1
|
Singh R, Kulthinee S, Nasci VL, Akwo EA, Umunna CJ, Almutlaq RN, Pochynyuk OM, Robinson-Cohen C, Gohar EY. G-Protein-Coupled Estrogen Receptor 1 and Pregnancy Confer Protection Against Hypertension in Older Females. Circulation 2025; 151:1126-1129. [PMID: 40228067 PMCID: PMC11999251 DOI: 10.1161/circulationaha.124.073693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Supaporn Kulthinee
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Elvis A. Akwo
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Chibundu Juliet Umunna
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Rawan N. Almutlaq
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Oleh M. Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX
| | | | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Natale CA, Mercado S, Zhuang R, Aguirre-Portolés C, Olayide I, Arnatt CK, Seykora JT, Garyantes TK, Luke W, Ridky TW. LNS8801: An Enantiomerically Pure Agonist of the G Protein-Coupled Estrogen Receptor Suitable for Clinical Development. CANCER RESEARCH COMMUNICATIONS 2025; 5:556-568. [PMID: 40066851 PMCID: PMC11969138 DOI: 10.1158/2767-9764.crc-24-0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
SIGNIFICANCE GPER is broadly expressed in human tissues and has tumor-suppressive activity. No FDA-approved agents selectively target GPER. LNS8801 is a synthetic, orally bioavailable, enantiomerically pure, GPER agonist with potent anticancer activity in vivo. LNS8801 response is attenuated by a common germline coding variant present in roughly half of humans.
Collapse
Affiliation(s)
- Christopher A. Natale
- Linnaeus Therapeutics, Haddonfield, New Jersey
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sophia Mercado
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard Zhuang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cristina Aguirre-Portolés
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Israel Olayide
- Department of Chemistry and Biochemistry, Saint Louis University, St. Louis, Missouri
| | - Christopher K. Arnatt
- Department of Chemistry and Biochemistry, Saint Louis University, St. Louis, Missouri
| | - John T. Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Wayne Luke
- Linnaeus Therapeutics, Haddonfield, New Jersey
| | - Todd W. Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Natale CA, Mercado S, Zhuang R, Aguirre-Portolés C, Olayide I, Arnatt CK, Seykora JT, Garyantes TK, Luke W, Ridky TW. LNS8801: An enantiomerically pure agonist of the G protein-coupled estrogen receptor suitable for clinical development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625421. [PMID: 39651267 PMCID: PMC11623565 DOI: 10.1101/2024.11.26.625421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Estrogen effects in tissue are mediated in part through activation of the surface estrogen receptor GPER, a broadly expressed G protein-coupled receptor that impacts a wide range of normal and pathologic processes, including metabolism, vascular health, inflammation, and cancer. A commonly used synthetic and specific GPER agonist, named G-1, antagonizes tumors by promoting cellular differentiation and enhancing tumor immunogenicity. G-1 is a racemic compound, and since its discovery, the question of whether both enantiomers display agonist activity or the agonist activity resides primarily in a single enantiomer has never been fully resolved. Herein, we disclose the isolation of the pure enantiomers of G-1 and determine that the desirable activity resides exclusively in 1 enantiomer, named LNS8801, whose configuration we have unambiguously determined by single crystal x-ray structure analysis. Using preclinical models, we show that LNS8801 suppresses cancer in a GPER-dependent manner and that LNS8801 is efficacious when administered orally. Further, we show that GPER is widely, but not ubiquitously, expressed in both normal and malignant human tissues. In addition, an attenuated response to LNS8801 is observed in a common germline coding variant in human GPER. These findings support ongoing human cancer trials with LNS8801 and suggest that the germline GPER genotype may serve as a predictive biomarker of therapeutic response.
Collapse
|
4
|
Nurkkala J, Vaura F, Toivonen J, Niiranen T. Genetics of hypertension-related sex differences and hypertensive disorders of pregnancy. Blood Press 2024; 33:2408574. [PMID: 39371034 DOI: 10.1080/08037051.2024.2408574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Background: Hypertension and hypertensive disorders of pregnancy (HDP) cause a significant burden of disease on societies and individuals by increasing cardiovascular disease risk. Environmental risk factors alone do not explain the observed sexual dimorphism in lifetime blood pressure (BP) trajectories nor inter-individual variation in HDP risk. Methods: In this short review, we focus on the genetics of hypertension-related sex differences and HDP and discuss the importance of genetics utilization for sex-specific hypertension risk prediction. Results: Population and twin studies estimate that 28-66% of variation in BP levels and HDP is explained by genetic variation, while genomic wide association studies suggest that BP traits and HDP partly share a common genetic background. Moreover, environmental and epigenetic regulation of these genes differ by sex and oestrogen receptors in particular are shown to convey cardio- and vasculoprotective effects through epigenetic regulation of DNA. The majority of known genetic variation in hypertension and HDP is polygenic. Polygenic risk scores for BP display stronger associations with hypertension risk in women than in men and are associated with sex-specific age of hypertension onset. Monogenic forms of hypertension are rare and mostly present equally in both sexes. Conclusion: Despite recent genetic discoveries providing new insights into HDP and sex differences in BP traits, further research is needed to elucidate the underlying biology. Emphasis should be placed on demonstrating the added clinical value of these genetic discoveries, which may eventually facilitate genomics-based personalized treatments for hypertension and HDP.
Collapse
Affiliation(s)
- Jouko Nurkkala
- Division of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
- Department of Anesthesiology and Intensive Care, University of Turku, Turku, Finland
| | - Felix Vaura
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jenni Toivonen
- Division of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
- Department of Anesthesiology and Intensive Care, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Department of Internal Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku, Finland
| |
Collapse
|
5
|
Yang Y, Wang Y, Zou H, Li Z, Chen W, Huang Z, Weng Y, Yu X, Xu J, Zheng L. GPER1 signaling restricts macrophage proliferation and accumulation in human hepatocellular carcinoma. Front Immunol 2024; 15:1481972. [PMID: 39582864 PMCID: PMC11582010 DOI: 10.3389/fimmu.2024.1481972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Background Sex hormones and their related receptors have been reported to impact the development and progression of tumors. However, their influence on the composition and function of the tumor microenvironment is not well understood. We aimed to investigate the influence of sex disparities on the proliferation and accumulation of macrophages, one of the major components of the tumor microenvironment, in hepatocellular carcinoma (HCC). Methods Immunohistochemistry was applied to assess the density of immune cells in HCC tissues. The role of sex hormone related signaling in macrophage proliferation was determined by immunofluorescence and flow cytometry. The underlying regulatory mechanisms were examined with both in vitro experiments and murine HCC models. Results We found higher levels of macrophage proliferation and density in tumor tissues from male patients compared to females. The expression of G protein-coupled estrogen receptor 1 (GPER1), a non-classical estrogen receptor, was significantly decreased in proliferating macrophages, and was inversely correlated with macrophage proliferation in HCC tumors. Activation of GPER1 signaling with a selective agonist G-1 suppressed macrophage proliferation by downregulating the MEK/ERK pathway. Additionally, G-1 treatment reduced PD-L1 expression on macrophages and delayed tumor growth in mice. Moreover, patients with a higher percentage of GPER1+ macrophages exhibited longer overall survival and recurrence-free survival compared to those with a lower level. Conclusions These findings reveal a novel role of GPER1 signaling in regulating macrophage proliferation and function in HCC tumors and may offer a potential strategy for designing therapies based on understanding sex-related disparities of patients.
