1
|
He J, Wu Y, Zhong S, Wang Y, Lai S, Huang D, Zhang J, Lu X, Song X, Zhong Q, Chen P, Jia Y. Cognitive and metabolic signatures of early and late-onset depression: A comparative study. J Affect Disord 2025; 379:10-18. [PMID: 40023261 DOI: 10.1016/j.jad.2025.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/16/2024] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Early-onset depression (EOD) and late-onset depression (LOD) are prevalent subtypes of major depressive disorder (MDD), but the clinical distinction between EOD and LOD remains blurred due to nonspecific symptoms and lack of biomarkers. This study aims to elucidate the characteristics in cognitive function and biochemical metabolism of EOD and LOD, and to identify biological factors influencing age of onset (AOO). METHODS Seventy patients with MDD (40 with EOD and 30 with LOD) and sixty-eight age-matched healthy controls (HC) were included in this study. Participants were evaluated for clinical features, cognitive function, and serum trace elements levels. Proton magnetic resonance spectroscopy (1H-MRS) was employed to quantify neurometabolites levels, including N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr). RESULTS Patients with LOD experienced more episodes and severe depressive symptoms than those with EOD (p = 0.025, p < 0.001). EOD patients performed significantly worse than LOD patients on social cognition (p = 0.005), while LOD patients performed worse than EOD patients on reasoning and problem solving (p = 0.005). Additionally, LOD patients displayed higher ceruloplasmin (Cp) levels compared to EOD patients (p = 0.004), but no difference was found in neurometabolic levels between EOD and LOD. Multiple linear regression indicated a positive correlation between serum Cp levels and AOO of depression (p < 0.001), while bilateral thalamic NAA/Cr showed a negative correlation with AOO (p = 0.012, p = 0.016). CONCLUSIONS Patients with EOD were characterized by social cognition impairments, while patients with LOD were marked by reasoning and problem-solving deficits. Serum Cp levels demonstrated an AOO-related effect and served as a positive predictor for the AOO of depression. Furthermore, a negative correlation has been established between bilateral thalamic NAA/Cr and the AOO of MDD. LIMITATIONS The limited sample size and the challenge in distinguishing whether observed results are attributed to age or AOO effects.
Collapse
Affiliation(s)
- Jiali He
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China; Department of Psychology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yangyu Wu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Dong Huang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianzhao Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaodong Song
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qilin Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Kotepui KU, Mahittikorn A, Wilairatana P, Masangkay FR, Kotepui M. Alteration of ceruloplasmin in patients with malaria: a systematic review and meta-analysis of observational studies. Malar J 2024; 23:353. [PMID: 39574108 PMCID: PMC11580669 DOI: 10.1186/s12936-024-05156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 10/25/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The evidences of oxidative stress-related Plasmodium infection may alter the ceruloplasmin levels were inconsistent. This systematic review and meta-analysis aimed to collate and synthesize literatures on malaria and ceruloplasmin concentrations. METHODS The systematic review has been registered with PROSPERO (CRD42023454859). Six electronic databases were systematically searched for investigated ceruloplasmin levels in malaria: ProQuest, EMBASE, MEDLINE, Ovid, PubMed, and Scopus, from their inception to August 2023. The quality of the included studies was assessed using the Joanna Briggs Institute (JBI) critical appraisal tools for cross-sectional, cohort, and case-control studies. Qualitative synthesis was undertaken to summarize findings from the included studies. For quantitative synthesis, a meta-analysis was performed using random-effects models. RESULTS A total of 411 articles were retrieved, and nine studies were included in the review. The majority of included studies found significantly increased ceruloplasmin levels in malaria patients compared to uninfected controls. The meta-analysis showed a significant increase of ceruloplasmin in patients with malaria as compared to uninfected controls (P < 0.01, Hedge's g 1.18, 95% CI 0.90-1.47, I2 59.19%, eight studies). CONCLUSION The systematic review and meta-analysis consistently revealed a significant rise in ceruloplasmin levels among malaria patients. Further research is essential to understand the variations in ceruloplasmin levels between different Plasmodium species and the severity of malaria in patients.
Collapse
Affiliation(s)
- Kwuntida Uthaisar Kotepui
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | | | - Manas Kotepui
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand.
| |
Collapse
|
3
|
Lee EY, Kim J, Prado-Rico JM, Du G, Lewis MM, Kong L, Yanosky JD, Eslinger P, Kim BG, Hong YS, Mailman RB, Huang X. Effects of mixed metal exposures on MRI diffusion features in the medial temporal lobe. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.07.18.23292828. [PMID: 37503124 PMCID: PMC10371112 DOI: 10.1101/2023.07.18.23292828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Environmental exposure to metal mixtures is common and may be associated with increased risk for neurodegenerative disorders including Alzheimer's disease. Objective This study examined associations of mixed metal exposures with medial temporal lobe (MTL) MRI structural metrics and neuropsychological performance. Methods Metal exposure history, whole blood metal, and neuropsychological tests were obtained from subjects with/without a history of mixed metal exposure from welding fumes (42 exposed subjects; 31 controls). MTL structures (hippocampus, entorhinal and parahippocampal cortices) were assessed by morphologic (volume, cortical thickness) and diffusion tensor imaging [mean (MD), axial (AD), radial diffusivity (RD), and fractional anisotropy (FA)] metrics. In exposed subjects, correlation, multiple linear, Bayesian kernel machine regression, and mediation analyses were employed to examine effects of single- or mixed-metal predictor(s) and their interactions on MTL structural and neuropsychological metrics; and on the path from metal exposure to neuropsychological consequences. Results Compared to controls, exposed subjects had higher blood Cu, Fe, K, Mn, Pb, Se, and Zn levels (p's<0.026) and poorer performance in processing/psychomotor speed, executive, and visuospatial domains (p's<0.046). Exposed subjects displayed higher MD, AD, and RD in all MTL ROIs (p's<0.040) and lower FA in entorhinal and parahippocampal cortices (p's<0.033), but not morphological differences. Long-term mixed-metal exposure history indirectly predicted lower processing speed performance via lower parahippocampal FA (p=0.023). Higher whole blood Mn and Cu predicted higher entorhinal diffusivity (p's<0.043) and lower Delayed Story Recall performance (p=0.007) without overall metal mixture or interaction effects. Discussion Mixed metal exposure predicted MTL structural and neuropsychological features that are similar to Alzheimer's disease at-risk populations. These data warrant follow-up as they may illuminate the path for environmental exposure to Alzheimer's disease-related health outcomes.
