1
|
Hou B, Jia G, Li Z, Jiang Y, Chen Y, Li X. Discovery of hydrazide-based PI3K/HDAC dual inhibitors with enhanced pro-apoptotic activity in lymphoma cells. Eur J Med Chem 2025; 292:117658. [PMID: 40300459 DOI: 10.1016/j.ejmech.2025.117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
PI3K and HDAC are concurrently upregulated in a variety of cancers, and simultaneous inhibition of PI3K and HDAC may synergistically inhibit tumor proliferation and induce apoptosis, providing a rationale for the study of dual-target PI3K/HDAC inhibitors. In this study, we rationally designed and synthesized a series of novel PI3K/HDAC dual-target inhibitors by combining the morpholino-triazine pharmacophore of PI3K inhibitor ZSTK474 with the hydrazide moiety of HDAC1-3 selective inhibitor 11h. Representative compound 31f possessed both PI3K (IC50 = 2.5-80.5 nM for PI3Kα, β, γ, and δ) and HDAC1-3 inhibitory activities (IC50 = 1.9-75.5 nM for HDAC1-3). 31f showed potent antiproliferative activity against a variety of tumor cell lines. Meanwhile, we designed and synthesized tool molecule 39a, a HDAC inhibitor structurally similar to 31f. In the mantle cell lymphoma Jeko-1 cell line, 31f showed significantly greater efficacy than the single inhibitors in inducing apoptosis. In conclusion, this study provided insights into the development of novel hydrazide-based dual HDAC/PI3K inhibitors.
Collapse
Affiliation(s)
- Baogeng Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zhongqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuxin Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China.
| |
Collapse
|
2
|
Gao H, Sun F, Zhang X, Qiao X, Guo Y. The role and application of Coronin family in human tumorigenesis and immunomodulation. Biochim Biophys Acta Rev Cancer 2025; 1880:189304. [PMID: 40154644 DOI: 10.1016/j.bbcan.2025.189304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The Coronin family, a class of actin-binding proteins involved in the formation and maintenance of cytoskeleton structural stability, is aberrantly expressed in various tumors, including lung, gastric and head and neck cancers. They can regulate tumor cell metabolism and proliferation through RAC-1 and Wnt/β-Catenin signaling pathways and regulate invasion by influencing the PI3K, PAK4, and MT1-MMP signaling pathways and impacting the actin-network dynamics. In recent years, an increasing number of studies have highlighted the crucial roles of the cytoskeleton and immune modulation in the occurrence and development of tumors. The article delves into the Coronin family's pivotal role in tumor immune evasion, highlighting its modulation of neutrophil, T cell, and vesicular transport functions, as well as its interactions with tumorigenesis related organelles such as the endoplasmic reticulum, Golgi apparatus, mitochondria, and lysosomes. It also summarizes the potential therapeutic applications of the Coronin family in oncology. This review provides valuable insights into the mechanisms through which the Coronin family is implicated in the onset and progression of tumors. It also provides more theoretical foundation for tumor immunotherapy and combination drug therapy.
Collapse
Affiliation(s)
- Huimeng Gao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Fuli Sun
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, China
| | - Xuanyu Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| | - Yan Guo
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| |
Collapse
|
3
|
Hedayat F, Faghfuri E. Harnessing histone deacetylase inhibitors for enhanced cancer immunotherapy. Eur J Pharmacol 2025; 997:177620. [PMID: 40239887 DOI: 10.1016/j.ejphar.2025.177620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Many cancers are capable of hindering the immune response against tumor cells, promoting their growth and spread; this has inspired research aimed at reversing these processes to reactivate the immune system, resulting in significant therapeutic advantages. One of the strategies being explored involves histone deacetylase (HDAC) inhibitors (HDACis), which represent a new category of targeted therapies that alter the immune system's reaction to cancer via epigenetic changes. Recently, six HDACis have been authorized for clinical applications. This review aims to provide a concise overview of how different classes of HDACis affect the immune system, based on both in vitro, in vivo, and clinical studies, and explore the latest advancements in combining new immunotherapies with these drugs. HDACis have been found to influence how various cancer treatments work by, for instance, enhancing access to exposed DNA through the relaxation of chromatin, disrupting DNA repair mechanisms, and boosting the expression of immune checkpoint receptors. Combining HDACis with immunotherapy could enhance antitumor effects and reduce drug resistance.
Collapse
Affiliation(s)
- Fatemeh Hedayat
- Department of Biology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
4
|
Hemida N, El-Gamil DS, ElHady AK, Lin KC, Chang YH, Hilscher S, Schutkowski M, Ibrahim HS, Hamed MM, Chen SH, Chen CH, Abadi AH, Sippl W, Chen PJ, Cheng YS, Abdel-Halim M. Unlocking the potential of novel tetrahydro-β-carboline-based HDAC6 inhibitors for colorectal cancer therapy: Design, synthesis and biological evaluation. Bioorg Chem 2025; 160:108454. [PMID: 40252366 DOI: 10.1016/j.bioorg.2025.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
Altered histone deacetylase 6 (HDAC6) expression and function have been linked to cancer progression, positioning it as a promising therapeutic target for cancer treatment. Herein, we introduce HDAC6 inhibitors based on the tetrahydro-β-carboline scaffold, with compound 18d exhibiting the strongest HDAC6 inhibitory potency, achieving an IC50 of 1.3 nM. Compound 18d exhibited significant growth inhibitory activity against an NCI panel of 60 human cancer cell lines with a minimal cytotoxic effect on non-tumor cells. In vitro mechanistic investigations were conducted in HCT-116 colorectal cancer cells where the capability of 18d to enhance the acetylation of α-tubulin (HDAC6 substrate) rather than nuclear H3 histone (HDAC1 substrate) confirmed selective inhibition of HDAC6 subtype. Additionally, compound 18d was observed to suppress the S phase and promote accumulation in the apoptotic sub-G1 phase, potentially through increasing cleaved caspase 3 and reducing Bcl-2 levels in HCT-116 cells. A wound healing assay also elicited the ability of 18d to hinder cell migration. Notably, 18d could suppress the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, a crucial signaling pathway implicated in cancer cell proliferation, migration and apoptosis. Moreover, downregulation of the critical immune checkpoint protein programmed death-ligand 1 (PD-L1) revealed a potential role of 18d in augmenting immune response towards tumor cells. In summary, these findings highlight 18d's dual role in direct tumor growth suppression and immune system sensitization, highlighting a broader cancer therapeutic potential beyond conventional HDAC inhibition.
Collapse
Affiliation(s)
- Noreen Hemida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; School of Life & Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Kai-Chun Lin
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Hua Chang
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Sebastian Hilscher
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Hany S Ibrahim
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
| | - Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital and Graduate Institute of Medicine, I-Shou University, Kaohsiung 824410, Taiwan
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital and Graduate Institute of Medicine, I-Shou University, Kaohsiung 824410, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yi-Sheng Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|
5
|
Song X, Wang H, Gao Y, Zhang W, Lei X. Synthesis and biological evaluation of the Fluoro analog of Romidepsin with improved selectivity for class I histone deacetylases (HDACs). Bioorg Chem 2025; 159:108348. [PMID: 40090152 DOI: 10.1016/j.bioorg.2025.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Selective inhibition of Class I HDACs has emerged as a promising approach for cancer therapy. Building on our previous work with Largazole (a member of the natural depsipeptide family), we have applied a similar fluorination modification to Romidepsin and synthesized its fluoro analog (12) in 12 steps. This analog exhibits potent inhibitory activity against Class I HDACs but shows no inhibitory effect on HDAC6, confirming its selectivity as a Class I HDAC inhibitor (IC50 HDAC1 0.95 nM, HDAC2 0.86, HDAC 3 1.1 nM, HDAC8 4.2 nM, HDAC6 > 103 nM). Compared with Romidepsin, compound 12 demonstrates significant growth inhibition in two cancer cell lines (NCI-H1975 and HT29) while exhibiting markedly less growth inhibition in two normal cell lines (WRL-68 and HEK293). Further studies reveal that 12 is capable of blocking the cell cycle and inducing apoptosis, thereby exerting anticancer activity. Moreover, 12 possesses metabolic stability comparable to Romidepsin. In a mouse model, 12 demonstrates strong in vivo antitumor efficacy similar to that of Romidepsin, yet with significantly reduced toxicity. These findings support the potential of this fluoro analog as a highly selective Class I HDAC inhibitor and highlight its promise as a superior alternative to Romidepsin for further development.
Collapse
Affiliation(s)
- Xinluo Song
- School of Pharmacy, Fudan University; 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China
| | - Hanqi Wang
- School of Pharmacy, Fudan University; 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China
| | - Ya Gao
- Shanghai Forxine Pharmaceutical Co., Ltd; Building 9, 1835 Duhui Road, Minhang Zone, Shanghai 201108, China
| | - Wei Zhang
- School of Pharmacy, Fudan University; 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China
| | - Xinsheng Lei
- School of Pharmacy, Fudan University; 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China
| |
Collapse
|
6
|
Ferreira LM, García-García P, García PA, Castro MÁ. A review on quinolines: New green synthetic methods and bioactive potential. Eur J Pharm Sci 2025; 209:107097. [PMID: 40221058 DOI: 10.1016/j.ejps.2025.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Quinolines have been an interest of study for a few decades due to the importance of this system in natural and pharmaceutical products. Since their discovery in the nineteenth century, many medicinal properties have been found for quinoline compounds. Firstly, as an anti-parasitic agent against malaria and then against many other diseases, such as, other parasitic infections, HIV, bacterial infections and cancer. Consequently, many synthetic methods have been developed to afford the quinoline ring. In this review we look back at traditional methods and look forward to the most recent and promising "green" methods for the synthesis of quinolines. Also, we review the newest advances in therapeutic compounds based on the quinoline skeleton for the treatment of parasitic and cancer diseases and the most recent applications of quinoline derivatives in drug delivery systems.
Collapse
Affiliation(s)
- Laura M Ferreira
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain
| | - Pilar García-García
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain.
| | - Pablo A García
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain
| | - María Ángeles Castro
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain.
| |
Collapse
|
7
|
Wu L, Han T, Wang Y, Li S, Li C. Epigenetic regulation in vitiligo: mechanisms, challenges, and therapeutic opportunities. Curr Opin Immunol 2025; 95:102580. [PMID: 40449043 DOI: 10.1016/j.coi.2025.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 06/02/2025]
Abstract
Vitiligo, characterized by epidermal melanocytes loss causing skin depigmentation, affects millions globally. This review explores its pathogenesis, emphasizing the role of epigenetic mechanisms such as DNA methylation, histone modification, noncoding RNAs, chromatin remodeling, and 3D genome regulation. These mechanisms interact with genetic and environmental factors, contributing to melanocyte destruction. DNA methylation dysregulation, particularly in genes such as TYR and POMC, disrupts melanocyte homeostasis. Histone modification imbalances, including excessive histone deacetylase (HDAC) activation, promote melanocyte apoptosis. Noncoding RNAs, such as miR-211 and lncRNAs, regulate gene expression and immune responses. Chromatin remodeling and 3D genome interactions further influence gene expression, impacting melanogenesis. Despite advancements, challenges remain, including sample heterogeneity, limited model systems, and data integration complexities. Future directions include multiomics studies, organoid models, and personalized treatments. Epigenetic drugs like HDAC inhibitors and CRISPR-dCas9 show promise, with combination therapies offering synergistic effects. This review underscores the potential of epigenetics in advancing vitiligo research and clinical applications.
