, Hernandes RT. Analysis of the Virulence Profile and Phenotypic Features of Typical and Atypical Enteroaggregative Escherichia coli (EAEC) Isolated From Diarrheal Patients in Brazil. Front Cell Infect Microbiol 2020; 10:144. [PMID: 32391284 PMCID: PMC7188757 DOI: 10.3389/fcimb.2020.00144] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important agent of acute and persistent diarrhea in children and adults worldwide. Here we report a characterization of 220 EAEC isolates, 88.2% (194/220) of which were typical and 11.8% (26/220) were atypical, obtained from diarrheal patients during seven years (2010-2016) of epidemiological surveillance in Brazil. The majority of the isolates were assigned to phylogroups A (44.1%, 97/220) or B1 (21.4%, 47/220). The aggregative adherence (AA) pattern was detected in 92.7% (204/220) of the isolates, with six of them exhibiting AA concomitantly with a chain-like adherence pattern; and agg5A and agg4A were the most common adhesin-encoding genes, which were equally detected in 14.5% (32/220) of the isolates. Each of 12 virulence factor-encoding genes (agg4A, agg5A, pic, aap, aaiA, aaiC, aaiG, orf3, aar, air, capU, and shf) were statistically associated with typical EAEC (P < 0.05). The genes encoding the newly described aggregate-forming pili (AFP) searched (afpB, afpD, afpP, and afpA2), and/or its regulator (afpR), were exclusively detected in atypical EAEC (57.7%, 15/26), and showed a significant association with this subgroup of EAEC (P < 0.001). In conclusion, we presented an extensive characterization of the EAEC circulating in the Brazilian settings and identified the afp genes as putative markers for increasing the efficiency of atypical EAEC diagnosis.
Collapse
Affiliation(s)
- Regiane C B Dias
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | - Rodrigo H S Tanabe
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | - Melissa A Vieira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | | | | | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo T Hernandes
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| |
Collapse
|
27
|
Cerutti MF, Vieira TR, Zenato KS, Werlang GO, Pissetti C, Cardoso M. Escherichia coli in Chicken Carcasses in Southern Brazil: Absence of Shigatoxigenic (STEC) and Isolation of Atypical Enteropathogenic (aEPEC). BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2019-1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- MF Cerutti
- Universidade Federal do Rio Grande do Sul, Brazil
| | - TR Vieira
- Universidade Federal do Rio Grande do Sul, Brazil
| | - KS Zenato
- Universidade Federal do Rio Grande do Sul, Brazil
| | - GO Werlang
- Universidade Federal do Rio Grande do Sul, Brazil
| | - C Pissetti
- Universidade Federal do Rio Grande do Sul, Brazil
| | - M Cardoso
- Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Viana C, Sereno MJ, Pegoraro K, Yamatogi RS, Call DR, dos Santos Bersot L, Nero LA. Distribution, diversity, virulence genotypes and antibiotic resistance for Salmonella isolated from a Brazilian pork production chain. Int J Food Microbiol 2019; 310:108310. [DOI: 10.1016/j.ijfoodmicro.2019.108310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023]
|
29
|
First Microbiological and Molecular Identification of Rhodococcus equi in Feces of Nondiarrheic Cats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4278598. [PMID: 31380423 PMCID: PMC6652081 DOI: 10.1155/2019/4278598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/16/2019] [Indexed: 12/28/2022]
Abstract
Rhodococcus equi is responsible for infections in multiple-host animals. In humans, the prevalence of rhodococcus has increased worldwide and represents an emergent risk. R. equi is a soil-borne opportunistic bacterium isolated from feces of a wide variety of domestic species, except cats; thus, there is no known potential risk of its transmission from humans. Here, the mono- and cooccurrence of Rhodococcus equi and other bacteria and selected virulence markers were investigated in feces of nondiarrheic cats from urban (n=100) and rural (n=100) areas. Seven (7/200=3.5%) R. equi isolates were recovered in ceftazidime, novobiocin, and cycloheximide (CAZ-NB) selective media, exclusively of cats from three distinct farms (p=0.01), and these cats had a history of contact with horses and their environment (p=0.0002). None of the R. equi isolates harbored hosted-adapted plasmid types associated with virulence (pVAPA, pVAPB, and pVAPN). One hundred seventy-five E. coli isolates were identified, and 23 atypical enteropathogenic E. coli (aEPEC), 1 STEC (Shiga-toxin producing E. coli), and 1 EAEC (enteroaggregative E. coli) were detected. Eighty-six C. perfringens type A isolates were identified, and beta-2 and enterotoxin were detected in 21 and 1 isolates, respectively. Five C. difficile isolates were identified, one of which was toxigenic and ribotype 106. The main cooccurring isolates in cats from urban areas were E. coli and C. perfringens A (26/100=26%), E. coli and C. perfringens type A cpb2+ (8/100=8%), and aEPEC (eae+/escN+) and C. perfringens type A (5/100=5%). In cats from farms, the main cooccurring isolates were E. coli and C. perfringens type A (21/100=21%), E. coli and C. perfringens type A cpb2+ 8/100=8%), and E. coli and R. equi (4/100=4%). We identified, for the first time, R. equi in nondiarrheic cats, a finding that represents a public health issue because rhodococcus has been reported in both immunosuppressed and immunocompetent humans, particularly people living with HIV/AIDS.
