1
|
Khattab S, Berisha A, Baran N, Piccaluga PP. Rat Sarcoma Virus Family Genes in Acute Myeloid Leukemia: Pathogenetic and Clinical Implications. Biomedicines 2025; 13:202. [PMID: 39857784 PMCID: PMC11760468 DOI: 10.3390/biomedicines13010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Acute myeloid leukemias (AMLs) comprise a group of genetically heterogeneous hematological malignancies that result in the abnormal growth of leukemic cells and halt the maturation process of normal hematopoietic stem cells. Despite using molecular and cytogenetic risk classification to guide treatment decisions, most AML patients survive for less than five years. A deeper comprehension of the disease's biology and the use of new, targeted therapy approaches could potentially increase cure rates. RAS oncogene mutations are common in AML patients, being observed in about 15-20% of AML cases. Despite extensive efforts to find targeted therapy for RAS-mutated AMLs, no effective and tolerable RAS inhibitor has received approval for use against AMLs. The frequency of RAS mutations increases in the context of AMLs' chemoresistance; thus, novel anti-RAS strategies to overcome drug resistance and improve patients' therapy responses and overall survival are the need of the hour. In this article, we aim to update the current knowledge on the role of RAS mutations and anti-RAS strategies in AML treatments.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Alexandria University, Alexandria 21526, Egypt
| | - Adriatik Berisha
- Division of Hematology, University of Pristina, 10000 Pristina, Kosovo
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Section of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
2
|
Masetti R, Baccelli F, Leardini D, Locatelli F. Venetoclax: a new player in the treatment of children with high-risk myeloid malignancies? Blood Adv 2024; 8:3583-3595. [PMID: 38701350 PMCID: PMC11319833 DOI: 10.1182/bloodadvances.2023012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Venetoclax selectively inhibits B-cell lymphoma 2 (BCL-2) and restores apoptotic signaling of hematologic malignant cells. Venetoclax, in combination with hypomethylating and low-dose cytotoxic agents, has revolutionized the management of older patients affected by acute myeloid leukemia (AML) and that of patients unfit to receive intensive chemotherapy. In a single phase 1 pediatric trial conducted on relapsed or refractory AML, the combination of venetoclax and intensive chemotherapy was shown to be safe and yielded promising response rates. In addition, several retrospective studies in children with AML reported that venetoclax, when combined with hypomethylating agents and cytotoxic drugs, seems to be a safe and efficacious bridge to transplant. The promising results on the use of venetoclax combinations in advanced myelodysplastic syndromes (MDS) and therapy-related MDS/AML have also been reported in small case series. This review summarizes the available current knowledge about venetoclax use in childhood high-risk myeloid neoplasms and discusses the possible integration of BCL-2 inhibition in the current treatment algorithm of these children. It also focuses on specific genetic subgroups potentially associated with response in preclinical and clinical studies.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
3
|
Rørvik SD, Torkildsen S, Bruserud Ø, Tvedt THA. Acute myeloid leukemia with rare recurring translocations-an overview of the entities included in the international consensus classification. Ann Hematol 2024; 103:1103-1119. [PMID: 38443661 PMCID: PMC10940453 DOI: 10.1007/s00277-024-05680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Two different systems exist for subclassification of acute myeloid leukemia (AML); the World Health Organization (WHO) Classification and the International Consensus Classification (ICC) of myeloid malignancies. The two systems differ in their classification of AML defined by recurrent chromosomal abnormalities. One difference is that the ICC classification defines an AML subset that includes 12 different genetic abnormalities that occur in less than 4% of AML patients. These subtypes exhibit distinct clinical traits and are associated with treatment outcomes, but detailed description of these entities is not easily available and is not described in detail even in the ICC. We searched in the PubMed database to identify scientific publications describing AML patients with the recurrent chromosomal abnormalities/translocations included in this ICC defined patient subset. This patient subset includes AML with t(1;3)(p36.3;q21.3), t(3;5)(q25.3;q35.1), t(8;16)(p11.2;p13.3), t(1;22)(p13.3;q13.1), t(5;11)(q35.2;p15.4), t(11;12)(p15.4;p13.3) (involving NUP98), translocation involving NUP98 and other partner, t(7;12)(q36.3;p13.2), t(10;11)(p12.3;q14.2), t(16;21)(p11.2;q22.2), inv(16)(p13.3q24.3) and t(16;21)(q24.3;q22.1). In this updated review we describe the available information with regard to frequency, biological functions of the involved genes and the fusion proteins, morphology/immunophenotype, required diagnostic procedures, clinical characteristics (including age distribution) and prognostic impact for each of these 12 genetic abnormalities.