Collapse
Affiliation(s)
- Eun-Young Lee
- Department of Health Care and Science, Dong-A University, Busan, South-Korea
| | - Juhee Kim
- Department of Health Care and Science, Dong-A University, Busan, South-Korea
| | - Janina Manzieri Prado-Rico
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
| | - Guangwei Du
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
| | - Mechelle M. Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
| | - Lan Kong
- Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
| | - Jeff D. Yanosky
- Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
| | - Paul Eslinger
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
| | - Byoung-Gwon Kim
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Richard B. Mailman
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
- Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
- Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
- Department of Kinesiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033, USA
| |
Collapse
|
4
|
Chen S, Huang W, Xu Q, He T, Zhang M, Xu H. The impact of serum copper on the risk of epilepsy: a mendelian randomization study. ACTA EPILEPTOLOGICA 2023; 5:15. [PMID: 40217511 PMCID: PMC11960368 DOI: 10.1186/s42494-023-00126-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The relationship between serum copper and epilepsy has been elucidated in observational studies. In this study, we aimed to explore the causal relationship between serum copper and epilepsy using Mendelian randomization (MR) analysis. METHODS Single nucleotide polymorphisms (SNPs) associated with serum copper were used as instrumental variables for MR analysis to evaluate their causal effects on epilepsy. The main MR results were obtained by using the inverse variance weighting (IVW) method, supplemented by weighted median and MR-Egger regression. In addition, sensitivity analyses such as Cochran's Q test and pleiotropy test were used to assess these SNPs on epilepsy in terms of horizontal pleiotropy and heterogeneity. RESULTS The IVW method revealed that the serum copper was associated with an increased risk of generalized epilepsy (OR= 1.07; 95% CI 1.01- 1.14; P = 0.032), and the sensitivity analysis further supports the robustness of the results. CONCLUSIONS The current study reveals a possible causal role for serum copper in increasing the risk of generalized epilepsy, which provide guidance for identifying potential risk factors for epilepsy.
Collapse
Affiliation(s)
- Shihao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qi Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tao He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mulan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Gaun S, Ali SA, Singh P, Patwa J, Flora SJS, Datusalia AK. Melatonin ameliorates chronic copper-induced lung injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24949-24962. [PMID: 35359208 PMCID: PMC8970640 DOI: 10.1007/s11356-022-19930-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/23/2022] [Indexed: 05/08/2023]
Abstract
Copper (Cu) is an important trace element required for several biological processes. The use of copper is increasing gradually in several applications. Previous studies suggest that excess levels of copper are attributed to induce oxidative stress and inflammation, mediating tissue damage. Inline, melatonin the hormone of darkness has been reported to exhibit various therapeutic effects including strong free radical scavenging properties and anti-inflammatory effects. However, its effects against pulmonary injury promoted by copper are not explored and remain unclear so far. Therefore, the present study was aimed to investigate the protective effect of melatonin against copper-induced lung damage. Female Sprague Dawley (SD) rats were exposed to 250 ppm of copper in drinking water for 16 weeks and treated with melatonin (i.p.) 5 and 10 mg/kg from the week (13-16th). The extent of tissue damage was assessed by tissue oxidative stress parameters, metal estimation and histological analysis. Copper-challenged rats showed altered oxidative stress variables. In addition, metal analysis revealed increased copper accumulation in the lungs and histological staining results further indicated severe tissue injury and inflammatory cell infiltration in copper-exposed rats. To this side, treatment with melatonin showed antioxidant and anti-inflammatory activities evidenced by reduced oxidative stress, tissue inflammation and collagen deposition as compared to copper-exposed animals. Moreover, spectral findings suggested melatonin treatment modulated the frequency sift, as compared to copper-challenged animals. Altogether, the present results suggest that melatonin might play a potential role in preventing copper-induced lung aberrations via inhibiting the ROS-mediated oxidative stress and inflammation.