Collapse
|
30
|
Identification and characterization of atypical enteropathogenic and Shiga toxin-producing Escherichia coli isolated from ground beef and poultry breast purchased in Botucatu, Brazil. Braz J Microbiol 2019; 50:1099-1103. [PMID: 31187444 DOI: 10.1007/s42770-019-00101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Atypical enteropathogenic (serotypes O4:H16, O8:H25, O68:H2, O105:H7, and OR:H25) and Shigatoxigenic (ONT:H46) Escherichia coli were isolated from samples of ground beef and poultry breast purchased in Botucatu, Brazil. Phenotypic and molecular characterization indicated the potential of these isolates to adhere to host epithelial cells and cause damage.
Collapse
|
31
|
Vieira MA, Dias RCB, Dos Santos LF, Rall VLM, Gomes TAT, Hernandes RT. Diversity of strategies used by atypical enteropathogenic Escherichia coli to induce attaching and effacing lesion in epithelial cells. J Med Microbiol 2019; 68:940-951. [PMID: 31107199 DOI: 10.1099/jmm.0.000998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study aimed to characterize 82 atypical enteropathogenic Escherichia coli (aEPEC) isolates, obtained from patients with diarrhea in Brazil, regarding their adherence patterns on HeLa cells and attaching and effacing (AE) lesion pathways. METHODOLOGY The adherence and fluorescence-actin staining (FAS) assays were performed using HeLa cells. AE lesion pathways were determined through the detection of tyrosine residue 474 (Y474) phosphorylation in the Tir protein, after its translocation to host cells, and by PCR assays for tir genotyping and detection of Tir-cytoskeleton coupling protein (tccP) genes. RESULTS Regarding the adherence pattern, determined in the presence of d-mannose, 12 isolates (14.6 %) showed the localized adherence (LA)-like pattern, 3 (3.7 %) the aggregative adherence pattern and 4 (4.9 %) a hybrid LA/diffuse adherence pattern. In addition, 36 (43.9 %) isolates displayed an undefined adherence, and 26 (31.7 %) were non-adherent (NA), while one (1.2 %) caused cell detachment. Among the 26 NA aEPEC isolates, 11 showed a type 1 pilus-dependent adherence in assays performed without d-mannose, while 15 remained NA. Forty-eight (58.5 %) aEPEC were able to trigger F-actin accumulation underneath adherent bacteria (FAS-positive), which is an important feature of AE lesions. The majority (58.3 %) of these used the Tir-Nck pathway, while 39.6 % may use both Tir-Nck and Tir-TccP pathways to induce AE lesions. CONCLUSION Our results reveal the diversity of strategies used by aEPEC isolates to interact with and damage epithelial host cells, thereby causing diarrheal diseases.
Collapse
Affiliation(s)
- Melissa A Vieira
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| | - Regiane C B Dias
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| | - Luís F Dos Santos
- 2 Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo SP, Brazil
| | - Vera L M Rall
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| | - Tânia A T Gomes
- 3 Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo SP, Brazil
| | - Rodrigo T Hernandes
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
32
|
Host Range-Associated Clustering Based on Multilocus Variable-Number Tandem-Repeat Analysis, Phylotypes, and Virulence Genes of Atypical Enteropathogenic Escherichia coli Strains. Appl Environ Microbiol 2019; 85:AEM.02796-18. [PMID: 30658974 DOI: 10.1128/aem.02796-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) strains (36 Japanese and 50 Bangladeshi) obtained from 649 poultry fecal samples were analyzed by molecular epidemiological methods. Clermont's phylogenetic typing showed that group A was more prevalent (58%, 50/86) than B1 (31%, 27/86). Intimin type β1, which is prevalent among human diarrheal patients, was predominant in both phylogroups B1 (81%, 22/27) and A (70%, 35/50). However, about 95% of B1-β1 strains belonged to virulence group I, and 77% of them were Japanese strains, while 17% (6/35) of A-β1 strains did. Multilocus variable-number tandem-repeat analysis (MLVA) distributed the strains into 52 distinct profiles, with Simpson's index of diversity (D) at 73%. When the data were combined with those of 142 previous strains from different sources, the minimum spanning tree formed five zones for porcine strains, poultry strains (excluding B1-β1), strains from healthy humans, bovine and human patient strains, and the B1-β1 poultry strains. Antimicrobial resistance to nalidixic acid was most common (74%) among the isolates. Sixty-eight percent of them demonstrated resistance to ≥3 antimicrobial agents, and most of them (91%) were from Bangladesh. The strains were assigned into two groups by hierarchical clustering. Correlation matrix analysis revealed that the virulence genes were negatively associated with antimicrobial resistance. The present study suggested that poultry, particularly Japanese poultry, could be another reservoir of aEPEC (phylogroup B1, virulence group I, and intimin type β1); however, poultry strains seem to be apart from patient strains that were closer to bovine strains. Bangladeshi aEPEC may be less virulent for humans but more resistant to antibiotics.IMPORTANCE Atypical enteropathogenic Escherichia coli (aEPEC) is a diarrheagenic type of E. coli, as it possesses the intimin gene (eae) for attachment and effacement on epithelium. Since aEPEC is ubiquitous even in developed countries, we previously used molecular epidemiological methods to discriminate aEPEC as a human pathogen. The present study assessed poultry as another source of human diarrheagenic aEPEC. Poultry could be the source of aEPEC (phylogroup B1, virulence group I, and intimin type β1) found among patient strains in Japan. However, the minimum spanning tree (MST) suggested that the strains from Japanese poultry were far from Japanese patient strains compared with the distance between bovine and patient strains. Bangladeshi avian strains seemed to be less diarrheagenic but are hazardous as a source of drug resistance genes.