Collapse
Affiliation(s)
- Synne D Rørvik
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway
| | - Synne Torkildsen
- Department of Haematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
4
|
Mumme HL, Raikar SS, Bhasin SS, Thomas BE, Lawrence T, Weinzierl EP, Pang Y, DeRyckere D, Gawad C, Wechsler DS, Porter CC, Castellino SM, Graham DK, Bhasin M. Single-cell RNA sequencing distinctly characterizes the wide heterogeneity in pediatric mixed phenotype acute leukemia. Genome Med 2023; 15:83. [PMID: 37845689 PMCID: PMC10577904 DOI: 10.1186/s13073-023-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Mixed phenotype acute leukemia (MPAL), a rare subgroup of leukemia characterized by blast cells with myeloid and lymphoid lineage features, is difficult to diagnose and treat. A better characterization of MPAL is essential to understand the subtype heterogeneity and how it compares with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Therefore, we performed single-cell RNA sequencing (scRNAseq) on pediatric MPAL bone marrow (BM) samples to develop a granular map of the MPAL blasts and microenvironment landscape. METHODS We analyzed over 40,000 cells from nine pediatric MPAL BM samples to generate a single-cell transcriptomic landscape of B/myeloid (B/My) and T/myeloid (T/My) MPAL. Cells were clustered using unsupervised single-cell methods, and malignant blast and immune clusters were annotated. Differential expression analysis was performed to identify B/My and T/My MPAL blast-specific signatures by comparing transcriptome profiles of MPAL with normal BM, AML, and ALL. Gene set enrichment analysis (GSEA) was performed, and significantly enriched pathways were compared in MPAL subtypes. RESULTS B/My and T/My MPAL blasts displayed distinct blast signatures. Transcriptomic analysis revealed that B/My MPAL profile overlaps with B-ALL and AML samples. Similarly, T/My MPAL exhibited overlap with T-ALL and AML samples. Genes overexpressed in both MPAL subtypes' blast cells compared to AML, ALL, and healthy BM included MAP2K2 and CD81. Subtype-specific genes included HBEGF for B/My and PTEN for T/My. These marker sets segregated bulk RNA-seq AML, ALL, and MPAL samples based on expression profiles. Analysis comparing T/My MPAL to ETP, near-ETP, and non-ETP T-ALL, showed that T/My MPAL had greater overlap with ETP-ALL cases. Comparisons among MPAL subtypes between adult and pediatric samples showed analogous transcriptomic landscapes of corresponding subtypes. Transcriptomic differences were observed in the MPAL samples based on response to induction chemotherapy, including selective upregulation of the IL-16 pathway in relapsed samples. CONCLUSIONS We have for the first time described the single-cell transcriptomic landscape of pediatric MPAL and demonstrated that B/My and T/My MPAL have distinct scRNAseq profiles from each other, AML, and ALL. Differences in transcriptomic profiles were seen based on response to therapy, but larger studies will be needed to validate these findings.
Collapse
Affiliation(s)
- Hope L Mumme
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Taylor Lawrence
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
| | - Elizabeth P Weinzierl
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Yakun Pang
- Department: Pediatrics - Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Chuck Gawad
- Department: Pediatrics - Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, Sarkar D, Ulukaya GB, Sabnis HS, Park SI, DeRyckere D, Raikar SS, Pauly M, Summers RJ, Castellino SM, Wechsler DS, Porter CC, Graham DK, Bhasin M. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat Commun 2023; 14:6209. [PMID: 37798266 PMCID: PMC10556066 DOI: 10.1038/s41467-023-41994-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.
Collapse
Affiliation(s)
- Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Upaasana Krishnan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Pruthvi Perumalla
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Debasree Sarkar
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gulay B Ulukaya
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Himalee S Sabnis
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melinda Pauly
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Krizsán S, Péterffy B, Egyed B, Nagy T, Sebestyén E, Hegyi LL, Jakab Z, Erdélyi DJ, Müller J, Péter G, Csanádi K, Kállay K, Kriván G, Barna G, Bedics G, Haltrich I, Ottóffy G, Csernus K, Vojcek Á, Tiszlavicz LG, Gábor KM, Kelemen Á, Hauser P, Gaál Z, Szegedi I, Ujfalusi A, Kajtár B, Kiss C, Matolcsy A, Tímár B, Kovács G, Alpár D, Bödör C. Next-Generation Sequencing-Based Genomic Profiling of Children with Acute Myeloid Leukemia. J Mol Diagn 2023; 25:555-568. [PMID: 37088137 PMCID: PMC10435843 DOI: 10.1016/j.jmoldx.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/11/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents a major cause of childhood leukemic mortality, with only a limited number of studies investigating the molecular landscape of the disease. Here, we present an integrative analysis of cytogenetic and molecular profiles of 75 patients with pediatric AML from a multicentric, real-world patient cohort treated according to AML Berlin-Frankfurt-Münster protocols. Targeted next-generation sequencing of 54 genes revealed 17 genes that were recurrently mutated in >5% of patients. Considerable differences were observed in the mutational profiles compared with previous studies, as BCORL1, CUX1, KDM6A, PHF6, and STAG2 mutations were detected at a higher frequency than previously reported, whereas KIT, NRAS, and KRAS were less frequently mutated. Our study identified novel recurrent mutations at diagnosis in the BCORL1 gene in 9% of the patients. Tumor suppressor gene (PHF6, TP53, and WT1) mutations were found to be associated with induction failure and shorter event-free survival, suggesting important roles of these alterations in resistance to therapy and disease progression. Comparison of the mutational landscape at diagnosis and relapse revealed an enrichment of mutations in tumor suppressor genes (16.2% versus 44.4%) and transcription factors (35.1% versus 55.6%) at relapse. Our findings shed further light on the heterogeneity of pediatric AML and identify previously unappreciated alterations that may lead to improved molecular characterization and risk stratification of pediatric AML.
Collapse
Affiliation(s)
- Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Borbála Péterffy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dániel J Erdélyi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Judit Müller
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztián Kállay
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gergely Kriván
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gábor Barna
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Katalin Csernus
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Krisztina Mita Gábor
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Ágnes Kelemen
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Péter Hauser
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Zsuzsanna Gaál
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Csongor Kiss
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Botond Tímár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Kovács
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Shiba N. Comprehensive molecular understanding of pediatric acute myeloid leukemia. Int J Hematol 2023; 117:173-181. [PMID: 36653696 DOI: 10.1007/s12185-023-03533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease with various genetic abnormalities. Recent advances in genetic analysis have enabled the identification of causative genes in > 90% of pediatric AML cases. Fusion genes such as RUNX1::RUNX1T1, CBFB::MYH11, and KMT2A::MLLT3 are frequently detected in > 70% of pediatric AML cases, whereas FLT3-internal tandem duplication, CEBPA-bZip, and NPM1 mutations are detected in approximately 5-15% of cases, respectively. Conversely, mutations in DNMT3A, TET2, and IDH, which are common in adults, are extremely rare in pediatric AML. The genetic characteristics of pediatric AML are slightly different from those of adult AML. For accurate risk stratification and treatment intensity, genome analysis should be performed in a simple, fast, and inexpensive manner and the results should be returned to patients in real time. As with acute lymphoblastic leukemia, the presence or absence of minimal residual disease is an important factor in determining the success of treatment against AML, and it is important to predict prognosis and formulate treatment strategies considering the genetic abnormalities. For the development and clinical application of new molecularly targeted therapies based on identified genetic abnormalities, it is necessary to explore when and in which combinations drugs will be most effective.