Collapse
Affiliation(s)
- Sachin Gaun
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit campus, Lucknow, U.P., 226002, India
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit campus, Lucknow, U.P., 226002, India
| | - Pooja Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit campus, Lucknow, U.P., 226002, India
| | - Jayant Patwa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit campus, Lucknow, U.P., 226002, India
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit campus, Lucknow, U.P., 226002, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit campus, Lucknow, U.P., 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit campus, Lucknow, U.P., 226002, India.
| |
Collapse
|
6
|
Li K, Li A, Mei Y, Zhao J, Zhou Q, Li Y, Yang M, Xu Q. Trace elements and Alzheimer dementia in population-based studies: A bibliometric and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120782. [PMID: 36464120 DOI: 10.1016/j.envpol.2022.120782] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Alterations in the concentrations of trace elements may play a vital role in Alzheimer dementia progression. However, previous research results are inconsistent, and there is still a lack of review on the relationship between all the studied-trace elements and AD from various perspectives of population-based studies. In this study, we systematically reviewed previous population-based studies and identified the altered trace elements in AD patients. We searched the Web of Science Core Collection, PubMed, and Scopus database, and ultimately included 73 articles. A bibliometric analysis was conducted to explore the evolution of the field from an epidemiological perspective. Bibliometric data such as trace elements, biological materials, detection methods, cognitive tests, co-occurrence and co-citation statistics are all analyzed and presented in a quantitative manner. The 73 included studies analyzed 39 trace elements in total. In a further meta-analysis, standardized mean differences (SMDs) of 13 elements were calculated to evaluate their altered in AD patients, including copper, iron, zinc, selenium, manganese, lead, aluminum, cadmium, chromium, arsenic, mercury, cobalt, and manganese. We identified four trace elements-copper (serum), iron (plasma), zinc (hair), and selenium (plasma)-altered in AD patients, with SMDs of 0.37 (95% confidence interval [CI]: 0.10, 0.65), -0.68 (95% CI: -1.34, -0.02), -0.35 (95% CI: -0.62, -0.08), and -0.61 (95% CI: -0.97, -0.25), respectively. Finally, we formed a database of various trace element levels in AD patients and healthy controls. Our study can help future researchers gain a comprehensive understanding of the advancements in the field, and our results provide comprehensive population-based data for future research.
Collapse
Affiliation(s)
- Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
7
|
Zhao D, Huang Y, Wang B, Chen H, Pan W, Yang M, Xia Z, Zhang R, Yuan C. Dietary Intake Levels of Iron, Copper, Zinc, and Manganese in Relation to Cognitive Function: A Cross-Sectional Study. Nutrients 2023; 15:nu15030704. [PMID: 36771411 PMCID: PMC9921562 DOI: 10.3390/nu15030704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Background: Previous studies have related circulating levels of trace metal elements, of which dietary intake is the major source, to cognitive outcomes. However, there are still relatively few studies evaluating the associations of dietary intake levels of iron, copper, zinc, and manganese with cognitive function (CF). Methods: We leveraged the data of 6863 participants (mean [standard deviation] age = 66.7 [10.5] years) in the Health and Retirement Study (2013/2014). Dietary intake levels of iron, copper, zinc, and manganese were calculated from a semi-quantitative food frequency questionnaire. CF was assessed using the 27-point modified Telephone Interview for Cognitive Status (TICS). We used linear regression models to calculate the mean differences in global CF scores by quintiles of dietary intake levels of trace metal elements. Results: Among the study participants, the mean (SD) values of daily dietary intake were 13.3 (6.3) mg for iron, 1.4 (0.7) mg for copper, 10.7 (4.6) mg for zinc, and 3.3 (1.6) mg for manganese. Compared with the lowest quintile of dietary iron intake (<8.1 mg), the highest quintile (≥17.7 mg) was associated with a lower cognitive score (-0.50, -0.94 to -0.06, P-trend = 0.007). Higher dietary copper was significantly associated with poorer CF (P-trend = 0.002), and the mean difference in cognitive score between extreme quintiles (≥1.8 vs. <0.8 mg) was -0.52 (95% confidence interval: -0.94 to -0.10) points. We did not observe significant associations for dietary intake of zinc (P-trend = 0.785) and manganese (P-trend = 0.368). Conclusion: In this cross-sectional study, higher dietary intake of iron and copper was related to worse CF, but zinc and manganese intake levels were not significantly associated with CF.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yilun Huang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310051, China
| | - Binghan Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Hui Chen
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Wenfei Pan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Min Yang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Zhidan Xia
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Correspondence: (R.Z.); (C.Y.)
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
- Correspondence: (R.Z.); (C.Y.)
| |
Collapse
|
8
|
Abeare K, Cutler L, An KY, Razvi P, Holcomb M, Erdodi LA. BNT-15: Revised Performance Validity Cutoffs and Proposed Clinical Classification Ranges. Cogn Behav Neurol 2022; 35:155-168. [PMID: 35507449 DOI: 10.1097/wnn.0000000000000304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Abbreviated neurocognitive tests offer a practical alternative to full-length versions but often lack clear interpretive guidelines, thereby limiting their clinical utility. OBJECTIVE To replicate validity cutoffs for the Boston Naming Test-Short Form (BNT-15) and to introduce a clinical classification system for the BNT-15 as a measure of object-naming skills. METHOD We collected data from 43 university students and 46 clinical patients. Classification accuracy was computed against psychometrically defined criterion groups. Clinical classification ranges were developed using a z -score transformation. RESULTS Previously suggested validity cutoffs (≤11 and ≤12) produced comparable classification accuracy among the university students. However, a more conservative cutoff (≤10) was needed with the clinical patients to contain the false-positive rate (0.20-0.38 sensitivity at 0.92-0.96 specificity). As a measure of cognitive ability, a perfect BNT-15 score suggests above average performance; ≤11 suggests clinically significant deficits. Demographically adjusted prorated BNT-15 T-scores correlated strongly (0.86) with the newly developed z -scores. CONCLUSION Given its brevity (<5 minutes), ease of administration and scoring, the BNT-15 can function as a useful and cost-effective screening measure for both object-naming/English proficiency and performance validity. The proposed clinical classification ranges provide useful guidelines for practitioners.