Collapse
Affiliation(s)
- Linxuan Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingrui Han
- School of Basic Medical Sciences, Capital Medical University, Beijing, China; Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Tang H, Chai X, Qin X, Lian YE, Gao Y, Wang H, Guo J, Wang B, Wang Y. The impact of mechanical unloading on the gut microbiota and the mitigating role of butyrate in bone loss. Int Immunopharmacol 2025; 159:114909. [PMID: 40424649 DOI: 10.1016/j.intimp.2025.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/07/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Bone loss induced by mechanical unloading is a critical concern in aerospace medicine and for patients subjected to prolonged bed rest. In this study, we investigated the effects of mechanical unloading on the gut microbiota and short-chain fatty acid (SCFA) metabolism, as well as the potential role of butyrate in mitigating bone loss. Through a combination of a hindlimb unloading model, microbiological assessments, and metabolic profiling, we demonstrated that mechanical unloading significantly reduced gut microbiota diversity, altered the Firmicutes-to-Bacteroidetes ratio, and decreased total SCFA levels. Furthermore, butyrate supplementation mitigated the adverse effects of mechanical unloading on the bone microstructure by increasing ELK1 protein expression through HDAC2 inhibition, thus promoting osteoblast differentiation and bone formation. These findings highlight the intricate relationships among gut microbiota alterations, SCFA metabolism, and bone health during mechanical unloading, suggesting that butyrate may be a potential therapeutic agent to counteract bone loss in microgravity environments.
Collapse
Affiliation(s)
- Hanqin Tang
- Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou 730050, China; Department of Basic Medical Laboratory, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou 730050, China
| | - Xin Chai
- Department of Emergency, An Ning Attached Medical Area, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou 730050, China
| | - Xuezhi Qin
- Graduate School of Gansu University of Traditional Chinese Medicine, Lanzhou 730050, China
| | - Yu-E Lian
- Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou 730050, China; Graduate School of Gansu University of Traditional Chinese Medicine, Lanzhou 730050, China
| | - Yuhai Gao
- Department of Basic Medical Laboratory, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou 730050, China
| | - Hongli Wang
- Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou 730050, China
| | - Jing Guo
- Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou 730050, China
| | - Biaomeng Wang
- Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou 730050, China
| | - Yixuan Wang
- Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou 730050, China.
| |
Collapse
|
9
|
Yue K, Sun S, Yin Z, Liu E, Jia G, Jiang Y, Duan Y, Chen Y, Li X. Development of Hydrazide-Based HDAC6 Selective Inhibitors for Treating NLRP3 Inflammasome-Related Diseases. J Med Chem 2025; 68:9279-9302. [PMID: 40193276 DOI: 10.1021/acs.jmedchem.4c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Previously, we found that hydrazide can serve as zinc binding groups for selective HDAC6 inhibitors and identified the first hydrazide-based HDAC6 inhibitor, 35m, which exhibited modest isoform selectivity. This study aimed to improve the HDAC6 selectivity of 35m, thereby reducing its side effects. Extensive structure-activity relationship studies revealed that the introduction of fluorine atoms at the 2 and 5 positions of the linker phenyl ring in compound 35m significantly enhanced its HDAC6 selectivity while maintaining its potency. The representative compound 9m demonstrated an IC50 of 0.021 μM against HDAC6, exhibiting at least 335-fold selectivity over other isoforms, along with favorable pharmacokinetic properties and improved safety profiles. Compound 9m inhibits the activation of NLRP3 inflammasome and significantly alleviates symptoms in multiple NLRP3 inflammasome-related disease models, including acute peritoneal, inflammatory bowel disease, and psoriasis. This study enriches the design strategies for selective HDAC6 inhibitors and provides a lead compound for NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Enqiang Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Yuxin Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
10
|
Miao X, Liu P, Liu Y, Zhang W, Li C, Wang X. Epigenetic targets and their inhibitors in the treatment of idiopathic pulmonary fibrosis. Eur J Med Chem 2025; 289:117463. [PMID: 40048798 DOI: 10.1016/j.ejmech.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease characterized by fibroblast proliferation, excessive extracellular matrix buildup, inflammation, and tissue damage, resulting in respiratory failure and death. Recent studies suggest that impaired interactions among epithelial, mesenchymal, immune, and endothelial cells play a key role in IPF development. Advances in bioinformatics have also linked epigenetics, which bridges gene expression and environmental factors, to IPF. Despite the incomplete understanding of the pathogenic mechanisms underlying IPF, recent preclinical studies have identified several novel epigenetic therapeutic targets, including DNMT, EZH2, G9a/GLP, PRMT1/7, KDM6B, HDAC, CBP/p300, BRD4, METTL3, FTO, and ALKBH5, along with potential small-molecule inhibitors relevant for its treatment. This review explores the pathogenesis of IPF, emphasizing epigenetic therapeutic targets and potential small molecule drugs. It also analyzes the structure-activity relationships of these epigenetic drugs and summarizes their biological activities. The objective is to advance the development of innovative epigenetic therapies for IPF.
Collapse
Affiliation(s)
- Xiaohui Miao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Pan Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yangyang Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wenying Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Chunxin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiujiang Wang
- Department of Pulmonary Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
11
|
Sisto A, van Wermeskerken T, Pancher M, Gatto P, Asselbergh B, Assunção Carreira ÁS, De Winter V, Adami V, Provenzani A, Timmerman V. Autophagy induction by piplartine ameliorates axonal degeneration caused by mutant HSPB1 and HSPB8 in Charcot-Marie-Tooth type 2 neuropathies. Autophagy 2025; 21:1116-1143. [PMID: 39698979 PMCID: PMC12013449 DOI: 10.1080/15548627.2024.2439649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
HSPB1 [heat shock protein family B (small) member 1] and HSPB8 are essential molecular chaperones for neuronal proteostasis, as they prevent protein aggregation. Mutant HSPB1 and HSPB8 primarily harm peripheral neurons, resulting in axonal Charcot-Marie-Tooth neuropathies (CMT2). Macroautophagy/autophagy is a shared mechanism by which HSPB1 and HSPB8 mutations cause neuronal dysfunction. Autophagosome formation is reduced in mutant HSPB1-induced pluripotent stem-cell-derived motor neurons from CMT type 2F patients. Likewise, the HSPB8K141N knockin mouse model, mimicking CMT type 2 L, exhibits axonal degeneration and muscle atrophy, with SQSTM1/p62-positive deposits. We show here that mouse embryonic fibroblasts isolated from a HSPB8K141N/green fluorescent protein (GFP)-LC3 model have diminished autophagosome production under conditions of MTOR inhibition. To correct the autophagic deficits in the HSPB1 and HSPB8 models, we screened by high-throughput autophagosome quantification the repurposing Spectrum Collection library for molecules that could boost the autophagic activity above the canonical MTOR inhibition. Hit compounds were validated on motor neurons obtained by differentiation of HSPB1P182L and HSPB8K141N patient-derived induced pluripotent stem cells, focusing on autophagy induction as well as neurite network density, axonal degeneration, and mitochondrial morphology. We identified molecules that specifically stimulate autophagosome formation in the HSPB8K141N cells, without affecting autophagy flux. Two top lead compounds induced autophagy and reduced axonal degeneration, thus promoting neuronal network maturation in the CMT2 patient-derived motor neurons. Based on these findings, the phenotypical screen revealed that piplartine rescued autophagy deficiencies in both the HSPB1 and HSPB8 models, demonstrating autophagy induction as an effective therapeutic strategy for CMT neuropathies and other chaperonopathies.
Collapse
Affiliation(s)
- Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Tamira van Wermeskerken
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Pamela Gatto
- HTS Core Facility, University of Trento, Trento, Italy
| | - Bob Asselbergh
- Neuromics Support Facility, VIB - Center for Molecular Neurology, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Huong TTL, Kim HK, Thien ND, Dung DTM, Kim JS, Kim J, Kang JS, Oanh DTK, Tung TT, Thang NQ, Anh DT, Han SB, Nam NH. Design, synthesis and biological evaluation of novel hydroxamic acid-derived histone deacetylase inhibitors bearing a 2-oxoindoline scaffold as potential antitumor agents. Bioorg Med Chem 2025; 122:118143. [PMID: 40054131 DOI: 10.1016/j.bmc.2025.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Histone deacetylases (HDACs) have emerged as compelling targets in developing anticancer therapeutics. This study outlines the development, synthesis, and biological evaluation of novel hydroxamic acid derivatives featuring a 2-oxoindoline scaffold, which exhibit high HDAC inhibitory activity and potential anticancer effects. Three series of N-hydroxycinnamamides, N-hydroxyheptanamides, and N-hydroxybenzamides were synthesized and assessed for their biological activity. The results of the biological activity evaluation indicated that the synthesized derivatives exhibited notable inhibitory effects against SW620 (colon cancer) and HCT116 (human colorectal carcinoma). Compound N-hydroxy-7-(2-oxoindolin-1-yl)heptanamide (6a) exhibited remarkable HDAC inhibitory activity, achieving sub-nanomolar potency with an IC50 value of less than 0.001 µM. While this potent HDAC inhibition suggests strong enzymatic activity, the anticancer activity of 6a against SW620 and HCT116 was comparable to that of SAHA (IC50 of 0.101 µM). Analysis of selected compound 6a also revealed that this compound effectively triggered both early and late stages of apoptosis and caused cell cycle arrest at the G2/M phase in SW620 cells. Finally, docking studies and molecular dynamics study conducted on the HDAC isoforms for series 6a-e identified key structural features that play a significant role in the inhibitory activity of the synthesized compounds.
Collapse
Affiliation(s)
| | - Hwa Kyung Kim
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Nguyen Duc Thien
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam
| | - Do Thi Mai Dung
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam
| | - Ji Su Kim
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jiyeon Kim
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jong Soon Kang
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, Republic of Korea
| | - Dao Thi Kim Oanh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam
| | | | | | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam.
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam.
| |
Collapse
|
13
|
Zheng Y, Zhang TN, Hao PH, Yang N, Du Y. Histone deacetylases and their inhibitors in kidney diseases. Mol Ther 2025:S1525-0016(25)00300-4. [PMID: 40263937 DOI: 10.1016/j.ymthe.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Histone deacetylases (HDACs) have emerged as key regulators in the pathogenesis of various kidney diseases. This review explores recent advancements in HDAC research, focusing on their role in kidney development and their critical involvement in the progression of chronic kidney disease (CKD), acute kidney injury (AKI), autosomal dominant polycystic kidney disease (ADPKD), and diabetic kidney disease (DKD). It also discusses the therapeutic potential of HDAC inhibitors in treating these conditions. Various HDAC inhibitors have shown promise by targeting specific HDAC isoforms and modulating a range of biological pathways. Their protective effects include modulation of apoptosis, autophagy, inflammation, and fibrosis, underscoring their broad therapeutic potential for kidney diseases. However, further research is essential to improve the selectivity of HDAC inhibitors, minimize toxicity, overcome drug resistance, and enhance their pharmacokinetic properties. This review offers insights to guide future research and prevention strategies for kidney disease management.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yue Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Pires GS, Tolomeu HV, Rodrigues DA, Lima LM, Fraga CAM, Pinheiro PDSM. Drug Discovery for Histone Deacetylase Inhibition: Past, Present and Future of Zinc-Binding Groups. Pharmaceuticals (Basel) 2025; 18:577. [PMID: 40284012 PMCID: PMC12030391 DOI: 10.3390/ph18040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Histone deacetylases (HDACs) are key regulators of gene expression, influencing chromatin remodeling and playing a crucial role in various physiological and pathological processes. Aberrant HDAC activity has been linked to cancer, neurodegenerative disorders, and inflammatory diseases, making these enzymes attractive therapeutic targets. HDAC inhibitors (HDACis) have gained significant attention, particularly those containing zinc-binding groups (ZBGs), which interact directly with the catalytic zinc ion in the enzyme's active site. The structural diversity of ZBGs profoundly impacts the potency, selectivity, and pharmacokinetics of HDACis. While hydroxamic acids remain the most widely used ZBGs, their limitations, such as metabolic instability and off-target effects, have driven the development of alternative scaffolds, including ortho-aminoanilides, mercaptoacetamides, alkylhydrazides, oxadiazoles, and more. This review explores the structural and mechanistic aspects of different ZBGs, their interactions with HDAC isoforms, and their influence on inhibitor selectivity. Advances in structure-based drug design have allowed the fine-tuning of HDACi pharmacophores, leading to more selective and efficacious compounds with improved drug-like properties. Understanding the nuances of ZBG interactions is essential for the rational design of next-generation HDACis, with potential applications in oncology, neuroprotection, and immunotherapy.