Collapse
Affiliation(s)
- Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
8
|
Sun H, Ren Y, Zhou X, Chen Q, Liu Y, Zhu C, Ruan Y, Ruan H, Tong H, Ying S, Lin P. DUSP1 Signaling Pathway Regulates Cytarabine Sensitivity in Acute Myeloid Leukemia. Technol Cancer Res Treat 2023; 22:15330338231207765. [PMID: 37872685 PMCID: PMC10594969 DOI: 10.1177/15330338231207765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023] Open
Abstract
Objectives: Dual specificity phosphatase 1 (DUSP1) is high-expressed in various cancers and plays an important role in the cellular response to agents that damage DNA. We aimed to investigate the expressions and mechanisms of DUSP1 signaling pathway regulating cytarabine (Ara-C) resistance in acute myeloid leukemia (AML). Methods: Immunohistochemistry was performed on bone marrow biopsy specimens from AML and controls to explore the expression of DUSP1. Western blot and Q-PCR were used to detect the protein and mRNA expression levels. MTT assay was used to detect the proliferation of cells. Cell apoptosis was detected by flow cytometry. The immune protein-protein interaction (PPI) network of DUSP1 was analyzed in the platform of Pathway Commons, and immune infiltration analysis was used to study the immune microenvironment of AML. Results: We found that the expression levels of DUSP1 in AML patients exceeded that in controls. Survival analysis in public datasets showed that AML patients with higher levels of DUSP1 had poor clinical outcomes. Further public data analysis indicated that DUSP1 was overexpressed in NRAS mutated AML. DUSP1 knockdown by siRNA could sensitize AML cells to Ara-C treatments. The phosphorylation level of mitogen-activated protein kinase (MAPK) pathway was significantly elevated in DUSP1 down-regulated NRAS G13D mutated AML cells. The PPI analysis showed DUSP1 correlated with immune gene CREB1 and CXCL8 in NRAS mutated AML. We also revealed a correlation between tumor-infiltrating immune cells in RAS mutated AML microenvironment. Conclusion: Our findings suggest that DUSP1 signaling pathways may regulate Ara-C sensitivity in AML.
Collapse
Affiliation(s)
- Huali Sun
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yanling Ren
- Myelodysplastic Syndrome Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinping Zhou
- Myelodysplastic Syndrome Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yanmei Liu
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chumeng Zhu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hongli Ruan
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hongyan Tong
- Myelodysplastic Syndrome Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shenpeng Ying
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Peipei Lin
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
9
|
Wei W, Yang D, Chen X, Liang D, Zou L, Zhao X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front Oncol 2022; 12:967754. [PMID: 36523990 PMCID: PMC9745195 DOI: 10.3389/fonc.2022.967754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Non-B-cell acute leukemia is a term that encompasses T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Currently, the therapeutic effectiveness of existing treatments for refractory or relapsed (R/R) non-B-cell acute leukemia is limited. In such situations, chimeric antigen receptor (CAR)-T cell therapy may be a promising approach to treat non-B-cell acute leukemia, given its promising results in B-cell acute lymphoblastic leukemia (B-ALL). Nevertheless, fratricide, malignant contamination, T cell aplasia for T-ALL, and specific antigen selection and complex microenvironment for AML remain significant challenges in the implementation of CAR-T therapy for T-ALL and AML patients in the clinic. Therefore, designs of CAR-T cells targeting CD5 and CD7 for T-ALL and CD123, CD33, and CLL1 for AML show promising efficacy and safety profiles in clinical trials. In this review, we summarize the characteristics of non-B-cell acute leukemia, the development of CARs, the CAR targets, and their efficacy for treating non-B-cell acute leukemia.
Collapse
Affiliation(s)
- Wenwen Wei
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Yang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Cao Z, Shu Y, Wang J, Wang C, Feng T, Yang L, Shao J, Zou L. Super enhancers: Pathogenic roles and potential therapeutic targets for acute myeloid leukemia (AML). Genes Dis 2022; 9:1466-1477. [PMID: 36157504 PMCID: PMC9485276 DOI: 10.1016/j.gendis.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematological tumor with disordered oncogenes/tumor suppressor genes and limited treatments. The potent anti-cancer effects of bromodomain and extra-terminal domain (BET) inhibitors, targeting the key component of super enhancers, in early clinical trials on AML patients, implies the critical role of super enhancers in AML. Here, we review the concept and characteristic of super enhancer, and then summarize the current researches about super enhancers in AML pathogenesis, diagnosis and classification, followed by illustrate the potential super enhancer-related targets and drugs, and propose the future directions of super enhancers in AML. This information provides integrated insight into the roles of super enhancers in this disease.