Collapse
Affiliation(s)
- Yanyan Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongchun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixiong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weibai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yulan Weng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xingjuan Yu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Almutlaq RN, Pollock DM, Gohar EY. Endothelin receptor B is required for the blood pressure-lowering effect of G protein-coupled estrogen receptor 1 in ovariectomized rats. Am J Physiol Renal Physiol 2024; 327:F599-F609. [PMID: 39143913 PMCID: PMC11483081 DOI: 10.1152/ajprenal.00059.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
Activation of G protein-coupled estrogen receptor 1 (GPER1) elicits antihypertensive actions in different animal models. The endothelin-1 signaling system plays a fundamental role in blood pressure regulation. Lack of functional endothelin receptor B (ETB) evokes hypertension and salt sensitivity. GPER1 and ETB interact to promote urinary sodium excretion in female rats. We hypothesized that activation of GPER1 protects against hypertension and salt sensitivity induced by ETB antagonism in female rats. Female Sprague-Dawley rats were implanted with radiotelemetry. Animals were then subjected to ovariectomy and simultaneously implanted with minipumps to deliver either the GPER1 agonist G1 or its corresponding vehicle. Two weeks post surgery, we initiated treatment of rats with the ETB antagonist A-192621. Animals were maintained on a normal-salt diet and then challenged with a high-salt diet for an additional 5 days. Assessment of mean arterial blood pressure revealed an increase in vehicle-treated, but not G1-treated, rats in response to ovariectomy. A-192621 increased blood pressure in normal-salt diet-fed vehicle- and G1-treated rats. G1 improved the circadian blood pressure rhythms that were disrupted in A-192621-treated ovariectomized rats. Thus, although systemic GPER1 activation did not protect ovariectomized rats from hypertension and salt sensitivity induced by ETB antagonism, it maintained circadian blood pressure rhythms. Functional ETB is required to elicit the antihypertensive actions of GPER1. Additional studies are needed to improve our understanding of the interaction between G protein-coupled receptors in regulating circadian blood pressure rhythm.NEW & NOTEWORTHY Systemic G protein-coupled estrogen receptor 1 (GPER1) activation in rats prevents the increase in blood pressure evoked by ovariectomy. Blockade of endothelin receptor B negates the blood pressure-lowering impact of GPER1 in ovariectomized rats. Endothelin receptor B plays an important role in mediating the blood pressure-lowering action of GPER1 activation in female rats.
Collapse
Affiliation(s)
- Rawan N Almutlaq
- Cardiorenal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Cardiorenal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Eman Y Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
7
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
8
|
Li X, Kuang W, Qiu Z, Zhou Z. G protein-coupled estrogen receptor: a promising therapeutic target for aldosterone-induced hypertension. Front Endocrinol (Lausanne) 2023; 14:1226458. [PMID: 37664844 PMCID: PMC10471144 DOI: 10.3389/fendo.2023.1226458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Aldosterone is one of the most essential hormones synthesized by the adrenal gland because it regulates water and electrolyte balance. G protein-coupled estrogen receptor (GPER) is a newly discovered aldosterone receptor, which is proposed to mediate the non-genomic pathways of aldosterone while the hormone simultaneously interacts with mineralocorticoid receptor. In contrast to its cardio-protective role in postmenopausal women via its interaction with estrogen, GPER seems to trigger vasoconstriction effects and can further induce water and sodium retention in the presence of aldosterone, indicating two entirely different binding sites and effects for estrogen and aldosterone. Accumulating evidence also points to a role of aldosterone in mediating hypertension and its risk factors via the interaction with GPER. Therefore, with this review, we aimed to summarize the research on these interactions to help (1) elucidate the role of GPER activated by aldosterone in the blood vessels, heart, and kidney; (2) compare the non-genomic actions between aldosterone and estrogen mediated by GPER; and (3) address the potential of GPER as a new promising therapeutic target for aldosterone-induced hypertension.
Collapse
Affiliation(s)
- Xuehan Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Kuang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
10
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
11
|
Dong M, Liu J, Liu C, Wang H, Sun W, Liu B. CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacol Res 2022; 185:106480. [PMID: 36191879 DOI: 10.1016/j.phrs.2022.106480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
Abstract
The development of gene-editing technology has been one of the biggest advances in biomedicine over the past two decades. Not only can it be used as a research tool to build a variety of disease models for the exploration of disease pathogenesis at the genetic level, it can also be used for prevention and treatment. This is done by intervening with the expression of target genes and carrying out precise molecular targeted therapy for diseases. The simple and flexible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing technology overcomes the limitations of zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). For this reason, it has rapidly become a preferred method for gene editing. As a new gene intervention method, CRISPR/Cas9 has been widely used in the clinical treatment of tumours and rare diseases; however, its application in the field of cardiovascular diseases is currently limited. This article reviews the application of the CRISPR/Cas9 editing technology in cardiovascular disease research and treatment, and discusses the limitations and prospects of this technology.
