1
|
Karsten REH, Gier K, de Meijer VE, Huibers WHC, Permentier HP, Verpoorte E, Olinga P. Studying the intracellular bile acid concentration and toxicity in drug-induced cholestasis: Comprehensive LC-MS/MS analysis with human liver slices. Toxicol In Vitro 2025; 104:106011. [PMID: 39855581 DOI: 10.1016/j.tiv.2025.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Drug-induced cholestasis (DIC) is a leading cause of drug-induced liver injury post-drug marketing, characterized by bile flow obstruction and toxic bile constituent accumulation within hepatocytes. This study investigates the toxicity associated with intracellular bile acid (BA) accumulation during DIC development. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, we examined intracellular BA concentrations in human precision-cut liver slices (PCLS) following the administration of cyclosporin A and chlorpromazine, both with and without an established BA mixture. Our findings indicate toxicity of cyclosporin A upon BA addition, while chlorpromazine's toxicity remained unaffected. Although neither drug led to the accumulation of all BAs intracellularly, BA mixture addition resulted in the accumulation of unconjugated BAs associated with DIC, such as deoxycholic acid (DCA) and cholic acid (CA). Additionally, cyclosporin A increased taurolithocholic acid (TLCA) concentrations. In the absence of the BA mixture, a decrease in conjugated BAs was observed, suggesting inhibition of BA metabolism by cholestatic drugs and warranting further investigation. The evident increase in CA and DCA for both drugs (and TLCA for cyclosporin A), despite not exacerbating toxicity with chlorpromazine, suggests these increases may be related to DIC development and possible toxicity. In conclusion, the current human PCLS model is appropriate for investigating and detecting essential contributors to DIC and can be used in future studies elucidating DIC ex vivo.
Collapse
Affiliation(s)
- R E H Karsten
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - K Gier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - V E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - W H C Huibers
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - H P Permentier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - E Verpoorte
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - P Olinga
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Hermeling S, Plagge J, Krautbauer S, Ecker J, Burkhardt R, Liebisch G. Rapid quantification of murine bile acids using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2025; 417:687-696. [PMID: 39621039 PMCID: PMC11772536 DOI: 10.1007/s00216-024-05668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/28/2025]
Abstract
Interest in bile acids (BAs) is growing due to their emerging role as signaling molecules and their association with various diseases such as colon cancer and metabolic syndrome. Analyzing BAs requires chromatographic separation of isomers, often with long run times, which hinders BA analysis in large studies. Here, we present a high-throughput method based on liquid chromatography-tandem mass spectrometry to quantify BAs in mouse samples. After acidic protein precipitation in the presence of a comprehensive mixture of stable isotope-labeled internal standards (SIL-ISs), BAs are separated on a biphenyl column by gradient elution at basic pH. Quantification is performed using a six-point calibration curve. Except for the separation of β- and ω-muricholic acid (MCA) species, a rapid separation of 27 BA species was achieved in a run time of 6.5 min. Plasma quality controls (QCs) were used to evaluate intra- and inter-day precision. The CV was less than 10% for most BA species and exceeded 20% only for glycohyodeoxycholic (GHDCA) and taurohyodeoxycholic acid (THDCA) due to the lack of a corresponding SIL-IS. The limit of quantification (LoQ) was tested using diluted QCs and was found to be compromised for some BA species as a result of insufficient isotopic purity of the SIL-IS, leading to significant interference with the respective analyte. Finally, we tested the mouse sample material requirements for plasma, bile, and liver samples and determined BA concentrations in C57/BL6N wild-type mice. In conclusion, the LC-MS/MS method presented here permits a rapid and reproducible quantification of the major murine BAs.
Collapse
Affiliation(s)
- Sven Hermeling
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University Munich, Munich, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Johannes Plagge
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University Munich, Munich, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Josef Ecker
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University Munich, Munich, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
Yuan M, Wang Y, Wan Y, Li S, Tang J, Liang X, Zeng B, Li M, Wei X, Li X, Guo L, Guo Y. Novel sodium tauroursodeoxycholate-based multifunctional liposomal delivery system for encapsulation of oleanolic acid and combination therapy of type 2 diabetes mellitus. Int J Pharm 2024; 666:124803. [PMID: 39368671 DOI: 10.1016/j.ijpharm.2024.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Liposomes have demonstrated great potential for drug delivery and diabetes treatment. However, hydrolysis by enzymes and emulsification by endogenous bile salts make liposomes unstable in the gastrointestinal tract. In this study, sodium tauroursodeoxycholate (TUDCNa)-based multifunctional bilosomes were designed to address the deficiencies of conventional liposomes. In the designed bilosomes, cholesterol was replaced by TUDCNa, which served as both a membrane stabilizer and an antidiabetic drug. Oleanolic acid (OA) was encapsulated in both conventional liposomes (OA-Ch-Lip) and bilosomes (OA-Tu-Bil) to compare their properties. Firstly, OA-Tu-Bil exhibited similar encapsulation efficiency and drug loading compared to OA-Ch-Lip, but with a smaller particle size. Secondly, OA-Tu-Bil showed better stability than OA-Ch-Lip. Thirdly, bilosomes exhibited prolonged intestinal retention time and improved permeability and oral bioavailability. Fourthly, in type 2 diabetes mellitus (T2DM) mice model, TUDCNa synergized with OA to exhibit the strongest therapeutic effect. In conclusion, TUDCNa have demonstrated the ability to substitute cholesterol in conventional liposomes, it provided a new approach for oral delivery of hypoglycemic drugs, and offered an innovative strategy for combination therapy.
Collapse
Affiliation(s)
- Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yulu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Sihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jiamei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xue Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Meifeng Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xiaohang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xiaohong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
4
|
Brañes MC, Gillet R, Valenzuela R. Nuclear receptors behind the therapeutic effects of plant sterols on metabolism: A review. Lipids 2024; 59:169-180. [PMID: 39077818 DOI: 10.1002/lipd.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant sterols are known for their hypocholesterolemic action, and the molecular mechanisms behind this within the gut have been extensively discussed and demonstrated to the point that there is a degree of consensus. However, recent studies show that these molecules exert an additional umbrella of therapeutic effects in other tissues, which are related to immune function, lipid metabolism, and glucose metabolism. A strong hypothesis to explain these effects is the structural relationship between plant sterols and the ligands of a group of nuclear receptors. This review delves into the molecular aspects of therapeutic effects related with lipid and energy metabolism that have been observed and demonstrated for plant sterols, and turns the perspective to explore the involvement of nuclear receptors as part of these mechanisms.
Collapse
Affiliation(s)
| | | | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
5
|
Zeng Y, Gan D, Zhang K, Long T, He Y, Zhou R, Liu S, Xiong M. The impact of artificial liver support system on intestinal microbiota and serum bile acid profiles in patients with acute-on-chronic liver failure: a prospective cohort study. Hepatol Int 2024; 18:1540-1554. [PMID: 39031319 DOI: 10.1007/s12072-024-10712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) patients exhibit an imbalance in intestinal microbiota, and bile acids (BAs) can affect the composition of intestinal microbiota. Although Artificial liver support system (ALSS) is a treatment for ACLF, the impact of ALSS on intestinal microbiota and serum BA profiles of ACLF patients remains unclear. METHODS A prospective study was conducted, which included 51 patients diagnosed with ACLF. These patients were stratified into two groups based on the utilization of an ALSS during their treatment period: a standard medical treatment group (SMT group), comprising 19 patients, and an ALSS combined with SMT group (ALSS group), comprising 32 patients. Blood and stool samples were collected from the patients on the day of admission and 14 days after treatment. Additionally, eight healthy controls were recruited, and their stool samples were also collected. The intestinal microbiota was sequenced using the 16S rRNA sequencing technique, while the serum BA profiles were determined using ultra-performance liquid chromatography/mass spectrometry. RESULTS ACLF patients exhibited imbalances in intestinal microbiota and abnormalities in BA profiles. Compared to SMT alone, the combined ALSS and SMT was more effective in regulating intestinal microbiota imbalance and increasing the concentrations of ursodeoxycholic acid and glycoursodeoxycholic acid. Correlation analysis revealed a significant correlation between intestinal microbiota and Bas. Furthermore, the preliminary correlation heatmap indicated that the Faecalibaculum, Gemmiger, and taurochenodeoxycholic acid were associated with clinical improvement. CONCLUSIONS Our study identified the compositional characteristics of the intestinal microbiota and serum BA in ACLF patients, emphasizing the impact of ALSS on both intestinal microbiota and serum BA profiles.
Collapse
Affiliation(s)
- Yuyu Zeng
- Infectious Diseases Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.167, Qingshan Lake Avenue, Nanchang, 330000, China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.17, Yongwai Zheng Street, Nanchang, 330000, China
| | - Dakai Gan
- Infectious Diseases Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.167, Qingshan Lake Avenue, Nanchang, 330000, China
| | - Kaige Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.17, Minde Road, Nanchang, 330000, China
| | - Tao Long
- Infectious Diseases Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.167, Qingshan Lake Avenue, Nanchang, 330000, China
| | - Yan He
- Infectious Diseases Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.167, Qingshan Lake Avenue, Nanchang, 330000, China
- The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.128, Xiangshan North Road, Nanchang, 330000, China
| | - Rui Zhou
- Infectious Diseases Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.167, Qingshan Lake Avenue, Nanchang, 330000, China
- The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.128, Xiangshan North Road, Nanchang, 330000, China
| | - Shuanglan Liu
- Infectious Diseases Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.167, Qingshan Lake Avenue, Nanchang, 330000, China
- The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.128, Xiangshan North Road, Nanchang, 330000, China
| | - Molong Xiong
- Infectious Diseases Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.167, Qingshan Lake Avenue, Nanchang, 330000, China.