Collapse
Affiliation(s)
- Ziyang Cao
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Yi Shu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Chunxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Tienan Feng
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jingbo Shao
- Department of Hematology/Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|
11
|
Liu Z, Spiegelman VS, Wang H. Distinct noncoding RNAs and RNA binding proteins associated with high-risk pediatric and adult acute myeloid leukemias detected by regulatory network analysis. Cancer Rep (Hoboken) 2022; 5:e1592. [PMID: 34862757 PMCID: PMC9575484 DOI: 10.1002/cnr2.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease in both children and adults. Although it is well-known that adult and pediatric AMLs are genetically distinct diseases, the driver genes for high-risk pediatric and adult AMLs are still not fully understood. Particularly, the interactions between RNA binding proteins (RBPs) and noncoding RNAs (ncRNAs) for high-risk AMLs have not been explored. AIM To identify RBPs and noncoding RNAs (ncRNAs) that are the master regulators of high-risk AML. METHODS In this manuscript, we identify over 400 upregulated genes in high-risk adult and pediatric AMLs respectively with the expression profiles of TCGA and TARGET cohorts. There are less than 5% genes commonly upregulated in both cohorts, highlighting the genetic differences in adult and childhood AMLs. A novel distance correlation test is proposed for gene regulatory network construction. We build RBP-based regulatory networks with upregulated genes in high-risk adult and pediatric AMLs, separately. RESULTS We discover that three RBPs, three snoRNAs, and two circRNAs function together and regulate over 100 upregulated RNA targets in adult AML, whereas two RBPs are associated with 17 long noncoding RNAs (lncRNAs), and all together regulate over 90 upregulated RNA targets in pediatric AML. Of which, two RBPs, MLLT3 and RBPMS, and their circRNA targets, PTK2 and NRIP1, are associated with the overall survival (OS) in adult AML (p ≤ 0.01), whereas two different RBPs, MSI2 and DNMT3B, and 13 (out of 17) associated lncRNAs are prognostically significant in pediatric AML. CONCLUSIONS Both RBPs and ncRNAs are known to be the major regulators of transcriptional processes. The RBP-ncRNA pairs identified from the regulatory networks will allow better understanding of molecular mechanisms underlying high-risk adult and pediatric AMLs, and assist in the development of novel RBPs and ncRNAs based therapeutic strategies.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Department of Public Health SciencesPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Division of Pediatric Hematology and Oncology, Department of PediatricsPenn State College of MedicineHersheyPennsylvaniaUSA
| | | | - Hong‐Gang Wang
- Division of Pediatric Hematology and Oncology, Department of PediatricsPenn State College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
12
|
Droplet digital PCR for genetic mutations monitoring predicts relapse risk in pediatric acute myeloid leukemia. Int J Hematol 2022; 116:669-677. [PMID: 35849248 DOI: 10.1007/s12185-022-03402-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 10/17/2022]
Abstract
Multiparameter flow cytometry (MFC)-based minimal residual disease has been a poor predictor of prognosis in children with acute myeloid leukemia (AML). This study aimed to evaluate the incremental value of serial monitoring by droplet digital PCR (ddPCR) in forecasting the outcome of AML. Twenty-four children with AML were enrolled and the relapse-free survival (RFS) rate was estimated using the Kaplan-Meier method. Survival estimates were compared using the log-rank test. Survival analysis showed that the RFS rate in the ddPCR ≥ 0.1% group was significantly lower than that in the < 0.1% group (35.7% ± 19.8% vs. 83.6% ± 10.8%, P = 0.003). Moreover, serial monitoring by ddPCR showed that some mutations remained positive in some patients even though other co-mutations were eliminated, and those patients were more prone to relapse, with a significantly poorer RFS compared to patients negative for mutation (22.0% ± 19.2% vs 83.3% ± 11.3%, P = 0.001). Consequently, ddPCR may assist in prognostic forecasting for pediatric AML.
Collapse
|
13
|
Chi SG, Minami Y. Emerging Targeted Therapy for Specific Genomic Abnormalities in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:2362. [PMID: 35216478 PMCID: PMC8879537 DOI: 10.3390/ijms23042362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
We describe recent updates of existing molecular-targeting agents and emerging novel gene-specific strategies. FLT3 and IDH inhibitors are being tested in combination with conventional chemotherapy for both medically fit patients and patients who are ineligible for intensive therapy. FLT3 inhibitors combined with non-cytotoxic agents, such as BCL-2 inhibitors, have potential therapeutic applicability. The menin-MLL complex pathway is an emerging therapeutic target. The pathway accounts for the leukemogenesis in AML with MLL-rearrangement, NPM1 mutation, and NUP98 fusion genes. Potent menin-MLL inhibitors have demonstrated promising anti-leukemic effects in preclinical studies. The downstream signaling molecule SYK represents an additional target. However, the TP53 mutation continues to remain a challenge. While the p53 stabilizer APR-246 in combination with azacitidine failed to show superiority compared to azacitidine monotherapy in a phase 3 trial, next-generation p53 stabilizers are now under development. Among a number of non-canonical approaches to TP53-mutated AML, the anti-CD47 antibody magrolimab in combination with azacitidine showed promising results in a phase 1b trial. Further, the efficacy was somewhat better in patients with the TP53 mutation. Although clinical evidence has not been accumulated sufficiently, targeting activating KIT mutations and RAS pathway-related molecules can be a future therapeutic strategy.
Collapse
Affiliation(s)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 2778577, Japan;
| |
Collapse
|
14
|
Xu H, Wen Y, Jin R, Chen H. Epigenetic modifications and targeted therapy in pediatric acute myeloid leukemia. Front Pediatr 2022; 10:975819. [PMID: 36147798 PMCID: PMC9485478 DOI: 10.3389/fped.2022.975819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy resulting from the genetic alterations and epigenetic dysregulations of the hematopoietic progenitor cells. One-third of children with AML remain at risk of relapse even though outcomes have improved in recent decades. Epigenetic dysregulations have been identified to play a significant role during myeloid leukemogenesis. In contrast to genetic changes, epigenetic modifications are typically reversible, opening the door to the development of epigenetic targeted therapy. In this review, we provide an overview of the landscape of epigenetic alterations and describe the current progress that has been made in epigenetic targeted therapy, and pay close attention to the potential value of epigenetic abnormalities in the precision and combinational therapy of pediatric AML.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Wang L, Chen S, Shen Y, Si P. BCORL1 S878G, GNB1 G116S, SH2B3 A536T, and KMT2D S3708R tetramutation co-contribute to a pediatric acute myeloid leukemia: Case report and literature review. Front Pediatr 2022; 10:993952. [PMID: 36324816 PMCID: PMC9618691 DOI: 10.3389/fped.2022.993952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous group of malignancies characterized by a wide range of genomic alterations responsible for defective regulation of the differentiation and self-renewal programs of hematopoietic stem cells. Here, we report a 4-month-old boy who had acute onset with leukocytosis and abdominal mass. The morphological analysis of bone marrow (BM) smear revealed extremely marrow hyperplasia, large quantities of immature cells, and primary and immature monocytic hyperplasia accounting for 57.5% of nucleated cells. The chromosome karyotype of the case was complex, representing 48, XY, +13, +19[12]/48, idem, del (p12)[8]. After RNAs sequencing, a mutation (c.346G > A, p.G116S) of the GNB1 gene was detected and localized to the mutational hotspot in Exon 7. Meanwhile, the other three mutations were identified by next-generation sequencing (NGS) and whole-exome sequencing (WES) of DNA from the BM aspirate and oral swab, including BCORL1 mutation [c.2632A > G, p.S878G, mutation allele frequency (VAF): 99.95%], SH2B3 mutation (c.1606G > A, p.A536T, VAF: 51.17%), and KMT2D mutation (c.11124C > G, p.S3708R, VAF: 48.95%). BCORL1 mutations have been associated with the pathogenesis of AML, whereas other mutations have rarely been previously reported in pediatric AML. The patient did not undergo the combination chemotherapy and eventually died of respiratory failure. In conclusion, the concurrence of BCORL1, GNB1, SH2B3, and KMT2D mutations may be a mutationally detrimental combination and contribute to disease progression.