Collapse
Affiliation(s)
- Mengying Dong
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Jiangen Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People's Hospital, 33 Wenyi Road, ShenYang, China, 110016
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| |
Collapse
|
12
|
G-Protein-Coupled Estrogen Receptor Expression in Rat Uterine Artery Is Increased by Pregnancy and Induces Dilation in a Ca2+ and ERK1/2 Dependent Manner. Int J Mol Sci 2022; 23:ijms23115996. [PMID: 35682675 PMCID: PMC9180712 DOI: 10.3390/ijms23115996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing levels of estrogens across gestation are partly responsible for the physiological adaptations of the maternal vasculature to pregnancy. The G protein-coupled estrogen receptor (GPER) mediates acute vasorelaxing effects in the uterine vasculature, which may contribute to the regulation of uteroplacental blood flow. The aim of this study was to investigate whether GPER expression and vasorelaxation may occur following pregnancy. Elucidation of the functional signalling involved was also investigated. Radial uterine and third-order mesenteric arteries were isolated from non-pregnant (NP) and pregnant rats (P). GPER mRNA levels were determined and—concentration–response curve to the GPER-specific agonist, G1 (10−10–10−6 M), was assessed in arteries pre-constricted with phenylephrine. In uterine arteries, GPER mRNA expression was significantly increased and vasorelaxation to G1 was significantly enhanced in P compared with NP rats. Meanwhile, in mesenteric arteries, there was a similar order of magnitude in NP and P rats. Inhibition of L-type calcium channels and extracellular signal-regulated kinases 1/2 significantly reduced vasorelaxation triggered by G1 in uterine arteries. Increased GPER expression and GPER-mediated vasorelaxation are associated with the advancement of gestation in uterine arteries. The modulation of GPER is exclusive to uterine arteries, thus suggesting a physiological contribution of GPER toward the regulation of uteroplacental blood flow during pregnancy.
Collapse
|
13
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|
14
|
Vaura F, Palmu J, Aittokallio J, Kauko A, Niiranen T. Genetic, Molecular, and Cellular Determinants of Sex-Specific Cardiovascular Traits. Circ Res 2022; 130:611-631. [PMID: 35175841 DOI: 10.1161/circresaha.121.319891] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the well-known sex dimorphism in cardiovascular disease traits, the exact genetic, molecular, and cellular underpinnings of these differences are not well understood. A growing body of evidence currently points at the links between cardiovascular disease traits and the genome, epigenome, transcriptome, and metabolome. However, the sex-specific differences in these links remain largely unstudied due to challenges in bioinformatic methods, inadequate statistical power, analytic costs, and paucity of valid experimental models. This review article provides an overview of the literature on sex differences in genetic architecture, heritability, epigenetic changes, transcriptomic signatures, and metabolomic profiles in relation to cardiovascular disease traits. We also review the literature on the associations between sex hormones and cardiovascular disease traits and discuss the potential mechanisms underlying these associations, focusing on human studies.
Collapse
Affiliation(s)
- Felix Vaura
- Department of Internal Medicine (F.V., J.P., A.K., T.N.), University of Turku, Finland
| | - Joonatan Palmu
- Department of Internal Medicine (F.V., J.P., A.K., T.N.), University of Turku, Finland
| | - Jenni Aittokallio
- Department of Anesthesiology and Intensive Care (J.A.), University of Turku, Finland.,Division of Perioperative Services, Intensive Care and Pain Medicine (J.A.), Turku University Hospital, Finland
| | - Anni Kauko
- Department of Internal Medicine (F.V., J.P., A.K., T.N.), University of Turku, Finland
| | - Teemu Niiranen
- Department of Internal Medicine (F.V., J.P., A.K., T.N.), University of Turku, Finland.,Division of Medicine (T.N.), Turku University Hospital, Finland.,Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland (T.N.)
| |
Collapse
|
15
|
Guo H, Liu L, Nishiga M, Cong L, Wu JC. Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends Genet 2021; 37:1109-1123. [PMID: 34509299 DOI: 10.1016/j.tig.2021.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Genetic variants play an important role in conferring risk for cardiovascular diseases (CVDs). With the rapid development of next-generation sequencing (NGS), thousands of genetic variants associated with CVDs have been identified by genome-wide association studies (GWAS), but the function of more than 40% of genetic variants is still unknown. This gap of knowledge is a barrier to the clinical application of the genetic information. However, determining the pathogenicity of a variant of uncertain significance (VUS) is challenging due to the lack of suitable model systems and accessible technologies. By combining clustered regularly interspaced short palindromic repeats (CRISPR) and human induced pluripotent stem cells (iPSCs), unprecedented advances are now possible in determining the pathogenicity of VUS in CVDs. Here, we summarize recent progress and new strategies in deciphering pathogenic variants for CVDs using CRISPR-edited human iPSCs.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Huang D, Wang X, Zhu Y, Gong J, Liang J, Song Y, Zhang Y, Liu L, Wei C. Bazi Bushen Capsule Alleviates Post-Menopausal Atherosclerosis via GPER1-Dependent Anti-Inflammatory and Anti-Apoptotic Effects. Front Pharmacol 2021; 12:658998. [PMID: 34248622 PMCID: PMC8267998 DOI: 10.3389/fphar.2021.658998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
Bazi Bushen capsule (BZBS), as a Chinese medicine used to relieve fatigue, has been proven effective for the treatment of atherogenesis through antilipid effects. To investigate the potential mechanism of BZBS in the anti-atherosclerotic effect, Ovx/ApoE-/- mice were applied to investigate the anti-atherosclerotic efficiency and potential mechanism of BZBS. Therapeutic effect was evaluated based on the number of CD68+ and CD3+ cells, the level of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and the ratio of cleaved caspase-3/caspase-3, as well as increasing ratio of Bcl2/Bax. Human umbilical vein endothelial cells (HUVECs) were chosen to evaluate the role of GPER1. Treatment with BZBS reduced lipid deposition by reducing the numbers of CD68+ and CD3+ cells, the level of ICAM-1 and VCAM-1, and the ratio of cleaved caspase-3/caspase-3, and increasing the ratio of Bcl2/Bax as compared with the control group. In si-GPER1-treated HUVECs, the anti-apoptotic effect of BZBS was decreased. This study revealed that BZBS exhibited a clear effect against atherogenesis via GPER1-dependent anti-inflammatory and anti-apoptotic mechanisms. We believe that this manuscript is informative and useful for researchers pursuing the related alleviation of post-menopausal AS via anti-inflammatory and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Dan Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xindong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yunhong Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Juexiao Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Junqing Liang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Yanfei Song
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Yiyan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Linsheng Liu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
17
|
Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol 2021; 178:3849-3863. [PMID: 33948934 DOI: 10.1111/bph.15521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
As an agonist of the classical nuclear receptors, estrogen receptor-α and -β (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
18
|
Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling. Curr Res Physiol 2021; 4:103-118. [PMID: 34746830 PMCID: PMC8562205 DOI: 10.1016/j.crphys.2021.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In modern society, cardiovascular disease remains the biggest single threat to life, being responsible for approximately one third of worldwide deaths. Male prevalence is significantly higher than that of women until after menopause, when the prevalence of CVD increases in females until it eventually exceeds that of men. Because of the coincidence of CVD prevalence increasing after menopause, the role of estrogen in the cardiovascular system has been intensively researched during the past two decades in vitro, in vivo and in observational studies. Most of these studies suggested that endogenous estrogen confers cardiovascular protective and anti-inflammatory effects. However, clinical studies of the cardioprotective effects of hormone replacement therapies (HRT) not only failed to produce proof of protective effects, but also revealed the potential harm estrogen could cause. The "critical window of hormone therapy" hypothesis affirms that the moment of its administration is essential for positive treatment outcomes, pre-menopause (3-5 years before menopause) and immediately post menopause being thought to be the most appropriate time for intervention. Since many of the cardioprotective effects of estrogen signaling are mediated by effects on the vasculature, this review aims to discuss the effects of estrogen on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) with a focus on the role of estrogen receptors (ERα, ERβ and GPER) in triggering the more recently discovered rapid, or membrane delimited (non-genomic), signaling cascades that are vital for regulating vascular tone, preventing hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Ana-Roberta Niță
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
| | - Greg A. Knock
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Richard J. Heads
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- Cardiovascular Research Section, King’s BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King’s College London, UK
| |
Collapse
|
19
|
Gohar EY, Almutlaq RN, Daugherty EM, Butt MK, Jin C, Pollock JS, Pollock DM, De Miguel C. Activation of G protein-coupled estrogen receptor 1 ameliorates proximal tubular injury and proteinuria in Dahl salt-sensitive female rats. Am J Physiol Regul Integr Comp Physiol 2021; 320:R297-R306. [PMID: 33407017 PMCID: PMC7988769 DOI: 10.1152/ajpregu.00267.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Recent evidence indicates a crucial role for G protein-coupled estrogen receptor 1 (GPER1) in the maintenance of cardiovascular and kidney health in females. The current study tested whether GPER1 activation ameliorates hypertension and kidney damage in female Dahl salt-sensitive (SS) rats fed a high-salt (HS) diet. Adult female rats were implanted with telemetry transmitters for monitoring blood pressure and osmotic minipumps releasing G1 (selective GPER1 agonist, 400 μg/kg/day ip) or vehicle. Two weeks after pump implantation, rats were shifted from a normal-salt (NS) diet (0.4% NaCl) to a matched HS diet (4.0% NaCl) for 2 wk. Twenty-four hour urine samples were collected during both diet periods and urinary markers of kidney injury were assessed. Histological assessment of kidney injury was conducted after the 2-wk HS diet period. Compared with values during the NS diet, 24-h mean arterial pressure markedly increased in response to HS, reaching similar values in vehicle-treated and G1-treated rats. HS also significantly increased urinary excretion of protein, albumin, nephrin (podocyte damage marker), and KIM-1 (proximal tubule injury marker) in vehicle-treated rats. Importantly, G1 treatment prevented the HS-induced proteinuria, albuminuria, and increase in KIM-1 excretion but not nephrinuria. Histological analysis revealed that HS-induced glomerular damage did not differ between groups. However, G1 treatment preserved proximal tubule brush-border integrity in HS-fed rats. Collectively, our data suggest that GPER1 activation protects against HS-induced proteinuria and albuminuria in female Dahl SS rats by preserving proximal tubule brush-border integrity in a blood pressure-independent manner.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rawan N Almutlaq
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth M Daugherty
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maryam K Butt
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
20
|
Sharma G, Hu C, Staquicini DI, Brigman JL, Liu M, Mauvais-Jarvis F, Pasqualini R, Arap W, Arterburn JB, Hathaway HJ, Prossnitz ER. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci Transl Med 2020; 12:12/528/eaau5956. [PMID: 31996464 DOI: 10.1126/scitranslmed.aau5956] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/23/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERβ, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Chelin Hu
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Daniela I Staquicini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Franck Mauvais-Jarvis
- Diabetes Discovery and Sex-Based Medicine Laboratory, Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.,Section of Endocrinology, Southeast Louisiana Veterans Administration Health Care System, New Orleans, LA 70112, USA
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Helen J Hathaway
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA. .,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
21
|
Gohar EY. G protein-coupled estrogen receptor 1 as a novel regulator of blood pressure. Am J Physiol Renal Physiol 2020; 319:F612-F617. [PMID: 32893662 DOI: 10.1152/ajprenal.00045.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying hypertension are multifaceted and incompletely understood. New evidence suggests that G protein-coupled estrogen receptor 1 (GPER1) mediates protective actions within the cardiovascular and renal systems. This mini-review focuses on recent advancements in our understanding of the vascular, renal, and cardiac GPER1-mediated mechanisms that influence blood pressure regulation. We emphasize clinical and basic evidence that suggests GPER1 as a novel target to aid therapeutic strategies for hypertension. Furthermore, we discuss current controversies and challenges facing GPER1-related research.
Collapse
Affiliation(s)
- Eman Y Gohar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
22
|
Fredette NC, Malik E, Mukhtar ML, Prossnitz ER, Terada N. A hypertension patient-derived iPSC model demonstrates a role for G protein-coupled estrogen receptor in hypertension risk and development. Am J Physiol Cell Physiol 2020; 319:C825-C838. [PMID: 32783656 DOI: 10.1152/ajpcell.00350.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypertension (HTN) is a polyfactorial disease that can manifest severe cardiovascular pathologies such as heart failure or stroke. Genome-wide association studies (GWAS) of HTN indicate that single-nucleotide polymorphisms (SNPs) contribute to increased risk for HTN and resistance to some HTN drug regimens (Hiltunen TP et al., J Am Heart Assoc 4: e001521, 2015; Le MT et al., PLoS One 8: e52062, 2013; McDonough CW et al., J Hypertens 31: 698-704, 2013; Vandell AG et al., Hypertension 60: 957-964, 2012). However, cellular mechanistic insights of such SNPs remain largely unknown. Using a bank of induced pluripotent stem cells (iPSCs) derived from patients with HTN and CRISPR/Cas9-mediated gene-editing approach, we investigated the effects of a female HTN risk-associated SNP (rs1154431) of the G protein-coupled estrogen receptor (GPER) (Bassuk SS, Manson JE., Clin Chem 60: 68-77, 2014) in vascular endothelial cells. Although GPER1 deletion reduced endothelial nitric oxide synthase (eNOS) activation in iPSC-derived endothelial cells (iECs), the polymorphism itself did not significantly affect eNOS and NO production in a comparison of isogenic hemizygous iECs expressing either normal (P16) or HTN-associated (L16) GPER. Interestingly, we demonstrate for the first time that GPER plays a role in regulation of adhesion molecule expression and monocyte adhesion to iECs. Moreover, the L16 iECs had higher expression of inflammation genes than P16 iECs, implying that the risk variant may affect carrier individuals through increased inflammatory activity. This study further indicates that iPSCs are a useful platform for exploring mechanistic insights underlying hypertension GWAS endeavors.