Collapse
Affiliation(s)
| | | | - Kelly Y An
- Private Practice, London, Ontario, Canada
| | - Parveen Razvi
- Faculty of Nursing, University of Windsor, Windsor, Ontario, Canada
| | | | | |
Collapse
|
9
|
Wei J, Gianattasio KZ, Bennett EE, Stewart JD, Xu X, Park ES, Smith RL, Ying Q, Whitsel EA, Power MC. The Associations of Dietary Copper With Cognitive Outcomes. Am J Epidemiol 2022; 191:1202-1211. [PMID: 35238336 PMCID: PMC9890213 DOI: 10.1093/aje/kwac040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Dietary copper intake may be associated with cognitive decline and dementia. We used data from 10,269 participants of the Atherosclerosis Risks in Communities Study to study the associations of dietary copper intake with 20-year cognitive decline and incident dementia. Dietary copper intake from food and supplements was quantified using food frequency questionnaires. Cognition was assessed using 3 cognitive tests at study visits; dementia was ascertained at study visits and via surveillance. Multiple imputation by chained equations was applied to account for the missing information of cognitive function during follow-up. Survival analysis with parametric models and mixed-effect models were used to estimate the associations for incident dementia and cognitive decline, respectively. During 20 years of follow-up (1996-1998 to 2016-2017), 1,862 incident cases of dementia occurred. Higher intake of dietary copper from food was associated with higher risk of incident dementia among those with high intake of saturated fat (hazard ratio = 1.49, 95% confidence interval: 1.04, 1.95). Higher intake of dietary copper from food was associated with greater decline in language overall (beta = -0.12, 95% confidence interval: -0.23, -0.02). Therefore, a diet high in copper, particularly when combined with a diet high in saturated fat, may increase the risk of cognitive impairment.
Collapse
Affiliation(s)
- Jingkai Wei
- Correspondence to Dr. Jingkai Wei, Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208 (e-mail: )
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Feng L, Li J, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: Diagnosis and prognosis. Ageing Res Rev 2021; 72:101492. [PMID: 34673262 DOI: 10.1016/j.arr.2021.101492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), which mainly occurs in the elderly, is a neurodegenerative disease with a hidden onset, which leads to progressive cognitive and behavioral changes. The annually increasing prevalence rate and number of patients with AD exert great pressure on the society. No effective disease-modifying drug treatments are available; thus, there is no cure yet. The disease progression can only be delayed through early detection and drug assistance. Therefore, the importance of exploring associated biomarkers for the early diagnosis and prediction of the disease progress is highlighted. The National Institute on Aging- Alzheimer's Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, t-tau in cerebrospinal fluid (CSF), and positron emission tomography (PET). However, the invasiveness of lumbar puncture for CSF assessment and non-popularity of PET have prompted researchers to look for minimally invasive, easy to collect, and cost-effective biomarkers. Therefore, studies have largely focused on some novel molecules in the peripheral blood. This is an emerging research field, facing many obstacles and challenges while achieving some promising results.
Collapse
|
11
|
Silpcharu K, Soonthonhut S, Sukwattanasinitt M, Rashatasakhon P. Fluorescent Sensor for Copper(II) and Cyanide Ions via the Complexation-Decomplexation Mechanism with Di(bissulfonamido)spirobifluorene. ACS OMEGA 2021; 6:16696-16703. [PMID: 34235342 PMCID: PMC8246698 DOI: 10.1021/acsomega.1c02744] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 05/27/2023]
Abstract
A novel spirobifluorene derivative bearing two bissulfonamido groups is successfully synthesized by Sonogashira coupling. This compound exhibits a strong fluorescence quenching by Cu(II) ion in a 50% mixture between acetonitrile and 20 mM pH 7.0 N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) buffer with a detection limit of 98.2 nM. However, this sensor also shows ratiometric signal shifts from blue to yellow in the presence of Zn(II), Pb(II), and Hg(II) ions. The static quenching mechanism is verified by the signal reversibility using ethylenediaminetetraacetic acid (EDTA) and the Stern-Volmer plots at varying temperatures. The Cu(II)-spirobifluorene complex shows a highly selective fluorescence enhancement upon the addition of CN- ion with the detection limit of 390 nM. The application of this complex for quantitative analysis of spiked CN- ion in real water samples resulted in good recoveries.