Collapse
|
33
|
Arais LR, Barbosa AV, Andrade JRC, Gomes TAT, Asensi MD, Aires CAM, Cerqueira AMF. Zoonotic potential of atypical enteropathogenic Escherichia coli (aEPEC) isolated from puppies with diarrhoea in Brazil. Vet Microbiol 2018; 227:45-51. [PMID: 30473351 DOI: 10.1016/j.vetmic.2018.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023]
Abstract
Recent studies point atypical enteropathogenic Escherichia coli (aEPEC) to be an important agent in childhood diarrhoea in Brazil. aEPEC are commonly found in various animal species, including dogs. Although the true zoonotic risk remains unknown, some strains recovered from dogs present the same serotypes and carry the same virulence genes implicated in human disease. In this study, we compared the virulence and genetic relationship among a set of aEPEC strains previously isolated from diarrheic faeces from companion dogs and humans. A total of 17 strains, 12 from puppies and five from children, were studied. The strains were assessed for: (i) presence of virulence-associated genes (a total of 31 genes) using PCR assays; (ii) genetic relationship by Random Amplified Polymorphic DNA (RAPD), Multilocus Sequence Typing (MLST) and Pulsed-field Gel Electrophoresis (PFGE); and (iii) adherence pattern in intestinal Caco-2 cells. The occurrence of virulence genes was similar between the canine and human isolates presenting the same serotype. The fimbrial genes ecpA and fimH were the most frequently detected, followed by hcpA, tccP, tccP2, lpfA1, lpfA2, astA and toxB genes. Several nle genes were also detected, with one canine strain (O156:H- / ST327) showing all PAI O-122 genes investigated (efa-1, nleB, nleE and ent/espL2). Canine and human strains of the same serotype were grouped into a single cluster by RAPD and PFGE, in which the ST10 and ST206 were identified. Additionally, most of the strains exhibited a localized adherence-like phenotype when interacting with Caco-2 cells. The results showed that some canine aEPEC strains share virulence genes commonly found in human pathogenic strains. Moreover, strains of the same serotype, isolated from dogs and children, share virulence genes and are phylogenetically close, suggesting a potential zoonotic risk.
Collapse
Affiliation(s)
- Lavicie R Arais
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Universidade Federal Fluminense, Professor Hernani Melo Street, 101, Niterói, RJ, 24210-130, Brazil
| | - André V Barbosa
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Universidade Federal Fluminense, Professor Hernani Melo Street, 101, Niterói, RJ, 24210-130, Brazil.
| | - João R C Andrade
- Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro. Prof., Manuel de Abreu Avenue, 444, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Botucatu Street, 862, São Paulo, SP, 04023-062, Brazil
| | - Marise D Asensi
- Laboratório de Pesquisa em Infecção Hospitalar, Fundação Oswaldo Cruz, Brasil Avenue, 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Caio A M Aires
- Laboratório de Pesquisa em Infecção Hospitalar, Fundação Oswaldo Cruz, Brasil Avenue, 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Aloysio M F Cerqueira
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Universidade Federal Fluminense, Professor Hernani Melo Street, 101, Niterói, RJ, 24210-130, Brazil
| |
Collapse
|
34
|
Braga RLL, Pereira ACM, Ferreira AF, Rosa ACDP, Pereira-Manfro WF. INTRACELLULAR PERSISTENCE OF ENTEROAGGREGATIVE ESCHERICHIA COLI INDUCES A PROINFLAMMATORY CYTOKINES SECRETION IN INTESTINAL EPITHELIAL T84 CELLS. ARQUIVOS DE GASTROENTEROLOGIA 2018; 55:133-137. [PMID: 30043861 DOI: 10.1590/s0004-2803.201800000-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The competence of enteroaggregative Escherichia coli (EAEC) to adhere to the intestinal epithelium of the host is a key role to the colonization and disease development. The virulence genes are crucial for EAEC pathogenicity during adherence, internalization and persistence in the host. The overwhelming majority of antigen encounters in a host occurs on the intestine surface, which is considered a part of innate mucosal immunity. Intestinal epithelial cells (IECs) can be activated by microorganisms and induce an immune response. OBJECTIVE The present study investigated the interaction of invasive EAEC strains with T84 intestinal epithelial cell line in respect to bacterial invasiveness, persistence and cytokines production. METHODS We evaluated intracellular persistence of invasive EAEC strains (H92/3, I49/3 and the prototype 042) and production of cytokines by sandwich ELISA in T84 cells upon 24 hours of infection. RESULTS The survival rates of the prototype 042 was 0.5x103 CFU/mL while survival of I49/3 and H92/3 reached 3.2x103 CFU/mL and 1.4x103 CFU/mL, respectively. Infection with all EAEC strains tested induced significant amounts of IL-8, IL-6 and TNF-α compared to uninfected T84 cells. CONCLUSION These data showed that infection by invasive EAEC induce a proinflammatory immune response in intestinal epithelial T84 cells.