Collapse
Affiliation(s)
- Natalie C Fredette
- Department of Pathology, Immunology and Experimental Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Eliyah Malik
- Department of Pathology, Immunology and Experimental Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Marah L Mukhtar
- Department of Mechanical & Aerospace Engineering, University of Florida Herbert Wertheim College of Engineering, Gainesville, Florida
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Naohiro Terada
- Department of Pathology, Immunology and Experimental Medicine, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
23
|
Koca T, Koçyiğit B, Seyithanoğlu M, Berk E. The Importance of G-protein Coupled Estrogen Receptor in Patients With Fibromyalgia. Arch Rheumatol 2019; 34:419-425. [PMID: 32010891 PMCID: PMC6974385 DOI: 10.5606/archrheumatol.2019.7236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES This study aims to analyze the G-protein coupled estrogen receptor (GPER/GPR30) activity in patients with fibromyalgia syndrome (FMS). PATIENTS AND METHODS We enrolled 40 female patients with FMS (mean age 42.9±11.2 years; range, 18 to 64 years) diagnosed according to the 2010 American College of Rheumatology classification criteria and 30 age- and body mass index-matched female healthy controls (mean age 43.7±13.6 years; range, 19 to 64 years). Sex hormones of patients (morning) including estradiol, follicle stimulating hormone, luteinizing hormone, and prolactin (PRL) were recorded. FMS severity was assessed by Fibromyalgia Impact Questionnaire (FIQ). Serum GPER levels were measured by using a quantitative sandwich enzyme-linked immunosorbent assay method with a commercial kit. RESULTS G-protein coupled estrogen receptor levels were 0.11 (0.02-0.9) ng/mL in the FMS patients and 0.059 (0.01-0.13) ng/mL in controls, with a statistically significant difference (p=0.037). GPER levels were positively correlated with age and negatively correlated with PRL, while they were not correlated with FIQ. Differential diagnosis for FMS with receiver operating characteristic (ROC) analysis for the serum GPER levels was statistically significant (area under the ROC curve: 0.653, confidence interval: 0.522-0.785, p=0.029). High values indicated FMS, with a threshold of >0.075, sensitivity of 60%, and specificity of 60%. CONCLUSION The GPER levels of FMS patients were higher than those of the controls. Thus, GPER levels may be considered as a biomarker in the diagnosis of FMS independent of disease severity.
Collapse
Affiliation(s)
- Tuba Koca
- Department of Physical Medicine and Rehabilitation, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Burhan Koçyiğit
- Department of Physical Medicine and Rehabilitation, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Muhammet Seyithanoğlu
- Department of Clinic Biochemistry, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Ejder Berk
- Department of Physical Medicine and Rehabilitation, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| |
Collapse
|
24
|
Pabbidi MR, Kuppusamy M, Didion SP, Sanapureddy P, Reed JT, Sontakke SP. Sex differences in the vascular function and related mechanisms: role of 17β-estradiol. Am J Physiol Heart Circ Physiol 2018; 315:H1499-H1518. [PMID: 30192631 DOI: 10.1152/ajpheart.00194.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The incidence of cardiovascular disease (CVD) is lower in premenopausal women but increases with age and menopause compared with similarly aged men. Based on the prevalence of CVD in postmenopausal women, sex hormone-dependent mechanisms have been postulated to be the primary factors responsible for the protection from CVD in premenopausal women. Recent Women’s Health Initiative studies, Cochrane Review studies, the Early Versus Late Intervention Trial with Estradiol Study, and the Kronos Early Estrogen Prevention Study have suggested that beneficial effects of hormone replacement therapy (HRT) are seen in women of <60 yr of age and if initiated within <10 yr of menopause. In contrast, the beneficial effects of HRT are not seen in women of >60 yr of age and if commenced after 10 yr of menopause. The higher incidence of CVD and the failure of HRT in postmenopausal aged women could be partly associated with fundamental differences in the vascular structure and function between men and women and in between pre- and postmenopausal women, respectively. In this regard, previous studies from human and animal studies have identified several sex differences in vascular function and associated mechanisms. The female sex hormone 17β-estradiol regulates the majority of these mechanisms. In this review, we summarize the sex differences in vascular structure, myogenic properties, endothelium-dependent and -independent mechanisms, and the role of 17β-estradiol in the regulation of vascular function.
Collapse
Affiliation(s)
- Mallikarjuna R. Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Maniselvan Kuppusamy
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sean P. Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Padmaja Sanapureddy
- Department of Primary Care and Medicine, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi
| | - Joey T. Reed
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sumit P. Sontakke
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
25
|
Waghulde H, Cheng X, Galla S, Mell B, Cai J, Pruett-Miller SM, Vazquez G, Patterson A, Vijay-kumar M, Joe B. Attenuation of Microbiotal Dysbiosis and Hypertension in a CRISPR/Cas9 Gene Ablation Rat Model of GPER1. Hypertension 2018; 72:1125-1132. [PMID: 30354811 PMCID: PMC6208154 DOI: 10.1161/hypertensionaha.118.11175] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
Abstract
G-protein-coupled estrogen receptor, Gper1, has been implicated in cardiovascular disease, but its mechanistic role in blood pressure control is poorly understood. Here, we demonstrate that genetically salt-sensitive hypertensive rats with complete genomic excision of Gper1 by a multiplexed guide RNA CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR associated proteins) approach present with lower blood pressure, which was accompanied by altered microbiota, different levels of circulating short chain fatty acids, and improved vascular relaxation. Microbiotal transplantation from hypertensive Gper1+/+ rats reversed the cardiovascular protective effect exerted by the genomic deletion of Gper1. Thus, this study reveals a role for Gper1 in promoting microbiotal alterations that contribute to cardiovascular pathology. However, the exact mechanism by which Gper1 regulates blood pressure is still unknown. Our results indicate that the function of Gper1 is contextually dependent on the microbiome, whereby, contemplation of using Gper1 as a target for therapy of cardiovascular disease requires caution.