- The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.128, Xiangshan North Road, Nanchang, 330000, China.
| |
Collapse
|
6
|
Kim DH, Kwon EJ, Park KG, Jin J, Byun JK. Acesulfame potassium upregulates PD-L1 in HCC cells by attenuating autophagic degradation. Biochem Biophys Res Commun 2024; 711:149921. [PMID: 38603831 DOI: 10.1016/j.bbrc.2024.149921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Artificial sweeteners, which contain no or few calories, have been widely used in various foods and beverages, and are regarded as safe alternatives to sugar by the Food and Drug Administration. While several studies suggest that artificial sweeteners are not related to cancer development, some research has reported their potential association with the risk of cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether acesulfame potassium (Ace K), a commonly used artificial sweetener, induces immune evasion of HCC cells by upregulating programmed death ligand-1 (PD-L1). Ace K elevated the protein levels of PD-L1 in HCC cells without increasing its mRNA levels. The upregulation of PD-L1 protein levels in HCC cells by Ace K was induced by attenuated autophagic degradation of PD-L1, which was mediated by the Ace K-stimulated ERK1/2-mTORC1 signaling pathway. Ace K-induced upregulation of PD-L1 attenuated T cell-mediated death of HCC cells, thereby promoting immune evasion of HCC cells. In summary, the present study suggests that Ace K promotes HCC progression by upregulating the PD-L1 protein level.
Collapse
Affiliation(s)
- Dong-Ho Kim
- Department of Biomedical Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Eun-Jun Kwon
- Department of Biomedical Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Keun-Gyu Park
- Department of Biomedical Science, Kyungpook National University, Daegu, 41566, South Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, 41566, South Korea
| | - Jonghwa Jin
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea.
| | - Jun-Kyu Byun
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
7
|
Mireault M, Rose CF, Karvellas CJ, Sleno L. Perturbations in human bile acid profiles following drug-induced liver injury investigated using semitargeted high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9731. [PMID: 38469943 DOI: 10.1002/rcm.9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
RATIONALE Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in North America. To investigate the effect of drug-induced liver injury (DILI) on circulating bile acid (BA) profiles, serum from ALF patients and healthy controls were analyzed using a semitargeted high-resolution mass spectrometry approach to measure BAs in their unconjugated and amidated forms and their glucuronide and sulfate conjugates. METHODS Human serum samples from 20 healthy volunteers and 34 ALF patients were combined with deuterated BAs and extracted, prior to liquid chromatography high-resolution tandem mass spectrometry analysis. A mix of 46 standards helped assign 26 BAs in human serum by accurate mass and retention time matching. Moreover, other isomers of unconjugated and amidated BAs, as well as glucuronide and sulfate conjugates, were assigned by accurate mass filtering. In vitro incubations of standard BAs provided increased information for certain peaks of interest. RESULTS A total of 275 BA metabolites, with confirmed or putative assignments, were measured in human serum samples. APAP overdose significantly influenced the levels of most BAs, promoting glycine conjugation, and, to a lesser extent, taurine conjugation. When patient outcome was considered, 11 BAs were altered significantly, including multiple sulfated species. Although many of the BAs measured did not have exact structures assigned, several putatively identified BAs of interest were further characterized using in vitro incubations. CONCLUSION An optimized chromatographic separation tailored to BAs of ranging polarities was combined with accurate mass measurements to investigate the effect that DILI has on their complex profiles and metabolism to a much wider extent than previously possible. The analysis of complex BA profiles enabled in-depth analysis of the BA metabolism perturbations in ALF, including certain metabolites related to patient outcomes.
Collapse
Affiliation(s)
- Myriam Mireault
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| | - Christopher F Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Constantine J Karvellas
- Department of Critical Care Medicine and Gastroenterology/Hepatology, University of Alberta, Edmonton, Alberta, Canada
| | - Lekha Sleno
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
8
|
Marciano LPA, Costa LF, Cardoso NS, Freire J, Feltrim F, Oliveira GS, Paula FBA, Silvério ACP, Martins I. Biomonitoring and risk assessment of human exposure to triazole fungicides. Regul Toxicol Pharmacol 2024; 147:105565. [PMID: 38185363 DOI: 10.1016/j.yrtph.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Risk assessment and biomarkers were evaluated in volunteers exposed to triazole fungicides in southern Minas Gerais, Brazil. Volunteers were divided into two groups: occupationally and environmentally exposed to pesticides (n = 140) and those unexposed (n = 50) from urban areas. Urine samples were analyzed by GC-MS for triazoles, and samples from men and women in the exposed group were quantified. Groups were further stratified by sex to evaluate the biomarkers results. Oxidative stress was indicated by biomarker analysis for occupationally exposed men with elevated malondialdehyde levels and reduced superoxide dismutase and catalase activity (p < 0.0001). Bile acid levels were also elevated in the exposed group (p < 0.0001). Biomarkers in this study suggest recent, reversible changes due to pesticide exposure. Liver enzyme levels showed no significant differences. The highest Estimated Daily Intake for epoxiconazole ranged from 0.534 to 6.31 μg/kg-bw/day for men and 0.657-8.77 μg/kg-bw/day for women in the exposed group. Considering the highest detected urinary triazole value, the calculated Hazard Quotient for epoxiconazole was 0.789 for men and 1.1 for women. Results indicate a health risk associated with environmental triazole exposure, highlighting the importance of biomonitoring in risk assessment to prevent intoxication and assist in mitigating adverse health effects from chronic pesticide exposure.
Collapse
Affiliation(s)
- Luiz P A Marciano
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Luiz F Costa
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Naiane S Cardoso
- Clinical and Experimental Analysis Laboratory, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Josiane Freire
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Fernando Feltrim
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Geovana S Oliveira
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Fernanda B A Paula
- Clinical and Experimental Analysis Laboratory, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | | | - Isarita Martins
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
9
|
Ma Y, Wang H, Yang J, Xin M, Wu X. Gentamicin alleviates cholestatic liver injury by decreasing gut microbiota-associated bile salt hydrolase activity in rats. Eur J Pharmacol 2023; 951:175790. [PMID: 37179041 DOI: 10.1016/j.ejphar.2023.175790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Intrahepatic cholestasis lacks effective therapeutic drugs. The gut microbiota-associated bile salt hydrolases (BSH) may be a potential therapeutic target. In this study, oral administration of gentamicin (GEN) decreased the serum and hepatic levels of total bile acid in 17α-ethynylestradiol (EE)-induced cholestatic male rats, significantly improved the serum levels of hepatic biomarkers and reversed the histopathological changes in the liver. In healthy male rats, the serum and hepatic levels of total bile acid were also decreased by GEN, the ratio of primary to secondary bile acids, and conjugated to unconjugated bile acids was significantly increased, and the urinary excretion of total bile acid was elevated. 16S rDNA sequencing of the ileal contents revealed that GEN treatment substantially reduced the abundance of Lactobacillus and Bacteroides both of which expressed BSH. Consistently, BSH activity analysis by the generation of d5-chenodeoxycholic acid from d5-taurochenodeoxycholic acid in situ showed BSH was significantly inhibited in the ileal contents of rats treated with GEN. This finding led to an increased proportion of hydrophilic conjugated bile acids and facilitated the urinary excretion of total bile acids, thereby decreasing serum and hepatic total bile acids and reversing liver injury related to cholestasis. Our results provide important evidence that BSH can be a potential drug target for treating cholestasis.
Collapse
Affiliation(s)
- Yanrong Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Huan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Jinru Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Mingyan Xin
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Xinan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Yeo XY, Tan LY, Chae WR, Lee DY, Lee YA, Wuestefeld T, Jung S. Liver's influence on the brain through the action of bile acids. Front Neurosci 2023; 17:1123967. [PMID: 36816113 PMCID: PMC9932919 DOI: 10.3389/fnins.2023.1123967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The liver partakes as a sensor and effector of peripheral metabolic changes and a regulator of systemic blood and nutrient circulation. As such, abnormalities arising from liver dysfunction can influence the brain in multiple ways, owing to direct and indirect bilateral communication between the liver and the brain. Interestingly, altered bile acid composition resulting from perturbed liver cholesterol metabolism influences systemic inflammatory responses, blood-brain barrier permeability, and neuron synaptic functions. Furthermore, bile acids produced by specific bacterial species may provide a causal link between dysregulated gut flora and neurodegenerative disease pathology through the gut-brain axis. This review will cover the role of bile acids-an often-overlooked category of active metabolites-in the development of neurological disorders associated with neurodegeneration. Further studies into bile acid signaling in the brain may provide insights into novel treatments against neurological disorders.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Yang Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Yong-An Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,*Correspondence: Yong-An Lee,
| | - Torsten Wuestefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,School of Biological Sciences, Nanyang Technological University, Singapore, Siingapore,National Cancer Centre Singapore, Singapore, Singapore,Torsten Wuestefeld,
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Sangyong Jung,
| |
Collapse
|
12
|
Semi-Targeted Profiling of Bile Acids by High-Resolution Mass Spectrometry in a Rat Model of Drug-Induced Liver Injury. Int J Mol Sci 2023; 24:ijms24032489. [PMID: 36768813 PMCID: PMC9917070 DOI: 10.3390/ijms24032489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Using a semi-targeted approach, we have investigated the effect of acetaminophen on circulating bile acid profiles in rats, including many known bile acids and potential isomeric structures, as well as glucuronide and sulfate conjugates. The chromatographic separation was based on an optimized reverse-phase method exhibiting excellent resolution for a complex mix of bile acids using a solid-core C18 column, coupled to a high-resolution quadrupole time-of-flight system. The semi-targeted workflow consisted of first assigning all peaks detectable in samples from 46 known bile acids contained in a standard mix, as well as additional peaks for other bile acid isomers. The presence of glucuronide and sulfate conjugates was also examined based on their elemental formulae and detectable peaks with matching exact masses were added to the list of features for statistical analysis. In this study, rats were administered acetaminophen at four different doses, from 75 to 600 mg/kg, with the highest dose being a good model of drug-induced liver injury. Statistically significant changes were found by comparing bile acid profiles between dosing levels. Some tentatively assigned conjugates were further elucidated using in vitro metabolism incubations with rat liver fractions and standard bile acids. Overall, 13 identified bile acids, 23 tentatively assigned bile acid isomers, and 9 sulfate conjugates were found to increase significantly at the highest acetaminophen dose, and thus could be linked to drug-induced liver injury.
