1
|
Nasiri F, Safarzadeh Kozani P, Salem F, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. Mechanisms of antigen-dependent resistance to chimeric antigen receptor (CAR)-T cell therapies. Cancer Cell Int 2025; 25:64. [PMID: 39994651 PMCID: PMC11849274 DOI: 10.1186/s12935-025-03697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer immunotherapy has reshaped the landscape of cancer treatment over the past decades. Genetic manipulation of T cells to express synthetic receptors, known as chimeric antigen receptors (CAR), has led to the creation of tremendous commercial and therapeutic success for the treatment of certain hematologic malignancies. However, since the engagement of CAR-T cells with their respective antigens is solely what triggers their cytotoxic reactions against target cells, the slightest changes to the availability and/or structure of the target antigen often result in the incapacitation of CAR-T cells to enforce tumoricidal responses. This results in the resistance of tumor cells to a particular CAR-T cell therapy that requires meticulous heeding to sustain remissions in cancer patients. In this review, we highlight the antigen-dependent resistance mechanisms by which tumor cells dodge being recognized and targeted by CAR-T cells. Moreover, since substituting the target antigen is the most potent strategy for overcoming antigen-dependent disease relapse, we tend to highlight the current status of some target antigens that might be considered suitable alternatives to the currently available antigens in various cancers. We also propose target antigens whose targeting might reduce the off-tumor adverse events of CAR-T cells in certain malignancies.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | | | - Pooria Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Arribas AJ, Napoli S, Gaudio E, Herbaux C, Cannas E, Tarantelli C, Bordone-Pittau R, Cascione L, Munz N, Aresu L, Sgrignani J, Rinaldi A, Kwee I, Rossi D, Cavalli A, Zucca E, Stussi G, Stathis A, Sloss C, Davids MS, Bertoni F. PI3Kδ activation, IL-6 overexpression, and CD37 loss cause resistance to naratuximab emtansine in lymphomas. Blood Adv 2024; 8:6268-6281. [PMID: 39374583 PMCID: PMC11699082 DOI: 10.1182/bloodadvances.2023012291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT CD37-directed antibody and cellular-based approaches have shown preclinical and promising early clinical activity. Naratuximab emtansine (Debio 1562; IMGN529) is an antibody-drug conjugate (ADC) incorporating an anti-CD37 monoclonal antibody conjugated to the maytansinoid DM1 as payload, with activity as a single agent and in combination with rituximab in patients with lymphoma. We studied naratuximab emtansine and its free payload in 54 lymphoma models, correlated its activity with CD37 expression, characterized two resistance mechanisms, and identified combination partners providing synergy. The activity, primarily cytotoxic, was more potent in B- than T-cell lymphoma cell lines. After prolonged exposure to the ADC, one diffuse large B-cell lymphoma (DLBCL) cell line developed resistance to the ADC due to the CD37 gene biallelic loss. After CD37 loss, we also observed upregulation of interleukin-6 (IL-6) and related transcripts. Recombinant IL-6 led to resistance. Anti-IL-6 antibody tocilizumab improved the ADC's cytotoxic activity in CD37+ cells. In a second model, resistance was sustained by a PIK3CD activating mutation, with increased sensitivity to PI3Kδ inhibition and a functional dependence switch from MCL1 to BCL2. Adding idelalisib or venetoclax overcame resistance in the resistant derivative and improved cytotoxic activity in the parental cells. In conclusion, targeting B-cell lymphoma with the naratuximab emtansine showed vigorous antitumor activity as a single agent, which was also observed in models bearing genetic lesions associated with inferior outcomes, such as Myc Proto-Oncogene (MYC) translocations and TP53 inactivation or R-CHOP (rituximab, cyclophosphamide, doxorubicin, Oncovin [vincristine], and prednisone) resistance. Resistant DLBCL models identified active combinations of naratuximab emtansine with drugs targeting IL-6, PI3Kδ, and BCL2.
Collapse
Affiliation(s)
- Alberto J. Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Charles Herbaux
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Eleonora Cannas
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Roberta Bordone-Pittau
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Munz
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Aresu
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Jacopo Sgrignani
- Institute of Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Ivo Kwee
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Cavalli
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Georg Stussi
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Callum Sloss
- Translational Sciences, Immunogen Inc, Waltham, MA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
3
|
Tigu AB, Munteanu R, Moldovan C, Rares D, Kegyes D, Tomai R, Moisoiu V, Ghiaur G, Tomuleasa C, Einsele H, Gulei D, Croce CM. Therapeutic advances in the targeting of ROR1 in hematological cancers. Cell Death Discov 2024; 10:471. [PMID: 39551787 PMCID: PMC11570672 DOI: 10.1038/s41420-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies. The development of ROR1 targeted therapies is continuously growing leading to remarkable novel therapeutical approaches using mAbs, antibody-drug conjugates, several small molecules or CAR T cells which have shown encouraging preclinical results. In the hematological field, mAbs, small molecules, BiTEs or CAR T cell therapies displayed promising outcomes with the clinical trials data encouraging the use of anti-ROR1 therapies. This paper aims to offer a comprehensive analysis of the current landscape of ROR1-targeted therapies in hematological malignancies marking the innovative approaches with promising preclinical and clinical. Offering a better understanding of structural and functional aspects of ROR1 could lead to new perspectives in targeting a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Drula Rares
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Radu Tomai
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania.