Collapse
Affiliation(s)
- Harshal Waghulde
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Xi Cheng
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Sarah Galla
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Blair Mell
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, University Park, PA 16802
| | - Shondra M. Pruett-Miller
- Genome Engineering and iPSC Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Guillermo Vazquez
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Andrew Patterson
- Department of Veterinary and Biomedical Sciences, University Park, PA 16802
| | - Matam Vijay-kumar
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| |
Collapse
|
26
|
Liu S, Ding T, Liu H, Jian L. GPER was Associated with Hypertension in Post-Menopausal Women. Open Med (Wars) 2018; 13:338-343. [PMID: 30155521 PMCID: PMC6110139 DOI: 10.1515/med-2018-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
Objective To explore the relationship between G protein-coupled estrogen receptor (GPER) and hypertension in post-menopausal women. Methods Using a matched case-control design, clinical and laboratory data were collected. Conditional logistic regression with stratified analysis was conducted to identify the association between GPER and hypertension. Results The GPER level was significantly lower in the case group than in the control group (126.3 ± 21.6 vs. 133.6 ± 27.3, P=0.000). The GPER levels of the hypertension cases with and those without menopause were significant (120.5 ± 11.8 and 127.2 ± 12.1, P=0.000). No significant difference in the GPER level between the controls with and those without menopause was observed (P=0.241). Logistic regression revealed that the GPER quartile was related to hypertension (odds ratio [OR]: 0.63, 95% confidence interval [CI]: 0.13–0.93, P=0.018) after adjusting for potential confounding factors. Stratified analysis revealed that the GPER quartile was not associated with hypertension in premenopausal women, and the fourth GPER quartile showed a predictive association with hypertension (OR: 0.43, 95% CI: 0.29–0.90) in menopausal women. Conclusions GPER level is associated with hypertension and is a protective factor for hypertension in menopausal women but not premenopausal women. Further research is required due to study limitations.
Collapse
Affiliation(s)
- Shichao Liu
- Department of Cardiovascular, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450014 China
| | - Tongbin Ding
- Department of Cardiovascular, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450014 China
| | - Hang Liu
- Department of Cardiovascular, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450014 China
| | - Liguo Jian
- Department of Cardiovascular, the Second Affiliated Hospital of Zhengzhou University, NO. 2, Jing-ba Road, Jinshui District, Zhengzhou City, Henan Province 4500014 China
| |
Collapse
|
27
|
Pupo M, Bodmer A, Berto M, Maggiolini M, Dietrich PY, Picard D. A genetic polymorphism repurposes the G-protein coupled and membrane-associated estrogen receptor GPER to a transcription factor-like molecule promoting paracrine signaling between stroma and breast carcinoma cells. Oncotarget 2018; 8:46728-46744. [PMID: 28596490 PMCID: PMC5564519 DOI: 10.18632/oncotarget.18156] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023] Open
Abstract
GPER is a membrane-associated estrogen receptor of the family of G-protein coupled receptors. For breast cancer, the contribution of GPER to promoting the proliferation and migration of both carcinoma cells and cancer-associated fibroblasts (CAFs) in response to estrogen and other agonists has extensively been investigated. Intriguingly, GPER was previously found to be localized to the nucleus in one isolate of breast CAFs. Moreover, this nuclear GPER was shown to bind regulatory sequences of cancer-relevant target genes and to induce their expression. We decided to find out what induces the nuclear localization of GPER, how general this phenomenon is, and what its functional significance is. We discovered that interfering with N-linked glycosylation of GPER, either by mutation of the predicted glycosylation sites or pharmacologically with tunicamycin, drives GPER into the nucleus. Surveying a small set of CAFs from breast cancer biopsies, we found that a relatively common single nucleotide polymorphism, which results in the expression of a GPER variant with the amino acid substitution P16L, is associated with the nuclear localization of GPER. GPER with P16L fails to be glycosylated, presumably because of a conformational effect on the nearby glycosylation sites. GPER P16L is defective for membrane-associated signaling, but instead acts like an estrogen-stimulated transcription factor. In CAFs, it induces the secretion of paracrine factors that promote the migration of carcinoma cells. This raises the possibility that the GPER P16L polymorphism could be a risk factor for breast cancer.
Collapse
Affiliation(s)
- Marco Pupo
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.,Current address: Areta International S.r.l., Gerenzano, Italy
| | - Alexandre Bodmer
- Département d'Oncologie, Hôpitaux Universitaires de Genève, CH - 1211 Genève 14, Switzerland
| | - Melissa Berto
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pierre-Yves Dietrich
- Département d'Oncologie, Hôpitaux Universitaires de Genève, CH - 1211 Genève 14, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| |
Collapse
|
28
|
Mouat MA, Coleman JLJ, Smith NJ. GPCRs in context: sexual dimorphism in the cardiovascular system. Br J Pharmacol 2018; 175:4047-4059. [PMID: 29451687 DOI: 10.1111/bph.14160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality worldwide, and there is a clear gender gap in disease occurrence, with men being predisposed to earlier onset of CVD, including atherosclerosis and hypertension, relative to women. Oestrogen may be a driving factor for female-specific cardioprotection, though androgens and sex chromosomes are also likely to contribute to sexual dimorphism in the cardiovascular system (CVS). Many GPCR-mediated processes are involved in cardiovascular homeostasis, and some exhibit clear sex divergence. Here, we focus on the G protein-coupled oestrogen receptor, endothelin receptors ETA and ETB and the eicosanoid G protein-coupled receptors (GPCRs), discussing the evidence and potential mechanisms leading to gender dimorphic responses in the vasculature. The use of animal models and pharmacological tools has been essential to understanding the role of these receptors in the CVS and will be key to further delineating their sex-specific effects. Ultimately, this may illuminate wider sex differences in cardiovascular pathology and physiology. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, Australia
| |
Collapse
|
29
|
GPER-novel membrane oestrogen receptor. Clin Sci (Lond) 2017; 130:1005-16. [PMID: 27154744 DOI: 10.1042/cs20160114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
The recent discovery of the G protein-coupled oestrogen receptor (GPER) presents new challenges and opportunities for understanding the physiology, pathophysiology and pharmacology of many diseases. This review will focus on the expression and function of GPER in hypertension, kidney disease, atherosclerosis, vascular remodelling, heart failure, reproduction, metabolic disorders, cancer, environmental health and menopause. Furthermore, this review will highlight the potential of GPER as a therapeutic target.