Collapse
|
13
|
Rana P, Khan S, Arat S, Potter D, Khan N. Nonclinical Safety Signals in PharmaPendium Improve the Predictability of Human Drug-Induced Liver Injury. Chem Res Toxicol 2022; 35:2133-2144. [PMID: 36287557 DOI: 10.1021/acs.chemrestox.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury (DILI) is a leading cause of candidate attrition during drug development in the pharmaceutical industry. This study evaluated liver toxicity signals for 249 approved drugs (114 of "most-DILI concern" and 135 of "no-DILI concern") using PharmaPendium and assessed the association between nonclinical and clinical injuries using contingency table analysis. All animal liver findings were combined into eight toxicity categories based on nature and severity. Together, these analyses revealed that cholestasis [odds ratio (OR): 5.02; 95% confidence interval (CI) 1.04-24.03] or liver aminotransferase increases (OR: 1.86; 95% CI 1.09-3.09) in rats and steatosis (OR-1.9; 95% CI 1.03-3.49) or liver aminotransferase increases (OR-2.57; 95% CI 1.4-4.7) in dogs were significant predictors of human liver injury. The predictive value further improved when the liver injury categories were combined into less severe (steatosis, cholestasis, liver aminotransferase increase, hyperbilirubinemia, or jaundice) and more-severe (liver necrosis, acute liver failure, or hepatotoxicity) injuries. In particular, less-severe liver injuries in the following pairs of species predicted human hepatotoxicity {[dog and mouse] (OR: 2.70; 95% CI 1.25-5.84), [dog and rat] (OR-2.61; 95% CI 1.48-4.59), [monkey and mouse] (OR-4.22; 95% CI 1.33-13.32), and [monkey and rat] (OR-2.45; 95% CI 1.15-5.21)} were predictive of human hepatotoxicity. Meanwhile, severe liver injuries in both [dog and rat] (OR-1.9; 95% CI 1.04-3.49) were significant predictors of human liver toxicity. Therefore, we concluded that the occurrence of DILI in humans is highly likely if liver injuries are observed in one rodent and one nonrodent species and that liver aminotransferase increases in dogs and rats can predict DILI in humans. Together, these findings indicate that the liver safety signals observed in animal toxicity studies indicate potential DILI risk in humans and could therefore be used to prioritize small molecules with less potential to cause DILI in humans.
Collapse
Affiliation(s)
- Payal Rana
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| | - Sanaa Khan
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| | - Seda Arat
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| | - David Potter
- Early Clinical Development Biostatistics, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Nasir Khan
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| |
Collapse
|
14
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
15
|
Roh YJ, Kim Y, Lee JS, Oh JH, Lee SM, Yoon EL, Lee SR, Jun DW. Regulation of Hepatocyte Nuclear Factor 4α Attenuated Lipotoxicity but Increased Bile Acid Toxicity in Non-Alcoholic Fatty Liver Disease. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111682. [PMID: 36362837 PMCID: PMC9699296 DOI: 10.3390/life12111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) is a key master transcriptional factor for hepatic fat and bile acid metabolic pathways. We aimed to investigate the role of HNF4α in non-alcoholic fatty liver disease (NAFLD). The role of HNF4α was evaluated in free fatty acid-induced lipotoxicity and chenodeoxycholic acid (CDCA)-induced bile acid toxicity. Furthermore, the role of HNF4α was evaluated in a methionine choline deficiency (MCD)-diet-induced NAFLD model. The overexpression of HNF4α reduced intracellular lipid contents and attenuated palmitic acid (PA)-induced lipotoxicity. However, the protective effects of HNF4α were reversed when CDCA was used in a co-treatment with PA. HNF4α knockdown recovered cell death from bile acid toxicity. The inhibition of HNF4α decreased intrahepatic inflammation and the NAFLD activity score in the MCD model. Hepatic HNF4α inhibition can attenuate bile acid toxicity and be more effective as a therapeutic strategy in NAFLD patients; however, it is necessary to study the optimal timing of HNF4α inhibition.
Collapse
Affiliation(s)
- Yoon Jin Roh
- Department of Dermatology, Chung-Ang University Hospital, Seoul 04763, Korea
| | - Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Korea
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Jae Sun Lee
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Korea
| | - Ju Hee Oh
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Korea
| | - Seung Min Lee
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Korea
| | - Eileen Laurel Yoon
- Department of Gastroenterology, Hanyang University School of Medicine, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| | - Sung Ryol Lee
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
- Correspondence: (S.R.L.); (D.W.J.)
| | - Dae Won Jun
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Korea
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Korea
- Department of Gastroenterology, Hanyang University School of Medicine, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
- Correspondence: (S.R.L.); (D.W.J.)
| |
Collapse
|
16
|
Abstract
Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly. Identification of new modifications in bile acids is burgeoning, and some of it is associated with the microbiota within the intestine. Here, we provide a brief overview of the history and the various receptors that mediate bile acid signaling in addition to its crosstalk with the gut microbiota.
Collapse
Affiliation(s)
| | | | - Sayeepriyadarshini Anakk
- Correspondence: Sayeepriyadarshini Anakk, PhD, Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, 453 Medical Sciences Bldg, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Li D, Lyu Y, Song Q, Lai YS, Zuo Z. Idiosyncratic liver injury induced by bolus combination treatment with emodin and 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside in rats. Front Pharmacol 2022; 13:1017741. [PMID: 36225587 PMCID: PMC9549410 DOI: 10.3389/fphar.2022.1017741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Polygoni Multiflori Radix (PMR) is a commonly used traditional Chinese medicine in clinical practice, while adverse effects of hepatotoxicity related to PMR have been frequently reported. The clinical case reports indicated that PMR hepatotoxicity could occur under both overdose medication/long-term exposure and low doses with short-duration (idiosyncratic) conditions. The combination treatment with emodin and 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG), two major PMR components, was reported to contribute to PMR hepatotoxicity after long-term treatment. However, the role of the combination treatment of these two components in PMR-induced idiosyncratic liver injury has not been clearly clarified. In this study, the LPS-mediated inflammatory stress model rats were adopted to explore the idiosyncratic liver injury induced by the bolus combination treatment with emodin and TSG. After a bolus oral administration with TSG (165 mg/kg), emodin (5 mg/kg) or their combination in both normal and LPS-mediated inflammatory stress model rats, the systemic/hepatic concentrations of emodin, emodin glucuronides and bile acids were determined; the hepatotoxicity assessments were conducted via monitoring histopathological changes and liver injury biomarkers (ALT and AST). Moreover, the protein expressions of bile acid homeostasis- and apoptosis-related proteins were examined. No liver damage was observed in the normal rats after a bolus dose with the individual or combination treatment, while the bolus combination treatment with emodin and TSG induced liver injury in the LPS-mediated inflammatory stress model rats, evidenced by the elevated plasma levels of alanine aminotransferase (∼66%) and aspartate aminotransferase (∼72%) accompanied by severe inflammatory cell infiltration and apoptotic hepatocytes in liver tissue. Moreover, such combination treatment at a bolus dose in the LPS-mediated inflammatory stress model rats could significantly elevate the hepatic TBA levels by about 45% via up-regulating the hepatic protein expression levels of bile acid synthesis enzymes and inhibiting that of bile acid efflux transporters and the expression levels of apoptosis-related proteins. Our study for the first time proved the major contribution of the combination treatment with emodin and TSG in PMR-induced idiosyncratic liver injury.