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Caulier B, Joaquina S, Gelebart P, Dowling TH, Kaveh F, Thomas M, Tandaric L, Wernhoff P, Katyayini NU, Wogsland C, Gjerstad ME, Fløisand Y, Kvalheim G, Marr C, Kobold S, Enserink JM, Gjertsen BT, McCormack E, Inderberg EM, Wälchli S. CD37 is a safe chimeric antigen receptor target to treat acute myeloid leukemia. Cell Rep Med 2024; 5:101572. [PMID: 38754420 PMCID: PMC11228397 DOI: 10.1016/j.xcrm.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells in the bone marrow and the peripheral blood. Nearly half of the AML patients relapse after standard induction therapy, and new forms of therapy are urgently needed. Chimeric antigen receptor (CAR) T therapy has so far not been successful in AML due to lack of efficacy and safety. Indeed, the most attractive antigen targets are stem cell markers such as CD33 or CD123. We demonstrate that CD37, a mature B cell marker, is expressed in AML samples, and its presence correlates with the European LeukemiaNet (ELN) 2017 risk stratification. We repurpose the anti-lymphoma CD37CAR for the treatment of AML and show that CD37CAR T cells specifically kill AML cells, secrete proinflammatory cytokines, and control cancer progression in vivo. Importantly, CD37CAR T cells display no toxicity toward hematopoietic stem cells. Thus, CD37 is a promising and safe CAR T cell AML target.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Animals
- Immunotherapy, Adoptive/methods
- Mice
- Tetraspanins/immunology
- Cell Line, Tumor
- T-Lymphocytes/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Female
- Male
- Antigens, Neoplasm
Collapse
Affiliation(s)
- Benjamin Caulier
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway; Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sandy Joaquina
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Pascal Gelebart
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Tara Helén Dowling
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Fatemeh Kaveh
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Moritz Thomas
- Institue of AI for Health, Helmholtz Munich, 85764 Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Luka Tandaric
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Patrik Wernhoff
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Niveditha Umesh Katyayini
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cara Wogsland
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - May Eriksen Gjerstad
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Yngvar Fløisand
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Carsten Marr
- Institue of AI for Health, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Jorrit M Enserink
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway; Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
5
|
Arribas AJ, Gaudio E, Napoli S, Yvon Herbaux CJ, Tarantelli C, Bordone RP, Cascione L, Munz N, Aresu L, Sgrignani J, Rinaldi A, Kwee I, Rossi D, Cavalli A, Zucca E, Stussi G, Stathis A, Sloss C, Davids MS, Bertoni F. PI3Kδ activation, IL6 over-expression, and CD37 loss cause resistance to the targeting of CD37-positive lymphomas with the antibody-drug conjugate naratuximab emtansine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566994. [PMID: 38014209 PMCID: PMC10680772 DOI: 10.1101/2023.11.14.566994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Purpose The transmembrane protein CD37 is expressed almost exclusively in lymphoid tissues, with the highest abundance in mature B cells. CD37-directed antibody- and, more recently, cellular-based approaches have shown preclinical and promising early clinical activity. Naratuximab emtansine (Debio 1562, IMGN529) is an antibodydrug conjugate (ADC) that incorporates an anti-CD37 monoclonal antibody conjugated to the maytansinoid DM1 as payload. Naratuximab emtansine has shown activity as a single agent and in combination with the anti-CD20 monoclonal antibody rituximab in B cell lymphoma patients. Experimental Design We assessed the activity of naratuximab emtansine using in vitro models of lymphomas, correlated its activity with CD37 expression levels, characterized two resistance mechanisms to the ADC, and identified combination partners providing synergy. Results The anti-tumor activity of naratuximab emtansine was tested in 54 lymphoma cell lines alongside its free payload. The median IC 50 of naratuximab emtansine was 780 pM, and the activity, primarily cytotoxic, was more potent in B than in T cell lymphoma cell lines. In the subgroup of cell lines derived from B cell lymphoma, there was some correlation between sensitivity to DM1 and sensitivity to naratuximab emtansine (r=0.28, P = 0.06). After prolonged exposure to the ADC, one diffuse large B cell lymphoma (DLBCL) cell line developed resistance to the ADC due to the biallelic loss of the CD37 gene. After CD37 loss, we also observed upregulation of IL6 (IL-6) and other transcripts from MYD88/IL6-signaling. Recombinant IL6 led to resistance to naratuximab emtansine, while the anti-IL6 antibody tocilizumab improved the cytotoxic activity of the ADC in CD37-positive cells. In a second model, resistance was sustained by an activating mutation in the PIK3CD gene, associated with increased sensitivity to PI3K δ inhibition and a switch from functional dependence on the anti-apoptotic protein MCL1 to reliance on BCL2. The addition of idelalisib or venetoclax to naratuximab emtansine overcame resistance to the ADC in the resistant derivative while also improving the cytotoxic activity of the ADC in the parental cells. Conclusions Targeting B cell lymphoma with the CD37 targeting ADC naratuximab emtansine showed vigorous anti-tumor activity as a single agent, which was also observed in models bearing genetic lesions associated with inferior outcomes, such as MYC translocations and TP53 inactivation or resistance to R-CHOP. Resistance DLBCL models identified active combinations of naratuximab emtansine with drugs targeting IL6, PI3K δ , and BCL2. Despite notable progress in recent decades, we still face challenges in achieving a cure for a substantial number of lymphoma patients (1,2). A pertinent example is diffuse large B cell lymphoma (DLBCL), the most prevalent type of lymphoma (3). More than half of DLBCL patients can achieve remission, but around 40% of them experience refractory disease or relapse following an initial positive response (3). Regrettably, the prognosis for many of these cases remains unsatisfactory despite introducing the most recent antibody-based or cellular therapies (3,4), underscoring the importance of innovating new therapeutic strategies and gaining insights into the mechanisms of therapy resistance. CD37 is a transmembrane glycoprotein belonging to the tetraspanin family, primarily expressed on the surface of immune cells, principally in mature B cells but also, at lower levels, in T cells, macrophages/monocytes, granulocytes and dendritic cells (5) (6-8). CD37 plays a crucial role in various immune functions, including B cell activation, proliferation, and signaling, although its precise role still needs to be fully elucidated. CD37 interacts with multiple molecules, including SYK, LYN, CD19, CD22, PI3K δ , PI3K γ , and different integrins, among others (6-8). In mice, the lack of CD37 is paired with reduced T cell-dependent antibody-secreting cells and memory B cells, apparently due to the loss of CD37-mediated clustering of α 4 β 1 integrins (VLA-4) on germinal center B cells and decreased downstream activation of PI3K/AKT signaling and cell survival (5). Reflecting the expression pattern observed in normal lymphocytes, CD37 exhibits elevated expression in all mature B-cell lymphoid neoplasms, including most lymphoma subtypes, and absence in early progenitor cells or terminally differentiated plasma cells (6,8-14). In DLBCL, CD37 expression has been reported between 40% and 90% of cases across multiple studies performed using different antibodies (10,14-16). CD37-directed antibody- and, more recently, cellular-based approaches have shown preclinical (7,10-14,17-23) and early promising clinical activity (24-32). Among the CD37-targeting agents, naratuximab emtansine (Debio 1562, IMGN529) is an antibody-drug conjugate (ADC) that incorporates the anti-CD37 humanized IgG1 monoclonal antibody K7153A conjugated to the maytansinoid DM1, as payload, via the thioether linker, N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) (10). Based on the initial in vitro and in vivo evidence of anti-tumor activity in lymphoma and chronic lymphocytic leukemia (CLL) (7,10), naratuximab emtansine entered the clinical evaluation as a single agent. The phase 1 study exploring naratuximab emtansine enrolled 39 patients with relapsed/refractory B cell lymphoma (27). The overall response rate (ORR) was 13% across all patients and 22% in DLBCL patients, including the only observed complete remission (CR) (27). In preliminary results of a phase 2 trial exploring the combination of naratuximab emtansine with the anti-CD20 monoclonal antibody rituximab (18), based on positive preclinical data (18), the ORR was 45% in 76 patients with DLBCL with 24 CRs (32%), 57% in 14 patients with follicular lymphoma (five CR), 50% in four MCL patients (2 CR) (31). Here, we studied the pattern of activity of naratuximab emtansine across a large panel of cell lines derived from DLBCL and other lymphoma subtypes and characterized two resistance mechanisms to the ADC.
Collapse
|
6
|
Luo L, Zhou X, Zhou L, Liang Z, Yang J, Tu S, Li Y. Current state of CAR-T therapy for T-cell malignancies. Ther Adv Hematol 2022; 13:20406207221143025. [PMID: 36601636 PMCID: PMC9806442 DOI: 10.1177/20406207221143025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/09/2022] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has been approved for relapsed/refractory B-cell lymphomas and greatly improves disease outcomes. The impressive success has inspired the application of this approach to other types of tumors. The relapsed/refractory T-cell malignancies are characteristic of high heterogeneity and poor prognoses. The efficacy of current treatments for this group of diseases is limited. CAR-T therapy is a promising solution to ameliorate the current therapeutic situation. One of the major challenges is that normal T-cells typically share mutual antigens with malignant cells, which causes fratricide and serious T-cell aplasia. Moreover, T-cells collected for CAR transduction could be contaminated by malignant T-cells. The selection of suitable target antigens is of vital importance to mitigate fratricide and T-cell aplasia. Using nanobody-derived or naturally selected CAR-T is the latest method to overcome fratricide. Allogeneic CAR-T products and CAR-NK-cells are expected to avoid tumor contamination. Herein, we review the advances in promising target antigens, the current results of CAR-T therapy clinical trials in T-cell malignancies, the obstacles of CAR-T therapy in T-cell malignancies, and the solutions to these issues.