Collapse
Affiliation(s)
- Ricardo Luís Lopes Braga
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Claudia Machado Pereira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Andréa Fonseca Ferreira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Cláudia de Paula Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Wânia Ferraz Pereira-Manfro
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
35
|
Natarajan M, Kumar D, Mandal J, Biswal N, Stephen S. A study of virulence and antimicrobial resistance pattern in diarrhoeagenic Escherichia coli isolated from diarrhoeal stool specimens from children and adults in a tertiary hospital, Puducherry, India. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2018; 37:17. [PMID: 30005599 PMCID: PMC6045864 DOI: 10.1186/s41043-018-0147-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Emergence of atypical enteropathogenic Escherichia coli (EPEC) and hybrid E. coli (harboring genes of more than one DEC pathotypes) strains have complicated the issue of growing antibiotic resistance in diarrhoeagenic Escherichia coli (DEC). This ongoing evolution occurs in nature predominantly via horizontal gene transfers involving the mobile genetic elements like integrons notably class 1 integron. This study was undertaken to determine the virulence pattern and antibiotic resistance among the circulating DEC strains in a tertiary care center in south of India. METHODS Diarrhoeal stool specimens were obtained from 120 children (< 5 years) and 100 adults (> 18 years), subjected to culture and isolation of diarrhoeal pathogens. Conventional PCR was performed to detect 10 virulence and 27 antimicrobial resistance (AMR) genes among the E. coli isolated. RESULTS DEC infection was observed in 45 (37.5%) children and 18 (18%) adults, among which [18 (40%), 10 (10%)] atypical EPEC was most commonly detected followed by [6 (13.3%), 4 (4%)] ETEC, [5 (11.1%) 2 (2%)] EAEC, [(3 (6.6%), 0 (0%)] EIEC, [3 (6.6%), 0 (0%] typical EPEC, and [4 (8.8%), 1 (1%)] STEC, and no NTEC and CDEC was detected. DEC co-infection in 3 (6.6%) children, and 1(1%) adult and sole hybrid DEC infection in 3 (6.6%) children was detected. The distribution of sulphonamide resistance genes (sulI, sulII, and sulIII were 83.3 and 21%, 60.41 and 42.1%, and 12.5 and 26.3%, respectively) and class 1 integron (int1) genes (41.6 and 26.31%) was higher in DEC strains isolated from children and adults, respectively. Other AMR genes detected were qnrS, qnrB, aac(6')Ib-cr, dhfr1, aadB, aac(3)-IV, tetA, tetB, tetD, catI, blaCTX, blaSHV, and blaTEM. None harbored qnrA, qnrC, qepA, tetE, tetC, tetY, ermA, mcr1, int2, and int3 genes. CONCLUSIONS Atypical EPEC was a primary etiological agent of diarrhea in children and adults among the DEC pathotypes. Detection of high numbers of AMR genes and class 1 integron genes indicate the importance of mobile genetic elements in spreading of multidrug resistance genes among these strains.
Collapse
Affiliation(s)
- Mailan Natarajan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | - Deepika Kumar
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | - Jharna Mandal
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | - Niranjan Biswal
- Department of Paediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | - Selvaraj Stephen
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute (MGMC & RI), Puducherry, 607 402 India
| |
Collapse
|
36
|
Wei HS. Bacterial diarrhea in hospitalized children: Pathogen distribution and drug resistance. Shijie Huaren Xiaohua Zazhi 2018; 26:680-686. [DOI: 10.11569/wcjd.v26.i11.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To study the pathogen distribution and drug resistance in hospitalized children with bacterial diarrhea to guide the selection of appropriate antimicrobial drug regimen for the clinical treatment of bacterial diarrhea in children.
METHODS A total of 1107 children with bacterial diarrhea treated at our hospital from May 2012 to October 2017 were retrospectively analyzed. According to the clinical data of all children (including medical records, laboratory examination results, fecal pathogen detection results, and drug susceptibility test results), the distribution and composition of pathogenic bacteria, clinical symptoms, the drug resistance of main pathogenic bacteria, therapeutic effects, and prognosis were analyzed.