Collapse
|
18
|
Truong JK, Bennett AL, Klindt C, Donepudi AC, Malla SR, Pachura KJ, Zaufel A, Moustafa T, Dawson PA, Karpen SJ. Ileal bile acid transporter inhibition in Cyp2c70 KO mice ameliorates cholestatic liver injury. J Lipid Res 2022; 63:100261. [PMID: 35934110 PMCID: PMC9460185 DOI: 10.1016/j.jlr.2022.100261] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023] Open
Abstract
Cyp2c70 is the liver enzyme in rodents responsible for synthesis of the primary 6-hydroxylated muricholate bile acid (BA) species. Cyp2c70 KO mice are devoid of protective, hydrophilic muricholic acids, leading to a more human-like BA composition and subsequent cholestatic liver injury. Pharmacological inhibition of the ileal BA transporter (IBAT) has been shown to be therapeutic in cholestatic models. Here, we aimed to determine if IBAT inhibition with SC-435 is protective in Cyp2c70 KO mice. As compared to WT mice, we found male and female Cyp2c70 KO mice exhibited increased levels of serum liver injury markers, and our evaluation of liver histology revealed increased hepatic inflammation, macrophage infiltration, and biliary cell proliferation. We demonstrate serum and histologic markers of liver damage were markedly reduced with SC-435 treatment. Additionally, we show hepatic gene expression in pathways related to immune cell activation and inflammation were significantly upregulated in Cyp2c70 KO mice and reduced to levels indistinguishable from WT with IBAT inhibition. In Cyp2c70 KO mice, the liver BA content was significantly increased, enriched in chenodeoxycholic acid, and more hydrophobic, exhibiting a hydrophobicity index value and red blood cell lysis properties similar to human liver BAs. Furthermore, we determined IBAT inhibition reduced the total hepatic BA levels but did not affect overall hydrophobicity of the liver BAs. These findings suggest that there may be a threshold in the liver for pathological accretion of hydrophobic BAs and reducing hepatic BA accumulation can be sufficient to alleviate liver injury, independent of BA pool hydrophobicity.
Collapse
Affiliation(s)
- Jennifer K Truong
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Ashley L Bennett
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Caroline Klindt
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Ajay C Donepudi
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sudarshan R Malla
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kimberly J Pachura
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Alex Zaufel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tarek Moustafa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Paul A Dawson
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| | - Saul J Karpen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
19
|
2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside enhances the hepatotoxicity of emodin in vitro and in vivo. Toxicol Lett 2022; 365:74-85. [PMID: 35753641 DOI: 10.1016/j.toxlet.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022]
Abstract
Herb-induced liver injury results from the interplay between the herb and host with the herbal components serving as the major origin for hepatotoxicity. Although Polygoni Multiflori Radix (PMR) has been frequently reported to induce liver injury, contributions of its major components such as emodin, emodin-8-O-β-D-glucopyranoside, physcion and 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG) towards its hepatotoxicity have not been clearly identified. Our initial cytotoxicity screenings of the major PMR components using rat hepatocytes identified emodin as the most toxic. Subsequently, the bile acid homeostasis-related mechanisms of emodin and its combination treatment with TSG in PMR-associated liver injury were explored in sandwich-cultured rat hepatocytes (SCRH) and verified in rats. In SCRH, emodin was found to be able to induce total bile acid accumulation in a dose-dependent manner. In both SCRH and rats, the presence of TSG significantly enhanced the hepatotoxicity of emodin via i) increasing its hepatic exposure by inhibiting its glucuronidation mediated metabolism; ii) enhancing its disruption on bile acid homeostasis through amplifying its inhibition on bile acid efflux transporters and its up-regulation on bile acids synthesis enzymes; iii) enhancing its apoptosis. Our study for the first time demonstrated the critical role of the combination treatment with emodin and TSG in PMR-induced liver injury.
Collapse
|
20
|
Cheng H, Liu J, Zhang D, Tan Y, Feng W, Peng C. Gut microbiota, bile acids, and nature compounds. Phytother Res 2022; 36:3102-3119. [PMID: 35701855 DOI: 10.1002/ptr.7517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Natural compounds (NPs) have historically made a major contribution to pharmacotherapy in various diseases and drug discovery. In the past decades, studies on gut microbiota have shown that the efficacy of NPs can be affected by the interactions between gut microbiota and NPs. On one hand, gut microbiota can metabolize NPs. On the other hand, NPs can influence the metabolism and composition of gut microbiota. Among gut microbiota metabolites, bile acids (BAs) have attracted widespread attention due to their effects on the body homeostasis and the development of diseases. Studies have also confirmed that NPs can regulate the metabolism of BAs and ultimately regulate the physiological function of the body and disease progresses. In this review, we comprehensively summarize the interactions among NPs, gut microbiota, and BAs. In addition, we also discuss the role of microbial BAs metabolism in understanding the toxicity and efficacy of NPs. Furthermore, we present personal insights into the future research directions of NPs and BAs.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Farooqui N, Elhence A, Shalimar. A Current Understanding of Bile Acids in Chronic Liver Disease. J Clin Exp Hepatol 2022; 12:155-173. [PMID: 35068796 PMCID: PMC8766695 DOI: 10.1016/j.jceh.2021.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic liver disease (CLD) is one of the leading causes of disability-adjusted life years in many countries. A recent understanding of nuclear bile acid receptor pathways has increased focus on the impact of crosstalk between the gut, bile acids, and liver on liver pathology. While conventionally used in cholestatic disorders and to dissolve gallstones, the discovery of bile acids' influence on the gut microbiome and human metabolism offers a unique potential for their utility in early and advanced liver diseases because of diverse etiologies. Based on these findings, preclinical studies using bile acid-based molecules have shown encouraging results at addressing liver inflammation and fibrosis. Emerging data also suggest that bile acid profiles change distinctively across various causes of liver disease. We summarize the current knowledge and evidence related to bile acids in health and disease and discuss culminated and ongoing therapeutic trials of bile acid derivatives in CLD. In the near future, further evidence in this area might help clinicians better detect and manage liver diseases.
Collapse
Key Words
- AD, Acute decompensation
- ALP, Alkaline phosphatase
- AMACR, α-methylacyl-CoA racemase (AMACR)
- ASBT, Apical sodium dependent bile salt transporter
- BA, Bile acid
- BSEP, Bile salt export pump
- BSH, Bile salt hydrolase
- CA, Cholic acid
- CDCA, Chenodeoxycholic acid
- CLD
- CLD, Chronic Liver Disease
- CTP, Child-Turcotte-Pugh
- CYP7A1, Cholesterol 7 α hydroxylase
- DCA, Deoxycholic acid
- DR5, Death receptor 5
- ELF, Enhanced Liver Fibrosis
- FGF-19, Fibroblast growth factor-19
- FGFR4, FGF receptor 4
- FXR, Farnesoid X receptor
- GCA, Glycocholic acid
- GDCA, Glycodeoxycholic acid
- GLP-1, Glucagon-like peptide1
- HBV, Hepatitis B virus
- HCV, Hepatitis C virus
- HVPG, Hepatic Venous Pressure Gradient
- LCA, Lithocholic acid
- LPS, Lipopolysaccharide
- MELD, Model for End-Stage Liver Disease (MELD)
- MRI-PDFF, Magnetic resonance imaging derived proton density fat fraction
- NAFLD
- NAFLD, Non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, Nonalcoholic steatohepatitis
- NTCP, Sodium taurocholate cotransporting polypeptide
- OCA, Obeticholic acid
- OST, Organic solute transporter
- PBC, Primary biliary cirrhosis
- PFIC, Progressive familial intrahepatic cholestasis
- PSC, Primary sclerosing cholangitis
- PXR, Pregnane X receptor
- SHP, Small heterodimer partner
- TBA, Total bile acids
- TGR5, Takeda G-protein coupled receptor 5
- TRAIL, TNF-related apoptosis-inducing ligand
- UDCA, Ursodeoxycholic acid
- UPLC-MS, Ultra-performance liquid chromatography with tandem mass spectrometry
- VDR, Vitamin D receptor
- bile acids
- cirrhosis
- microbiome
Collapse
Affiliation(s)
- Naba Farooqui
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Anshuman Elhence
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
Robles-Díaz M, Nezic L, Vujic-Aleksic V, Björnsson ES. Role of Ursodeoxycholic Acid in Treating and Preventing Idiosyncratic Drug-Induced Liver Injury. A Systematic Review. Front Pharmacol 2021; 12:744488. [PMID: 34776963 PMCID: PMC8578816 DOI: 10.3389/fphar.2021.744488] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Treatment is generally not available for drug-induced liver injury (DILI) patients except in some specific circumstances. The management of DILI is based on the withdrawal of the responsible drug and monitoring the patients and only a few patients need to be referred to a transplant center. Some studies on the role of ursodeoxycholic acid (UDCA) in DILI have been published. The aim of this study was to perform a systematic review of the role of UDCA in the treatment and prevention of DILI. Methods: A search was undertaken in PubMed, with the key words ursodeoxycholic acid, drug-induced liver injury and hepatotoxicity following the PRISMA guidelines. Results: A total of 33 publications were identified: 25 case reports and 8 case series. In 18 of the 25 cases reports (22 patients), authors reported improvement of liver injury associated with UDCA therapy whereas 7 case reports did not show clinical or biochemical improvement after UDCA treatment. There were 4 studies evaluating the role of UDCA in the treatment of DILI, three prospective (one being a clinical trial) and one retrospective studies. Three studies observed liver profile improvements associated with UDCA. In addition, four studies evaluated UDCA in the prevention of DILI: one pilot study, two randomized clinical trials (RCT) and one retrospective study. Three of these studies observed a lower percentage of patients with an increase in transaminases in the groups that used UDCA for DILI prevention. Conclusion: According to available data UDCA seems to have some benefits in the treatment and prevention of DILI. However, the design of the published studies does not allow a firm conclusion to be drawn on the efficacy of UDCA in DILI. A well designed RCT to evaluate the role of UDCA in DILI is needed.