Collapse
Affiliation(s)
| | | | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital,
Southern Medical University, Guangzhou, Guangdong, China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital,
Southern Medical University, Guangzhou, Guangdong, China
| | - Jilong Yang
- Department of Hematology, Zhujiang Hospital,
Southern Medical University, Guangzhou, Guangdong, China
| | | | | |
Collapse
|
7
|
Anti-CD37 α-amanitin-conjugated antibodies as potential therapeutic weapons for Richter syndrome. Blood 2022; 140:1565-1569. [PMID: 35914223 PMCID: PMC9523372 DOI: 10.1182/blood.2022016211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022] Open
|
8
|
Marhelava K, Krawczyk M, Firczuk M, Fidyt K. CAR-T Cells Shoot for New Targets: Novel Approaches to Boost Adoptive Cell Therapy for B Cell-Derived Malignancies. Cells 2022; 11:1804. [PMID: 35681499 PMCID: PMC9180412 DOI: 10.3390/cells11111804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is undeniably a promising tool in combating various types of hematological malignancies. However, it is not yet optimal and a significant number of patients experience a lack of response or relapse after the treatment. Therapy improvement requires careful analysis of the occurring problems and a deeper understanding of the reasons that stand behind them. In this review, we summarize the recent knowledge about CAR-T products' clinical performance and discuss diversified approaches taken to improve the major shortcomings of this therapy. Especially, we prioritize the challenges faced by CD19 CAR-T cell-based treatment of B cell-derived malignancies and revise the latest insights about mechanisms mediating therapy resistance. Since the loss of CD19 is one of the major obstacles to the success of CAR-T cell therapy, we present antigens that could be alternatively used for the treatment of various types of B cell-derived cancers.
Collapse
Affiliation(s)
- Katsiaryna Marhelava
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| |
Collapse
|
9
|
Iannello A, Deaglio S, Vaisitti T. Novel Approaches for the Treatment of Patients with Richter's Syndrome. Curr Treat Options Oncol 2022; 23:526-542. [PMID: 35294723 PMCID: PMC8989931 DOI: 10.1007/s11864-022-00973-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT In the last 10-15 years, the way to treat cancers has dramatically changed towards precision medicine approaches. These treatment options are mainly based on selective targeting against signaling pathways critical for or detrimentally activated in cancer cells in cancer cells, as well as exploiting molecules that are specifically expressed on neoplastic cells, also known as tumor-associated antigens. These considerations hold true also in the hematological field where a plethora of novel targeted agents have reached patients' bedside, significantly improving clinical responses. Chronic lymphocytic leukemia (CLL) is an example of how targeted therapies, such as BTK, PI3K, or Bcl-2 inhibitors as well as anti-CD20 antibodies, have improved patients' management, even when adopted as frontline treatment. However, these advancements do not apply to Richter's syndrome (RS), the transformation of CLL into a very aggressive and fatal lymphoma, occurring in 2-10% of patients. RS is usually a fast-growing lymphoma of the diffuse large B cell or the Hodgkin's variant, with a dismal prognosis. Despite advancements in depicting and understanding the genetic background of RS and its pathogenesis, no significant clinical results have been registered. In the last couple of years, several studies have started to investigate the impact of novel drugs or drug combinations and some of them have opened for clinical trials, currently in phase I or II, whose results will be soon available. This review will present an overview of current and most recent therapeutic options in RS, discussing also how results coming from xenograft models may help in designing and identifying novel treatment opportunities to overcome the lack of effective therapies.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Prognosis
Collapse
Affiliation(s)
- Andrea Iannello
- Functional Genomics Unit, Department of Medical Sciences, University of Torino, Via Nizza 52, 10126 Turin, Italy
| | - Silvia Deaglio
- Functional Genomics Unit, Department of Medical Sciences, University of Torino, Via Nizza 52, 10126 Turin, Italy
| | - Tiziana Vaisitti
- Functional Genomics Unit, Department of Medical Sciences, University of Torino, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
10
|
Yan X, Zhou Q, Zhu H, Liu W, Xu H, Yin W, Zhao M, Jiang X, Ren C. The clinical features, prognostic significance, and immune heterogeneity of CD37 in diffuse gliomas. iScience 2021; 24:103249. [PMID: 34755091 PMCID: PMC8564053 DOI: 10.1016/j.isci.2021.103249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/14/2021] [Accepted: 10/07/2021] [Indexed: 10/30/2022] Open
Abstract
Diffuse glioma is the most prevalent and malignant brain tumor. The function and significance of CD37 in diffuse gliomas remain largely unknown. Here, we showed CD37 was abnormally expressed in diverse cancers, especially glioma by pan-cancer differential expression analysis. In addition, we found CD37 was upregulated in higher grade and IDH or IDH1-wildtype gliomas, which was further validated by qPCR and IHC. Survival analysis revealed CD37 served as an independent indicator for unfavorable prognosis of patients with diffuse gliomas. Functional enrichment analysis revealed CD37 was associated with immunological processes. Moreover, immune infiltration analyses suggested gliomas with high-expression CD37 had greater infiltration of M2 macrophages and neutrophils, and lower NK cell abundance. CD37 was closely correlated to immune checkpoint molecules, including CD276, CD80, CD86, and PD-L2. Our results indicated CD37 is an independent prognostic factor and plays an immunosuppressive role in diffuse gliomas. Targeting CD37 could be a promising immunotherapeutic strategy for diffuse gliomas.
Collapse
Affiliation(s)
- Xuejun Yan
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Hongjuan Xu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Fuhr V, Vafadarnejad E, Dietrich O, Arampatzi P, Riedel A, Saliba AE, Rosenwald A, Rauert-Wunderlich H. Time-Resolved scRNA-Seq Tracks the Adaptation of a Sensitive MCL Cell Line to Ibrutinib Treatment. Int J Mol Sci 2021; 22:ijms22052276. [PMID: 33668876 PMCID: PMC7956352 DOI: 10.3390/ijms22052276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Since the approval of ibrutinib for relapsed/refractory mantle cell lymphoma (MCL), the treatment of this rare mature B-cell neoplasm has taken a great leap forward. Despite promising efficacy of the Bruton tyrosine kinase inhibitor, resistance arises inevitably and the underlying mechanisms remain to be elucidated. Here, we aimed to decipher the response of a sensitive MCL cell line treated with ibrutinib using time-resolved single-cell RNA sequencing. The analysis uncovered five subpopulations and their individual responses to the treatment. The effects on the B cell receptor pathway, cell cycle, surface antigen expression, and metabolism were revealed by the computational analysis and were validated by molecular biological methods. The observed upregulation of B cell receptor signaling, crosstalk with the microenvironment, upregulation of CD52, and metabolic reprogramming towards dependence on oxidative phosphorylation favor resistance to ibrutinib treatment. Targeting these cellular responses provide new therapy options in MCL.
Collapse
Affiliation(s)
- Viktoria Fuhr
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, 97080 Würzburg, Germany; (V.F.); (A.R.)
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080 Würzburg, Germany; (E.V.); (O.D.); (A.-E.S.)
| | - Oliver Dietrich
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080 Würzburg, Germany; (E.V.); (O.D.); (A.-E.S.)
| | - Panagiota Arampatzi
- Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany;
| | - Angela Riedel
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, 97080 Würzburg, Germany;
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080 Würzburg, Germany; (E.V.); (O.D.); (A.-E.S.)