Collapse
Affiliation(s)
- Liang Wang
- Department of Clinical Laboratory, Tianjin Children's Hospital/Children's Hospital of Tianjin University, Tianjin, China
| | - Sen Chen
- Department of Hematology, Tianjin Children's Hospital/Children's Hospital of Tianjin University, Tianjin, China
| | - Yongming Shen
- Department of Clinical Laboratory, Tianjin Children's Hospital/Children's Hospital of Tianjin University, Tianjin, China
| | - Ping Si
- Department of Clinical Laboratory, Tianjin Children's Hospital/Children's Hospital of Tianjin University, Tianjin, China
| |
Collapse
|
16
|
Kurtz KJ, Conneely SE, O'Keefe M, Wohlan K, Rau RE. Murine Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:854973. [PMID: 35756660 PMCID: PMC9214208 DOI: 10.3389/fonc.2022.854973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and genetically heterogeneous hematologic malignancy. Extensive sequencing efforts have mapped the genomic landscape of adult and pediatric AML revealing a number of biologically and prognostically relevant driver lesions. Beyond identifying recurrent genetic aberrations, it is of critical importance to fully delineate the complex mechanisms by which they contribute to the initiation and evolution of disease to ultimately facilitate the development of targeted therapies. Towards these aims, murine models of AML are indispensable research tools. The rapid evolution of genetic engineering techniques over the past 20 years has greatly advanced the use of murine models to mirror specific genetic subtypes of human AML, define cell-intrinsic and extrinsic disease mechanisms, study the interaction between co-occurring genetic lesions, and test novel therapeutic approaches. This review summarizes the mouse model systems that have been developed to recapitulate the most common genomic subtypes of AML. We will discuss the strengths and weaknesses of varying modeling strategies, highlight major discoveries emanating from these model systems, and outline future opportunities to leverage emerging technologies for mechanistic and preclinical investigations.
Collapse
Affiliation(s)
- Kristen J Kurtz
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Madeleine O'Keefe
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
17
|
Krasnov GS, Ghukasyan LG, Abramov IS, Nasedkina TV. Determination of the Subclonal Tumor Structure in Childhood Acute Myeloid Leukemia and Acral Melanoma by Next-Generation Sequencing. Mol Biol 2021. [DOI: 10.1134/s0026893321040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
19
|
Elyamany G, Akhter A, Kamran H, Rizwan H, Shabani-Rad MT, Alkhayat N, Al Sharif O, Elborai Y, Al Shahrani M, Mansoor A. Gene Expression Analysis of Pediatric Acute Myeloid Leukemia Identified a Hyperactive ASXL1/BAP1 Axis Linked with Poor Prognosis and over Expressed Epigenetic Modifiers. Pediatr Hematol Oncol 2021; 38:581-592. [PMID: 33764257 DOI: 10.1080/08880018.2021.1901808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Genetic aberrations in the epigenome are rare in pediatric AML, hence expression data in epigenetic regulation and its downstream effect is lacking in childhood AML. Our pilot study screened epigenetic modifiers and its related oncogenic signal transduction pathways concerning clinical outcomes in a small cohort of pediatric AML in KSA. RNA from diagnostic BM biopsies (n = 35) was subjected to expression analysis employing the nCounter Pan-Cancer pathway panel. The patients were dichotomized into low ASXL1 (17/35; 49%) and high ASXL1 (18/35; 51%) groups based on ROC curve analysis. Age, gender, hematological data or molecular risk factors (FLT3 mutation/molecular fusion) exposed no significant differences across these two distinct ASXL1 expression groups (P > 0.05). High ASXL1 expression showed linkage with high expression of other epigenetic modifiers (TET2/EZH2/IDH1&2). Our data showed that high ASXL1 mRNA is interrelated with increased BRCA1 associated protein-1 (BAP1) and its target gene E2F Transcription Factor 1 (E2F1) expression. High ASXL1 expression was associated with high mortality {10/18 (56%) vs. 1/17; (6%) P < 0 .002}. Low ASXL1 expressers showed better OS {740 days vs. 579 days; log-rank P= < 0.023; HR 7.54 (0.98-54.1)}. The association between high ASXL1 expression and epigenetic modifiers is interesting but unexplained and require further investigation. High ASXL1 expression is associated with BAP1 and its target genes. Patients with high ASXL1 expression showed poor OS without any association with a conventional molecular prognostic marker.