Collapse
Affiliation(s)
- Mercedes Robles-Díaz
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Facultad de Medicina, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Málaga, Spain
| | - Lana Nezic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Vesna Vujic-Aleksic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina.,The Republic of Srpska Agency for Certification, Accreditation and Quality Improvement in Health Care, Banja Luka, Bosnia and Herzegovina
| | - Einar S Björnsson
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
23
|
Machado SC, Souza BM, de Aguiar Marciano LP, Souza Pereira AF, Lima Brigagão MRP, Machado Viana AL, Rodrigues MR, Martins I. Endpoints as human biomarkers in exposure assessment of triazoles fungicides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103703. [PMID: 34265456 DOI: 10.1016/j.etap.2021.103703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Potential endpoint biomarkers were evaluated in the assessment of exposure to triazoles, in the southern region of Minas Gerais, Brazil. Volunteers were divided into three groups: occupationally exposed and rural residents (n = 21), non-occupationally exposed and rural residents (n = 35) and non-occupationally exposed and urban residents (n = 30). Of all endpoints evaluated, plasma concentration of androstenedione (p < 0.001) and glycine-conjugated bile acids presented statistical differences in the three studied groups (p < 0.05). However, our findings concerning oxidative stress and testosterone levels, plus that related to unconjugated and taurine conjugated bile acids, suggested that more studies are necessary to evaluate their potential as biomarkers for triazole exposure, as statistical significance was not attained between the groups. Our human population data contributes to the development of triazole exposure risk assessment with respect to these potential effect biomarkers, in potentially vulnerable groups and individuals.
Collapse
Affiliation(s)
- Simone Caetani Machado
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Bruna Maciel Souza
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Luiz Paulo de Aguiar Marciano
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Ana Flávia Souza Pereira
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | | | - André Luiz Machado Viana
- Laboratory of Clinical Analysis - LACEN, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Maria Rita Rodrigues
- Laboratory of Clinical Analysis - LACEN, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Isarita Martins
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
24
|
Chen L, Wei S, Liu H, Li J, Jing M, Tong Y, Li R, Wen J, Zhan H, Zhao Y. Paeoniflorin Protects against ANIT-Induced Cholestatic Liver Injury in Rats via the Activation of SIRT1-FXR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8479868. [PMID: 34512782 PMCID: PMC8429014 DOI: 10.1155/2021/8479868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023]
Abstract
Paeoniflorin (PF), a water-soluble monoterpene glycoside, is initially isolated from the dried roots of Paeonia lactiflora Pall., which has effects on ameliorating cholestasis in our previous study. However, comprehensive approaches for understanding the protective effects and mechanisms underlying cholestatic liver injury from the regulating of bile acid metabolism have not been sufficiently elucidated. This study was aimed to explore the effectiveness as well as potential mechanism of PF on alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury. Rats with cholestasis induced by ANIT was used to evaluate the protective effects and mechanism of PF by regulating SIRT1/FXR and NF-κB/NLRP3 signaling pathway. Rats were intragastrically administrated with ANIT to establish cholestatic liver injury model. Serum levels of ALT, AST, TBA, TBIL, ALP, γ-GT and ALB in rats were detected. The histopathology of the liver of rats was analyzed in vivo. The relative mRNA expression and protein expression levels of IL-18, IL-1β, TNF-α, HO-1, Nrf2, TLR4, NLRP3, Caspase-1, ASC, NF-κB, FXR, and SIRT1 in liver of rats were investigated. The results showed that the serum indexes and the liver histopathology were significantly improved by PF. The overexpression of IL-18, IL-1β, TNF-α, NLRP3, ASC, and Caspase-1 in liver was markedly reduced by PF. Furthermore, PF dramatically increased the mRNA and protein expressions of SIRT1, FXR, HO-1, and Nrf2, but decreased NF-κB p65 and TLR4 levels in liver of rats. Taken together, the protective effects of PF on cholestatic liver injury were possibly related to the activation of the SIRT1/FXR and inhibition of NF-κB/NLRP3 inflammasome signaling pathway. These findings might provide a potential protection for cholestatic liver injury.
Collapse
Affiliation(s)
- Lisheng Chen
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Honghong Liu
- Integrated TCM & Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jianyu Li
- Integrated TCM & Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yuling Tong
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jianxia Wen
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Hanqiu Zhan
- Department of Pharmacy, Beijing Ditanhospital, Capital Medical University, Beijing 100039, China
| | - Yanling Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
25
|
Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice. Nat Commun 2021; 12:4768. [PMID: 34362888 PMCID: PMC8346483 DOI: 10.1038/s41467-021-24914-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Bariatric surgeries such as the Vertical Sleeve Gastrectomy (VSG) are invasive but provide the most effective improvements in obesity and Type 2 diabetes. We hypothesized a potential role for the gut hormone Fibroblast-Growth Factor 15/19 which is increased after VSG and pharmacologically can improve energy homeostasis and glucose handling. We generated intestinal-specific FGF15 knockout (FGF15INT-KO) mice which were maintained on high-fat diet. FGF15INT-KO mice lost more weight after VSG as a result of increased lean tissue loss. FGF15INT-KO mice also lost more bone density and bone marrow adipose tissue after VSG. The effect of VSG to improve glucose tolerance was also absent in FGF15INT-KO. VSG resulted in increased plasma bile acid levels but were considerably higher in VSG-FGF15INT-KO mice. These data point to an important role after VSG for intestinal FGF15 to protect the organism from deleterious effects of VSG potentially by limiting the increase in circulating bile acids. The mechanisms that mediate the effects of weight loss surgeries such as vertical sleeve gastrectomy (VSG) are incompletely understood. Here the authors show that intestinal FGF15 is necessary to improve glucose tolerance and to prevent the loss of muscle and bone mass after VSG, potentially via protection against bile acid toxicity.
Collapse
|
26
|
Zhao J, Ran M, Yang T, Chen L, Ji P, Xu X, Zhang L, Sun S, Liu X, Zhou S, Zhou L, Zhang J. Bicyclol Alleviates Signs of BDL-Induced Cholestasis by Regulating Bile Acids and Autophagy-Mediated HMGB1/p62/Nrf2 Pathway. Front Pharmacol 2021; 12:686502. [PMID: 34366845 PMCID: PMC8334002 DOI: 10.3389/fphar.2021.686502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cholestasis is a liver disease characterized by the accumulation of toxic bile salts, bilirubin, and cholesterol, resulting in hepatocellular damage. Recent findings have revealed several key steps of cholestasis liver injury including the toxicity of bile acids and accumulation of proinflammatory mediator. In this study, we investigated the protective effect of bicyclol in cholestasis caused by bile duct ligation (BDL), as well as relevant mechanisms. Bicyclol attenuated liver damage in BDL mice by increasing the levels of hydrophilic bile acid such as α-MCA and β-MCA, regulating bile acid-related pathways and improving histopathological indexes. High-mobility group box 1 (HMGB1) is an extracellular damage-associated molecular pattern molecule which can be used as biomarkers of cells and host defense. Bicyclol treatment decreased extracellular release of HMGB1. In addition, HMGB1 is also involved in regulating autophagy in response to oxidative stress. Bicyclol promoted the lipidation of LC3 (microtubule-associated protein 1 light chain 3)-Ⅱ to activate autophagy. The nuclear factor, E2-related factor 2 (Nrf2) and its antioxidant downstream genes were also activated. Our results indicate that bicyclol is a promising therapeutic strategy for cholestasis by regulating the bile acids and autophagy-mediated HMGB1/p62/Nrf2 pathway.
Collapse
Affiliation(s)
- Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Maojuan Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology and Hepatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Liwei Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Peixu Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiuxiu Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lu Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Siyuan Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Simin Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
27
|
Stellaard F, Lütjohann D. Dynamics of the enterohepatic circulation of bile acids in healthy humans. Am J Physiol Gastrointest Liver Physiol 2021; 321:G55-G66. [PMID: 33978477 DOI: 10.1152/ajpgi.00476.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of bile acid metabolism is normally discussed as the regulation of bile acid synthesis, which serves to compensate for intestinal loss in order to maintain a constant pool size. After a meal, bile acids start cycling in the enterohepatic circulation. Farnesoid X receptor-dependent ileal and hepatic processes lead to negative feedback inhibition of bile acid synthesis. When the intestinal bile acid flux decreases, the inhibition of synthesis is released. The degree of inhibition of synthesis and the mechanism and degree of activation are still unknown. Moreover, in humans, a biphasic diurnal expression pattern of bile acid synthesis has been documented, indicating maximal synthesis around 3 PM and 9 PM. Quantitative data on the hourly synthesis schedule as compensation for intestinal loss are lacking. In this review, we describe the classical view on bile acid metabolism and present alternative concepts that are based on the overlooked feature that bile acids transit through the enterohepatic circulation very rapidly. A daily profile of the cycling and total bile acid pool sizes and potential controlled and uncontrolled mechanisms for synthesis are predicted. It remains to be elucidated by which mechanism clock genes interact with the Farnesoid X receptor-controlled regulation of bile acid synthesis. This mechanism could become an attractive target to enhance bile acid synthesis at night, when cholesterol synthesis is high, thus lowering serum LDL-cholesterol.