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, 97080 Würzburg, Germany; (V.F.); (A.R.)
| | - Hilka Rauert-Wunderlich
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, 97080 Würzburg, Germany; (V.F.); (A.R.)
- Correspondence:
| |
Collapse
|
12
|
Balzarotti M, Magagnoli M, Canales MÁ, Corradini P, Grande C, Sancho JM, Zaja F, Quinson AM, Belsack V, Maier D, Carlo-Stella C. A phase Ib, open-label, dose-escalation trial of the anti-CD37 monoclonal antibody, BI 836826, in combination with gemcitabine and oxaliplatin in patients with relapsed/refractory diffuse large B-cell lymphoma. Invest New Drugs 2021; 39:1028-1035. [PMID: 33523334 PMCID: PMC8279964 DOI: 10.1007/s10637-020-01054-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
Background BI 836826 is a chimeric mouse–human monoclonal antibody directed against human CD37, a transmembrane protein expressed on mature B lymphocytes. This open-label, phase I dose-escalation trial (NCT02624492) was conducted to determine the maximum tolerated dose (MTD), safety/tolerability, and preliminary efficacy of BI 836826 in combination with gemcitabine and oxaliplatin in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Methods Eligible patients received intravenous infusions of BI 836826 on day 8 and gemcitabine 1000 mg/m2 plus oxaliplatin 100 mg/m2 on day 1, for up to six 14-day treatment cycles. Dose escalation followed the standard 3 + 3 design. Results Of 21 treated patients, 17 had relapsed/refractory DLBCL and four had follicular lymphoma transformed to DLBCL. BI 836826 dosing started at 25 mg and proceeded through 50 mg and 100 mg. Two dose-limiting toxicities (DLTs) occurred during cycle 1, both grade 4 thrombocytopenia lasting > 7 days, affecting 1/6 evaluable patients (17%) in both the 50 mg and 100 mg cohorts. Due to early termination of the study, the MTD was not determined. The most common adverse events related to BI 836826 treatment were neutropenia (52%), thrombocytopenia (48%), and anemia (48%). Eight patients (38%) experienced BI 836826-related infusion-related reactions (two grade 3). Overall objective response rate was 38%, including two patients (10%) with complete remission and six patients (29%) with partial remission. Conclusions BI 836826 in combination with GemOx was generally well tolerated but did not exceed the MTD at doses up to 100 mg given every 14 days.
Collapse
Affiliation(s)
- Monica Balzarotti
- Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | - Massimo Magagnoli
- Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | | | - Paolo Corradini
- University of Milan, Milan, Italy
- Division of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Juan-Manuel Sancho
- Clinical Hematology Department, ICO-IJC-Hospital Germans Trias i Pujol, Badalona, Spain
| | - Francesco Zaja
- University of Trieste, Ospedale Maggiore, Piazza dell'Ospitale 1, Trieste, Italy
| | | | | | - Daniela Maier
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carmelo Carlo-Stella
- Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
13
|
Bordron A, Bagacean C, Tempescul A, Berthou C, Bettacchioli E, Hillion S, Renaudineau Y. Complement System: a Neglected Pathway in Immunotherapy. Clin Rev Allergy Immunol 2020; 58:155-171. [PMID: 31144209 DOI: 10.1007/s12016-019-08741-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approved for the treatment of autoimmune diseases, hematological malignancies, and solid cancers, several monoclonal antibodies (mAb) make use of complement in their mechanism of action. Such an assessment is based on comprehensive investigations that used mouse models, in vitro studies, and analyses from patients at initiation (basal level to highlight deficiencies) and after treatment initiation (mAb impact on complement), which have further provided key insights into the importance of the complement activation and/or complement deficiencies in mAb activity. Accordingly, new approaches can now be developed with the final objective of increasing the clinical efficacy of mAb. These improvements include (i) the concurrent administration of fresh frozen plasma during mAb therapy; (ii) mAb modifications such as immunoglobulin G subclass switching, Fc mutation, or IgG hexamerization to improve the fixation and activation of C1q; (iii) optimization of the target recognition to induce a higher complement-dependent cytotoxicity (CDC) and/or complement-dependant cellular cytotoxicity (CDCC); and (iv) the control of soluble and cellular complement inhibitors.
Collapse
Affiliation(s)
- Anne Bordron
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Cristina Bagacean
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Adrian Tempescul
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Christian Berthou
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | | | - Sophie Hillion
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France
| | - Yves Renaudineau
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France.
| |
Collapse
|
14
|
Kroschinsky F, Middeke JM, Janz M, Lenz G, Witzens-Harig M, Bouabdallah R, La Rosée P, Viardot A, Salles G, Kim SJ, Kim TM, Ottmann O, Chromik J, Quinson AM, von Wangenheim U, Burkard U, Berk A, Schmitz N. Phase I dose escalation study of BI 836826 (CD37 antibody) in patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Invest New Drugs 2020; 38:1472-1482. [PMID: 32172489 PMCID: PMC7497676 DOI: 10.1007/s10637-020-00916-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
BI 836826 is a chimeric immunoglobulin G1 antibody targeting CD37, a tetraspanin transmembrane protein predominantly expressed on normal and malignant B cells. This phase I, open-label study used a modified 3 + 3 design to evaluate the safety, maximum tolerated dose (MTD), pharmacokinetics, and preliminary activity of BI 836826 in patients with relapsed/refractory B cell non-Hodgkin lymphoma (NHL; NCT01403948). Eligible patients received up to three courses comprising an intravenous infusion (starting dose: 1 mg) once weekly for 4 weeks followed by an observation period of 27 (Course 1, 2) or 55 days (Course 3). Patients had to demonstrate clinical benefit before commencing treatment beyond course 2. Forty-eight patients were treated. In the dose escalation phase (1-200 mg) involving 37 Caucasian patients, the MTD was 100 mg. Dose-limiting toxicities occurred in four patients during the MTD evaluation period, and included stomatitis, febrile neutropenia, hypocalcemia, hypokalemia, and hypophosphatemia. The most common adverse events were neutropenia (57%), leukopenia (57%), and thrombocytopenia (41%), and were commonly of grade 3 or 4. Overall, 18 (38%) patients experienced infusion-related reactions, which were mostly grade 1 or 2. Preliminary evidence of anti-tumor activity was seen; three patients responded to treatment, including one complete remission in a Korean patient with diffuse large B cell lymphoma. BI 836826 plasma exposure increased more than proportionally with increasing doses. BI 836826 demonstrated preliminary activity; the most frequent adverse events were hematotoxicity and infusion-related reactions which were manageable after amending the infusion schedule. Although BI 856826 will not undergo further clinical development, these results confirm CD37 as a valid therapeutic target in B cell NHL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/blood
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antigens, Neoplasm
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/blood
- Antineoplastic Agents, Immunological/pharmacokinetics
- Drug Resistance, Neoplasm
- Female
- Humans
- Infusions, Intravenous
- Lymphoma, B-Cell/blood
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Male
- Maximum Tolerated Dose
- Middle Aged
- Receptors, IgG/genetics
- Recurrence
- Tetraspanins/antagonists & inhibitors
- Treatment Outcome
- beta 2-Microglobulin/blood
Collapse
Affiliation(s)
- Frank Kroschinsky
- Medical Department I, University Hospital at the Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jan Moritz Middeke
- Medical Department I, University Hospital at the Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Martin Janz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Georg Lenz
- Department of Hematology and Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Mathias Witzens-Harig
- Internal Medicine V: Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Reda Bouabdallah
- Department of Hematology, Institute Paoli Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Paul La Rosée
- Klinik für Innere Medizin II, Universitätsklinikum, Jena, Germany
- Klinik für Innere Medizin II, Schwarzwald-Baar-Klinikum, Villingen-Schweningen, Germany
| | - Andreas Viardot
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Gilles Salles
- Department of Hematology, University Hospital of South Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Bénite, France
| | - Seok Jin Kim
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Irwon-dong, Gangnam-gu, Seoul, South Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, South Korea
| | - Oliver Ottmann
- Division of Cancer and Genetics, Department of Haematology, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Joerg Chromik
- Universitätsklinikum Frankfurt, Johann-Wolfgang-Goethe-Universität, Theodor-W.-Adorno-Platz 1, 60323, Frankfurt, Germany
| | - Anne-Marie Quinson
- Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Ute von Wangenheim
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Ute Burkard
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Andreas Berk
- ClinTriCare GmbH & Co. KG, Untere Illereicher Str. 10, 89281, Altenstadt, Germany
| | - Norbert Schmitz
- Department of Hematology and Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
15
|
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020; 21:ijms21176324. [PMID: 32878291 PMCID: PMC7504322 DOI: 10.3390/ijms21176324] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.