Collapse
Affiliation(s)
- Gustavo Salgado Pires
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | - Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
| | - Daniel Alencar Rodrigues
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland, 1st Floor Ardilaun House Block B, 111 St Stephen’s Green, Dublin 2, Ireland;
| | - Lídia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | - Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
15
|
Sabzevari A, Ung J, Craig JW, Jayappa KD, Pal I, Feith DJ, Loughran TP, O'Connor OA. Management of T-cell malignancies: Bench-to-bedside targeting of epigenetic biology. CA Cancer J Clin 2025. [PMID: 40232267 DOI: 10.3322/caac.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 04/16/2025] Open
Abstract
The peripheral T-cell lymphomas (PTCL) are the only disease for which four histone deacetylase (HDAC) inhibitors have been approved globally as single agents. Although it is not clear why the PTCL exhibit such a vulnerability to these drugs, understanding the biological basis for this activity is essential. Many lines of data have established that the PTCL exhibit marked sensitivity to other epigenetically targeted drugs, including EZH2 and DNMT3 (DNA-methyltransferase 3) inhibitors. Even more compelling is the finding that combinations of drugs targeting the epigenetic biology of PTCL are beginning to produce provocative data, leading some to wonder if these agents can replace historical chemotherapy regimens routinely used for patients with the disease. Simultaneously, the field has identified a spectrum of mutations in genes governing epigenetic biology in many subtypes of PTCL, although the T follicular helper lymphomas, including angioimmunoblastic T-cell lymphoma, appear to be particularly enriched for these genetic features. While the direct relationship between the presence of any one of these mutations and responsiveness to a particular epigenetic drug has yet to be established, it is increasingly accepted that the PTCL may be the prototypical epigenetic disease as no other form of cancer has exhibited such a vulnerability to this diversity of epigenetically targeted agents. Herein, we comprehensively review this esoteric and rapidly evolving field to identify themes and lessons from these experiences that may guide efforts to improve outcomes of patients with T-cell neoplasms. Furthermore, we will discuss how these concepts might be applied to the broader field of cancer medicine.
Collapse
Affiliation(s)
- Ariana Sabzevari
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
| | - Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Medical Center, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
| | - Kallesh D Jayappa
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ipsita Pal
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
| | - David J Feith
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas P Loughran
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Owen A O'Connor
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
16
|
Frei M, Wein T, Bracher F. Lead-Structure-Based Rigidization Approach to Optimize SirReal-Type Sirt2 Inhibitors. Molecules 2025; 30:1728. [PMID: 40333696 PMCID: PMC12029821 DOI: 10.3390/molecules30081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Sirtuins are involved in cellular processes in multiple ways. Therefore, the development of potent and selective Sirt2 inhibitors provides an important contribution to understanding physiological and pathophysiological mechanisms, particularly for the research and treatment of cancer and neurodegenerative diseases. Based on established SirReal-type lead inhibitors, further selective Sirt2 inhibitors were synthesized in a docking-guided rigidization approach, and the knowledge regarding requirements and properties of the Sirt2-binding pocket was expanded by means of a comprehensive SAR study. Naphthalene derivative FM69 emerged from the screening as the most potent rigidized inhibitor, which, with an IC50 value of 0.15 µM against Sirt2, represents a promising foundation for the further development of novel potent and selective Sirt2 inhibitors based on the presented rigidization strategy.
Collapse
Affiliation(s)
| | | | - Franz Bracher
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians University, Butenandtstr. 5–13, 81377 Munich, Germany; (M.F.); (T.W.)
| |
Collapse
|
17
|
Mancino S, Boraso M, Galmozzi A, Serafini MM, De Fabiani E, Crestani M, Viviani B. Dose-dependent dual effects of HDAC inhibitors on glial inflammatory response. Sci Rep 2025; 15:12262. [PMID: 40211035 PMCID: PMC11986048 DOI: 10.1038/s41598-025-96241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Neuroinflammation is defined as a process that includes cellular responses designed to protect the central nervous system from external influences, and it initiates in cases of extreme deviations from homeostasis. While it serves a protective role, excessive immune activation can lead to the release of neurotoxic factors, worsening disease progression. Histone deacetylases (HDACs) have been shown to modulate the expression of inflammatory genes by remodeling chromatin through the process of histone deacetylation. HDAC inhibitors (HDACi) alter histone acetylation and affect the transcription of genes involved in inflammatory pathways, making them promising therapeutic tools for the modulation of a variety of inflammatory diseases. However, their use is limited due to non-specific targeting and contradictory results. This study aimed to reconcile conflicting results and share insights on relevant HDACi in the inflammatory response induced by lipopolysaccharide (LPS), considering different exposure scenarios, cellular models, and associated molecular pathways. Specifically, the study evaluated the dose-dependent effects of two broad-spectrum HDACi, Trichostatin A (TSA) and Suberoylanilide Hydroxamic Acid (SAHA, Vorinostat), alongside selective inhibitors-MS-275 (Entinostat, class I), and MC1568 (class II)-on the expression and release of pro- and anti-inflammatory cytokines. Broad-spectrum HDAC inhibitors TSA and SAHA exhibited dose-dependent modulation of LPS-induced cytokine release. Co-treatment with TSA and LPS enhanced pro-inflammatory cytokines (TNF-α, IL-1β) and decreased IL10 in a dose-dependent manner at lower doses (≤ 10 nM), while high concentrations (100 nM) induced the anti-inflammatory IL-10. Pre-treatment with TSA led to a reduction in TNF-α levels induced by LPS, without affecting IL-1β or IL-10 levels. In contrast, the presence of TSA in LPS-triggered alveolar macrophages resulted in a decline in the production of both pro- and anti-inflammatory cytokine, irrespective of the TSA concentration. SAHA exhibited dual effects, enhancing TNF-α and IL-1β at nanomolar levels but suppressing TNF-α at micromolar doses in co-treated glial cells with LPS. Class-selective inhibitors highlighted distinct HDAC roles on LPS modulation: MS-275 reduced, while MC1568 enhanced, TNF-α release, alongside varied IL-1β and IL-10 modulation. To better understand the dual effects of SAHA, transcriptomic analysis of glial cells was conducted in the presence of LPS and low and high SAHA concentrations (100 nM or 5 µM). This analysis revealed a dose-dependent alteration in gene expression and pathway enrichment associated with cytokine signaling and immune regulation (e.g., JAK-STAT). Altogether, these findings reveal insights on the subtle, dose- and context-dependent role of HDACi in modulating glia inflammation.
Collapse
Affiliation(s)
- Samantha Mancino
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
- Departamento de Bioengenharia E Instituto de Bioengenharia E Biociências, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Mariaserena Boraso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Andrea Galmozzi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
- Department of Biomolecular Chemistry School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Melania Maria Serafini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Emma De Fabiani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Maurizio Crestani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
18
|
Wei Z, Mu H, Qiu F, Zhao M, Zhang X, Li W, Jia H, Wang R. Regulatory mechanism of ABCB1 transcriptional repression by HDAC5 in rat hepatocytes under hypoxic environment. Front Physiol 2025; 16:1520246. [PMID: 40265153 PMCID: PMC12011715 DOI: 10.3389/fphys.2025.1520246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
Objective Previous research has demonstrated that the hypoxic environment at high altitudes significantly alters the pharmacokinetics of many drugs, reducing their efficacy and increasing adverse effects. A key factor in this altered drug metabolism is the inhibition of ATP-binding cassette subfamily B member 1 (ABCB1), an efflux transporter protein, in the liver tissues of plateau rats. Rat ABCB1, encoded by the ABCB1A and ABCB1B genes, has two isoforms functionally analogous to human ABCB1. Histone acetylation, an epigenetic mechanism, may regulate ABCB1 transcription in hypoxic conditions by modifying chromatin structure and interacting with signaling pathways. However, its role in ABCB1 transcriptional regulation under hypoxia remains unclear. Based on this, the present study employed the BRL cell line to establish a hypoxia model, aiming to investigate the histone acetylation-mediated regulatory mechanisms of ABCB1 expression under hypoxic conditions, with the ultimate goal of providing novel theoretical foundations for rational drug use in high-altitude regions. Methods Establishment of BRL hypoxia model: BRL cell viability was detected by CCK-8 assay, and HIF-1α expression was measured by RT-qPCR and Western blot. After treating the BRL hypoxia model with HDAC inhibitors, ABCB1 and HDAC5 expression were detected by RT-qPCR, Western blot, and immunofluorescence. Rhodamine 123 accumulation assay was performed to examine the effect of HDAC inhibitors on ABCB1 functional activity. HDAC5 was targeted by siRNA technology to detect ABCB1 and H3K9ac expression. CUT&Tag assay was used to measure H3K9ac levels at the ABCB1 promoter region. After SAHA treatment of the BRL hypoxia model, SP1 expression was detected by RT-qPCR and Western blot. Combined treatment with SAHA and siRNA targeting SP1 was performed to detect ABCB1 expression. Co-immunoprecipitation and fluorescence colocalization assays were conducted to examine interactions among SP1, HDAC5, and ABCB1. Results After hypoxic culture for different durations, cell viability decreased while HIF-1α expression increased, indicating the successful establishment of the BRL hypoxia model. In the BRL hypoxia model, ABCB1 and SP1 expression decreased while HDAC5 expression increased. After SAHA treatment, ABCB1 and SP1 expression were upregulated while HDAC5 was downregulated. Rhodamine 123 accumulation assay showed that SAHA could enhance ABCB1 functional activity by inducing its expression. After HDAC5 was knocked down using siRNA, ABCB1 and H3K9ac expression increased, and ABCB1 functional activity was enhanced. CUT&Tag assay demonstrated that H3K9ac levels at the ABCB1B promoter region decreased in the BRL hypoxia model, while HDAC5 inhibition increased H3K9ac levels at this region. After SP1 was knocked down using siRNA, the inductive effect of SAHA on ABCB1 was blocked. Co-immunoprecipitation and fluorescence colocalization showed interactions among SP1, HDAC5, and ABCB1. Conclusion In BRL cells, HDAC5 may be recruited by SP1 to form a complex, reducing free HDAC5, increasing H3K9ac at the ABCB1B promoter, and activating ABCB1 transcription. In the BRL hypoxia model, disruption of the SP1-HDAC5 complex increased free HDAC5, lowered H3K9ac at the ABCB1B promoter, and suppressed ABCB1 transcription. These results suggest that HDAC inhibitors enhance ABCB1 expression in hypoxic environments, indicating that combining HDAC inhibitors with therapeutic agents could mitigate reduced drug efficacy and adverse effects caused by ABCB1 suppression.