Collapse
Affiliation(s)
- Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| |
Collapse
|
28
|
de Boer JF, de Vries HD, Palmiotti A, Li R, Doestzada M, Hoogerland JA, Fu J, La Rose AM, Westerterp M, Mulder NL, Hovingh MV, Koehorst M, Kloosterhuis NJ, Wolters JC, Bloks VW, Haas JT, Dombrowicz D, Staels B, van de Sluis B, Kuipers F. Cholangiopathy and Biliary Fibrosis in Cyp2c70-Deficient Mice Are Fully Reversed by Ursodeoxycholic Acid. Cell Mol Gastroenterol Hepatol 2020; 11:1045-1069. [PMID: 33309945 PMCID: PMC7898074 DOI: 10.1016/j.jcmgh.2020.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Bile acids (BAs) aid intestinal fat absorption and exert systemic actions by receptor-mediated signaling. BA receptors have been identified as drug targets for liver diseases. Yet, differences in BA metabolism between humans and mice hamper translation of pre-clinical outcomes. Cyp2c70-ablation in mice prevents synthesis of mouse/rat-specific muricholic acids (MCAs), but potential (patho)physiological consequences of their absence are unknown. We therefore assessed age- and gender-dependent effects of Cyp2c70-deficiency in mice. METHODS The consequences of Cyp2c70-deficiency were assessed in male and female mice at different ages. RESULTS Cyp2c70-/- mice were devoid of MCAs and showed high abundances of chenodeoxycholic and lithocholic acids. Cyp2c70-deficiency profoundly impacted microbiome composition. Bile flow and biliary BA secretion were normal in Cyp2c70-/- mice of both sexes. Yet, the pathophysiological consequences of Cyp2c70-deficiency differed considerably between sexes. Three-week old male Cyp2c70-/- mice showed high plasma BAs and transaminases, which spontaneously decreased thereafter to near-normal levels. Only mild ductular reactions were observed in male Cyp2c70-/- mice up to 8 months of age. In female Cyp2c70-/- mice, plasma BAs and transaminases remained substantially elevated with age, gut barrier function was impaired and bridging fibrosis was observed at advanced age. Addition of 0.1% ursodeoxycholic acid to the diet fully normalized hepatic and intestinal functions in female Cyp2c70-/- mice. CONCLUSION Cyp2c70-/- mice show transient neonatal cholestasis and develop cholangiopathic features that progress to bridging fibrosis in females only. These consequences of Cyp2c70-deficiency are restored by treatment with UDCA, indicating a role of BA hydrophobicity in disease development.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Hilde D de Vries
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; University of Groningen, Campus Fryslân, Leeuwarden, the Netherlands
| | - Anna Palmiotti
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Rumei Li
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marwah Doestzada
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Genetics University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Joanne A Hoogerland
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, F-59000 Lille, France
| | - Jingyuan Fu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Genetics University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anouk M La Rose
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niels L Mulder
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Milaine V Hovingh
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, F-59000 Lille, France
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; iPSC/CRISPR Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
29
|
Wang XJ, Chen BY, Yang BW, Yue TL, Guo CF. Short communication: Chemical structure, concentration, and pH are key factors influencing antimicrobial activity of conjugated bile acids against lactobacilli. J Dairy Sci 2020; 104:1524-1530. [PMID: 33246627 DOI: 10.3168/jds.2020-19293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
Effects of chemical structure, concentration, and pH on antimicrobial activity of conjugated bile acids were investigated in 4 strains of lactobacilli. Considerable differences were observed in the antimicrobial activity between the 6 human conjugated bile acids, including glycocholic acid, taurocholic acid, glycodeoxycholic acid, taurodeoxycholic acid, glycochenodeoxycholic acid, and taurochenodeoxycholic acid. Glycodeoxycholic acid and glycochenodeoxycholic acid generally showed significantly higher antimicrobial activity against the lactobacilli, but glycocholic acid and taurocholic acid exhibited the significantly lower antimicrobial activity. Glycochenodeoxycholic acid was selected for further analysis, and the results showed its antimicrobial activity was concentration-dependent, and there was a significantly negative linear correlation (R2 > 0.98) between bile-antimicrobial index and logarithmic concentration of the bile acid for each strain of lactobacilli. Additionally, the antimicrobial activity of glycochenodeoxycholic acid was also observed to be pH-dependent, and it was significantly enhanced with the decreasing pH, with the result that all the strains of lactobacilli were unable to grow at pH 5.0. In conclusion, chemical structure, concentration, and pH are key factors influencing antimicrobial activity of conjugated bile acids against lactobacilli. This study provides theoretical guidance and technology support for developing a scientific method for evaluating the bile tolerance ability of potentially probiotic strains of lactobacilli.
Collapse
Affiliation(s)
- Xue-Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bing-Yan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bao-Wei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Tian-Li Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chun-Feng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
30
|
Mikov M, Pavlović N, Stanimirov B, Đanić M, Goločorbin-Kon S, Stankov K, Al-Salami H. DPP-4 Inhibitors: Renoprotective Potential and Pharmacokinetics in Type 2 Diabetes Mellitus Patients with Renal Impairment. Eur J Drug Metab Pharmacokinet 2020; 45:1-14. [PMID: 31385198 DOI: 10.1007/s13318-019-00570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The continuously increasing incidence of diabetes worldwide has attracted the attention of the scientific community and driven the development of a novel class of antidiabetic drugs that can be safely and effectively used in diabetic patients. Of particular interest in this context are complications associated with diabetes, such as renal impairment, which is the main cause of high cardiovascular morbidity and mortality in diabetic patients. Intensive control of glucose levels and other risk factors associated with diabetes and metabolic syndrome provides the foundations for both preventing and treating diabetic nephropathy. Dipeptidyl peptidase-4 (DPP-4) inhibitors represent a highly promising novel class of oral agents used in the treatment of type 2 diabetes mellitus that may be successfully combined with currently available antidiabetic therapeutics in order to achieve blood glucose goals. Beyond glycemic control, emerging evidence suggests that DPP-4 inhibitors may have desirable off-target effects, including renoprotection. All type 2 diabetes mellitus patients with impaired renal function require dose adjustment of any DPP-4 inhibitor administered except for linagliptin, for which renal excretion is a minor elimination pathway. Thus, linagliptin is the drug most frequently chosen to treat type 2 diabetes mellitus patients with renal failure.
Collapse
Affiliation(s)
- Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia.
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Svetlana Goločorbin-Kon
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Biosciences Research Precinct, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
31
|
Zhang G, Chen L, Wen Y, Rao Z, Wei Y, Wu X. Pyridoxal isonicotinoyl hydrazone inhibition of FXR is involved in the pathogenesis of isoniazid-induced liver injury. Toxicol Appl Pharmacol 2020; 402:115134. [PMID: 32673658 DOI: 10.1016/j.taap.2020.115134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Isoniazid (INH)-induced liver injury may be associated with inhibition of the liver farnesoid X receptor (FXR). However, the relationship between FXR and INH-induced liver injury remained unclear. The present study was performed to clarify the role of inhibition of FXR in the pathogenesis of INH-induced liver injury and to further identify potential inhibitors of FXR from INH and its metabolites. HepaRG cells were treated with INH (10 mM) plus mixed bile acids (BA) and rats were treated with INH (60-600 mg/kg p.o.) or INH plus obeticholic acid (OCA, 10 mg/kg), a potent FXR agonist, for seven days. INH can cause BA-dependent toxicity and apoptosis with elevated intracellular bile acids in vitro; indeed, in these studies, liver bile acids and mRNA levels for Cyp7a1, an FXR target gene were increased, while mRNA levels for FXR and Shp were significantly decreased, and these changes could be prevented by co-treatment with the FXR agonist OCA. In silico molecular docking studies showed that INH, acetyl isoniazid, isonicotinic acid and PIH may be potential FXR inhibitors, and a TR-FRET FXR-coactivator assay confirmed that PIH is a strong antagonist of FXR (IC50 = 52 nM). To further determine if PIH also inhibits FXR activity in vivo, rats were treated with PIH directly (5 mg/kg). Liver total bile acids were significantly increased while FXR expression was not changed, but Shp mRNA levels were significantly decreased and Cyp7a1 mRNA was significantly increased, consistent with PIH acting as an FXR antagonist. In summary, PIH inhibition of liver FXR function leading to bile acid accumulation in hepatocytes may be an early pathogenesis event in INH-induced liver injury.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lin Chen
- Department of Infectious Disease, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuanjie Wen
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China,; College of Pharmaceutical Science, Lanzhou University, Lanzhou 730000, China
| | - Zhi Rao
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuhui Wei
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xin'an Wu
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China,.
| |
Collapse
|
32
|
Intestinal Inflammation Alters the Expression of Hepatic Bile Acid Receptors Causing Liver Impairment. J Pediatr Gastroenterol Nutr 2020; 71:189-196. [PMID: 32404746 DOI: 10.1097/mpg.0000000000002759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The gut-liver axis has been recently investigated in depth in relation to intestinal and hepatic diseases. Key actors are bile acid (BA) receptors, as farnesoid-X-receptor (FXR), pregnane-X-receptor (PXR), and G-protein-coupled-receptor (GPCR; TGR5), that control a broad range of metabolic processes as well as inflammation and fibrosis. The present study aims to investigate the impact of intestinal inflammation on liver health with a focus on FXR, PXR, and TGR5 expression. The strategy to improve liver health by reducing gut inflammation is also considered. Modulation of BA receptors in the inflamed colonic tissues of inflammatory bowel disease (IBD) pediatric patients is analyzed. METHODS A dextran sodium sulphate (DSS) colitis animal model was built. Co-cultures with Caco2 and HepG2 cell lines were set up. Modulation of BA receptors in biopsies of IBD pediatric patients was assessed by real-time PCR and immunohistochemistry. RESULTS Histology showed inflammatory cell infiltration in the liver of DSS mice, where FXR and PXR were significantly decreased and oxidative stress was increased. Exposure of Caco2 to inflammatory stimuli resulted in the reduction of BA receptor expression in HepG2. Caco2 treatment with dipotassium glycyrrhizate (DPG) reduced these effects on liver cells. Inflamed colon of patients showed altered FXR, PXR, and TGR5 expression. CONCLUSIONS This study strongly suggests that gut inflammation affects hepatic cells by altering BA receptor levels as well as increasing the production of pro-inflammatory cytokines and oxidative stress. Hence, reducing gut inflammation is needed not only to improve the intestinal disease but also to protect the liver.