RESULTS In feces from 1107 children with bacterial diarrhea, 206 strains of pathogenic bacteria were isolated, including 39 cases of Gram-positive bacteria (such as Staphylococcus aureus) and 167 cases of Gram-negative bacteria (such as shigella, pathogenic Escherichia coli, and salmonella). The detection rate of pathogenic bacteria in the feces was the highest in children aged < 1 year, and the detection rate decreased with the increase of age. Pathogenic bacteria were detected throughout the year, especially in summer. There was a statistically significant difference (P < 0.05) in clinical symptoms (such as fever, abdominal pain, defecation, and rehydration) between bacterial diarrhea caused by Escherichia coli and Staphylococcus aureus. The rate of resistance of main Gram-positive bacteria to antimicrobial drugs moxifloxacin, vancomycin, and linezolid was less than 30%, and the rate of resistance of Gram-negative bacteria to antibiotics ceftazidime, trimethoprim/sulfamethoxazole, meropenem, and imipenem was less than 30%. The cure rate of bacterial diarrhea was 96.48% (1068/1107) after one week of treatment with antibiotics and selective antibacterial agents.
CONCLUSION The pathogen distribution in children with bacterial diarrhea is complex, and clinicians should select antimicrobial drugs with a resistance rate less than 30% based on drug susceptibility test results.
Collapse
Affiliation(s)
- Han-Song Wei
- Clinical Laboratory, Hospital of Ninghe District, Tianjin 301500, China
| |
Collapse
|
37
|
Zhou Y, Zhu X, Hou H, Lu Y, Yu J, Mao L, Mao L, Sun Z. Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: a hospital based study. BMC Infect Dis 2018; 18:63. [PMID: 29390982 PMCID: PMC5796495 DOI: 10.1186/s12879-017-2936-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Diarrhea is the leading infectious cause of childhood morbidity and mortality. Among bacterial agents, diarrheagenic Escherichia coli (DEC) is the major causal agent of childhood diarrhea in developing countries, particularly in children under the age of 5 years. Here, we performed a hospital-based prospective study to explore the pathotype distribution, epidemiological characteristics and antibiotic resistance patterns of DEC from < 5-year-old diarrheal children. METHODS Between August 2015 and September 2016, 684 stool samples were collected from children (< 5 years old) with acute diarrhea. All samples were cultured and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and biochemical tests. PCR was used for subtyping, and enteropathogenic E. coli (EPEC) isolates were identified simultaneously with serology. Furthermore, antimicrobial sensitivity tests and sequencing of antibiotic resistance-related genes were conducted. RESULTS DEC strains were identified in 7.9% of the 684 stool samples. Among them, the most commonly detected pathotype was EPEC (50.0% of DEC), of which 77.8% were classified as atypical EPEC (aEPEC). Age and seasonal distribution revealed that DEC tended to infect younger children and to occur in summer/autumn periods. Multidrug-resistant DEC isolates were 66.7%; resistance rates to ampicillin, co-trimoxazole, cefazolin, cefuroxime, cefotaxime, and ciprofloxacin were ≥ 50%. Among 5 carbapenem-resistant DEC, 60.0% were positive for carbapenemase genes (2 blaNDM-1 and 1 blaKPC-2). Among 30 cephalosporin-resistant DEC, 93.3% were positive for extended-spectrum β-lactamase (ESBL) genes, with blaTEM-1 and blaCTX-M-55 being the most common types. However, no gyrA or gyrB genes were detected in 16 quinolone-resistant isolates. Notably, aEPEC, which has not received much attention before, also exhibited high rates of drug resistance (81.0%, 66.7%, and 14.3% for ampicillin, co-trimoxazole , and carbapenem resistance, respectively). CONCLUSIONS EPEC was the most frequent DEC pathotype in acute diarrheal children, with aEPEC emerging as a dominant diarrheal agent in central China. Most DEC strains were multidrug-resistant, making even ciprofloxacin unsuitable for empiric treatment against DEC infection. Among carbapenem-resistant DEC strains, those harboring blaNDM-1 and blaKPC-2 were the main causal agents. blaTEM-1 and blaCTX-M-55 were the major genetic determinants associated with high levels of cephalosporin resistance.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Xuhui Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Yanfang Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Jing Yu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Lie Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
38
|
Thakur N, Jain S, Changotra H, Shrivastava R, Kumar Y, Grover N, Vashistt J. Molecular characterization of diarrheagenic Escherichia coli pathotypes: Association of virulent genes, serogroups, and antibiotic resistance among moderate-to-severe diarrhea patients. J Clin Lab Anal 2018; 32:e22388. [PMID: 29356079 DOI: 10.1002/jcla.22388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/22/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Diarrheagenic Escherichia coli (DEC) signifies as an important etiological agent of moderate-to-severe diarrhea. This study was primarily focused on molecular identification of DEC pathotypes; their association with serogroups and estimates of resistance profiles against different antibiotics regime. METHODS Five hundred seventy-two stool specimens from diarrhea patients were investigated for DEC pathotypes. Molecular pathotypes were identified by amplification of virulence genes associated with distinct pathotypes followed by sequencing. Diarrhea is a self-limiting disease, however, severity and persistence of infection suggest antibiotic use. Therefore, AST and MIC were determined against common antibiotic regimen. Correlations between molecular pathotypes and serogroups were analyzed by somatic "O" antigen serotyping. RESULTS The present findings reveal incidence of DEC as an etiological agent up to a level of 21% among all diarrheal age groups. DEC infection rate was higher in children. Enteropathogenic E. coliEPEC, a molecular pathotype of DEC, was found as a predominant pathotype with highest frequency of 13.7%. Two other molecular pathotypes enterotoxigenic E. coli (ETEC) and enteroaggregative E. coli (EAEC) accounted for 5.7% and 1.3%, respectively for all diarrhea incidences. Serological analysis deciphered somatic antigens O26, O2, and O3 as major serogroups identified among EPEC, ETEC, and EAEC pathotypes, respectively. All DEC pathotypes exhibited high levels of antibiotic resistance except for cotrimoxazole and norfloxacin. CONCLUSION Comprehensive molecular characterization of DEC pathotypes, their incidence estimates, and antibiogram patterns will help in ascertaining better diagnostic and therapeutic measures in management of diarrheal diseases.