Collapse
|
16
|
Abstract
Mantle cell lymphoma (MCL) is a rare, B cell non-Hodgkin's lymphoma with highly heterogeneous clinical presentation and aggressiveness. First-line treatment consists of intensive chemotherapy with autologous stem cell transplant for the fit, transplant eligible patients, or less intensive chemotherapy for the less fit (and transplant-ineligible) patients. Patients eventually relapse with a progressive clinical course. Numerous therapeutic approaches have emerged over the last few years which have significantly changed the treatment landscape of MCL. These therapies consist of targeted approaches such as BTK and BCL2 inhibitors that provide durable therapeutic responses. However, the optimum combination and sequencing of these therapies is unclear and is currently investigated in several ongoing studies. Furthermore, cellular therapies such as chimeric antigen receptor (CAR) T cells and bispecific T cell engager (BiTe) antibodies have shown impressive results and will likely shape treatment approaches in relapsed MCL, especially after failure with BTK inhibitors. Herein, we provide a comprehensive review of past and ongoing studies that will likely significantly impact our approach to MCL treatment in both the frontline (for transplant eligible and ineligible patients) as well as in the relapsed setting. We present the most up to date results from these studies as well as perspectives on future studies in MCL.
Collapse
Affiliation(s)
- Walter Hanel
- Division of Hematology, Department of Medicine, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210 USA
| | - Narendranath Epperla
- Division of Hematology, Department of Medicine, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
17
|
Wang L, Qin W, Huo YJ, Li X, Shi Q, Rasko JEJ, Janin A, Zhao WL. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther 2020; 5:15. [PMID: 32296035 PMCID: PMC7058622 DOI: 10.1038/s41392-020-0113-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of lymphoma has gradually increased over previous decades, and it ranks among the ten most prevalent cancers worldwide. With the development of targeted therapeutic strategies, though a subset of lymphoma patients has become curable, the treatment of refractory and relapsed diseases remains challenging. Many efforts have been made to explore new targets and to develop corresponding therapies. In addition to novel antibodies targeting surface antigens and small molecular inhibitors targeting oncogenic signaling pathways and tumor suppressors, immune checkpoint inhibitors and chimeric antigen receptor T-cells have been rapidly developed to target the tumor microenvironment. Although these targeted agents have shown great success in treating lymphoma patients, adverse events should be noted. The selection of the most suitable candidates, optimal dosage, and effective combinations warrant further investigation. In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma, providing a clinical rationale for mechanism-based lymphoma treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei Qin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Yu-Jia Huo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Qing Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
18
|
Maaland AF, Heyerdahl H, O'Shea A, Eiriksdottir B, Pascal V, Andersen JT, Kolstad A, Dahle J. Targeting B-cell malignancies with the beta-emitting anti-CD37 radioimmunoconjugate 177Lu-NNV003. Eur J Nucl Med Mol Imaging 2019; 46:2311-2321. [PMID: 31309259 PMCID: PMC6717602 DOI: 10.1007/s00259-019-04417-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Purpose The aim of this study was to explore the β-emitting lutetium-177 labelled anti-CD37 antibody NNV003 (177Lu-NNV003, Humalutin®) for the treatment of non-Hodgkin’s lymphoma in in vitro studies and in animal models. Methods Cytotoxicity of 177Lu-NNV003 was measured in REC-1 (mantle cell lymphoma) and DOHH-2 (diffuse large B cell lymphoma) cell lines. Biodistribution was studied in mice bearing subcutaneous DOHH-2 or MEC-2 (chronic lymphocytic leukaemia) xenografts. The therapeutic effect of a single injection of 177Lu-NNV003 was measured in mice intravenously or subcutaneously injected with REC-1 cells. Haematological and histopathological assessments were used to evaluate the toxic effect of 177Lu-NNV003. The immunotherapeutic effect of NNV003 was assessed by measuring binding to Fcγ receptors, activation of ADCC and ADCP. NNV003’s immunogenicity potential was assessed using in silico immunogenicity prediction tools. Results 177Lu-NNV003 showed an activity dependent antiproliferative effect in all cell lines. Maximum tumour uptake in vivo was 45% of injected activity/g in MEC-2 tumours and 15% injected activity/g in DOHH-2 tumours. In mice injected intravenously with REC-1 cells, 177Lu-NNV003 (50–100 MBq/kg) improved survival compared to control groups (p < 0.02). In mice with subcutaneous REC-1 xenografts, 500 MBq/kg 177Lu-NNV003 extended survival compared to the control treatments (p < 0.005). Transient haematological toxicity was observed in all mice treated with radioactivity. NNV003 induced ADCC and ADCP and was predicted to have a lower immunogenicity potential than its murine counterpart. Conclusion 177Lu-NNV003 had a significant anti-tumour effect and a favourable toxicity profile. These results warrant further clinical testing in patients with CD37-expressing B cell malignancies. Electronic supplementary material The online version of this article (10.1007/s00259-019-04417-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Astri Fjelde Maaland
- Nordic Nanovector ASA, Kjelsåsveien 168 B, 0884, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Helen Heyerdahl
- Nordic Nanovector ASA, Kjelsåsveien 168 B, 0884, Oslo, Norway
| | - Adam O'Shea
- Nordic Nanovector ASA, Kjelsåsveien 168 B, 0884, Oslo, Norway
| | | | | | - Jan Terje Andersen
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Arne Kolstad
- Department of Oncology, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.,Jebsen Center for Cancer Immunotherapy, University of Oslo, Oslo, Norway
| | - Jostein Dahle
- Nordic Nanovector ASA, Kjelsåsveien 168 B, 0884, Oslo, Norway
| |
Collapse
|
19
|
Sun M, Zhang H. Therapeutic antibodies for mantle cell lymphoma: A brand-new era ahead. Heliyon 2019; 5:e01297. [PMID: 31016256 PMCID: PMC6475712 DOI: 10.1016/j.heliyon.2019.e01297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a heterogeneous aggressive disease and remains incurable with current chemotherapies. The development of monoclonal antibody (mAb) has led to substantial achievement in immunotherapeutic strategies for B-cell lymphomas including MCL. Nonetheless, progress in the clinical use of mAbs is hindered by poor efficacy, off-target toxicities and drug resistance. Thus, novel mAbs engineering and approaches to improve target specificity and enhance affinity and potency are required. In this review, we highlight the latest advances of therapeutic antibodies in MCL, alone or in combination with other strategies and agents, with a particular focus on the current challenges and future prospective.