Collapse
|
33
|
Wei X, Fan X, Feng Z, Ma Y, Lan X, Chen M. Ethyl acetate extract of herpetospermum pedunculosum alleviates α-naphthylisothiocyanate-induced cholestasis by activating the farnesoid x receptor and suppressing oxidative stress and inflammation in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153257. [PMID: 32534360 DOI: 10.1016/j.phymed.2020.153257] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Traditionally, seeds of Herpetospermum pedunculosum were used to treat liver disease or cholepathy. Up to date, their protecting effect against cholestasis was remain unclarified. PURPOSE To investigate the efficacy, possible mechanisms, and active constituents of the ethyl acetate extract from the seeds of Herpetospermum pedunculosum (HPEAE), studies were carried out using cholestasis rat model induced by α-naphthylisothiocyanate (ANIT). METHODS Male rats were intragastrically treated with HPEAE (100, 200 or 400 mg/kg) once a day for 7 days and were modeled with ANIT (60 mg/kg). The levels of serum indicators, bile flow, and histopathology were evaluated. Indices of oxidative stress and inflammatory mediators were detected using the enzyme-linked immunosorbent assay. Western blotting method was employed for analyzing the protein levels in the signal pathways of farnesoid X receptor (FXR), kelch ech associating protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) and nuclear factor κB (NF-κB). The chemical compositions of HPEAE was analyzed by HPLC, and partially chemical components of HPEAE were identified by comparisons of their retention times with the standards. The FXR agonistic activity of the identified compounds was evaluated in l-02 cells induced by guggulsterone using a high-content screening system. RESULTS The cholestasis caused by ANIT can be significantly ameliorated by restoring the liver function indexes of alanine transaminase, aspartate transaminase, alkaline phosphatase, gamma-glutamyltransferase, total bilirubin, direct bilirubin and total bile acid, which are dose-dependent, as well as pathological liver injury and bile flow. Mechanical studies suggested that HPEAE can activate the expression of FXR and then up regulate its downstream proteins (multidrug resistance-associated protein 2, bile salt export pump and Na+/taurocholate cotransporting polypeptide). Moreover, the levels of the active oxygen index glutathione, superoxide dismutase, glutathione peroxidase, catalase and malondialdehyde were markedly restored by treatment with HPEAE. Western blotting further confirmed that HPEAE up regulated the expression of quinone oxidoreductase 1, heme oxygenase 1 and Keap1, lowered the expression of Nrf2 and reduced oxidative stress. HPEAE also up regulated P-glycoprotein 65, phosphorylated P-glycoprotein 65 and inhibitor of NF-κB kinase α expression, down regulated inhibitor of NF-κB (IκB), restored inflammatory mediator tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6 and IL-10, and reduced inflammatory response. Fifteen compounds were identified (12 lignans and 3 coumarins). Among them, five lignans exhibited the significant FXR agonistic activity in vitro. CONCLUSION HPEAE may alleviate the cholestasis and liver injury caused by ANIT in rats by activating FXR, as well as suppressing the Keap1/Nrf2 and NF-κB signaling pathways and lignans may be its main active components.
Collapse
Affiliation(s)
- Xiaodong Wei
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Xudong Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Zhiying Feng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Yingxiong Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant R&D Center, XiZang Agriculture and Animal Husbandry College, Nyingchi, Tibet, P.R. China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China.
| |
Collapse
|
34
|
Yu H, Zhang L, Chen P, Liang X, Cao A, Han J, Wu X, Zheng Y, Qin Y, Xue M. Dietary Bile Acids Enhance Growth, and Alleviate Hepatic Fibrosis Induced by a High Starch Diet via AKT/FOXO1 and cAMP/AMPK/SREBP1 Pathway in Micropterus salmoides. Front Physiol 2019; 10:1430. [PMID: 31824338 PMCID: PMC6882294 DOI: 10.3389/fphys.2019.01430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
A 10-week feeding trial was conducted to investigate the effects of dietary bile acids (BA) on growth, glucose and lipid metabolism, liver histopathology, and the underlying regulation mechanism on AKT/FOXO1 (forkhead box O1) and cAMP/AMPK/SREBP1 (sterol regulatory element-binding protein 1) pathway in largemouth bass (Micropterus salmoides) fed with a high starch diet. Six experimental diets were prepared with BA levels at 0 (B0), 80 (B80), 160 (B160), 240 (B240), 300 (B300), and 600 (B600) mg/kg in a basal diet with 18.7% starch. Each diet was fed to six replicates with 30 fish (6.17 ± 0.03 g) in each tank. The highest weight gain rate (WGR) was observed in B300 group and the optimal level of BA was estimated at 475 mg/kg by a monistic cubic equation regression analysis. Dietary BA inclusion decreased hepatosomatic index (HSI) and hepatic lipid content significantly. The fish in B300 group clearly showed alleviated hepatic fibrosis, but more steatohepatitis symptoms diagnosed with various histopathological and immunofluorescence analysis. 10 out of 12 samples were observed hepatic fibrosis in B0 group while only two fibrosis samples in B300 group. The promoted liver histopathology by dietary BA was related to improved glucose and lipid metabolism. Dietary BA inhibited the expression of G6Pase by activating AKT and reducing FOXO1 transcription, which improved the regulation ability of gluconeogenesis, activated cAMP/AMPK and repressed SREBP1 transcription to inhibit hepatic lipogenesis, which prevented hepatic lipid accumulation. In conclusion, dietary BA enhanced the growth and alleviated liver fibrosis induced by a high starch diet to steatohepatitis/recovery symptom via improving glucose and lipid metabolism, which regulated by AKT/FOXO1 and cAMP/AMPK/SREBP1 pathway in largemouth bass.
Collapse
Affiliation(s)
- Huanhuan Yu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lulu Zhang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Chen
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aizhi Cao
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiufeng Wu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinhua Zheng
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchang Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Maeda T, Kanzaki H, Chiba T, Ao J, Kanayama K, Maruta S, Kusakabe Y, Saito T, Kobayashi K, Kiyono S, Nakamura M, Ogasawara S, Suzuki E, Ooka Y, Nakamoto S, Nakagawa R, Muroyama R, Kanda T, Maruyama H, Kato N. Serum fibroblast growth factor 19 serves as a potential novel biomarker for hepatocellular carcinoma. BMC Cancer 2019; 19:1088. [PMID: 31718608 PMCID: PMC6849282 DOI: 10.1186/s12885-019-6322-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
Background Abnormal autocrine fibroblast growth factor 19 (FGF19) production has been observed in several types of cancers, including hepatocellular carcinoma (HCC). In this study, we investigated the potential of serum FGF19 as a novel tumor marker of HCC based on a sandwich enzyme-linked immunosorbent assay (ELISA). Methods The serum FGF19 levels of 304 patients with HCC was measured by ELISA. The serum levels of existing markers, including alpha-fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP) were determined by chemiluminescence enzyme immunoassay. Both diagnostic value of FGF19 and its changes after curative ablation therapy was further examined. Results The median FGF19 levels in controls, chronic liver disease patients, and primary HCC patients, were 78.8 pg/mL, 100.1 pg/mL, and 214.5 pg/mL, respectively. The subsequent receiver operating characteristic curves (ROC) successfully determined an optimal cut-off value of 200.0 pg/mL. The area under the ROC curve (AUC) of FGF19 for HCC detection was comparable to those of AFP and DCP. Of importance, FGF19 showed higher sensitivity for the detection of small HCC (solitary cancer with diameter < 20 mm) than those of existing markers. In addition, 43 out of 79 cases (54.4%) with normal AFP and DCP (so-called “double negative HCC”) exhibited serum FGF19 level ≥ 200 pg/mL. In 45 HCC patients treated with curative ablation therapy, serum FGF19 levels changed from 257.4 pg/mL to 112.0 pg/mL after the treatment. Conclusion Our findings reveal that FGF19 can be a potential novel biomarker for HCC. Although FGF19 is not necessarily a substitute for existing markers, it may help improve the prognosis in HCC patients owing to its resourceful use in various aspects of HCC management and treatment.
Collapse
Affiliation(s)
- Takahiro Maeda
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Susumu Maruta
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Eiichiro Suzuki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yoshihiko Ooka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ryosuke Muroyama
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Hepatology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hitoshi Maruyama
- Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
36
|
Li SX, Lv TT, Zhang CP, Wang TQ, Tian D, Sun GY, Wang Y, Zhao XY, Duan WJ, Chen S, Li M, Ma H, Kong YY, You H, Ou XJ, Chen GY, Su JR, Zhang D, Jia JD. Alteration of liver-infiltrated and peripheral blood double-negative T-cells in primary biliary cholangitis. Liver Int 2019; 39:1755-1767. [PMID: 31087812 DOI: 10.1111/liv.14136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/28/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Double-negative (DN) T-cell is a unique regulatory T-cell, which is essential for maintaining immune system homoeostasis. However, the role of DN T-cells in the pathogenesis of primary biliary cholangitis (PBC) is still unknown. METHODS We investigated the number and function of DN T-cells in peripheral blood and liver biopsy specimens of PBC patients. RESULTS The number and frequency of DN T-cells significantly decreased in peripheral blood and liver tissue of PBC patients. Furthermore, the frequency of DN T-cells in PBC was negatively correlated with disease severity and positively correlated with ursodeoxycholic acid response. In vitro assays showed that perforin expression and the suppressive capability of DN T-cells on the proliferation of CD4+ and CD8+ T-cells were impaired in PBC. Finally, lithocholic acid, the most hydrophobic acid, could downregulate the proliferation and perforin expression of DN T-cells. CONCLUSIONS Decreased quantity and function of DN T-cells in PBC may result in the loss of immune regulations on effector CD4+ and cytotoxic CD8+ T-cells, and thereby may break the immune tolerance and promote the pathogenesis of PBC.