Collapse
Affiliation(s)
- Komthep Silpcharu
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Siraporn Soonthonhut
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Mongkol Sukwattanasinitt
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paitoon Rashatasakhon
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Squitti R, Ventriglia M, Simonelli I, Bonvicini C, Costa A, Perini G, Binetti G, Benussi L, Ghidoni R, Koch G, Borroni B, Albanese A, Sensi SL, Rongioletti M. Copper Imbalance in Alzheimer's Disease: Meta-Analysis of Serum, Plasma, and Brain Specimens, and Replication Study Evaluating ATP7B Gene Variants. Biomolecules 2021; 11:960. [PMID: 34209820 PMCID: PMC8301962 DOI: 10.3390/biom11070960] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Evidence indicates that patients with Alzheimer's dementia (AD) show signs of copper (Cu) dyshomeostasis. This study aimed at evaluating the potential of Cu dysregulation as an AD susceptibility factor. We performed a meta-analysis of 56 studies investigating Cu biomarkers in brain specimens (pooled total of 182 AD and 166 healthy controls, HC) and in serum/plasma (pooled total of 2929 AD and 3547 HC). We also completed a replication study of serum Cu biomarkers in 97 AD patients and 70 HC screened for rs732774 and rs1061472 ATP7B, the gene encoding for the Cu transporter ATPase7B. Our meta-analysis showed decreased Cu in AD brain specimens, increased Cu and nonbound ceruloplasmin (Non-Cp) Cu in serum/plasma samples, and unchanged ceruloplasmin. Serum/plasma Cu excess was associated with a three to fourfold increase in the risk of having AD. Our replication study confirmed meta-analysis results and showed that carriers of the ATP7B AG haplotype were significantly more frequent in the AD group. Overall, our study shows that AD patients fail to maintain a Cu metabolic balance and reveals the presence of a percentage of AD patients carrying ATP7B AG haplotype and presenting Non-Cp Cu excess, which suggest that a subset of AD subjects is prone to Cu imbalance. This AD subtype can be the target of precision medicine-based strategies tackling Cu dysregulation.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy; (M.V.); (I.S.)
| | - Ilaria Simonelli
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy; (M.V.); (I.S.)
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Alfredo Costa
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.C.); (G.P.)
- Department of Brain and Behavior, University of Pavia, 27100 Pavia, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.C.); (G.P.)
- Department of Brain and Behavior, University of Pavia, 27100 Pavia, Italy
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Giacomo Koch
- Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy;
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Alberto Albanese
- Department of Neurology, IRCCS, Istituto Clinico Humanitas, Rozzano, 20089 Milan, Italy;
| | - Stefano L. Sensi
- Department of Neuroscience, Imaging and Clinical Science, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Mind Impairments and Neurological Disorders—iMIND, University of California—Irvine, Irvine, CA 92697, USA
- Molecular Neurology Units, Center for Advanced Studies and Technology (CAST), University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| |
Collapse
|
13
|
Lv J, Zhang C, Wang S, Li M, Guo W. MOF-derived porous ZnO-Co 3O 4 nanocages as peroxidase mimics for colorimetric detection of copper(ii) ions in serum. Analyst 2020; 146:605-611. [PMID: 33180062 DOI: 10.1039/d0an01383h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sensitive detection of copper ions (Cu2+) in biological samples is extremely important since an abnormal level of Cu2+ is linked with many diseases. Herein, we demonstrated a novel turn-on colorimetric sensor for selective detection of Cu2+ both in buffered solution and serum samples based on porous bimetallic transition metal oxide nanocages (ZnO-Co3O4 NCs) as peroxidase mimics. The ZnO-Co3O4 NCs were prepared by using ZnCo-zeolitic-imidazolate-framework (ZnCo-ZIF) as precursors via direct calcination. With the high peroxidase-like activity, the obtained ZnO-Co3O4 NCs can catalyze the oxidation of tetramethylbenzidine (TMB) in the presence of H2O2 to form a blue colored product. The inhibition effect of cysteine (Cys) on the catalytic activity of ZnO-Co3O4 NCs and its strong binding ability toward Cu2+ enabled the ZnO-Co3O4 NCs/Cys system to be utilized for sensitive detection of Cu2+, in which the catalytic activity of ZnO-Co3O4 NCs/Cys can be recovered by the introduction of Cu2+ with an obvious color change of the solution. The linear range for Cu2+ determination was 2 to 100 nM with a detection limit of 1.08 nM. More importantly, this colorimetric sensor has been successfully applied to detect Cu2+ in serum without pretreatment. Our findings are expected to expand the scope of application of nanozyme and shed light on early disease diagnosis.
Collapse
Affiliation(s)
- Jie Lv
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China.
| | | | | | | | | |
Collapse
|
14
|
Song Z, Xu Y, Zhang L, Zhou L, Zhang Y, Han Y, Li X, Yu P, Qu Y, Zhao W, Qin C. Comprehensive Proteomic Profiling of Urinary Exosomes and Identification of Potential Non-invasive Early Biomarkers of Alzheimer's Disease in 5XFAD Mouse Model. Front Genet 2020; 11:565479. [PMID: 33250918 PMCID: PMC7674956 DOI: 10.3389/fgene.2020.565479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Background Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by irreversible progressive cognitive deficits. Identification of candidate biomarkers, before amyloid-β-plaque deposition occurs, is therefore of great importance for early intervention of AD. Objective To investigate the potential non-invasive early biomarkers of AD in 5XFAD mouse model, we investigate the proteome of urinary exosomes present in 1-month-old (before amyloid-β accumulation) 5XFAD mouse models and their littermate controls. Another two groups of 2 and 6 months-old urinary samples were collected for monitoring the dynamic change of target proteins during AD progression. Methods Proteomic, bioinformatics analysis, multiple reaction monitoring (MRM), western blotting (WB) or ELISA were performed for analyzing these urinary exosomes. Results A total of 316 proteins including 44 brain cell markers were identified using liquid chromatography tandem mass spectrometry. Importantly, 18 proteins were unique to the 5XFAD group. Eighty-eight proteins including 11 brain cell markers were differentially expressed. Twenty-two proteins were selected to be verified by WB. Furthermore, based on an independent set of 12 urinary exosomes samples, five in these proteins were further confirmed significant difference. Notably, Annexin 2 and Clusterin displayed significant decreased in AD model during the course detected by ELISA. AOAH, Clusterin, and Ly86 are also brain cell markers that were first reported differential expression in urinary exosomes of AD model. Conclusion Our data demonstrated that some urinary exosome proteins, especially Annexin 2 and Clusterin, as nanometer-sized particles, enable detection of differences before amyloid-β-plaque deposition in 5XFAD mouse model, which may present an ideal non-invasive source of biomarkers for prevention of AD.