Collapse
Affiliation(s)
- Ziqin Wei
- School of Pharmacy, Lanzhou University, Lanzhou, China
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, The 940th Hospital of Logistics Support Force of PLA, Lanzhou, China
| | - Hongfang Mu
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, The 940th Hospital of Logistics Support Force of PLA, Lanzhou, China
| | - Fangfang Qiu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, The 940th Hospital of Logistics Support Force of PLA, Lanzhou, China
| | - Minghui Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, The 940th Hospital of Logistics Support Force of PLA, Lanzhou, China
| | - Xiaojing Zhang
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, The 940th Hospital of Logistics Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, The 940th Hospital of Logistics Support Force of PLA, Lanzhou, China
| | - Hai Jia
- Gansu Provincial People's Hospital, Lanzhou, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, The 940th Hospital of Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
19
|
Lai R, Li H. Deacetylation mechanism of histone deacetylase 8: insights from QM/MM MP2 calculations. Phys Chem Chem Phys 2025; 27:7120-7138. [PMID: 40109193 DOI: 10.1039/d5cp00002e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Understanding the catalytic mechanism of histone deacetylases can greatly benefit the development of targeted therapies that are safe and effective. Combined quantum mechanical and molecular mechanical (QM/MM) Møller-Plesset second-order perturbation theory (MP2) geometry optimizations are performed to investigate the catalytic mechanism of the deacetylation reaction of a tetrapeptide catalyzed by human Histone Deacetylase 8. A three-step catalytic mechanism is identified: the first step is the formation of a negatively charged tetrahedral intermediate via nucleophilic addition of the activated water to the amide C atom and a proton transfer from the water to His143; the second step is the formation of a neutral tetrahedral intermediate with an elongated amide C-N bond via a proton transfer from His143 to the amide N atom. The third step is the complete cleavage of the amide C-N bond, accompanied by a proton transfer from the newly formed carboxylic group of the neutral tetrahedral intermediate to His142. These three steps have similar computed energy barriers, with the second step having the highest calculated activation free energy of 19.6 kcal mol-1. When there is no potassium ion at site 1, the calculated activation free energy is 17.7 kcal mol-1. Both values are in good agreement with an experimental value of 17.5 kcal mol-1. Their difference implies that there would be a 25-fold increase in the enzyme's activity, in line with experiments. The solvent hydrogen-deuterium kinetic isotope effect was computed to be ∼3.8 for the second step in both cases. It is also found that the energy barriers are significantly and systematically higher on the QM/MM B3LYP and QM/MM B3LYP-D3 potential energy surfaces. In particular, the QM/MM B3LYP and B3LYP-D3 methods fail to predict the neutral tetrahedral intermediate and a meaningful transition state for the third step, leading to a two-step mechanism. With a sufficiently large basis set such as aug-cc-pVDZ, QM/MM M05-2X, M06-2X, M06, and MN15 methods can give results much closer to the QM/MM MP2 method. However, when a smaller basis set such as 6-31G* is used, these methods can lead to errors as large as 10 kcal mol-1 on the reaction pathway. These results highlight the importance of using accurate QM methods in the computational study of enzyme catalysis.
Collapse
Affiliation(s)
- Rui Lai
- College of Chemistry, Jilin University, Changchun, 130021, China.
| | - Hui Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
20
|
Wang Y, Sun L, Xuan W. Genetically Encoded Fluorescent and Bioluminescent Probes for HDAC8. Chembiochem 2025; 26:e202500096. [PMID: 40045791 DOI: 10.1002/cbic.202500096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Protein-based probes constructed via genetically encoding acetyl lysine (AcK) or its close analogs represent an important way to detect protein lysine deacetylases. Existing reported probes exhibit excellent sensitivity to NAD+-dependent sirtuins but lack responsiveness to Zn2+-dependent histone deacetylases (HDACs). Herein, we reformed the probe design by replacing the genetically encoded AcK with trifluoroacetyl lysine (TfAcK) and generated fluorescent and bioluminescent probes that could respond specifically to HDAC8 recombinantly expressed in E. coli and to endogenous HDACs in mammalian cells. We believe these probes would benefit the biological investigation of HDAC8 and promisingly some other HDACs, as well as the discovery of innovative HDAC inhibitors.
Collapse
Affiliation(s)
- Ying Wang
- State Key Lab of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Lin Sun
- State Key Lab of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Weimin Xuan
- State Key Lab of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
21
|
Martínez-Peula O, Ramos-Miguel A, Muguruza C, Callado LF, Meana JJ, Rivero G. A method for HDAC activity screening in postmortem human brain. A proof-of-concept study with antipsychotics. J Neurosci Methods 2025; 416:110365. [PMID: 39832625 DOI: 10.1016/j.jneumeth.2025.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Histone deacetylase (HDAC) density and activity are altered in different brain disorders. Antipsychotic drugs (APs) might modulate HDAC activity in brains of schizophrenia subjects. NEW METHOD HDAC activity assay amenable for enzyme kinetics and HDAC inhibitor (HDACi) screening studies in postmortem human brain samples. RESULTS The optimization and characterization work involved several steps. The nucleosolic subcellular fraction and total protein amount needed for an optimal HDAC activity on Boc-Lys(Ac)-AMC substrate were characterized. Signal-to-noise ratio (1.8) and Z-score values (0.82) were indicators of the assay quality. Inhibition studies with non-selective (belinostat, vorinostat, valproic acid) and selective (apicidin, MS275, romidepsin, tacedinaline and EX527) HDACis showed that the optimized assay detected class I HDAC activity. The obtained IC50 values were similar to those previously reported, proving the assay reliability. We used the optimized assay to study the effect of APs on HDAC activity. Inhibition studies with APs in postmortem human brain, together with enzyme kinetic studies in brains of rats chronically treated with APs observed no modulation of class I HDAC activity. COMPARISON WITH EXISTING METHODS This study describes the optimization of a reliable and cost efficient HDAC activity assay for its use in postmortem human brain samples. The assay does not depend on antibody specificity and it is valid for enzyme kinetic studies and for the screening of new potential class I HDACis. CONCLUSIONS We optimized and characterized an assay to measure HDAC activity in postmortem human brain samples. We did not observe any modulatory effect of APs on HDAC activity.
Collapse
Affiliation(s)
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; BioBizkaia Health Research Institute, Barakaldo, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Spain
| | - Carolina Muguruza
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; BioBizkaia Health Research Institute, Barakaldo, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; BioBizkaia Health Research Institute, Barakaldo, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; BioBizkaia Health Research Institute, Barakaldo, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Spain
| | - Guadalupe Rivero
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; BioBizkaia Health Research Institute, Barakaldo, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Spain.
| |
Collapse
|
22
|
Du W, Luo W, Zheng L, Zhou X, Du W. Temporal and spatial distribution of histone acetylation in mouse molar development. PeerJ 2025; 13:e19215. [PMID: 40183048 PMCID: PMC11967410 DOI: 10.7717/peerj.19215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Histone acetylation is one of the most widely studied histone modification, regulating a variety of biological activities like organ development and tumorigenesis. However, the role of histone acetylation in tooth development is poorly understood. Using the mouse molar as a model, we mapped the distribution patterns of histone H3 and H4, as well as their corresponding acetylation sites during tooth formation in order to unveil the connection between histone acetylation modification and tooth development. Moreover, key histone acetyltransferases and histone deacetylases were detected in both epithelial and mesenchymal cells during tooth development by scRNA-seq and immunohistochemistry. These results suggest that histone acetylation modification functions as an important mechanism in tooth development at different stages.
Collapse
Affiliation(s)
- Wen Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Prosthodontics II, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wanyi Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wei Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Jeong SJ, Lee KH, Cho JY. Comparative epigenomics to clinical trials in human breast cancer and canine mammary tumor. Anim Cells Syst (Seoul) 2025; 29:12-30. [PMID: 40115961 PMCID: PMC11924266 DOI: 10.1080/19768354.2025.2477024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Epigenetics and epigenomics are captivating fields of molecular biology, dedicated to the exploration of heritable alterations in gene expression and cellular phenotypes, which transpire devoid of any discernible modifications to the fundamental DNA sequence. This intricate regulatory apparatus encompasses multiple mechanisms, prominently featuring DNA methylation, histone modifications, and the involvement of non-coding RNA molecules in pivotal roles. To achieve a comprehensive grasp of these diverse mechanisms, it is imperative to conduct research employing animal models as proxies for human studies. Since experimental animal models like mice and rats struggle to replicate the diverse environmental conditions experienced by humans, this review focuses on comparing common epigenetic alterations in naturally occurring tumors in canine models, which share the human environment, with those in humans. Through this, we emphasize the importance of an epigenetic regulation in the comparative medical approach to a deeper understanding of cancers and further development of cancer treatments. Additionally, we elucidate epigenetic modifications pertinent to specific developmental stages, the ageing process, and the progression of various diseases.
Collapse
Affiliation(s)
- Su-Jin Jeong
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Yang Z, Su W, Zhang Q, Niu L, Feng B, Zhang Y, Huang F, He J, Zhou Q, Zhou X, Ma L, Zhou J, Wang Y, Xiong W, Xiang J, Hu Z, Zhan Q, Yao B. Lactylation of HDAC1 Confers Resistance to Ferroptosis in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408845. [PMID: 39888307 PMCID: PMC11947995 DOI: 10.1002/advs.202408845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/07/2024] [Indexed: 02/01/2025]
Abstract
Colorectal cancer (CRC) is highly resistant to ferroptosis, which hinders the application of anti-ferroptosis therapy. Through drug screening, it is found that histone deacetylase inhibitor (HDACi) significantly sensitized CRC to ferroptosis. The combination of HDACi and ferroptosis inducers synergically suppresses CRC growth both in vivo and in vitro. Mechanically, HDACi reduces ferroptosis suppressor protein (FSP1) by promoting its mRNA degradation. Specifically, it is confirmed that HDACi specifically targets HDAC1 and promotes the H3K27ac modification of fat mass- and obesity-associated gene (FTO) and AlkB Homolog 5, RNA Demethylase (ALKBH5), which results in significant activation of FTO and ALKBH5. The activation of FTO and ALKBH5 reduces N6-methyladenosine (m6A) modification on FSP1 mRNA, leading to its degradation. Crucially, lactylation of HDAC1K412 is essential for ferroptosis regulation. Both Vorinostat (SAHA) and Trichostatin A (TSA) notably diminish HDAC1K412 lactylation in comparison to other HDAC1 inhibitors, exhibiting a consistent trend of increasing susceptibility to ferroptosis. In conclusion, the research reveals that HDACi decreases HDAC1K412 lactylation to sensitize CRC to ferroptosis and that the combination of HDACi and ferroptosis inducers can be a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wei Su
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Qinglin Zhang
- Departments of GastroenterologyWuxi People's Hospital Affiliated to Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu214043China
| | - Lili Niu
- Department of Integrative MedicineShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghai200433China
| | - Baijie Feng
- Department of Medical OncologyShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Yu Zhang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Feng Huang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Jiaxin He
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Qinyao Zhou
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Xin Zhou
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Longjun Ma
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Jingwan Zhou
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Yuanrong Wang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Wenjing Xiong
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Jun Xiang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhilin Hu
- Department of ImmunologyKey Laboratory of Immune Microenvironment and DiseaseThe School of Basic Medicine; Department of laboratory medicine, the first affiliated hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing211166China
| | - Qiang Zhan
- Departments of GastroenterologyWuxi People's Hospital Affiliated to Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu214043China
| | - Bing Yao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine; NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody DrugNanjing Medical UniversityNanjing211166China
| |
Collapse
|
25
|
Yakkala PA, Kamal A. Dual-targeting inhibitors involving tubulin for the treatment of cancer. Bioorg Chem 2025; 156:108116. [PMID: 39823818 DOI: 10.1016/j.bioorg.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025]
Abstract
Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes. Despite clinical approval of several tubulin inhibitors, their efficacy is hampered by drug resistance and toxic side effects. Dual targeting inhibitors of tubulin and other cancer-related pathways have emerged as vital components in cancer therapy, with promising prospects in both market availability and ongoing clinical trials. The rational design of hybrid inhibitors targeting both pathways presents an innovative approach to combatting cancer. However, despite the potent anti-tumor activity exhibited by several compounds, research on their anti-angiogenic potential remains limited. This review emphasizes the significance of tubulin based dual-target inhibitors, elucidating their mechanisms of action. Recent advances in exploring therapeutic efficacy, toxicity profiles, and challenges such as MDR are discussed. By presenting the research progress of tubulin based dual-target inhibitors as potential anticancer agents, this study delivers valuable insights for the development of more efficient drugs for cancer therapy.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Human Nutrition and Analytical Chemistry, Human Nutrition Program, The Ohio State University, Columbus, OH 43212, United States of America; Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India.
| |
Collapse
|
26
|
Shaihutdinova ZM, Pashirova TN, Masson P. Slow-binding inhibitors of enzymes: kinetic characteristics and pharmacological interest. BIOMEDITSINSKAIA KHIMIIA 2025; 71:81-94. [PMID: 40326015 DOI: 10.18097/pbmcr1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Currently, the search for new slow-binding inhibitors of enzymes (SBI) and their identification primary in vitro studies still attracts much attention in the context of their potential role as putative pharmacological agents for the treatment of various diseases. In contrast to their classical reversible analogues, SBI exhibit a slow enzyme binding kinetics, where the equilibrium steady-state is reached not in microseconds, but after longer time intervals. Such compounds could be promising drugs, because regardless of their pharmacokinetics in the bloodstream, they have such advantages as high affinity for the target enzyme, long residence time on the target, and therefore, prolonged action. These pharmacological properties ensure optimized dosage of drugs required to achieve high activity with less side effects. In this review we have considered mechanisms of SBI interaction with enzyme targets, the principles of their recognition at the level of in vitro studies and analysis of binding and kinetic parameters.