Collapse
Affiliation(s)
- Shu X Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Ting T Lv
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Chun P Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Tian Q Wang
- Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Dan Tian
- Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Guang Y Sun
- Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Yan Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Xin Y Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Wei J Duan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Sha Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Min Li
- National Clinical Research Center for Digestive Disease, Beijing, China
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Yuan Y Kong
- National Clinical Research Center for Digestive Disease, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Xiao J Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| | - Guang Y Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian R Su
- Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- National Clinical Research Center for Digestive Disease, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Ji D Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing, China
| |
Collapse
|
37
|
Kwak BJ, Choi HJ, Kim OH, Kim KH, You YK, Lee TY, Ahn J, Kim SJ. The Role of Phospho-c-Jun N-Terminal Kinase Expression on hepatocyte Necrosis and Autophagy in the Cholestatic Liver. J Surg Res 2019; 241:254-263. [PMID: 31035140 DOI: 10.1016/j.jss.2019.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Clinically, liver fibrosis and cholestasis are two major disease entities, ultimately leading to hepatic failure. Although autophagy plays a substantial role in the pathogenesis of these diseases, its precise mechanism has not been determined yet. MATERIALS AND METHODS Mouse models of liver fibrosis or cholestasis were obtained after the serial administration of thioacetamide (TAA) or surgical bile duct ligation (BDL), respectively. Then, after obtaining liver specimens at specific time points, we compared the expression of makers related to apoptosis (cleaved caspases), inflammation (CD68), necrosis (high-mobility group box 1), phospho-c-Jun N-terminal kinase (p-JNK), and autophagy (microtubule-associated protein light chain 3B and p62) in the fibrotic or cholestatic mouse livers, by polymerase chain reaction, Western blot analysis, immunohistochemistry, and immunofluorescence. RESULTS Although cholestatic livers exhibited the tendency of progressively increasing the expression of most apoptosis-related markers (cleaved caspases), it was not prominent when it was compared with the tendency found in the livers of TAA-treated mice. Contrastingly, the necrosis-related factor (high-mobility group box 1) was significantly increased in the livers of BDL mice over time, reaching their peak values on day 7 after BDL. In addition, the inflammation-related factor (CD68) was highly expressed in BDL mice compared with TAA-treated mice over time. Autophagy marker studies indicated that autophagy was upregulated in fibrotic livers, whereas it was downregulated in cholestatic livers. We also observed mild to moderate activation of p-JNK in the livers of TAA-treated mice, whereas significantly higher p-JNK activation was detected in the livers of BDL mice. CONCLUSIONS Unlike TAA-treated mice, BDL mice exhibited higher expression of the markers related with inflammation and necrosis, especially including p-JNK, while maintaining low levels of autophagic process. Therefore, obstructive cholestasis is characterized by higher p-JNK activation, which could be related with marked necrotic cell death resulting from extensive inflammation and little chance of compensatory autophagy.
Collapse
Affiliation(s)
- Bong Jun Kwak
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ok-Hee Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Kyoung You
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae Yoon Lee
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joseph Ahn
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Glycochenodeoxycholate promotes hepatocellular carcinoma invasion and migration by AMPK/mTOR dependent autophagy activation. Cancer Lett 2019; 454:215-223. [PMID: 30980867 DOI: 10.1016/j.canlet.2019.04.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 01/07/2023]
Abstract
Metastasis and recurrence severely impact the treatment effect of hepatocellular carcinoma (HCC). HCC complicated with cholestasis is more prone to recurrence and metastasis. Previous studies have implicated pathogenesis of HCC by bile acid; however, the underlying mechanism is unknown yet. Glycochenodeoxycholate (GCDC) is one of most important component of bile acid (BA). In the present study, the role of GCDC in HCC cells invasion was detected by in vitro and in vivo assays. GCDC was found to significantly enhance the invasive potential of HCC cells; Further studies showed that GCDC could induce autophagy activation and higher invasive capability in HCC cells. Interestingly, inhibition of autophagy by chloroquine (CQ) reversed this phenomenon. Subsequently, the correlation between TBA expression level and clinicopathological characteristics was analyzed in HCC patients. Clinically, high TBA level in HCC tissue was found to be associated with more invasive and poor survival in HCC patients. Mechanistic study showed that bile acid induced autophagy by targeting the AMPK/mTOR pathway in HCC cells. Therefore, our results suggest that bile acid may promote HCC invasion via activation of autophagy and the level of bile acid may serve as a potential useful indicator for prognosis of HCC patients.
Collapse
|
39
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
40
|
Cabrera D, Arab JP, Arrese M. UDCA, NorUDCA, and TUDCA in Liver Diseases: A Review of Their Mechanisms of Action and Clinical Applications. Handb Exp Pharmacol 2019; 256:237-264. [PMID: 31236688 DOI: 10.1007/164_2019_241] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bile acids (BAs) are key molecules in generating bile flow, which is an essential function of the liver. In the last decades, there have been great advances in the understanding of BA physiology, and new insights have emerged regarding the role of BAs in determining cell damage and death in several liver diseases. This new knowledge has helped to better delineate the pathophysiology of cholestasis and the adaptive responses of hepatocytes to cholestatic liver injury as well as of the mechanisms of injury of biliary epithelia. In this context, therapeutic approaches for liver diseases using hydrophilic BA (i.e., ursodeoxycholic acid, tauroursodeoxycholic, and, more recently, norursodeoxycholic acid), have been revamped. In the present review, we summarize current experimental and clinical data regarding these BAs and its role in the treatment of certain liver diseases.
Collapse
Affiliation(s)
- Daniel Cabrera
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
41
|
Ðanić M, Stanimirov B, Pavlović N, Goločorbin-Kon S, Al-Salami H, Stankov K, Mikov M. Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Front Pharmacol 2018; 9:1382. [PMID: 30559664 PMCID: PMC6287190 DOI: 10.3389/fphar.2018.01382] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Apart from well-known functions of bile acids in digestion and solubilization of lipophilic nutrients and drugs in the small intestine, the emerging evidence from the past two decades identified the role of bile acids as signaling, endocrine molecules that regulate the glucose, lipid, and energy metabolism through complex and intertwined pathways that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1). Interactions of bile acids with the gut microbiota that result in the altered composition of circulating and intestinal bile acids pool, gut microbiota composition and modified signaling pathways, are further extending the complexity of biological functions of these steroid derivatives. Thus, bile acids signaling pathways have become attractive targets for the treatment of various metabolic diseases and metabolic syndrome opening the new potential avenue in their treatment. In addition, there is a significant effort to unveil some specific properties of bile acids relevant to their intrinsic potency and selectivity for particular receptors and to design novel modulators of these receptors with improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis of few semi-synthetic bile acids derivatives such as 6α-ethyl-chenodeoxycholic acid (obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary disorders. This review presents an overview of the current knowledge related to bile acids implications in glucose, lipid and energy metabolism, as well as a potential application of bile acids in metabolic syndrome treatment with future perspectives.
Collapse
Affiliation(s)
- Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Biosciences Research Precinct, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
42
|
Wiest J, Saedtler M, Böttcher B, Grüne M, Reggane M, Galli B, Holzgrabe U, Meinel L. Geometrical and Structural Dynamics of Imatinib within Biorelevant Colloids. Mol Pharm 2018; 15:4470-4480. [DOI: 10.1021/acs.molpharmaceut.8b00469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes Wiest
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, DE-97074 Wuerzburg, Germany
| | - Marco Saedtler
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, DE-97074 Wuerzburg, Germany
| | - Bettina Böttcher
- Department of Biochemistry, Rudolf Virchow Center, University of Wuerzburg, Josef-Schneider-Straße 2, DE-97080 Wuerzburg, Germany
| | - Marvin Grüne
- Institute of Organic Chemistry, University of Wuerzburg, DE-97074 Wuerzburg, Germany
| | - Maude Reggane
- Novartis Pharma AG, Lichtstraße 35, CH-4002 Basel, Switzerland
| | - Bruno Galli
- Novartis Pharma AG, Lichtstraße 35, CH-4002 Basel, Switzerland
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, DE-97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, DE-97074 Wuerzburg, Germany
| |
Collapse
|
43
|
Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:895-911. [PMID: 29782919 DOI: 10.1016/j.bbadis.2018.05.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
The use of animal models, particularly genetically modified mice, continues to play a critical role in studying the relationship between bile acid metabolism and human liver disease. Over the past 20 years, these studies have been instrumental in elucidating the major pathways responsible for bile acid biosynthesis and enterohepatic cycling, and the molecular mechanisms regulating those pathways. This work also revealed bile acid differences between species, particularly in the composition, physicochemical properties, and signaling potential of the bile acid pool. These species differences may limit the ability to translate findings regarding bile acid-related disease processes from mice to humans. In this review, we focus primarily on mouse models and also briefly discuss dietary or surgical models commonly used to study the basic mechanisms underlying bile acid metabolism. Important phenotypic species differences in bile acid metabolism between mice and humans are highlighted.
Collapse
Affiliation(s)
- Jianing Li
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|