Collapse
Affiliation(s)
- Nutan Thakur
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Swapnil Jain
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Harish Changotra
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Rahul Shrivastava
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Yashwant Kumar
- National Salmonella & Escherichia coli Centre, Central Research Institute, Kasauli, India
| | - Neelam Grover
- Department of Pediatrics, Indira Gandhi Medical College, Shimla, India
| | - Jitendraa Vashistt
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
39
|
Spano LC, da Cunha KF, Monfardini MV, de Cássia Bergamaschi Fonseca R, Scaletsky ICA. High prevalence of diarrheagenic Escherichia coli carrying toxin-encoding genes isolated from children and adults in southeastern Brazil. BMC Infect Dis 2017; 17:773. [PMID: 29254489 PMCID: PMC5735577 DOI: 10.1186/s12879-017-2872-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/30/2017] [Indexed: 11/22/2022] Open
Abstract
Background Diarrheagenic Escherichia coli (DEC) are important bacterial causes of childhood diarrhea in Brazil, but its impact in adults is unknown. This study aimed at investigating DEC among children and adults living in endemic areas. Methods A total of 327 stools specimens were collected from children (n = 141) and adults (n = 186) with diarrhea attending health centers. Diarrheagenic E. coli (DEC) were identified by their virulence genes (multiplex polymerase chain reaction) and HEp-2 cell adherence patterns. Results DEC were detected in 56 (40%) children and 74 (39%) adults; enteroaggregative E. coli (EAEC) (23%) was the most prevalent pathotype, followed by diffusely adherent E. coli (DAEC) (13%), and occurred at similar frequencies in both diarrheal groups. Atypical enteropathogenic E. coli (aEPEC) strains were recovered more frequently from children (6%) than from adults (1%). Twenty-six percent of the EAEC were classified as typical EAEC possessing aggR gene, and carried the aap gene. EAEC strains carrying aggR-aap-aatA genes were significantly more frequent among children than adults (p < 0.05). DAEC strains possessing Afa/Dr. genes were detected from children (10%) and adults (6%). EAEC and DAEC strains harboring genes for the EAST1 (astA), Pet, Pic, and Sat toxins were common in both diarrheal groups. The astA and the porcine AE/associated adhesin (paa) genes were found in most of aEPEC strains. High levels of resistance to antimicrobial drugs were found among DAEC and aEPEC isolates. Conclusion The results show a high proportion of EAEC and DAEC carrying toxin-encoding genes among adults with diarrhea.
Collapse
Affiliation(s)
- Liliana Cruz Spano
- Departamento de Patologia, Laboratório de Virologia e Gastrenterite Infecciosa, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29043-900, Maruípe, Vitória, Espírito Santo, Brazil.
| | - Keyla Fonseca da Cunha
- Núcleo de Doenças Infecciosas, Departamento de Medicina Social, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Mariane Vedovatti Monfardini
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Vitória, Espírito Santo, Brazil
| | | | | |
Collapse
|
40
|
Dias EM, Rodrigues DBR, Geraldo-Martins VR, Nogueira RD. Analysis of colostrum IgA against bacteria involved in neonatal infections. EINSTEIN-SAO PAULO 2017; 15:256-261. [PMID: 29091144 PMCID: PMC5823036 DOI: 10.1590/s1679-45082017ao3958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/04/2017] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To describe e compare the specificity of IgA antibodies against bacteria extract of Klebsiella pneumoniae , Staphylococcus aureus , Escherichia coli , and Salmonella enteritidis . METHODS Colostrum samples were aseptically collected in the first 12 hours after C-section delivery. The specificity of IgA against bacteria extracts was analyzed by the Western blot. RESULTS The findings showed proteins of high molecular weight frequently detectable in the samples. S. aureus was the most frequently found bacterium in the samples (p<0.05). Approximately 93.8, 56.3, 62.5 and 60.4% of samples presented IgA reactive to S. aureus , K. pneumoniae , S. enteritidis, and E. coli, respectively. Roughly 40% of samples showed no IgA reactive to K. pneumoniae, S. enteritidis and E. coli . CONCLUSION Clinical evidence of the importance of breastfeeding for the immune protection of neonates was consistent with the observed immunological findings, since most samples showed IgA reactive against the species tested. The application and development of immunotherapies during pregnancy, focused on frequently detected antigens, could be an important tool to enhance the presence of IgA in colostrum.