Collapse
Affiliation(s)
| | - T N Pashirova
- Kazan (Volga region) Federal University, Kazan, Russia; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - P Masson
- Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
27
|
Han R, Luo Y, Gao J, Zhou H, Wang Y, Chen J, Zheng G, Ling C. HDAC3: A Multifaceted Modulator in Immunotherapy Sensitization. Vaccines (Basel) 2025; 13:182. [PMID: 40006729 PMCID: PMC11860249 DOI: 10.3390/vaccines13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Histone deacetylase 3 (HDAC3) has emerged as a critical epigenetic regulator in tumor progression and immune modulation, positioning it as a promising target for enhancing cancer immunotherapy. This work comprehensively explores HDAC3's multifaceted roles, focusing on its regulation of key immune-modulatory pathways such as cGAS-STING, ferroptosis, and the Nrf2/HO-1 axis. These pathways are central to tumor immune evasion, antigen presentation, and immune cell activation. Additionally, the distinct effects of HDAC3 on various immune cell types-including its role in enhancing T cell activation, restoring NK cell cytotoxicity, promoting dendritic cell maturation, and modulating macrophage polarization-are thoroughly examined. These findings underscore HDAC3's capacity to reshape the tumor immune microenvironment, converting immunologically "cold tumors" into "hot tumors" and thereby increasing their responsiveness to immunotherapy. The therapeutic potential of HDAC3 inhibitors is highlighted, both as standalone agents and in combination with immune checkpoint inhibitors, to overcome resistance and improve treatment efficacy. Innovative strategies, such as the development of selective HDAC3 inhibitors, advanced nano-delivery systems, and integration with photodynamic or photothermal therapies, are proposed to enhance treatment precision and minimize toxicity. By addressing challenges such as toxicity, patient heterogeneity, and resistance mechanisms, this study provides a forward-looking perspective on the clinical application of HDAC3 inhibitors. It highlights its significant potential in personalized cancer immunotherapy, paving the way for more effective treatments and improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Rui Han
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yujun Luo
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jingdong Gao
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine Suzhou, Suzhou 215009, China
| | - Huiling Zhou
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yuqian Wang
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jiaojiao Chen
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Guoyin Zheng
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Changquan Ling
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
28
|
Goulart Stollmaier J, Herbst-Gervasoni CJ, Christianson DW. Expression, purification, and crystallization of "humanized" Danio rerio histone deacetylase 10 "HDAC10", the eukaryotic polyamine deacetylase. Methods Enzymol 2025; 715:19-40. [PMID: 40382137 DOI: 10.1016/bs.mie.2025.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The class IIb histone deacetylase HDAC10 is responsible for the deacetylation of intracellular polyamines, in particular N8-acetylspermidine. HDAC10 is emerging as an attractive target for drug design owing to its role as an inducer of autophagy, and high-resolution crystal structures enable structure-based drug design efforts. The only crystal structure available to date is that of HDAC10 from Danio rerio (zebrafish), but a construct containing the A24E and D94A substitutions yields an active site contour that more closely resembles that of human HDAC10. The use of this "humanized" construct has advanced our understanding of HDAC10-inhibitor structure-activity relationships. Here, we outline the preparation, purification, assay, and crystallization of humanized zebrafish HDAC10-inhibitor complexes. The plasmid containing the humanized zebrafish HDAC10 construct for heterologous expression in Escherichia coli is available through Addgene (#225542).
Collapse
Affiliation(s)
- Juana Goulart Stollmaier
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey J Herbst-Gervasoni
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
29
|
Alalhareth IS, Alyami SM, Alshareef AH, Ajeibi AO, Al Munjem MF, Elfifi AA, Alsharif MM, Alzahrani SA, Alqaad MA, Bakir MB, Abdel-Wahab BA. Cellular Epigenetic Targets and Epidrugs in Breast Cancer Therapy: Mechanisms, Challenges, and Future Perspectives. Pharmaceuticals (Basel) 2025; 18:207. [PMID: 40006021 PMCID: PMC11858621 DOI: 10.3390/ph18020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer is the most common malignancy affecting women, manifesting as a heterogeneous disease with diverse molecular characteristics and clinical presentations. Recent studies have elucidated the role of epigenetic modifications in the pathogenesis of breast cancer, including drug resistance and efflux characteristics, offering potential new diagnostic and prognostic markers, treatment efficacy predictors, and therapeutic agents. Key modifications include DNA cytosine methylation and the covalent modification of histone proteins. Unlike genetic mutations, reprogramming the epigenetic landscape of the cancer epigenome is a promising targeted therapy for the treatment and reversal of drug resistance. Epidrugs, which target DNA methylation and histone modifications, can provide novel options for the treatment of breast cancer by reversing the acquired resistance to treatment. Currently, the most promising approach involves combination therapies consisting of epidrugs with immune checkpoint inhibitors. This review examines the aberrant epigenetic regulation of breast cancer initiation and progression, focusing on modifications related to estrogen signaling, drug resistance, cancer progression, and the epithelial-mesenchymal transition (EMT). It examines existing epigenetic drugs for treating breast cancer, including agents that modify DNA, inhibitors of histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone demethyltransferases. It also delves into ongoing studies on combining epidrugs with other therapies and addresses the upcoming obstacles in this field.
Collapse
Affiliation(s)
- Ibrahim S. Alalhareth
- College of Pharmacy, Najran University, Najran 66256, Saudi Arabia; (I.S.A.); (S.M.A.)
| | - Saleh M. Alyami
- College of Pharmacy, Najran University, Najran 66256, Saudi Arabia; (I.S.A.); (S.M.A.)
| | - Ali H. Alshareef
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Ahmed O. Ajeibi
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Manea F. Al Munjem
- King Khaled Hospital -Najran Health Cluster, Najran 66261, Saudi Arabia;
| | - Ahmad A. Elfifi
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Meshal M. Alsharif
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Seham A. Alzahrani
- Pharmacy Department, Khamis Mushait General Hospital, King Khalid Rd, Al Shifa, Khamis Mushait 62433, Saudi Arabia;
| | - Mohammed A. Alqaad
- Department of Pharmaceutical Care Services, Al Noor Specialized Hospital, Makkah Health, Cluster, Makkah 24241, Saudi Arabia;
| | - Marwa B. Bakir
- Department of Medical Education, College of Medicine, Najran University, Najran 1988, Saudi Arabia;
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| |
Collapse
|
30
|
Shirbhate E, Singh V, Kore R, Koch B, Veerasamy R, Tiwari AK, Rajak H. Synergistic strategies: histone deacetylase inhibitors and platinum-based drugs in cancer therapy. Expert Rev Anticancer Ther 2025; 25:121-141. [PMID: 39873641 DOI: 10.1080/14737140.2025.2458156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION The synergistic combination of histone deacetylase inhibitors and platinum-based medicines represents a promising therapeutic strategy to efficacy and overcome drug resistance in cancer therapy, necessitating a comprehensive understanding on their molecular interactions and clinical potential. AREAS COVERED The objective of presented review is to investigate the molecular pathways of platinum medicines and HDAC inhibitors. A comprehensive literature review from 2011 to 2024 was conducted across multiple databases like MEDLINE, PubMed, Google Scholar, Science Direct, Scopus and official websites of ClinicalTrial.gov to explore publications on HDAC inhibitors, platinum drugs, and combination cancer therapies, revealing preliminary evidence of innovative treatment strategies involving HDAC inhibitors and platinum chemotherapeutics. Several new platinum (IV) complexes, with HDAC inhibitory moieties and better cytotoxicity profiles than conventional platinum drugs, are also reviewed here. EXPERT OPINION The above combination has great potential in cancer treatment, however managing toxicity, dosage regimens, and patient selection biomarkers are problematic. More selective HDAC inhibitors and innovative delivery techniques are potential areas for future research. An adaptation toward changing cancer therapeutic landscapes, highlights combining HDAC inhibitors with platinum-based medicines serves as a new concept for personalized medicine, however, a deeper research is still needed at this time.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Biplab Koch
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | - Amit Kumar Tiwari
- Cancer & System Therapeutics, UAMS College of Pharmacy, UAMS - University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| |
Collapse
|
31
|
Beljkas M, Ruzic D, Djuric A, Vuletic A, Tchiehe GN, Jallet C, Cadet-Daniel V, Arimondo PB, Santibanez JF, Srdic-Rajic T, Nikolic K, Oljacic S, Petkovic M. Pioneering first-in-class HDAC-ROCK inhibitors as potential multitarget anticancer agents. Future Med Chem 2025; 17:393-407. [PMID: 39885716 PMCID: PMC11834526 DOI: 10.1080/17568919.2025.2459589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
AIM With the aim of simultaneously modulating the epigenetic system and the protein kinase pathway, we selected the enzyme histone deacetylase (HDAC) and the Rho-associated protein kinases (ROCK) as desired targets to develop potential multitarget anticancer agents with additional antimetastatic properties. We report here the rational design, synthesis, and biological evaluation of the first-in-class HDAC/ROCK multitarget inhibitors in pancreatic ductal adenocarcinoma (PDAC) and triple-negative breast cancer (TNBC). MATERIALS AND METHODS A molecular docking study performed with the Gold software was used to develop HDAC/ROCK multitarget inhibitors. IC50 values were determined by enzyme assays. The cytotoxicity, anti-migratory and anti-invasive properties of the inhibitors were evaluated using triple-negative breast cancer cells (MDA-MB-231 and HCC 1973) and pancreatic ductal adenocarcinoma cells (Panc-1 and MiaPaCa-2). RESULTS C-9 showed significant inhibition of HDAC6, ROCK1 and ROCK2. At the same time, this compound showed strong antiproliferative effects on MDA-MB-231, MiaPaCa-2 and Panc-1 cell lines with IC50 values of 5.81 μM, 3.87 μM and 19.57 μM. In addition, it demonstrated great anti-invasive and anti-migratory effects. CONCLUSION The findings of this study strongly suggest that the simultaneous inhibition of ROCK and HDACs holds significant potential as a promising therapeutic strategy in the advancement of cancer treatment.