Collapse
Affiliation(s)
- Zhiqi Song
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yanfeng Xu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Li Zhou
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yu Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunlin Han
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xianglei Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Pin Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yajin Qu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wenjie Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Patwa J, Flora SJS. MiADMSA abrogates chronic copper-induced hepatic and immunological changes in Sprague Dawley rats. Food Chem Toxicol 2020; 145:111692. [PMID: 32871191 DOI: 10.1016/j.fct.2020.111692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Wilson disease (WD) is an autosomal-recessive disorder associated with the impaired copper metabolism, resulting in hepatic and neurologic manifestations. D-Pencillamine (DPA) is a first-line of treatment however, monoisoamyl 2, 3-dimercaptosuccinic acid (MiADMSA), is gaining recognition recently as a future chelating agent of choice. We evaluated the effects of MiADMSA against copper-induced (20 mg/kg, orally, once, daily for 16 weeks) hepatic and immunological changes in the male Sprague Dawley (SD) rats. Copper overload increased the levels of pro-oxidant and concurrently decreased the levels of antioxidant enzymes in the liver. Increased oxidative stress triggered the up-regulation of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in the liver and down-regulated the anti-inflammatory cytokine IL-4. Altered liver function parameters as well as serum immunoglobulins' (IgG, IgA, IgE, and IgM) levels, were also noted. MiADMSA treatment restored most of copper altered biochemical and immunological changes. Further, the histopathological changes proved that MiADMSA treatment ameliorated copper induced hepatic injury. Infra red spectra of liver tissue indicated shift in the characteristic -OH peak during copper exposure while the shifting came to normal in MiADMSA administered rat liver. We conclude that MiADMSA could be a promising antidote for the chronic copper toxicity and possibly in the clinical management of WD.
Collapse
Affiliation(s)
- Jayant Patwa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, Uttar Pradesh, 226002, India
| | - S J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, Uttar Pradesh, 226002, India; National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
16
|
Li S, Sun W, Zhang D. Association of Zinc, Iron, Copper, and Selenium Intakes with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). J Alzheimers Dis 2019; 72:1145-1157. [DOI: 10.3233/jad-190263] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Suyun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Wenjun Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
17
|
Zhang F, Wei J, Li X, Ma C, Gao Y. Early Candidate Urine Biomarkers for Detecting Alzheimer’s Disease Before Amyloid-β Plaque Deposition in an APP (swe)/PSEN1dE9 Transgenic Mouse Model. J Alzheimers Dis 2018; 66:613-637. [DOI: 10.3233/jad-180412] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fanshuang Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Xundou Li
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Neuroscience Center; Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
18
|
Shen L, Liao L, Chen C, Guo Y, Song D, Wang Y, Chen Y, Zhang K, Ying M, Li S, Liu Q, Ni J. Proteomics Analysis of Blood Serums from Alzheimer's Disease Patients Using iTRAQ Labeling Technology. J Alzheimers Dis 2018; 56:361-378. [PMID: 27911324 DOI: 10.3233/jad-160913] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer' disease (AD) is the most common form of dementia affecting up to 6% of the population over the age of 65. In order to discover differentially expressed proteins that might serve as potential biomarkers, the serums from AD patients and healthy controls were compared and analyzed using the proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ). For the first time, AD biomarkers in serums are investigated in the Han Chinese population using iTRAQ labeled proteomics strategy. Twenty-two differentially expressed proteins were identified and out of which nine proteins were further validated with more sample test. Another three proteins that have been reported in the literature to be potentially associated with AD were also investigated for alteration in expression level. Functions of those proteins were mainly related to the following processes: amyloid-β (Aβ) metabolism, cholesterol transport, complement and coagulation cascades, immune response, inflammation, hemostasis, hyaluronan metabolism, and oxidative stress. These results support current views on the molecular mechanism of AD. For the first time, differential expression of zinc-alpha-2-glycoprotein (AZGP1), fibulin-1 (FBLN1), platelet basic protein (PPBP), thrombospondin-1 (THBS1), S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9) were detected in the serums of AD patients compared with healthy controls. These proteins might play a role in AD pathophysiology and serve as potential biomarkers for AD diagnosis. Specifically, our results strengthened the crucial role of Aβ metabolism and blood coagulation in AD pathogenesis and proteins related to these two processes may be used as peripheral blood biomarkers for AD.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Liping Liao
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Cheng Chen
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, P.R. China
| | - Dalin Song
- Department of Geriatrics, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Youjiao Chen
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Ming Ying
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Shuiming Li
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, P.R. China
| | - Qiong Liu
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Jiazuan Ni
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
19
|
Lower levels of serum copper in patients with Alzheimer's dementia: A controlled study from India. Asian J Psychiatr 2018; 32:73-74. [PMID: 29220779 DOI: 10.1016/j.ajp.2017.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 11/22/2022]
|
20
|
Metallomics Applied to the Study of Neurodegenerative and Mental Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:21-37. [PMID: 29884960 DOI: 10.1007/978-3-319-90143-5_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biochemical imbalances, provoked by aging or a secondary illness, might directly affect the brain, causing severe problems, such as loss of memory or alteration of behavior patterns. Brain disorders are usually classified as injuries (such as stroke, hematomas, and concussions), tumors, and neurodegenerative (such as Parkinson's and Alzheimer's diseases) and mental (such as depression, bipolar disorder, schizophrenia) diseases. As the pathophysiology of these illnesses is not completely established and multiple factors are involved, metallomics, a bioanalytical strategy that allows the detection of metal ions and metalloproteins in diverse biological matrices, is of extreme relevance in identifying which elements are affected by a disease and/or treatment. Thus, determining which element ions suffer disturbances in their homeostasis during the disease progress is relevant to understand the biochemical changes and propose new drug targets. In addition, it is well known that oxidative stress plays an important role in the development of pathological neurodegenerative and mental diseases, which may be caused by metal ion dyshomeostasis, so it is also important to understand endogenous antioxidant metalloprotein and metalloenzyme mechanisms in this regard. In this context, recent applications of metallomics in the study of neurodegenerative and mental disorders are discussed in this chapter, as well as future trends in this research area.