Collapse
Affiliation(s)
- Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650031, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650031, China
| |
Collapse
|
20
|
Scherer LD, Brenner MK, Mamonkin M. Chimeric Antigen Receptors for T-Cell Malignancies. Front Oncol 2019; 9:126. [PMID: 30891427 PMCID: PMC6411696 DOI: 10.3389/fonc.2019.00126] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
Development of chimeric antigen receptor (CAR)-modified T cells for the treatment of T-lineage leukemia and lymphoma has encountered several unique challenges. The most widely expressed tumor antigen targets for malignant T cells are often also expressed on non-malignant T cells. Transducing T cells with CARs targeted to these shared antigens can therefore promote over-activation or fratricide of CAR T cells, reducing their therapeutic potency. If fratricide is resolved, clinical CAR T cell activity may eliminate normal T-cell subsets and cause temporary immunosuppression. In this review, we summarize the preclinical development of CAR-based therapies for T-cell malignancies and discuss strategies to minimize toxicities associated with on-target fratricide and off-tumor activity.
Collapse
Affiliation(s)
- Lauren D Scherer
- Texas Children's Hospital, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Malcolm K Brenner
- Texas Children's Hospital, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Houston Methodist Hospital, Houston, TX, United States
| | - Maksim Mamonkin
- Texas Children's Hospital, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Houston Methodist Hospital, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Scarfò I, Ormhøj M, Frigault MJ, Castano AP, Lorrey S, Bouffard AA, van Scoyk A, Rodig SJ, Shay AJ, Aster JC, Preffer FI, Weinstock DM, Maus MV. Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas. Blood 2018; 132:1495-1506. [PMID: 30089630 PMCID: PMC6172564 DOI: 10.1182/blood-2018-04-842708] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have emerged as a novel form of treatment of patients with B-cell malignancies. In particular, anti-CD19 CAR T-cell therapy has effected impressive clinical responses in B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma. However, not all patients respond, and relapse with antigen loss has been observed in all patient subsets. Here, we report on the design and optimization of a novel CAR directed to the surface antigen CD37, which is expressed in B-cell non-Hodgkin lymphomas, in chronic lymphocytic leukemia, and in some cases of cutaneous and peripheral T-cell lymphomas. We found that CAR-37 T cells demonstrated antigen-specific activation, cytokine production, and cytotoxic activity in models of B- and T-cell lymphomas in vitro and in vivo, including patient-derived xenografts. Taken together, these results are the first showing that T cells expressing anti-CD37 CAR have substantial activity against 2 different lymphoid lineages, without evidence of significant T-cell fratricide. Furthermore, anti-CD37 CARs were readily combined with anti-CD19 CARs to generate dual-specific CAR T cells capable of recognizing CD19 and CD37 alone or in combination. Our findings indicate that CD37-CAR T cells represent a novel therapeutic agent for the treatment of patients with CD37-expressing lymphoid malignancies.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/analysis
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Humans
- Immunotherapy, Adoptive/methods
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/therapy
- Mice
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Tetraspanins/analysis
- Tetraspanins/antagonists & inhibitors
- Tetraspanins/immunology
Collapse
Affiliation(s)
- Irene Scarfò
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA
- Harvard Medical School, Boston, MA
| | - Maria Ormhøj
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA
- Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA
- Harvard Medical School, Boston, MA
| | - Ana P Castano
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA
| | - Selena Lorrey
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA
| | | | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Alexandra J Shay
- Department of Pathology, Massachusetts General Hospital, Boston, MA; and
| | - Jon C Aster
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Frederic I Preffer
- Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA; and
| | - David M Weinstock
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA
- Harvard Medical School, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
22
|
Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, Muñoz-Calleja C. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets. Front Immunol 2018; 8:1936. [PMID: 29387053 PMCID: PMC5776327 DOI: 10.3389/fimmu.2017.01936] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Today, monoclonal antibodies (mAbs) are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs) have been successfully developed. Non-LSAs (NLSAs) are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs-marketed or in development-to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Ana Alcaraz-Serna
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
23
|
Abstract
In this issue of Blood, Xu-Monette et al show that CD37 protein expression is a strong prognostic marker in diffuse large B-cell lymphoma (DLBCL) treated with R-CHOP.1 CD37 negativity is associated with poor outcome and a high prevalence of adverse genetic and biologic features.1
Collapse
|
24
|
Witkowska M, Smolewski P, Robak T. Investigational therapies targeting CD37 for the treatment of B-cell lymphoid malignancies. Expert Opin Investig Drugs 2018; 27:171-177. [PMID: 29323537 DOI: 10.1080/13543784.2018.1427730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION While chemotherapy still remains a cornerstone of oncologic therapy, immunotherapy with monoclonal antibodies has steadily improved the treatment strategy for several hematologic malignancies. New treatment options need to be developed for relapsed and refractory non-Hodgkin lymphoma (NHL) patients. Currently, novel agents targeting specific molecules on the surface of lymphoma cells, such as anti-CD37 antibodies, are under considerable investigation. Here we report on anti-CD37 targeting for the treatment of patients with B-cell NHL. AREAS COVERED CD37 seems to be the perfect therapeutic target in patients with NHL. The CD37 antigen is abundantly expressed in B-cells, but is absent on normal stem cells and plasma cells. It is hoped that anti-CD37 monoclonal antibodies will increase the efficacy and reduce toxicity in patients with both newly diagnosed and relapsed and refractory disease. Recent clinical trials have shown promising outcomes for these agents, administered both as monotherapy and in combination with standard chemotherapeutics. EXPERT OPINION The development of new therapeutic options might help to avoid cytotoxic chemotherapy entirely in some clinical settings. This article presents the latest state of the art on the new treatment strategies in NHL patients. It also discusses recently approved agents and available clinical trial data.
Collapse
Affiliation(s)
- Magdalena Witkowska
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Piotr Smolewski
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Tadeusz Robak
- b Department of Hematology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
25
|
Inamdar AA, Goy A, Ayoub NM, Attia C, Oton L, Taruvai V, Costales M, Lin YT, Pecora A, Suh KS. Mantle cell lymphoma in the era of precision medicine-diagnosis, biomarkers and therapeutic agents. Oncotarget 2018; 7:48692-48731. [PMID: 27119356 PMCID: PMC5217048 DOI: 10.18632/oncotarget.8961] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/10/2016] [Indexed: 12/15/2022] Open
Abstract
Despite advances in the development of clinical agents for treating Mantle Cell Lymphoma (MCL), treatment of MCL remains a challenge due to complexity and frequent relapse associated with MCL. The incorporation of conventional and novel diagnostic approaches such as genomic sequencing have helped improve understanding of the pathogenesis of MCL, and have led to development of specific agents targeting signaling pathways that have recently been shown to be involved in MCL. In this review, we first provide a general overview of MCL and then discuss about the role of biomarkers in the pathogenesis, diagnosis, prognosis, and treatment for MCL. We attempt to discuss major biomarkers for MCL and highlight published and ongoing clinical trials in an effort to evaluate the dominant signaling pathways as drugable targets for treating MCL so as to determine the potential combination of drugs for both untreated and relapse/refractory cases. Our analysis indicates that incorporation of biomarkers is crucial for patient stratification and improve diagnosis and predictability of disease outcome thus help us in designing future precision therapies. The evidence indicates that a combination of conventional chemotherapeutic agents and novel drugs designed to target specific dysregulated signaling pathways can provide the effective therapeutic options for both untreated and relapse/refractory MCL.