Collapse
Affiliation(s)
- Milan Beljkas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ana Djuric
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Vuletic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Guilaine Nchugoua Tchiehe
- Department of Structural Biology and Chemistry, Epigenetic Chemical Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3523 Chem4Life, Department of Structural Biology and Chemistry, Paris, France
| | - Corinne Jallet
- Department of Structural Biology and Chemistry, Epigenetic Chemical Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3523 Chem4Life, Department of Structural Biology and Chemistry, Paris, France
| | - Véronique Cadet-Daniel
- Department of Structural Biology and Chemistry, Epigenetic Chemical Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3523 Chem4Life, Department of Structural Biology and Chemistry, Paris, France
| | - Paola B. Arimondo
- Department of Structural Biology and Chemistry, Epigenetic Chemical Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3523 Chem4Life, Department of Structural Biology and Chemistry, Paris, France
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tatjana Srdic-Rajic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Milos Petkovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
32
|
Letchumanan P, Theva Das K. The role of genetic diversity, epigenetic regulation, and sex-based differences in HIV cure research: a comprehensive review. Epigenetics Chromatin 2025; 18:1. [PMID: 39754177 PMCID: PMC11697457 DOI: 10.1186/s13072-024-00564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors. Growing evidence indicates that intricate epigenetic modifications play a major role in the persistence of HIV latency, presenting a significant barrier to eradication efforts and causing viral rebound after ART discontinuation. Current strategies to purge the latent reservoir involve LRAs that reactivate latent proviruses. However, their clinical success is hindered by the heterogeneity of HIV reservoirs and the virus's diverse pathways. Additionally, RNA modifications like N6-methyladenosine (m^6 A) methylation influence HIV biology beyond transcriptional control, affect RNA stability, splicing, and translation, which could enhance therapeutic efficacy. The regulatory framework of chromatin dynamics is also key to understanding viral latency and reactivation, such as Vpr's role in reactivating latent HIV by targeting HDACs. Sex-specific factors were also shown to play an important role with females, showing stronger early immune responses and higher representation among elite controllers. This review addresses the multifaceted challenges of HIV cure research, focusing on genetic diversity, epigenetic regulation, RNA modifications, chromatin remodeling, and sex-specific factors. By integrating insights into these aspects, this paper aims to advance our understanding of HIV cure strategies and highlight directions for future research.
Collapse
Affiliation(s)
- Punitha Letchumanan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
| |
Collapse
|
33
|
Vatapalli R, Rossi AP, Chan HM, Zhang J. Cancer epigenetic therapy: recent advances, challenges, and emerging opportunities. Epigenomics 2025; 17:59-74. [PMID: 39601374 DOI: 10.1080/17501911.2024.2430169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Epigenetic dysregulation is an important nexus in the development and maintenance of human cancers. This review provides an overview of how understanding epigenetic dysregulation in cancers has led to insights for novel cancer therapy development. Over the past two decades, significant strides have been made in drug discovery efforts targeting cancer epigenetic mechanisms, leading to successes in clinical development and approval of cancer epigenetic therapeutics. This article will discuss the current therapeutic rationale guiding the discovery and development of epigenetic therapeutics, key learnings from clinical experiences and new opportunities on the horizon.
Collapse
Affiliation(s)
- Rajita Vatapalli
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| | - Alex P Rossi
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
- Biology, Flare Therapeutics, Cambridge, MA, USA
| | - Ho Man Chan
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| | - Jingwen Zhang
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| |
Collapse
|
34
|
Madrigal-Angulo JL, Hernández-Fuentes GA, Parra-Delgado H, Olvera-Valdéz M, Padilla-Martínez II, Cabrera-Licona A, Espinosa-Gil AS, Delgado-Enciso I, Martínez-Martínez FJ. Design, synthesis, biological and in silico evaluation of 3‑carboxy‑coumarin sulfonamides as potential antiproliferative agents targeting HDAC6. Biomed Rep 2025; 22:6. [PMID: 39559821 PMCID: PMC11572031 DOI: 10.3892/br.2024.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Breast cancer (BC) is the most common cancer and the main cause of mortality due to cancer in women around the World. Histone deacetylase 6 (HDAC6) is a promising target for the treatment of BC. In the present study, a series of novel 3-carboxy-coumarin sulfonamides, analogs of belinostat, targeting HDAC6 were designed and synthesized. The compounds were synthesized and purified through open-column chromatography. Characterization was performed using spectroscopic techniques, including 1H and 13C NMR, homonuclear and heteronuclear correlation experiments, IR and UV. Molecular docking was carried out using AutoDock Vina implemented in UCSF Chimera version 1.16 against the HDAC6 protein structure (PDB: 5EDU). 2D protein-ligand interaction diagrams were generated with Maestro, and validation was conducted by redocking trichostatin A into the HDAC6 active site. Additionally, the compounds were evaluated in cancer cell lines (MDA-MB-231, MCF-7 and NIH/3T3), and healthy cells using lymphocytes from healthy volunteers. In the in vitro experiments, the compounds evaluated showed cytotoxic activity against the BC cell lines MCF-7 and MDA-MB-231 and the non-malignant cells 3T3/NIH. Compounds 5, 8a-c exhibited antiproliferative activity comparable to that of cisplatin and doxorubicin. Molecular docking studies showed that compounds with the 3-benzoylcoumarin scaffold had favorable affinity with catalytic domain of HDAC6 and whose interactions are similar to those found in belinostat. Compounds 5, 8b, 8c, 4c, and 8a exhibited higher viability against nonmalignant cells (leukocytes), with percentages ranging from 73-87%, demonstrating 3-4-fold lower potency than belinostat against healthy cells.
Collapse
Affiliation(s)
| | - Gustavo A. Hernández-Fuentes
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
- State Cancerology Institute of Colima, Health Services of The Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico
| | | | - Marycruz Olvera-Valdéz
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico
| | - Itzia I. Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico
| | - Ariana Cabrera-Licona
- State Cancerology Institute of Colima, Health Services of The Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico
| | | | - Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
- State Cancerology Institute of Colima, Health Services of The Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico
| | | |
Collapse
|
35
|
Guha S, Jagadeesan Y, Pandey MM, Mittal A, Chitkara D. Targeting the epigenome with advanced delivery strategies for epigenetic modulators. Bioeng Transl Med 2025; 10:e10710. [PMID: 39801754 PMCID: PMC11711227 DOI: 10.1002/btm2.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth. Currently, a considerable amount of research is focused on discovering new drug molecules to combat the existing research gap in epigenetic drug therapy. A novel and efficient delivery system can be established as a promising approach to overcome the drawbacks associated with the current epigenetic modulators. Therefore, formulating the existing epigenetic drugs with distinct encapsulation strategies in nanocarriers, including solid lipid nanoparticles, nanogels, bio-engineered nanocarriers, liposomes, surface modified nanoparticles, and polymer-drug conjugates have been examined for therapeutic efficacy. Nonetheless, several epigenetic modulators are untouched for their therapeutic potential through different delivery strategies. This review provides a comprehensive up to date discussion on the research findings of various epigenetics mechanism, epigenetic modulators, and delivery strategies utilized to improve their therapeutic outcome. Furthermore, this review also highlights the recently emerged CRISPR tool for epigenome editing.
Collapse
Affiliation(s)
- Sonia Guha
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Yogeswaran Jagadeesan
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Murali Monohar Pandey
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Anupama Mittal
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Deepak Chitkara
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| |
Collapse
|
36
|
Fischer F, Schliehe-Diecks J, Tu JW, Gangnus T, Ho YL, Hebeis M, Alves Avelar LA, Scharov K, Watrin T, Kemkes M, Stachura P, Daugs K, Biermann L, Kremeyer J, Horstick N, Span I, Pandyra AA, Borkhardt A, Gohlke H, Kassack MU, Burckhardt BB, Bhatia S, Kurz T. Deciphering the Therapeutic Potential of Novel Pentyloxyamide-Based Class I, IIb HDAC Inhibitors against Therapy-Resistant Leukemia. J Med Chem 2024; 67:21223-21250. [PMID: 39602240 DOI: 10.1021/acs.jmedchem.4c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Histone deacetylase inhibitors (HDACi) are established anticancer drugs, especially in hematological cancers. This study aimed to design, synthesize, and evaluate a set of HDACi featuring a pentyloxyamide connecting unit linker region and substituted phenylthiazole cap groups. A structural optimization program yielded HDACi with nanomolar inhibitory activity against histone deacetylase class I/IIb enzymes. The novel inhibitors (4d and 4m) showed superior antileukemic activity compared to several approved HDACi. Furthermore, 4d and 4m displayed synergistic activity when combined with chemotherapeutics, decitabine, and clofarabine. In vitro pharmacokinetic studies showed the most promising profile for 4d with intermediate microsomal stability, excellent plasma stability, and concentration-independent plasma protein binding. Additionally, 4d demonstrated comparable in vivo pharmacokinetics to vorinostat. When administered in vivo, 4d effectively inhibited the proliferation of leukemia cells without causing toxicity. Furthermore, the binding modes of 4d and 4m to the catalytic domain 2 of HDAC6 from Danio rerio were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Fabian Fischer
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tanja Gangnus
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Yu Lin Ho
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mara Hebeis
- Bioinorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Leandro A Alves Avelar
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katerina Scharov
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Titus Watrin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Marie Kemkes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pawel Stachura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Katharina Daugs
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lukas Biermann
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Josefa Kremeyer
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nadine Horstick
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ingrid Span
- Bioinorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bjoern B Burckhardt
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
37
|
Likasitwatanakul P, Li Z, Doan P, Spisak S, Raghawan AK, Liu Q, Liow P, Lee S, Chen D, Bala P, Sahgal P, Aitymbayev D, Thalappillil JS, Papanastasiou M, Hawkins W, Carr SA, Park H, Cleary JM, Qi J, Sethi NS. Chemical perturbations impacting histone acetylation govern colorectal cancer differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.626451. [PMID: 39713466 PMCID: PMC11661112 DOI: 10.1101/2024.12.06.626451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dysregulated epigenetic programs that restrict differentiation, reactivate fetal genes, and confer phenotypic plasticity are critical to colorectal cancer (CRC) development. By screening a small molecule library targeting epigenetic regulators using our dual reporter system, we found that inhibiting histone deacetylase (HDAC) 1/2 promotes CRC differentiation and anti-tumor activity. Comprehensive biochemical, chemical, and genetic experiments revealed that on-target blockade of the HDAC1/2 catalytic domain mediated the differentiated phenotype. Unbiased profiling of histone posttranslational modifications induced by HDAC1/2 inhibition nominated acetylation of specific histone lysine residues as potential regulators of differentiation. Genome-wide assessment of implicated marks indicated that H3K27ac gains at HDAC1/2-bound regions associated with open chromatin and upregulation of differentiation genes upon HDAC1/2 inhibition. Disrupting H3K27ac by degrading acetyltransferase EP300 rescued HDAC1/2 inhibitor-mediated differentiation of a patient-derived CRC model using single cell RNA-sequencing. Genetic screens revealed that DAPK3 contributes to CRC differentiation induced by HDAC1/2 inhibition. These results highlight the importance of specific chemically targetable histone modifications in governing cancer cell states and epigenetic reprogramming as a therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Pornlada Likasitwatanakul
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Zhixin Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Paul Doan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Akhouri Kishore Raghawan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Qi Liu
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Priscilla Liow
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sunwoo Lee
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Daulet Aitymbayev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Jennifer S. Thalappillil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Malvina Papanastasiou
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - William Hawkins
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Haeseong Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jun Qi
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nilay S. Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
38
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
39
|
Schweipert M, Nehls T, Wurster E, Böltner J, Anton K, Lammer P, Lermyte F, Meyer-Almes FJ. The pivotal role of histidine 976 in human histone deacetylase 4 for enzyme function and ligand recognition. Bioorg Chem 2024; 153:107883. [PMID: 39406110 DOI: 10.1016/j.bioorg.2024.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024]
Abstract
Human histone deacetylase 4 (HDAC4) belongs to class IIa of the zinc-dependent histone deacetylases. HDAC4 is an established target for various indication areas, in particular Huntington's disease, heart failure and cancer. To reduce unwanted side effects, it is advantageous to develop isozyme-selective inhibitors, which poses a major challenge due to the highly conserved active centers of the HDAC family. According to current knowledge it is assumed that H976 in HDAC4wt occurs exclusively in the out-conformation and thus the selective foot pocket is constitutively open. In contrast, the side chain of the corresponding tyrosine in HDAC4H976Y adopts the in-conformation, and is thus able to stabilize the intermediate state of the deacetylation reaction and block access to the foot pocket. In this study, we provide evidence that a dynamic equilibrium exists between the in- and out-conformation in HDAC4wt. The binding of selective HDAC4 inhibitors that address the foot pocket can be enhanced in HDAC4 variants with mainly small, but also medium hydrophobic or polar side chains. We attribute this to the fact that these side chains are preferentially present in the out-conformation. Therefore, we propose HDAC4H976A and other HDAC4 variants as promising tools to find and enrich HDAC4-selective foot pocket binders in screening campaigns that might have been overlooked in conventional screens with HDAC4wt.