Collapse
|
21
|
Narayanan IG, Natarajan SK. Peptides derived from histidine and methionine-rich regions of copper transporter 1 exhibit anti-angiogenic property by chelating extracellular Cu. Chem Biol Drug Des 2017; 91:797-804. [DOI: 10.1111/cbdd.13145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Iyer Gomathy Narayanan
- Department of Biochemistry and Cell Biology; Vision Research Foundation; Chennai India
- Birla Institute of Technology & Science; Pilani India
| | | |
Collapse
|
22
|
Dayon L, Wojcik J, Núñez Galindo A, Corthésy J, Cominetti O, Oikonomidi A, Henry H, Migliavacca E, Bowman GL, Popp J. Plasma Proteomic Profiles of Cerebrospinal Fluid-Defined Alzheimer’s Disease Pathology in Older Adults. J Alzheimers Dis 2017; 60:1641-1652. [DOI: 10.3233/jad-170426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Loïc Dayon
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | | | - John Corthésy
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | | | - Hugues Henry
- CHUV, Department of Laboratories, Lausanne, Switzerland
| | | | - Gene L. Bowman
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Julius Popp
- CHUV, Old Age Psychiatry, Department of Psychiatry, Lausanne, Switzerland
| |
Collapse
|
23
|
Li DD, Zhang W, Wang ZY, Zhao P. Serum Copper, Zinc, and Iron Levels in Patients with Alzheimer's Disease: A Meta-Analysis of Case-Control Studies. Front Aging Neurosci 2017; 9:300. [PMID: 28966592 PMCID: PMC5605551 DOI: 10.3389/fnagi.2017.00300] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Many publications have investigated the association between metal ions and the risk of Alzheimer's disease (AD), but the results were ambiguous. Aims: The objective of this study was to assess the association between the serum levels of metals (copper/zinc/iron) and the risk of AD via meta-analysis of case-control studies. Methods: We screened literatures published after 1978 in the Pubmed, Embase, Cochrane library, Web of Science and ClinicalTrials.gov. Electronic databases. By using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we performed a systematic review of the 407 publications, there are 44 of these publications met all inclusion criteria. The Review Manager 5.3 software was used to calculate available data from each study. Results: Consistent with the conclusions of other meta-analysis, our results demonstrated serum copper levels were significantly higher [MD = 9.27, 95% CI (5.02–13.52); p < 0.0001], and the serum zinc levels were significantly lower in AD patients than in healthy controls [MD = −6.12, 95% CI (−9.55, −2.69); p = 0.0005]. Serum iron levels were significantly lower in AD patients than in healthy controls after excluded two studies [MD = −13.01, 95% CI (−20.75, −5.27); p = 0.001]. Conclusion: The results of our meta-analysis provided rigorous statistical support for the association of the serum levels of metals and the risk of AD, suggesting a positive relationship between the serum copper levels and AD risk, and a negative relationship between the serum zinc/iron levels and AD risk.
Collapse
Affiliation(s)
- Dan-Dan Li
- College of Life and Health Sciences, Northeastern UniversityShenyang, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Area CommandShenyang, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern UniversityShenyang, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern UniversityShenyang, China
| |
Collapse
|
24
|
Ramachandran A, Prasankumar T, Sivaprakash S, Wiston BR, Biradar S, Jose S. Removal of elevated level of chromium in groundwater by the fabricated PANI/Fe 3O 4 nanocomposites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7490-7498. [PMID: 28111723 DOI: 10.1007/s11356-017-8465-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
In this work, we report the reduction of chromium concentration in the polluted groundwater samples from Madurai Kamaraj University area, India, where the dissolved salts in groundwater are reported as serious health hazards for its inhabitants. The water samples have intolerable amounts of total dissolved solids (TDS) and chromium is a prominent pollutant among them. Chromium reduction was achieved by treating the polluted groundwater with PANI/Fe3O4 nanocomposites synthesized by in situ polymerization method. Further experimentation showed that the nanocomposites exhibit better chromium removal characteristics upon increasing the aniline concentration during the synthesis. We were able to reduce chromium concentration in the samples from 0.295 mg L-1 to a tolerable amount of 0.144 mg L-1. This work is expected to open doors for chromium-free groundwater in various regions of India, when improved to an industrial scale.
Collapse
Affiliation(s)
| | - T Prasankumar
- School of Physics, Madurai Kamaraj University, Madurai, 625021, India
| | - S Sivaprakash
- School of Physics, Madurai Kamaraj University, Madurai, 625021, India
| | - Biny R Wiston
- School of Physics, Madurai Kamaraj University, Madurai, 625021, India
| | - Santhosh Biradar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main, Houston, TX, 77005, USA
| | - Sujin Jose
- School of Physics, Madurai Kamaraj University, Madurai, 625021, India.