Collapse
Affiliation(s)
- Ghaleb Elyamany
- Department of Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ariz Akhter
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| | - Hamza Kamran
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| | - Hassan Rizwan
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| | - Nawaf Alkhayat
- Division of Pediatric Hematology/Oncology, Department of Pediatric, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Omar Al Sharif
- Division of Pediatric Hematology/Oncology, Department of Pediatric, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Yasser Elborai
- Division of Pediatric Hematology/Oncology, Department of Pediatric, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohammad Al Shahrani
- Division of Pediatric Hematology/Oncology, Department of Pediatric, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Adnan Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| |
Collapse
|
20
|
Aung MMK, Mills ML, Bittencourt‐Silvestre J, Keeshan K. Insights into the molecular profiles of adult and paediatric acute myeloid leukaemia. Mol Oncol 2021; 15:2253-2272. [PMID: 33421304 PMCID: PMC8410545 DOI: 10.1002/1878-0261.12899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a clinically and molecularly heterogeneous disease characterised by uncontrolled proliferation, block in differentiation and acquired self-renewal of hematopoietic stem and myeloid progenitor cells. This results in the clonal expansion of myeloid blasts within the bone marrow and peripheral blood. The incidence of AML increases with age, and in childhood, AML accounts for 20% of all leukaemias. Whilst there are many clinical and biological similarities between paediatric and adult AML with continuum across the age range, many characteristics of AML are associated with age of disease onset. These include chromosomal aberrations, gene mutations and differentiation lineage. Following chemotherapy, AML cells that survive and result in disease relapse exist in an altered chemoresistant state. Molecular profiling currently represents a powerful avenue of experimentation to study AML cells from adults and children pre- and postchemotherapy as a means of identifying prognostic biomarkers and targetable molecular vulnerabilities that may be age-specific. This review highlights recent advances in our knowledge of the molecular profiles with a focus on transcriptomes and metabolomes, leukaemia stem cells and chemoresistant cells in adult and paediatric AML and focus on areas that hold promise for future therapies.
Collapse
Affiliation(s)
- Myint Myat Khine Aung
- Paul O’Gorman Leukaemia Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| | - Megan L. Mills
- Paul O’Gorman Leukaemia Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| | | | - Karen Keeshan
- Paul O’Gorman Leukaemia Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| |
Collapse
|
21
|
Sasaki K, Tsujimoto S, Miyake M, Uchiyama Y, Ikeda J, Yoshitomi M, Shimosato Y, Tokumasu M, Matsuo H, Yoshida K, Ohki K, Kaburagi T, Yamato G, Hara Y, Takeuchi M, Kinoshita A, Tomizawa D, Taga T, Adachi S, Tawa A, Horibe K, Hayashi Y, Matsumoto N, Ito S, Shiba N. Droplet digital polymerase chain reaction assay for the detection of the minor clone of KIT D816V in paediatric acute myeloid leukaemia especially showing RUNX1-RUNX1T1 transcripts. Br J Haematol 2021; 194:414-422. [PMID: 34120331 DOI: 10.1111/bjh.17569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022]
Abstract
KIT D816V mutation within exon 17 has been particularly reported as one of the poor prognostic factors in pediatric acute myeloid leukemia (AML) with RUNX1-RUNX1T1. The exact frequency and the prognostic impact of KIT D816V minor clones at diagnosis were not examined. In this study, the minor clones were examined and the prognostic significance of KIT D816V mutation in pediatric patients was investigated. Consequently, 24 KIT D816V mutations (7.2%) in 335 pediatric patients were identified, and 12 of 24 were only detected via the digital droplet polymerase chain reaction method. All 12 patients were confined in core binding factor (CBF)-AML patients. The 5 year event-free survival of the patients with KIT D816V mutation was significantly inferior to those without KIT D816V mutation (44.1% [95% confidence interval (CI), 16.0%-69.4%] vs. 74.7% [95% CI, 63.0%-83.2%] P-value = 0.02, respectively). The 5 year overall survival was not different between the two groups (92.9% [95% CI, 59.0%-NA vs. 89.7% [95% CI, 69.6%-96.8%] P-value = 0.607, respectively). In this study, KIT D816V minor clones in patients with CBF-AML were confirmed and KIT D816V was considered as a risk factor for relapse in patients with RUNX1-RUNX1T1-positive AML.
Collapse
Affiliation(s)
- Koji Sasaki
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mayuko Miyake
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Junji Ikeda
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuko Shimosato
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mayu Tokumasu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hidemasa Matsuo
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Ohki
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan.,Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Taeko Kaburagi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan
| | - Genki Yamato
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan
| | - Yusuke Hara
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masanobu Takeuchi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akitoshi Kinoshita
- Department of Pediatrics, St. Marianna University School of Medicine Hospital, Kanagawa, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Souichi Adachi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Tawa
- Department of Pediatrics, Higashiosaka Aramoto Heiwa Clinic, Osaka, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan.,Institute of Physiology and Medicine, Jobu University, Gunma, Japan
| | - Naomichi Matsumoto
- Department of Human genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
22
|
Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv 2021; 5:900-912. [PMID: 33560403 DOI: 10.1182/bloodadvances.2020003709] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Relapse is the leading cause of death of adult and pediatric patients with acute myeloid leukemia (AML). Numerous studies have helped to elucidate the complex mutational landscape at diagnosis of AML, leading to improved risk stratification and new therapeutic options. However, multi-whole-genome studies of adult and pediatric AML at relapse are necessary for further advances. To this end, we performed whole-genome and whole-exome sequencing analyses of longitudinal diagnosis, relapse, and/or primary resistant specimens from 48 adult and 25 pediatric patients with AML. We identified mutations recurrently gained at relapse in ARID1A and CSF1R, both of which represent potentially actionable therapeutic alternatives. Further, we report specific differences in the mutational spectrum between adult vs pediatric relapsed AML, with MGA and H3F3A p.Lys28Met mutations recurrently found at relapse in adults, whereas internal tandem duplications in UBTF were identified solely in children. Finally, our study revealed recurrent mutations in IKZF1, KANSL1, and NIPBL at relapse. All of the mentioned genes have either never been reported at diagnosis in de novo AML or have been reported at low frequency, suggesting important roles for these alterations predominantly in disease progression and/or resistance to therapy. Our findings shed further light on the complexity of relapsed AML and identified previously unappreciated alterations that may lead to improved outcomes through personalized medicine.