Collapse
Affiliation(s)
- Arati A Inamdar
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andre Goy
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Christen Attia
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Lucia Oton
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Varun Taruvai
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Mark Costales
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yu-Ting Lin
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andrew Pecora
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
26
|
Wang TP, Scott JH, Barta SK. The evolving role of targeted biological agents in the management of indolent B-cell lymphomas. Ther Adv Hematol 2017; 8:329-344. [PMID: 29204260 PMCID: PMC5703116 DOI: 10.1177/2040620717738740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/28/2017] [Indexed: 12/27/2022] Open
Abstract
Improved understanding of the mechanisms of lymphomagenesis has resulted in a surge of development for new targeted agents. An impressive number of biological agents targeting different steps in the pathways of tumor proliferation, survival and apoptosis have become available. The management of patients with indolent non-Hodgkin lymphomas (iNHLs) is rapidly transforming with incorporation of those targeted biological agents into the front-line and relapsed/refractory setting. This review highlights several categories of novel biological agents and will discuss their potential role in the contemporary management of patients with iNHLs.
Collapse
Affiliation(s)
- Trent Peng Wang
- Department of Hematology/Oncology, Fox Chase Cancer Center/Temple University Health System, Philadelphia, PA, USA
| | - John Harwood Scott
- Department of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Stefan Klaus Barta
- Department of Hematology/Oncology, Fox Chase Cancer Center/Temple University Health System, Philadelphia, PA 19111, USA
| |
Collapse
|
27
|
Klein C, Bacac M, Umana P, Fingerle-Rowson G. Combination therapy with the type II anti-CD20 antibody obinutuzumab. Expert Opin Investig Drugs 2017; 26:1145-1162. [DOI: 10.1080/13543784.2017.1373087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Pablo Umana
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | | |
Collapse
|
28
|
Leslie LA, Skarbnik AP, Bejot C, Stives S, Feldman TA, Goy AH. Targeting indolent non-Hodgkin lymphoma. Expert Rev Hematol 2017; 10:299-313. [PMID: 28277849 DOI: 10.1080/17474086.2017.1303374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Due to recent advancements in the understanding of the molecular pathogenesis of B-cell malignancies, there has been an explosion of innovative agents in development. The purpose of this review is to efficiently summarize novel therapies with activity in indolent non-Hodgkin lymphoma (iNHL) targeting surface antigens, signaling pathways, and the tumor microenvironment. Areas covered: A literature search was performed to identify preclinical data and clinical trials focused on the use of targeted therapies in iNHL subtypes including follicular lymphoma, marginal zone lymphoma, small lymphocytic lymphoma, and lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. Classes reviewed include monoclonal antibodies, antibody-drug conjugates, immunomodulatory agents, B-cell receptor pathway inhibitors, Bcl-2 inhibitors, checkpoint inhibitors, chromatin and epigenetic modulating agents, and CAR T-cells. Expert commentary: Opinions regarding strategies to address the prioritization of novel agents entering clinical development, the determination of rational combination therapy, the development of novel endpoints to expedite clinical development, and the movement towards novel consolidative approaches with immuno- and cellular therapy in an attempt to provide curative treatment options are provided. Also, the economic impact of indefinite therapy is discussed.
Collapse
Affiliation(s)
- Lori A Leslie
- a Lymphoma Division , John Theurer Cancer Center , Hackensack , NJ , USA
| | - Alan P Skarbnik
- a Lymphoma Division , John Theurer Cancer Center , Hackensack , NJ , USA
| | - Coleen Bejot
- a Lymphoma Division , John Theurer Cancer Center , Hackensack , NJ , USA
| | - Susan Stives
- a Lymphoma Division , John Theurer Cancer Center , Hackensack , NJ , USA
| | - Tatyana A Feldman
- a Lymphoma Division , John Theurer Cancer Center , Hackensack , NJ , USA
| | - Andre H Goy
- a Lymphoma Division , John Theurer Cancer Center , Hackensack , NJ , USA
| |
Collapse
|
29
|
Ku M, Chong G, Hawkes EA. Tumour cell surface antigen targeted therapies in B-cell lymphomas: Beyond rituximab. Blood Rev 2017; 31:23-35. [DOI: 10.1016/j.blre.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/26/2016] [Accepted: 08/02/2016] [Indexed: 01/16/2023]
|
30
|
Xu-Monette ZY, Li L, Byrd JC, Jabbar KJ, Manyam GC, Maria de Winde C, van den Brand M, Tzankov A, Visco C, Wang J, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, Winter JN, Wang M, Hagemeister FB, Piris MA, Han van Krieken J, Medeiros LJ, Li Y, van Spriel AB, Young KH. Assessment of CD37 B-cell antigen and cell of origin significantly improves risk prediction in diffuse large B-cell lymphoma. Blood 2016; 128:3083-3100. [PMID: 27760757 PMCID: PMC5201094 DOI: 10.1182/blood-2016-05-715094] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023] Open
Abstract
CD37 (tetraspanin TSPAN26) is a B-cell surface antigen widely expressed on mature B cells. CD37 is involved in immune regulation and tumor suppression but its function has not been fully elucidated. We assessed CD37 expression in de novo diffuse large B-cell lymphoma (DLBCL), and investigated its clinical and biologic significance in 773 patients treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) and 231 patients treated with CHOP. We found that CD37 loss (CD37-) in ∼60% of DLBCL patients showed significantly decreased survival after R-CHOP treatment, independent of the International Prognostic Index (IPI), germinal center B-cell-like (GCB)/activated B-cell-like (ABC) cell of origin, nodal/extranodal primary origin, and the prognostic factors associated with CD37-, including TP53 mutation, NF-κBhigh, Mychigh, phosphorylated STAT3high, survivinhigh, p63-, and BCL6 translocation. CD37 positivity predicted superior survival, abolishing the prognostic impact of high IPI and above biomarkers in GCB-DLBCL but not in ABC-DLBCL. Combining risk scores for CD37- status and ABC cell of origin with the IPI, defined as molecularly adjusted IPI for R-CHOP (M-IPI-R), or IPI plus immunohistochemistry (IHC; IPI+IHC) for CD37, Myc, and Bcl-2, significantly improved risk prediction over IPI alone. Gene expression profiling suggested that decreased CD20 and increased PD-1 levels in CD37- DLBCL, ICOSLG upregulation in CD37+ GCB-DLBCL, and CD37 functions during R-CHOP treatment underlie the pivotal role of CD37 status in clinical outcomes. In conclusion, CD37 is a critical determinant of R-CHOP outcome in DLBCL especially in GCB-DLBCL, representing its importance for optimal rituximab action and sustained immune responses. The combined molecular and clinical prognostic indices, M-IPI-R and IPI+IHC, have remarkable predictive values in R-CHOP-treated DLBCL.