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main, Houston, TX, 77005, USA.
| |
Collapse
|
25
|
Siotto M, Simonelli I, Pasqualetti P, Mariani S, Caprara D, Bucossi S, Ventriglia M, Molinario R, Antenucci M, Rongioletti M, Rossini PM, Squitti R. Association Between Serum Ceruloplasmin Specific Activity and Risk of Alzheimer's Disease. J Alzheimers Dis 2016; 50:1181-9. [PMID: 26836154 DOI: 10.3233/jad-150611] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Meta-analyses demonstrate copper involvement in Alzheimer's disease (AD), and the systemic ceruloplasmin status in relation to copper is an emerging issue. To deepen this matter, we evaluated levels of ceruloplasmin concentration, ceruloplasmin activity, ceruloplasmin specific activity (eCp/iCp), copper, non-ceruloplasmin copper iron, transferrin, the ceruloplasmin/transferrin ratio, and the APOE genotype in a sample of 84 AD patients and 58 healthy volunteers. From the univariate logistic analyses we found that ceruloplasmin concentration, eCp/iCp, copper, transferrin, the ceruloplasmin/transferrin ratio, and the APOE genotype were significantly associated with the probability of AD. In the multivariable logistic regression analysis, we selected the best subset of biological predictors by the forward stepwise procedure. The analysis showed a decrease of the risk of having AD for eCp/iCp (p = 0.001) and an increase of this risk for non-ceruloplasmin copper (p = 0.008), age (p = 0.001), and APOE-ɛ4 allele (p < 0.001). The estimated model showed a good power in discriminating AD patients from healthy controls (area under curve: 88% ; sensitivity: 66% ; specificity 93%). These data strength the breakdown of copper homeostasis and propose eCp/iCp as a reliable marker of ceruloplasmin status.
Collapse
Affiliation(s)
| | - Ilaria Simonelli
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Patrizio Pasqualetti
- Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Stefania Mariani
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Deborah Caprara
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Serena Bucossi
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy.,Istituto di Scienze e Tecnologie della Cognizione (ISTC) - CNR, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Rossana Molinario
- Department of Diagnostic and Laboratory Medicine, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - Mirca Antenucci
- Department of Diagnostic and Laboratory Medicine, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - Mauro Rongioletti
- Molecular Biology Unit, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.,Laboratory of Neurodegeneration, IRCSS "San Raffaele Pisana", Rome, Italy
| | - Rosanna Squitti
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy.,Istituto di Scienze e Tecnologie della Cognizione (ISTC) - CNR, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| |
Collapse
|
26
|
Wang ZX, Tan L, Wang HF, Ma J, Liu J, Tan MS, Sun JH, Zhu XC, Jiang T, Yu JT. Serum Iron, Zinc, and Copper Levels in Patients with Alzheimer's Disease: A Replication Study and Meta-Analyses. J Alzheimers Dis 2016; 47:565-81. [PMID: 26401693 DOI: 10.3233/jad-143108] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To evaluate whether iron, zinc, and copper levels in serum are disarranged in Alzheimer's disease (AD), we performed meta-analyses of all studies on the topic published from 1984 to 2014 and contextually carried out a replication study in serum as well. Our meta-analysis results showed that serum zinc was significantly lower in AD patients. Our replication and meta-analysis results showed that serum copper was significantly higher in AD patients than in healthy controls, so our findings were consistent with the conclusions of four previously published copper meta-analyses. Even if a possible role of iron in the pathophysiology of the disease could not be ruled out, the results of our meta-analysis showed no change of serum iron levels in AD patients, but this conclusion was not robust and requires further investigation. The meta-regression analyses revealed that in some studies, differences in serum iron levels could be due to the different mean ages, while differences in zinc levels appeared to be due to the different sex ratios. However, the effect of sex ratio on serum zinc levels in our meta-analysis is subtle and needs further confirmation. Also, diverse demographic terms and methodological approaches appeared not to explain the high heterogeneity of our copper meta-analysis. Therefore, when investigating trace elements, covariants such as age and sex have to be taken into account in the analyses. In the light of these findings, we suggest that the possible alteration of serum zinc and copper levels are involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China.,Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Ma
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | | | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Jia-Hao Sun
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Xi-Chen Zhu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China.,Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China.,Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| |
Collapse
|
27
|
Giacomelli C, Trincavelli ML, Satriano C, Hansson Ö, La Mendola D, Rizzarelli E, Martini C. ♦Copper (II) ions modulate Angiogenin activity in human endothelial cells. Int J Biochem Cell Biol 2015; 60:185-96. [DOI: 10.1016/j.biocel.2015.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/27/2014] [Accepted: 01/07/2015] [Indexed: 12/30/2022]
|
28
|
Pfaender S, Grabrucker AM. Characterization of biometal profiles in neurological disorders. Metallomics 2014; 6:960-77. [DOI: 10.1039/c4mt00008k] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the findings on dysregulation of metal ions in neurological diseases and tries to develop and predict specific biometal profiles.
Collapse
Affiliation(s)
| | - Andreas M. Grabrucker
- Institute for Anatomy and Cell Biology
- Ulm University
- Ulm, Germany
- WG Molecular Analysis of Synaptopathies
- Neurology Dept
| |
Collapse
|