Collapse
|
23
|
Wang M, Wang R, Wang H, Chen C, Qin J, Gao X, Yu L. Difference in gene mutation profile in patients with refractory/relapsed versus newly diagnosed acute myeloid leukemia based on targeted next-generation sequencing. Leuk Lymphoma 2021; 62:2416-2427. [PMID: 33913388 DOI: 10.1080/10428194.2021.1919661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have reported the genetic mutation profile in previously untreated acute myeloid leukemia (AML) patients using a targeted NGS screening method. In this study, we evaluated the characteristics and prognostic significance of gene mutations in refractory/relapsed (R/R) AML patients by comparing their gene mutation spectrum to those newly diagnosed. The frequencies of tumor suppressor mutations were increased, while the mutation frequencies of nucleophosmin and spliceosome complex were decreased in relapsed AML. The frequency of FLT3-ITD mutation was increased, while that of CEBPA biallelic mutation decreased in refractory AML. Activated signaling mutations predicted a lower complete remission rate. FLT3-ITD mutation predicted an inferior overall survival after relapse. DNMT3A mutation predicted an inferior relapse-free survival in R/R AML. These findings may shed light on the molecular mechanism study of leukemia refractory or relapse and provide new guidance for the dynamic risk assessment of AML.
Collapse
Affiliation(s)
- Mengzhen Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Ruiqi Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Hong Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Chongjian Chen
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Jiayue Qin
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Xiaoning Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
24
|
Exploiting Clonal Evolution to Improve the Diagnosis and Treatment Efficacy Prediction in Pediatric AML. Cancers (Basel) 2021; 13:cancers13091995. [PMID: 33919131 PMCID: PMC8122278 DOI: 10.3390/cancers13091995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Despite improvements in therapeutic protocols and in risk stratification, acute myeloid leukemia (AML) remains the leading cause of childhood leukemic mortality. Indeed, the overall survival accounts for ~70% but still ~30% of pediatric patients experience relapse, with poor response to conventional chemotherapy. Thus, there is an urgent need to improve diagnosis and treatment efficacy prediction in the context of this disease. Nowadays, in the era of high throughput techniques, AML has emerged as an extremely heterogeneous disease from a genetic point of view. Different subclones characterized by specific molecular profiles display different degrees of susceptibility to conventional treatments. In this review, we describe in detail this genetic heterogeneity of pediatric AML and how it is linked to relapse in terms of clonal evolution. We highlight some innovative tools to characterize minor subclones that could help to enhance diagnosis and a preclinical model suitable for drugs screening. The final ambition of research is represented by targeted therapy, which could improve the prognosis of pediatric AML patients, as well as to limit the side toxicity of current treatments.
Collapse
|
25
|
Han C, Gao X, Li Y, Zhang J, Yang E, Zhang L, Yu L. Characteristics of Cohesin Mutation in Acute Myeloid Leukemia and Its Clinical Significance. Front Oncol 2021; 11:579881. [PMID: 33928020 PMCID: PMC8076553 DOI: 10.3389/fonc.2021.579881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The occurrence of gene mutation is a major contributor to the initiation and propagation of acute myeloid leukemia (AML). Accumulating evidence suggests that genes encoding cohesin subunits have a high prevalence of mutations in AML, especially in the t(8;21) subtype. Therefore, it is important to understand how cohesin mutations contribute to leukemogenesis. However, the fundamental understanding of cohesin mutation in clonal expansion and myeloid transformation in hematopoietic cells remains ambiguous. Previous studies briefly introduced the cohesin mutation in AML; however, an in-depth summary of mutations in AML was not provided, and the correlation between cohesin and AML1-ETO in t (8;21) AML was also not analyzed. By summarizing the major findings regarding the cohesin mutation in AML, this review aims to define the characteristics of the cohesin complex mutation, identify its relationships with co-occurring gene mutations, assess its roles in clonal evolution, and discuss its potential for the prognosis of AML. In particular, we focus on the function of cohesin mutations in RUNX1-RUNX1T1 fusion.
Collapse
Affiliation(s)
- Caixia Han
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yonghui Li
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Erna Yang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
26
|
Abstract
Therapeutic resistance continues to be an indominable foe in our ambition for curative cancer treatment. Recent insights into the molecular determinants of acquired treatment resistance in the clinical and experimental setting have challenged the widely held view of sequential genetic evolution as the primary cause of resistance and brought into sharp focus a range of non-genetic adaptive mechanisms. Notably, the genetic landscape of the tumour and the non-genetic mechanisms used to escape therapy are frequently linked. Remarkably, whereas some oncogenic mutations allow the cancer cells to rapidly adapt their transcriptional and/or metabolic programme to meet and survive the therapeutic pressure, other oncogenic drivers convey an inherent cellular plasticity to the cancer cell enabling lineage switching and/or the evasion of anticancer immunosurveillance. The prevalence and diverse array of non-genetic resistance mechanisms pose a new challenge to the field that requires innovative strategies to monitor and counteract these adaptive processes. In this Perspective we discuss the key principles of non-genetic therapy resistance in cancer. We provide a perspective on the emerging data from clinical studies and sophisticated cancer models that have studied various non-genetic resistance pathways and highlight promising therapeutic avenues that may be used to negate and/or counteract the non-genetic adaptive pathways.
Collapse
Affiliation(s)
- Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
- Center for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia.
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
- Center for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Sportoletti P, Sorcini D, Guzman AG, Reyes JM, Stella A, Marra A, Sartori S, Brunetti L, Rossi R, Papa BD, Adamo FM, Pianigiani G, Betti C, Scialdone A, Guarente V, Spinozzi G, Tini V, Martelli MP, Goodell MA, Falini B. Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia 2020; 35:1949-1963. [PMID: 33159179 PMCID: PMC8257496 DOI: 10.1038/s41375-020-01075-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/19/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Recurrent loss-of-function mutations of BCL6 co-repressor (BCOR) gene are found in about 4% of AML patients with normal karyotype and are associated with DNMT3a mutations and poor prognosis. Therefore, new anti-leukemia treatments and mouse models are needed for this combinatorial AML genotype. For this purpose, we first generated a Bcor-/- knockout mouse model characterized by impaired erythroid development (macrocytosis and anemia) and enhanced thrombopoiesis, which are both features of myelodysplasia/myeloproliferative neoplasms. We then created and characterized double Bcor-/-/Dnmt3a-/- knockout mice. Interestingly, these animals developed a fully penetrant acute erythroid leukemia (AEL) characterized by leukocytosis secondary to the expansion of blasts expressing c-Kit+ and the erythroid marker Ter119, macrocytic anemia and progressive reduction of the thrombocytosis associated with loss of Bcor alone. Transcriptomic analysis of double knockout bone marrow progenitors revealed that aberrant erythroid skewing was induced by epigenetic changes affecting specific transcriptional factors (GATA1-2) and cell-cycle regulators (Mdm2, Tp53). These findings prompted us to investigate the efficacy of demethylating agents in AEL, with significant impact on progressive leukemic burden and mice overall survival. Information gained from our model expands the knowledge on the biology of AEL and may help designing new rational treatments for patients suffering from this high-risk leukemia.