Collapse
|
41
|
Association of Atypical Enteropathogenic Escherichia coli with Diarrhea and Related Mortality in Kittens. J Clin Microbiol 2017; 55:2719-2735. [PMID: 28659315 DOI: 10.1128/jcm.00403-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Diarrhea is responsible for the death of approximately 900,000 children per year worldwide. In children, typical enteropathogenic Escherichia coli (EPEC) is a common cause of diarrhea and is associated with a higher hazard of death. Typical EPEC infection is rare in animals and poorly reproduced in experimental animal models. In contrast, atypical EPEC (aEPEC) infection is common in both children and animals, but its role in diarrhea is uncertain. Mortality in kittens is often attributed to diarrhea, and we previously identified enteroadherent EPEC in the intestines of deceased kittens. The purpose of this study was to determine the prevalence and type of EPEC in kittens and whether infection was associated with diarrhea, diarrhea-related mortality, gastrointestinal pathology, or other risk factors. Kittens with and without diarrhea were obtained from two shelter facilities and determined to shed atypical EPEC at a culture-based prevalence of 18%. In contrast, quantitative PCR detected the presence of the gene for intimin (eae) in feces from 42% of kittens. aEPEC was isolated from kittens with and without diarrhea. However, kittens with diarrhea harbored significantly larger quantities of aEPEC than kittens without diarrhea. Kittens with aEPEC had a significantly greater severity of small intestinal and colonic lesions and were significantly more likely to have required subcutaneous fluid administration. These findings identify aEPEC to be prevalent in kittens and a significant primary or contributing cause of intestinal inflammation, diarrhea, dehydration, and associated mortality in kittens.
Collapse
|
42
|
Ristori CA, Rowlands REG, Martins CG, Barbosa ML, Dos Santos LF, Jakabi M, de Melo Franco BDG. Assessment of Consumer Exposure to Salmonella spp., Campylobacter spp., and Shiga Toxin-Producing Escherichia coli in Meat Products at Retail in the City of Sao Paulo, Brazil. Foodborne Pathog Dis 2017; 14:447-453. [PMID: 28475359 DOI: 10.1089/fpd.2016.2270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meat products may be vehicles of bacterial pathogens to humans, and Salmonella spp., Campylobacter spp., and Shiga toxin-producing Escherichia coli (STEC) are the most relevant. The aim of this study was to generate data on prevalence of these three pathogens in 552 samples of meat products (hot dogs, pork sausages, raw ground beef, and raw chicken legs) sold at retail in the city of Sao Paulo, Brazil. Salmonella spp. was detected in 5.8% (32/552) of samples, comprising pork sausages 62.5% (20/32) and chicken legs 37.5% (12/32). The counts of Salmonella spp. were low, ranging from < 0.3 to 9.3 × 10 most probable number per gram and the most frequent serovars were Salmonella Typhimurium (28.1%), Salmonella I 4,[5],12:i:- (15.6%), Salmonella Enteritidis (12.5%), Salmonella Derby, and Salmonella Brandenburg (9.4%). Campylobacter spp. was detected in 33 samples (6.0%), comprising chicken legs (82%) and ground beef (18%). All samples were negative for STEC. These results suggest that meat products when subjected to inadequate cooking and/or cross-contamination with other products ready for consumption can lead to occurrence of outbreaks, highlighting the risks associated with them.