Collapse
|
30
|
Grassi D, Lagunas N, Pinos H, Panzica G, Garcia-Segura LM, Collado P. NADPH-Diaphorase Colocalizes with GPER and Is Modulated by the GPER Agonist G1 in the Supraoptic and Paraventricular Nuclei of Ovariectomized Female Rats. Neuroendocrinology 2017; 104:94-104. [PMID: 26954778 DOI: 10.1159/000445190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
Nitric oxide is produced in the brain by the neuronal nitric oxide synthase (nNOS) and carries out a wide range of functions by acting as a neurotransmitter-like molecule. Gonadal hormones are involved in the regulation of the brain nitrergic system. We have previously demonstrated that estradiol, via classical estrogen receptors (ERs), regulates NOS activity in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus, acting through both ERα and ERβ. Magnocellular and parvocellular neurons in the SON and PVN also express the G protein-coupled ER (GPER). In this study, we have assessed whether GPER is also involved in the regulation of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase in the SON and PVN. Adult female ovariectomized rats were treated with G1, a selective GPER agonist, or with G1 in combination with G15, a selective GPER antagonist. G1 treatment decreased NADPH-diaphorase expression in the SON and in all PVN subnuclei. The treatment with G1 + G15 effectively rescued the G1-dependent decrease in NADPH-diaphorase expression in both brain regions. In addition, the activation of extracellular signal-regulated kinase (ERK) 1/2, one of the kinases involved in the GPER-dependent intracellular signaling pathway and in NOS phosphorylation, was assessed in the same brain nuclei. Treatment with G1 significantly decreased the number of p-ERK 1/2-positive cells in the SON and PVN, while the treatment with G1 + G15 significantly recovered its number to control values. These findings suggest that the activation of GPER in the SON and PVN inhibits the phosphorylation of ERK 1/2, which induces a decrease in NADPH-diaphorase expression.
Collapse
Affiliation(s)
- Daniela Grassi
- Department of Psychobiology, Universidad Nacional de Educacion a Distancia (UNED), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Feldman RD, Limbird LE. GPER (GPR30): A Nongenomic Receptor (GPCR) for Steroid Hormones with Implications for Cardiovascular Disease and Cancer. Annu Rev Pharmacol Toxicol 2016; 57:567-584. [PMID: 27814026 DOI: 10.1146/annurev-pharmtox-010716-104651] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although the rapid effects of steroids, such as estrogen and aldosterone, were postulated originally to be nongenomic, it is now appreciated that activation of such signaling pathways via a steroid-acting G protein-coupled receptor, the G protein estrogen receptor (GPER), has important transcription-dependent outcomes in the regulation of cell growth and programmed cell death secondary to GPER-regulated second-messenger pathways. GPER is expressed ubiquitously and has diverse biological effects, including regulation of endocrine, immune, neuronal, and cardiovascular functions. Perhaps the most biologically important consequences of GPER activation are the regulation of cell growth, migration, and apoptotic cell death. These cell growth regulatory effects, important in cancer biology, are also relevant in the regulation of cardiac and vascular hypertrophy and in the response to ischemia. This review provides a summary of relevant findings of the impact of GPER regulation by either estradiol or aldosterone in in vitro model systems and extends those findings to in vivo studies of direct clinical relevance for development of GPER-directed agents for treatment of cancer and cardiovascular diseases associated with cellular proliferation.
Collapse
Affiliation(s)
- Ross D Feldman
- Discipline of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3V6;
| | - Lee E Limbird
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208
| |
Collapse
|
32
|
Barton M. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER. Steroids 2016; 111:37-45. [PMID: 26921679 DOI: 10.1016/j.steroids.2016.02.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 01/21/2023]
Abstract
It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Switzerland.
| |
Collapse
|
33
|
Meyer MR, Barton M. Estrogens and Coronary Artery Disease: New Clinical Perspectives. ADVANCES IN PHARMACOLOGY 2016; 77:307-60. [PMID: 27451102 DOI: 10.1016/bs.apha.2016.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In premenopausal women, endogenous estrogens are associated with reduced prevalence of arterial hypertension, coronary artery disease, myocardial infarction, and stroke. Clinical trials conducted in the 1990s such as HERS, WHI, and WISDOM have shown that postmenopausal treatment with horse hormone mixtures (so-called conjugated equine estrogens) and synthetic progestins adversely affects female cardiovascular health. Our understanding of rapid (nongenomic) and chronic (genomic) estrogen signaling has since advanced considerably, including identification of a new G protein-coupled estrogen receptor (GPER), which like the "classical" receptors ERα and ERβ is highly abundant in the cardiovascular system. Here, we discuss the role of estrogen receptors in the pathogenesis of coronary artery disease and review natural and synthetic ligands of estrogen receptors as well as their effects in physiology, on cardiovascular risk factors, and atherosclerotic vascular disease. Data from preclinical and clinical studies using nonselective compounds activating GPER, which include selective estrogen receptor modulators such as tamoxifen or raloxifene, selective estrogen receptor downregulators such as Faslodex™ (fulvestrant/ICI 182,780), vitamin B3 (niacin), green tea catechins, and soy flavonoids such as genistein or resveratrol, strongly suggest that activation of GPER may afford therapeutic benefit for primary and secondary prevention in patients with or at risk for coronary artery disease. Evidence from preclinical studies suggest similar efficacy profiles for selective small molecule GPER agonists such as G-1 which are devoid of uterotrophic activity. Further clinical research in this area is warranted to provide opportunities for future cardiovascular drug development.
Collapse
Affiliation(s)
- M R Meyer
- Triemli City Hospital, Zürich, Switzerland.
| | - M Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
34
|
Feldman RD. Heart Disease in Women: Unappreciated Challenges, GPER as a New Target. Int J Mol Sci 2016; 17:ijms17050760. [PMID: 27213340 PMCID: PMC4881581 DOI: 10.3390/ijms17050760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/30/2022] Open
Abstract
Heart disease in women remains underappreciated, underdiagnosed and undertreated. Further, although we are starting to understand some of the social and behavioral determinants for this, the biological basis for the increased rate of rise in atherosclerosis risk in women after menopause remains very poorly understand. In this review we will outline the scope of the clinical issues related to heart disease in women, the emerging findings regarding the biological basis underlying the increased prevalence of atherosclerotic risk factors in postmenopausal women (vs. men) and the role of the G protein-coupled estrogen receptor (GPER) and its genetic regulation as a determinant of these sex-specific risks. GPER is a recently appreciated GPCR that mediates the rapid effects of estrogen and aldosterone. Recent studies have identified that GPER activation regulates both blood pressure. We have shown that regulation of GPER function via expression of a hypofunctional GPER genetic variant is an important determinant of blood pressure and risk of hypertension in women. Further, our most recent studies have identified that GPER activation is an important regulator of low density lipoprotein (LDL) receptor metabolism and that expression of the hypofunctional GPER genetic variant is an important contributor to the development of hypercholesterolemia in women. GPER appears to be an important determinant of the two major risk factors for coronary artery disease-blood pressure and LDL cholesterol. Further, the importance of this mechanism appears to be greater in women. Thus, the appreciation of the role of GPER function as a determinant of the progression of atherosclerotic disease may be important both in our understanding of cardiometabolic function but also in opening the way to greater appreciation of the sex-specific regulation of atherosclerotic risk factors.