Collapse
Affiliation(s)
- Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Thomas Nehls
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Eva Wurster
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Jaqueline Böltner
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Katharina Anton
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Patrick Lammer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Frederik Lermyte
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany.
| |
Collapse
|
40
|
Aparecida Dos Santos France F, Maeda DK, Rodrigues AB, Ono M, Lopes Nogueira Marchetti F, Marchetti MM, Faustino Martins AC, Gomes RDS, Rainho CA. Exploring fatty acids from royal jelly as a source of histone deacetylase inhibitors: from the hive to applications in human well-being and health. Epigenetics 2024; 19:2400423. [PMID: 39255363 PMCID: PMC11404605 DOI: 10.1080/15592294.2024.2400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
A differential diet with royal jelly (RJ) during early larval development in honeybees shapes the phenotype, which is probably mediated by epigenetic regulation of gene expression. Evidence indicates that small molecules in RJ can modulate gene expression in mammalian cells, such as the fatty acid 10-hydroxy-2-decenoic acid (10-HDA), previously associated with the inhibition of histone deacetylase enzymes (HDACs). Therefore, we combined computational (molecular docking simulations) and experimental approaches for the screening of potential HDAC inhibitors (HDACi) among 32 RJ-derived fatty acids. Biochemical assays and gene expression analyses (Reverse Transcriptase - quantitative Polymerase Chain Reaction) were performed to evaluate the functional effects of the major RJ fatty acids, 10-HDA and 10-HDAA (10-hydroxy-decanoic acid), in two human cancer cell lines (HCT116 and MDA-MB-231). The molecular docking simulations indicate that these fatty acids might interact with class I HDACs, specifically with the catalytic domain of human HDAC2, likewise well-known HDAC inhibitors (HDACi) such as SAHA (suberoylanilide hydroxamic acid) and TSA (Trichostatin A). In addition, the combined treatment with 10-HDA and 10-HDAA inhibits the activity of human nuclear HDACs and leads to a slight increase in the expression of HDAC-coding genes in cancer cells. Our findings indicate that royal jelly fatty acids collectively contribute to HDAC inhibition and that 10-HDA and 10-HDAA are weak HDACi that facilitate the acetylation of lysine residues of chromatin, triggering an increase in gene expression levels in cancer cells.
Collapse
Affiliation(s)
| | - Debora Kazumi Maeda
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ana Beatriz Rodrigues
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mai Ono
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Franciele Lopes Nogueira Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos Martins Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | | | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
41
|
Wang Z, Yuan Y, Wang Z, Zhang W, Chen C, Duan Z, Peng S, Zheng J, He Y, Yang X. CancerPro: deciphering the pan-cancer prognostic landscape through combinatorial enrichment analysis and knowledge network insights. NAR Genom Bioinform 2024; 6:lqae157. [PMID: 39633722 PMCID: PMC11616677 DOI: 10.1093/nargab/lqae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/26/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Gene expression levels serve as valuable markers for assessing prognosis in cancer patients. To understand the mechanisms underlying prognosis and explore potential therapeutics across diverse cancers, we developed CancerPro (https:/medcode.link/cancerpro). This knowledge network platform integrates comprehensive biomedical data on genes, drugs, diseases and pathways, along with their interactions. By integrating ontology and knowledge graph technologies, CancerPro offers a user-friendly interface for analyzing pan-cancer prognostic markers and exploring genes or drugs of interest. CancerPro implements three core functions: gene set enrichment analysis based on multiple annotations; in-depth drug analysis; and in-depth gene list analysis. Using CancerPro, we categorized genes and cancers into distinct groups and utilized network analysis to identify key biological pathways associated with unfavorable prognostic genes. The platform further pinpoints potential drug targets and explores potential links between prognostic markers and patient characteristics such as glutathione levels and obesity. For renal and prostate cancer, CancerPro identified risk genes linked to immune deficiency pathways and alternative splicing abnormalities. This research highlights CancerPro's potential as a valuable tool for researchers to explore pan-cancer prognostic markers and uncover novel therapeutic avenues. Its flexible tools support a wide range of biological investigations, making it a versatile asset in cancer research and beyond.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yize Yuan
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhe Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wenjia Zhang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Suyuan Peng
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zheng
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiaolin Yang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
42
|
Cacabelos R, Martínez-Iglesias O, Cacabelos N, Carrera I, Corzo L, Naidoo V. Therapeutic Options in Alzheimer's Disease: From Classic Acetylcholinesterase Inhibitors to Multi-Target Drugs with Pleiotropic Activity. Life (Basel) 2024; 14:1555. [PMID: 39768263 PMCID: PMC11678002 DOI: 10.3390/life14121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD) is a complex/multifactorial brain disorder involving hundreds of defective genes, epigenetic aberrations, cerebrovascular alterations, and environmental risk factors. The onset of the neurodegenerative process is triggered decades before the first symptoms appear, probably due to a combination of genomic and epigenetic phenomena. Therefore, the primary objective of any effective treatment is to intercept the disease process in its presymptomatic phases. Since the approval of acetylcholinesterase inhibitors (Tacrine, Donepezil, Rivastigmine, Galantamine) and Memantine, between 1993 and 2003, no new drug was approved by the FDA until the advent of immunotherapy with Aducanumab in 2021 and Lecanemab in 2023. Over the past decade, more than 10,000 new compounds with potential action on some pathogenic components of AD have been tested. The limitations of these anti-AD treatments have stimulated the search for multi-target (MT) drugs. In recent years, more than 1000 drugs with potential MT function have been studied in AD models. MT drugs aim to address the complex and multifactorial nature of the disease. This approach has the potential to offer more comprehensive benefits than single-target therapies, which may be limited in their effectiveness due to the intricate pathology of AD. A strategy still unexplored is the combination of epigenetic drugs with MT agents. Another option could be biotechnological products with pleiotropic action, among which nosustrophine-like compounds could represent an attractive, although not definitive, example.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (O.M.-I.); (N.C.); (I.C.); (L.C.); (V.N.)
| | | | | | | | | | | |
Collapse
|
43
|
Hong NE, Chaplin A, Di L, Ravodina A, Bevan GH, Gao H, Asase C, Gangwar RS, Cameron MJ, Mignery M, Cherepanova O, Finn AV, Nayak L, Pieper AA, Maiseyeu A. Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution. Cell Rep 2024; 43:114911. [PMID: 39466775 PMCID: PMC11648168 DOI: 10.1016/j.celrep.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Current pharmacologic treatments for atherosclerosis do not completely protect patients; additional protection can be achieved by dietary modifications, such as a low-cholesterol/low-fat diet (LCLFD), that mediate plaque stabilization and inflammation reduction. However, this lifestyle modification can be challenging for patients. Unfortunately, incomplete understanding of the underlying mechanisms has thwarted efforts to mimic the protective effects of a LCLFD. Here, we report that the tricarboxylic acid cycle intermediate itaconate (ITA), produced by plaque macrophages, is key to diet-induced plaque resolution. ITA is produced by immunoresponsive gene 1 (IRG1), which we observe is highly elevated in myeloid cells of vulnerable plaques and absent from early or stable plaques in mice and humans. We additionally report development of an ITA-conjugated lipid nanoparticle that accumulates in plaque and bone marrow myeloid cells, epigenetically reduces inflammation via H3K27ac deacetylation, and reproduces the therapeutic effects of LCLFD-induced plaque resolution in multiple atherosclerosis models.
Collapse
Affiliation(s)
- Natalie E Hong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anastasia Ravodina
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Courteney Asase
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew Mignery
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olga Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aloke V Finn
- Department of Internal Medicine, Cardiovascular Division, University of Maryland School of Medicine, Baltimore, MD, USA; CVPath Institute, Inc., Gaithersburg, MD, USA
| | - Lalitha Nayak
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
44
|
Baumann A, Papenkordt N, Robaa D, Szigetvari PD, Vogelmann A, Bracher F, Sippl W, Jung M, Haavik J. Aromatic Amino Acid Hydroxylases as Off-Targets of Histone Deacetylase Inhibitors. ACS Chem Neurosci 2024; 15:4143-4155. [PMID: 39523540 PMCID: PMC11587510 DOI: 10.1021/acschemneuro.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The aromatic amino acid hydroxylases (AAAHs) phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylases 1 and 2 are structurally related enzymes that contain an active site iron atom and depend on tetrahydrobiopterin (BH4) as cosubstrate. Due to their important roles in synthesis of serotonin, dopamine, noradrenaline, and adrenaline and their involvement in cardiovascular, neurological, and endocrine disorders, AAAHs have been targeted by substrate analogs, iron chelators, and allosteric ligands. Phenylalanine hydroxylase is also off-target of the histone deacetylase (HDAC) inhibitor panobinostat. To systematically explore the binding of HDAC inhibitors to AAAHs, we screened a library of 307 HDAC inhibitors and structural analogs against tryptophan hydroxylase 1 using a fluorescence-based thermal stability assay, followed by activity assays. Selected hits were enzymatically tested against all four purified human AAAHs. Cellular thermal shift assay was performed for phenylalanine hydroxylase. We show that panobinostat and structurally related compounds such as TB57, which similarly to panobinostat also contains a cinnamoyl hydroxamate, bind to human AAAHs and inhibit these enzymes with high selectivity within the class (panobinostat inhibition (IC50): phenylalanine hydroxylase (18 nM) > tyrosine hydroxylase (450 nM) > tryptophan hydroxylase 1 (1960 nM). This study shows that panobinostat and related hydroxamic acid type HDAC inhibitors inhibit all AAAHs at therapeutically relevant concentrations. Our results warrant further investigations of the off-target relevance of HDAC inhibitors intended for clinical use and provide directions for new dual HDAC/AAAH and selective AAAH inhibitors. These findings may also provide a new mechanistic link between regulation of histone modification, AAAH function, and monoaminergic neurotransmission.