Collapse
MESH Headings
- Antigens, CD20/genetics
- Antigens, CD20/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B-Lymphocytes/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Germinal Center/pathology
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Models, Biological
- Multivariate Analysis
- Mutation/genetics
- NF-kappa B/metabolism
- Prognosis
- Programmed Cell Death 1 Receptor/metabolism
- Protein Transport
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Risk Factors
- Survival Analysis
- Tetraspanins/genetics
- Tetraspanins/metabolism
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, China
| | - John C Byrd
- Department of Hematology and Oncology, The Ohio State University, Columbus, OH
| | - Kausar J Jabbar
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Charlotte Maria de Winde
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel van den Brand
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - April Chiu
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Attilio Orazi
- Department of Pathology, Weill Medical College of Cornell University, New York, NY
| | - Youli Zu
- Department of Pathology, The Methodist Hospital, Houston, TX
| | - Govind Bhagat
- Department of Pathology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY
| | - Kristy L Richards
- Department of Hematology and Oncology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - William W L Choi
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Frederick B Hagemeister
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - J Han van Krieken
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Annemiek B van Spriel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Graduate School of Biomedical Sciences, The University of Texas School of Medicine, Houston, TX
| |
Collapse
|
31
|
Sehn LH. Novel agents in follicular lymphoma: choosing the best target. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:284-292. [PMID: 27913493 PMCID: PMC6142508 DOI: 10.1182/asheducation-2016.1.284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Outcomes in patients with follicular lymphoma (FL) have improved dramatically over the last decade. However, novel agents are greatly needed for those who exhibit treatment resistance, in order to minimize lifelong toxicity and to enable combinations that may allow us to achieve the elusive goal of cure. Biological advances have led to the discovery of a large number of potential therapeutic targets and the development of a plethora of novel agents designed to exploit these processes. Possible targets include tumor cell surface markers, key components of intracellular pathways and epigenetic mechanisms, and reactive cells of the microenvironment. Given the large number of candidate drugs and potential combinations, it will be crucial to prioritize evaluation based on sound preclinical and early clinical studies. Combinations that exploit driver mechanisms within tumor cells and target parallel pathways to minimize the development of drug resistance, as well as harness the potential of the immune system would seem most logical. In order to expedite progress, future studies will need to use innovative trial designs and employ surrogate end points. The development of validated prognostic tools to identify higher risk patients and reliable predictive markers to select subgroups most likely to benefit from targeted agents will be paramount. The potential for unexpected toxicity with novel combinations must be recognized, necessitating both short- and long-term vigilance. Finally, as a greater number of treatment options become available, optimal sequencing must be determined in order to both prolong life and maintain its quality.
Collapse
Affiliation(s)
- Laurie H Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, and the University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Abstract
Obinutuzumab is a humanized, type II anti-CD20 monoclonal antibody designed for strong induction of direct cell death and antibody-dependent cell-mediated cytotoxicity. The Phase III GADOLIN trial tested the clinical efficacy of obinutuzumab plus bendamustine followed by obinutuzumab monotherapy in rituximab-refractory indolent non-Hodgkin lymphoma versus treatment with bendamustine alone. It demonstrated significantly longer progression-free survival for the obinutuzumab-containing regimen in this difficult to treat patient group. Based on the results of this trial, US FDA approval was most recently granted for obinutuzumab in the treatment of follicular lymphoma that has relapsed after or was refractory to a rituximab-containing regimen. This article summarizes the available data on chemistry, pharmacokinetics, clinical efficacy and safety of obinutuzumab in the treatment of indolent non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Jennifer Edelmann
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - John G Gribben
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
33
|
Robak T, Blonski JZ, Robak P. Antibody therapy alone and in combination with targeted drugs in chronic lymphocytic leukemia. Semin Oncol 2016; 43:280-290. [DOI: 10.1053/j.seminoncol.2016.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Cheah CY, Fowler NH, Wang ML. Breakthrough therapies in B-cell non-Hodgkin lymphoma. Ann Oncol 2016; 27:778-87. [PMID: 26802148 DOI: 10.1093/annonc/mdw029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/12/2016] [Indexed: 01/14/2023] Open
Abstract
The last 5 years have seen significant advances in our understanding of the molecular pathogenesis of B-cell lymphomas. This has led to the emergence of a large number of new therapeutic agents exploiting precise aspects of the tumor cell's signaling pathways, surface antigens or microenvironment. The purpose of this comprehensive review is to provide a detailed analysis of the breakthrough agents in the field, with a focus on recent clinical data. We describe agents targeting the B-cell receptor pathway, Bcl-2 inhibitors, emerging epigenetic therapies, new monoclonal antibodies and antibody drug conjugates, selective inhibitors of nuclear export, agents targeting the programmed cell death axis and chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- C Y Cheah
- Department of Haematology, Sir Charles Gairdner Hospital and Pathwest Laboratory Medicine WA, Nedlands University of Western Australia, Crawley, Australia
| | - N H Fowler
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - M L Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
35
|
Abstract
INTRODUCTION Over the last few years, several new immunological drugs, particularly monoclonal antibodies (mAbs), immunomodulatory drugs and B-cell receptor (BCR) pathway inhibitors have been developed and investigated in chronic lymphocytic leukemia (CLL). This article summarizes recent discoveries regarding their mechanism of action, pharmacological properties, clinical activity and toxicity, as well as the emerging role of these agents in CLL. AREAS COVERED A literature review of mAbs, BCR pathway inhibitors and immunomodulating drugs was conducted of the MEDLINE database via PubMed for articles in English. Publications from 2000 through February 2015 were scrutinized. The search terms used were alemtuzumab, BI 836826, duvelisib ibrutinib, idelalisib, lenalidomide, monoclonal antibodies, MEDI-551, MOR208, obinutuzumab, ocaratuzumab, ofatumumab, ONO-4059, otlertuzumab, spebrutinib, veltuzumab and XmAb5574 in conjunction with CLL. Conference proceedings from the previous 5 years of the American Society of Hematology, European Hematology Association, American Society of Clinical Oncology, and ACR/ARHP Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION The use of mAbs, BCR inhibitors and immunomodulating drugs is a promising new strategy for chemotherapy-free treatment of CLL. However, definitive data from ongoing and future clinical trials will aid in better defining the status of immunological drugs in the treatment of this disease.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Drug Design
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Antigen, B-Cell/antagonists & inhibitors
Collapse
Affiliation(s)
- Pawel Robak
- a Medical University of Lodz, Departments of Experimental Hematology and Hematology, Copernicus Memorial Hospital , 93-510 Lodz, Ul. Ciolkowskiego 2, Poland +48 42 689 51 91 ; +48 42 689 51 92 ;
| | | | | |
Collapse
|
36
|
Beckwith KA, Byrd JC, Muthusamy N. Tetraspanins as therapeutic targets in hematological malignancy: a concise review. Front Physiol 2015; 6:91. [PMID: 25852576 PMCID: PMC4369647 DOI: 10.3389/fphys.2015.00091] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Tetraspanins belong to a family of transmembrane proteins which play a major role in the organization of the plasma membrane. While all immune cells express tetraspanins, most of these are present in a variety of other cell types. There are a select few, such as CD37 and CD53, which are restricted to hematopoietic lineages. Tetraspanins associate with numerous partners involved in a diverse set of biological processes, including cell activation, survival, proliferation, adhesion, and migration. The historical view has assigned them a scaffolding role, but recent discoveries suggest some tetraspanins can directly participate in signaling through interactions with cytoplasmic proteins. Given their potential roles in supporting tumor survival and immune evasion, an improved understanding of tetraspanin activity could prove clinically valuable. This review will focus on emerging data in the study of tetraspanins, advances in the clinical development of anti-CD37 therapeutics, and the future prospects of targeting tetraspanins in hematological malignancy.
Collapse
Affiliation(s)
- Kyle A Beckwith
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA ; Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA ; Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Columbus, OH, USA
| |
Collapse
|