Collapse
Affiliation(s)
- Ross D Feldman
- Discipline of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
35
|
Grassi D, Ghorbanpoor S, Acaz-Fonseca E, Ruiz-Palmero I, Garcia-Segura LM. The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling. Endocrinology 2015. [PMID: 26200092 DOI: 10.1210/en.2014-2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The selective estrogen receptor modulator raloxifene reduces blood pressure in hypertensive postmenopausal women. In the present study we have explored whether raloxifene regulates gene expression of arginine vasopressin (AVP), which is involved in the pathogenesis of hypertension. The effect of raloxifene was assessed in human female SH-SY5Y neuroblastoma cells, which have been recently identified as a suitable cellular model to study the estrogenic regulation of AVP. Raloxifene, within a concentration ranging from 10(-10) M to 10(-6) M, decreased the mRNA levels of AVP in SH-SY5Y cells with maximal effect at 10(-7) M. This effect of raloxifene was imitated by an agonist (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone of G protein-coupled estrogen receptor-1 (GPER) and blocked by an antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline of GPER and by GPER silencing. Raloxifene induced a time-dependent increase in the level of phosphorylated ERK1 and ERK2, by a mechanism blocked by the GPER antagonist. The treatment of SH-SY5Y cells with either a MAPK/ERK kinase 1/2-specific inhibitor (1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadine) or a protein kinase C inhibitor (sotrastaurin) blocked the effects of raloxifene on the phosphorylation of ERK1/2 and the regulation of AVP mRNA levels. These results reveal a mechanism mediating the regulation of AVP expression by raloxifene, involving the activation of GPER, which in turn activates protein kinase C, MAPK/ERK kinase, and ERK. The regulation of AVP by raloxifene and GPER may have implications for the treatment of blood hypertension(.).
Collapse
Affiliation(s)
- Daniela Grassi
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Samar Ghorbanpoor
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Estefania Acaz-Fonseca
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Isabel Ruiz-Palmero
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Luis M Garcia-Segura
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
36
|
Prossnitz ER, Hathaway HJ. What have we learned about GPER function in physiology and disease from knockout mice? J Steroid Biochem Mol Biol 2015; 153:114-26. [PMID: 26189910 PMCID: PMC4568147 DOI: 10.1016/j.jsbmb.2015.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
37
|
Shen M, Shi H. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis. Int J Endocrinol 2015; 2015:294278. [PMID: 26491440 PMCID: PMC4600502 DOI: 10.1155/2015/294278] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 02/06/2023] Open
Abstract
The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.
Collapse
Affiliation(s)
- Minqian Shen
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
| | - Haifei Shi
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
- *Haifei Shi:
| |
Collapse
|
38
|
Hussain Y, Ding Q, Connelly PW, Brunt JH, Ban MR, McIntyre AD, Huff MW, Gros R, Hegele RA, Feldman RD. G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: cellular and population genetic studies. Arterioscler Thromb Vasc Biol 2014; 35:213-21. [PMID: 25395619 DOI: 10.1161/atvbaha.114.304326] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Estrogen deficiency is linked with increased low-density lipoprotein (LDL) cholesterol. The hormone receptor mediating this effect is unknown. G-protein estrogen receptor (GPER) is a recently recognized G-protein-coupled receptor that is activated by estrogens. We recently identified a common hypofunctional missense variant of GPER, namely P16L. However, the role of GPER in LDL metabolism is unknown. Therefore, we examined the association of the P16L genotype with plasma LDL cholesterol level. Furthermore, we studied the role of GPER in regulating expression of the LDL receptor and proprotein convertase subtilisin kexin type 9. APPROACH AND RESULTS Our discovery cohort was a genetically isolated population of Northern European descent, and our validation cohort consisted of normal, healthy women aged 18 to 56 years from London, Ontario. In addition, we examined the effect of GPER on the regulation of proprotein convertase subtilisin kexin type 9 and LDL receptor expression by the treatment with the GPER agonist, G1. In the discovery cohort, GPER P16L genotype was associated with a significant increase in LDL cholesterol (mean±SEM): 3.18±0.05, 3.25±0.08, and 4.25±0.33 mmol/L, respectively, in subjects with CC (homozygous for P16), CT (heterozygotes), and TT (homozygous for L16) genotypes (P<0.05). In the validation cohort (n=339), the GPER P16L genotype was associated with a similar increase in LDL cholesterol: 2.17±0.05, 2.34±0.06, and 2.42±0.16 mmol/L, respectively, in subjects with CC, CT, and TT genotypes (P<0.05). In the human hepatic carcinoma cell line, the GPER agonist, G1, mediated a concentration-dependent increase in LDL receptor expression, blocked by either pretreatment with the GPER antagonist G15 or by shRNA-mediated GPER downregulation. G1 also mediated a GPER- and concentration-dependent decrease in proprotein convertase subtilisin kexin type 9 expression. CONCLUSIONS GPER activation upregulates LDL receptor expression, probably at least, in part, via proprotein convertase subtilisin kexin type 9 downregulation. Furthermore, humans carrying the hypofunctional P16L genetic variant of GPER have increased plasma LDL cholesterol. In aggregate, these data suggest an important role of GPER in the regulation of LDL receptor expression and consequently LDL metabolism.
Collapse
Affiliation(s)
- Yasin Hussain
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Qingming Ding
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Philip W Connelly
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - J Howard Brunt
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Matthew R Ban
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Adam D McIntyre
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Murray W Huff
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Robert Gros
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Robert A Hegele
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Ross D Feldman
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.).
| |
Collapse
|
39
|
Prossnitz ER, Barton M. Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 2014; 389:71-83. [PMID: 24530924 PMCID: PMC4040308 DOI: 10.1016/j.mce.2014.02.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/16/2022]
Abstract
Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen's rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and the activity of clinically used drugs, such as SERMs and SERDs, in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology and Physiology, UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| |
Collapse
|