Collapse
Affiliation(s)
- Anne Baumann
- Department
of Biomedicine, University of Bergen, 5007 Bergen, Norway
| | - Niklas Papenkordt
- Institute
of Pharmaceutical Sciences, University of
Freiburg, 79104 Freiburg, Germany
| | - Dina Robaa
- Institute
of Pharmacy, Martin-Luther University of
Halle – Wittenberg, 06120 Halle/Saale, Germany
| | - Peter D. Szigetvari
- Department
of Biomedicine, University of Bergen, 5007 Bergen, Norway
- Division
of Psychiatry, Haukeland University Hospital, 5009 Bergen, Norway
| | - Anja Vogelmann
- Institute
of Pharmaceutical Sciences, University of
Freiburg, 79104 Freiburg, Germany
| | - Franz Bracher
- Department
of Pharmacy – Center for Drug Research, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Wolfgang Sippl
- Institute
of Pharmacy, Martin-Luther University of
Halle – Wittenberg, 06120 Halle/Saale, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, University of
Freiburg, 79104 Freiburg, Germany
| | - Jan Haavik
- Department
of Biomedicine, University of Bergen, 5007 Bergen, Norway
- Bergen Center
for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
45
|
Chen C, Xia Z, Zhang M, Cao Y, Chen Q, Cao Q, Li X, Jiang F. Molecular mechanism of HDAC6-mediated pyroptosis in neurological function recovery after cardiopulmonary resuscitation in rats. Brain Res 2024; 1843:149121. [PMID: 38997102 DOI: 10.1016/j.brainres.2024.149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Brain injury after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) is the leading cause of neurological dysfunction and death. This study aimed to explore the mechanism of histone deacetylase 6 (HDAC6) in neurofunctional recovery following CA/CPR in rats. A rat model was established by CA/CPR treatment. Adenovirus-packaged sh-HDAC6 was injected into the tail vein. To evaluate the neurofunction of rats, survival time, neurofunctional scores, serum NSE/S100B, and brain water content were measured and Morris water maze test was performed. HDAC6, microRNA (miR)-138-5p, Nod-like receptor protein 3 (NLRP3), and pyroptotic factor levels were determined by real-time quantitative polymerase chain reaction or Western blot assay. HDAC6 and H3K9ac enrichment on miR-138-5p promoter were examined by chromatin immunoprecipitation. miR-138-5p-NLRP3 binding was analyzed by dual-luciferase reporter assay. NLRP3 inflammasome was activated with nigericin sodium salt. After CPR treatment, HDAC6 was highly expressed, while miR-138-5p was downregulated. HDAC6 downregulation improved neurofunction and reduced pyroptosis. HDAC6 enrichment on the miR-138-5p promoter deacetylated H3K9ac, inhibiting miR-138-5p, and promoting NLRP3-mediated pyroptosis. Downregulating miR-138-5p partially reversed the protective effect of HDAC6 inhibition after CPR. In Conclusion, HDAC6 enrichment on miR-138-5p promoter deacetylated H3K9ac, inhibiting miR-138-5p expression and promoting NLRP3-mediated pyroptosis, worsening neurological dysfunction in rats after CPR.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Infectious Diseases, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Zhuye Xia
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Min Zhang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Qingling Chen
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Qinglian Cao
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xiang Li
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Fan Jiang
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
46
|
Kovalovsky D, Noonepalle S, Suresh M, Kumar D, Berrigan M, Gajendran N, Upadhyay S, Horvath A, Kim A, Quiceno-Torres D, Musunuri K, Villagra A. The HDAC6 inhibitor AVS100 (SS208) induces a pro-inflammatory tumor microenvironment and potentiates immunotherapy. SCIENCE ADVANCES 2024; 10:eadp3687. [PMID: 39546602 PMCID: PMC11566997 DOI: 10.1126/sciadv.adp3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Histone deacetylase 6 (HDAC6) inhibition is associated with an increased pro-inflammatory tumor microenvironment and antitumoral immune responses. Here, we show that the HDAC6 inhibitor AVS100 (SS208) had an antitumoral effect in SM1 melanoma and CT26 colon cancer models and increased the efficacy of anti-programmed cell death protein 1 treatment, leading to complete remission in melanoma and increased response in colon cancer. AVS100 treatment increased pro-inflammatory tumor-infiltrating macrophages and CD8 effector T cells with an inflammatory and T cell effector gene signature. Acquired T cell immunity and long-term protection were evidenced as increased immunodominant T cell clones after AVS100 treatment. Last, AVS100 showed no mutagenicity, toxicity, or adverse effects in preclinical good laboratory practice studies, part of the package that has led to US Food and Drug Administration clearance of an investigational new drug application for initiating clinical trials. This would be a first-in-human combination therapy of pembrolizumab with HDAC6 inhibition for locally advanced or metastatic solid tumors.
Collapse
Affiliation(s)
- Damian Kovalovsky
- Avstera Therapeutics Corp, 365 Phoenixville Pike, Malvern, PA 19355, USA
| | - Satish Noonepalle
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Manasa Suresh
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Dileep Kumar
- Avstera Therapeutics Corp, 365 Phoenixville Pike, Malvern, PA 19355, USA
| | - Michael Berrigan
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, Ross Hall 541, Washington, DC 20037, USA
| | - Nithya Gajendran
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Sumit Upadhyay
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Anelia Horvath
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, Ross Hall 541, Washington, DC 20037, USA
| | - Allen Kim
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, Ross Hall 541, Washington, DC 20037, USA
| | - David Quiceno-Torres
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Karthik Musunuri
- Avstera Therapeutics Corp, 365 Phoenixville Pike, Malvern, PA 19355, USA
| | - Alejandro Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| |
Collapse
|
47
|
Kalsum S, Akber M, Loreti MG, Andersson B, Danielson E, Lerm M, Brighenti S. Sirtuin inhibitors reduce intracellular growth of M. tuberculosis in human macrophages via modulation of host cell immunity. Sci Rep 2024; 14:28150. [PMID: 39548210 PMCID: PMC11568201 DOI: 10.1038/s41598-024-79136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Host-directed therapies aiming to strengthen the body's immune system, represent an underexplored opportunity to improve treatment of tuberculosis (TB). We have previously shown in Mycobacterium tuberculosis (Mtb)-infection models and clinical trials that treatment with the histone deacetylase (HDAC) inhibitor, phenylbutyrate (PBA), can restore Mtb-induced impairment of antimicrobial responses and improve clinical outcomes in pulmonary TB. In this study, we evaluated the efficacy of different groups of HDAC inhibitors to reduce Mtb growth in human immune cells. A panel of 21 selected HDAC inhibitors with different specificities that are known to modulate infection or inflammation was tested using high-content live-cell imaging and analysis. Monocyte-derived macrophages or bulk peripheral blood cells (PBMCs) were infected with the green fluorescent protein (GFP)-expressing Mtb strains H37Ra or H37Rv and treated with HDAC inhibitors in the micromolar range in parallel with a combination of the first-line antibiotics, rifampicin, and isoniazid. Host cell viability in HDAC inhibitor treated cell cultures was monitored with Cytotox-red. Seven HDAC inhibitors were identified that reduced Mtb growth in macrophages > 45-75% compared to average 40% for PBA. The most effective compounds were inhibitors of the class III HDAC proteins, the sirtuins. While these compounds may exhibit their effects by improving macrophage function, one of the sirtuin inhibitors, tenovin, was also highly effective in extracellular killing of Mtb bacilli. Antimicrobial synergy testing using checkerboard assays revealed additive effects between selected sirtuin inhibitors and subinhibitory concentrations of rifampicin or isoniazid. A customized macrophage RNA array including 23 genes associated with cytokines, chemokines and inflammation, suggested that Mtb-infected macrophages are differentially modulated by the sirtuin inhibitors as compared to PBA. Altogether, these results demonstrated that sirtuin inhibitors may be further explored as promising host-directed compounds to support immune functions and reduce intracellular growth of Mtb in human cells.
Collapse
Affiliation(s)
- Sadaf Kalsum
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, ANA Futura, Huddinge, 141 52, Sweden
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | - Mira Akber
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, ANA Futura, Huddinge, 141 52, Sweden
| | - Marco Giulio Loreti
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, ANA Futura, Huddinge, 141 52, Sweden
| | - Blanka Andersson
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | - Eva Danielson
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | - Maria Lerm
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, ANA Futura, Huddinge, 141 52, Sweden.
| |
Collapse
|
48
|
Ho JSY, Jou E, Khong PL, Foo RSY, Sia CH. Epigenetics in Heart Failure. Int J Mol Sci 2024; 25:12010. [PMID: 39596076 PMCID: PMC11593553 DOI: 10.3390/ijms252212010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a clinical syndrome with rising global incidence and poor prognosis despite improvements in medical therapy. There is increasing research interest in epigenetic therapies for heart failure. Pathological cardiac remodelling may be driven by stress-activated cardiac signalling cascades, and emerging research has shown the involvement of epigenetic signals that regulate transcriptional changes leading to heart failure. In this review, we appraise the current evidence for the role of epigenetic modifications in heart failure. These include DNA methylation and histone modifications by methylation, acetylation, phosphorylation, ubiquitination and sumoylation, which are critical processes that establish an epigenetic pattern and translate environmental stress into genetic expression, leading to cardiac remodeling. We summarize the potential epigenetic therapies currently in development, including the limited clinical trials of epigenetic therapies in heart failure. The dynamic changes in the epigenome in the disease process require further elucidation, and so does the impact of this process on the development of therapeutics. Understanding the role of epigenetics in heart failure may pave the way for the identification of novel biomarkers and molecular targets, and facilitate the development of personalized therapies for this important condition.
Collapse
Affiliation(s)
- Jamie Sin Ying Ho
- Department of Cardiology, National University Heart Centre, Singapore 119228, Singapore; (J.S.Y.H.); (R.S.Y.F.)
| | - Eric Jou
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
- Kellogg College, University of Oxford, Oxford OX2 6PN, UK
| | - Pek-Lan Khong
- Department of Diagnostic Imaging, National University Hospital, National University Health System, Singapore 119074, Singapore;
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Roger S. Y. Foo
- Department of Cardiology, National University Heart Centre, Singapore 119228, Singapore; (J.S.Y.H.); (R.S.Y.F.)
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ching-Hui Sia
- Department of Cardiology, National University Heart Centre, Singapore 119228, Singapore; (J.S.Y.H.); (R.S.Y.F.)
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
49
|
Bondarev AD, Jonsson J, Chubarev VN, Tarasov VV, Lagunas-Rangel FA, Schiöth HB. Recent developments of topoisomerase inhibitors: Clinical trials, emerging indications, novel molecules and global sales. Pharmacol Res 2024; 209:107431. [PMID: 39307213 DOI: 10.1016/j.phrs.2024.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/11/2024]
Abstract
The nucleic acid topoisomerases (TOP) are an evolutionary conserved mechanism to solve topological problems within DNA and RNA that have been historically well-established as a chemotherapeutic target. During investigation of trends within clinical trials, we have identified a very high number of clinical trials involving TOP inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 233 unique molecules with TOP-inhibiting activity. In this review, we provide an overview of the clinical drug development highlighting advances in current clinical uses and discussing novel drugs and indications under development. A wide range of bacterial infections, along with solid and hematologic neoplasms, represent the bulk of clinically approved indications. Negative ADR profile and drug resistance among the antibacterial TOP inhibitors and anthracycline-mediated cardiotoxicity in the antineoplastic TOP inhibitors are major points of concern, subject to continuous research efforts. Ongoing development continues to focus on bacterial infections and cancer; however, there is a degree of diversification in terms of novel drug classes and previously uncovered indications, such as glioblastoma multiforme or Clostridium difficile infections. Preclinical studies show potential in viral, protozoal, parasitic and fungal infections as well and suggest the emergence of a novel target, TOP IIIβ. We predict further growth and diversification of the field thanks to the large number of experimental TOP inhibitors emerging.
Collapse
Affiliation(s)
- Andrey D Bondarev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow 354340, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow 354340, Russia
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
50
|
Bhat MF, Srdanović S, Sundberg LR, Einarsdóttir HK, Marjomäki V, Dekker FJ. Impact of HDAC inhibitors on macrophage polarization to enhance innate immunity against infections. Drug Discov Today 2024; 29:104193. [PMID: 39332483 DOI: 10.1016/j.drudis.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Innate immunity plays an important role in host defense against pathogenic infections. It involves macrophage polarization into either the pro-inflammatory M1 or the anti-inflammatory M2 phenotype, influencing immune stimulation or suppression, respectively. Epigenetic changes during immune reactions contribute to long-term innate immunity imprinting on macrophage polarization. It is becoming increasingly evident that epigenetic modulators, such as histone deacetylase (HDAC) inhibitors (HDACi), enable the enhancement of innate immunity by tailoring macrophage polarization in response to immune stressors. In this review, we summarize current literature on the impact of HDACi and other epigenetic modulators on the functioning of macrophages during diseases that have a strong immune component, such as infections. Depending on the disease context and the chosen therapeutic intervention, HDAC1, HDAC2, HDAC3, HDAC6, or HDAC8 are particularly important in influencing macrophage polarization towards either M1 or M2 phenotypes. We anticipate that therapeutic strategies based on HDAC epigenetic mechanisms will provide a unique approach to boost immunity against disease challenges, including resistant infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sonja Srdanović
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | | | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|