Collapse
Affiliation(s)
| | | | | | - Maria Luisa Barbosa
- 1 Food Microbiology Laboratory, Food Center Adolfo Lutz Institute , Sao Paulo, Brazil
| | | | - Miyoko Jakabi
- 1 Food Microbiology Laboratory, Food Center Adolfo Lutz Institute , Sao Paulo, Brazil
| | | |
Collapse
|
43
|
Singh T, Das S, Ramachandran VG, Wani S, Shah D, Maroof KA, Sharma A. Distribution of Integrons and Phylogenetic Groups among Enteropathogenic Escherichia coli Isolates from Children <5 Years of Age in Delhi, India. Front Microbiol 2017; 8:561. [PMID: 28443072 PMCID: PMC5385330 DOI: 10.3389/fmicb.2017.00561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/20/2017] [Indexed: 01/29/2023] Open
Abstract
Integrons by means of horizontal gene transfer carry multidrug resistance genes (MDR) among bacteria, including E. coli. The aim of this study was to determine the antibiotic resistance profiles and the genes associated with them, to gain insights in the distribution of phylogroups, prevalence, and characterization of class 1, 2 and 3 integrons among Enteropathogenic E. coli (EPEC) isolates, from children upto 5 years of age from Delhi and National Capital Region (NCR), India. A total of 120 E. coli isolates, including 80 from diarrheagenic E. coli (cases) and 40 from healthy isolates (controls) were recruited in this study. After isolation of E. coli, screening for EPEC was done by conventional multiplex PCR. Antibiotic suseptibility test was performed using disk diffusion method and further confirmed by minimum inhibitory concentration (MICs) by E-test. The presence and characterization of integrons and antimicrobial resistance genes were performed by PCR and DNA sequencing. Phylogeny determination was carried out by quadruplex PCR. EPEC strains were found in 64 of the 80 diarrheagenic cases, out of which 38 were MDR. In the 40 healthy controls, 23 were found to be EPEC strain, out of which only 2 were MDR. Amongst 80 diarrheagenic cases, class 1 integron were observed in 43 isolates, class 2 integron in 12 isolates and 9 isolates were found with co-existence of both. Similarly, in healthy controls; class 1 integron in 9 and class 2 integron in 7 isolates were observed with co-existence in 3 isolates. None of the isolates included class 3 integron. The dfr was the most commonly identified gene cassette within the integron-positive isolates. Phylogenetic studies showed considerable representation of phylogroup B2 in both diarrheagenic cases and healthy controls. This study reiterates the importance of class 1 integron predominantly for acquisition of antibiotic resistance genes among EPEC isolates. Furthermore, it also ascertains the possible association between multidrug resistance and presence of integrons. Approximately 91% of isolates were easily assigned to their respective phylogroups. Assessment of the relationship between antibiotic resistance and dominant phylogroups detected was also attempted. This study also highlights the increased burden of antimicrobial resistance in healthy controls.
Collapse
Affiliation(s)
- Taru Singh
- Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - Shukla Das
- Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - V G Ramachandran
- Dermatology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Dilshad GardenNew Delhi, India.,Department of Minimal Access and Bariatric Surgery, Fortis Flt. Rajan Dhall HospitalNew Delhi, India
| | - Sayim Wani
- Dermatology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Dilshad GardenNew Delhi, India.,Department of Minimal Access and Bariatric Surgery, Fortis Flt. Rajan Dhall HospitalNew Delhi, India
| | - Dheeraj Shah
- Pediatrics, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - Khan A Maroof
- Community Medicine, University College of Medical Sciences, and Guru Teg Bahadur Hospital, Dilshad GardenNew Delhi, India
| | - Aditi Sharma
- Vardhman Mahavir Medical College and Sardarjung HospitalNew Delhi, India
| |
Collapse
|
44
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
45
|
Vieira MA, Dos Santos LF, Dias RCB, Camargo CH, Pinheiro SRS, Gomes TAT, Hernandes RT. Atypical enteropathogenic Escherichia coli as aetiologic agents of sporadic and outbreak-associated diarrhoea in Brazil. J Med Microbiol 2016; 65:998-1006. [PMID: 27412254 DOI: 10.1099/jmm.0.000313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) are important agents of diarrhoea in industrialized as well as developing countries, such as Brazil. The hallmark of EPEC pathogenesis is the establishment of attaching and effacing lesions in enterocytes, in which pedestal-like structures are formed underneath adherent bacteria. EPEC are divided into two subgroups, typical (tEPEC) and atypical (aEPEC), based on the presence of the EPEC adherence factor plasmid in tEPEC and its absence in aEPEC. This study was designed to characterize 82 aEPEC isolates obtained from stool samples of diarrhoeic patients during 2012 and 2013 in Brazil. The majority of the aEPEC were assigned to the phylo-group B1 (48.8 %), and intimin subtypes θ (20.7 %), β1 (9.7 %) and λ (9.7 %) were the most prevalent among the isolates. The nleB and nleE genes were concomitantly detected in 32.9 % of the isolates, demonstrating the occurrence of the pathogenicity island O122 among them. The O157-plasmid genes (ehxA and/or espP) were detected in 7.3 % of the isolates, suggesting that some aEPEC could be derived from Shiga-toxin-producing E. coli that lost the stx genes while trafficking in the host. PFGE of 14 aEPEC of serotypes O2 : H16, O33 : H34, O39 : H9, O108 : H- and ONT : H19 isolated from five distinct outbreaks showed serotype-specific PFGE clusters, indicating a high degree of similarity among the isolates from the same event, thus highlighting these serotypes as potential aetiologic agents of diarrhoeal outbreaks in Brazil.
Collapse
Affiliation(s)
- Melissa A Vieira
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Botucatu, SP, Brazil
| | - Luís F Dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, SP, Brazil
| | - Regiane C B Dias
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Botucatu, SP, Brazil
| | - Carlos H Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, SP, Brazil
| | | | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia da Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Botucatu, SP, Brazil
| |
Collapse
|