Collapse
Affiliation(s)
- Paolo Sportoletti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy.
| | - Daniele Sorcini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Anna G Guzman
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jaime M Reyes
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arianna Stella
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Andrea Marra
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Sara Sartori
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Lorenzo Brunetti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Roberta Rossi
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Beatrice Del Papa
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Francesco Maria Adamo
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Giulia Pianigiani
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Camilla Betti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Annarita Scialdone
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Valerio Guarente
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Giulio Spinozzi
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Valentina Tini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Maria Paola Martelli
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Margaret A Goodell
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brunangelo Falini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
28
|
Ishida H, Iguchi A, Aoe M, Nishiuchi R, Matsubara T, Keino D, Sanada M, Shimada A. Panel-based next-generation sequencing facilitates the characterization of childhood acute myeloid leukemia in clinical settings. Biomed Rep 2020; 13:46. [PMID: 32934818 PMCID: PMC7469563 DOI: 10.3892/br.2020.1353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) accounts for ~20% of pediatric leukemia cases. The prognosis of pediatric AML has been improved in recent decades, but it trails that of most other types of pediatric cancer, with mortality rates of 30-40%. Consequently, newer more targeted drugs are required for incorporation into treatment plans. These newer drugs selectively target AML cells with specific gene alterations. However, there are significant differences in genetic alterations between adult and pediatric patients with AML. In the present study, inexpensive and rapid next-generation sequencing (NGS) of >150 cancer-related genes was performed for matched diagnostic, remission and relapse (if any) samples from 27 pediatric patients with AML. In this analysis, seven genes were recurrently mutated. KRAS was mutated in seven patients, NRAS was mutated in three patients, and KIT, GATA1, WT1, PTPN11, JAK3 and FLT3 were each mutated in two patients. Among patients with relapsed AML, six harbored KRAS mutations at diagnosis; however, four of these patients lost these mutations at relapse. Additionally, two genetic alterations (FLT3-ITD and TP53 alterations) were detected among patients who eventually relapsed, and these mutations are reported to be adverse prognostic factors for adult patients with AML. This panel-based, targeted sequencing approach may be useful in determining the genetic background of pediatric AML and improving the prediction of treatment response and detection of potentially targetable gene alterations. RAS pathway mutations were highly unstable at relapse; therefore, these mutations should be chosen as a target with caution. Incorporating this panel-based NGS approach into the clinical setting may allow for a patient-oriented strategy of precision treatment for childhood AML.
Collapse
Affiliation(s)
- Hisashi Ishida
- Department of Pediatrics/Pediatric Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Akihiro Iguchi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Michinori Aoe
- Division of Medical Support, Okayama University Hospital, Okayama 700-8558, Japan
| | - Ritsuo Nishiuchi
- Department of Pediatrics, Kochi Health Sciences Center, Kochi 781-8555, Japan
| | - Takehiro Matsubara
- Division of Biobank, Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Dai Keino
- Department of Pediatrics, St. Marianna University School of Medicine Hospital, Kawasaki, Kanagawa 216-8511, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Akira Shimada
- Department of Pediatrics/Pediatric Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| |
Collapse
|
29
|
Guo C, Ju QQ, Zhang CX, Gong M, Li ZL, Gao YY. Overexpression of HOXA10 is associated with unfavorable prognosis of acute myeloid leukemia. BMC Cancer 2020; 20:586. [PMID: 32571260 PMCID: PMC7310421 DOI: 10.1186/s12885-020-07088-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background HOXA family genes were crucial transcription factors involving cell proliferation and apoptosis. While few studies have focused on HOXA10 in AML. We aimed to investigate the prognostic significance of HOXA10. Methods We downloaded datasets from GEO and BeatAML database, to compare HOXA expression level between AML patients and controls. Kaplan-Meier curves were used to estimate the impact of HOXA10 expression on AML survival. The differentially expressed genes, miRNAs, lncRNAs and methylated regions between HOXA10-high and -low groups were obtained using R (version 3.6.0). Accordingly, the gene set enrichment analysis (GSEA) was accomplished using MSigDB database. Moreover, the regulatory TFs/microRNAs/lncRNAs of HOXA10 were identified. A LASSO-Cox model fitted OS to clinical and HOXA10-associated genetic variables by glmnet package. Results HOXA10 was overexpressed in AML patients than that in controls. The HOXA10-high group is significantly associated with shorter OS and DFS. A total of 1219 DEGs, 131 DEmiRs, 282 DElncRs were identified to be associated with HOXA10. GSEA revealed that 12 suppressed and 3 activated pathways in HOXA10-high group. Furthermore, the integrated regulatory network targeting HOXA10 was established. The LASSO-Cox model fitted OS to AML-survival risk scores, which included age, race, molecular risk, expression of IKZF2/LINC00649/LINC00839/FENDRR and has-miR-424-5p. The time dependent ROC indicated a satisfying AUC (1-year AUC 0.839, 3-year AUC 0.871 and 5-year AUC 0.813). Conclusions Our study identified HOXA10 overexpression as an adverse prognostic factor for AML. The LASSO-COX regression analysis revealed novel prediction model of OS with superior diagnostic utility.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China.
| |
Collapse
|
30
|
Reconstructing clonal evolution in relapsed and non-relapsed Burkitt lymphoma. Leukemia 2020; 35:639-643. [PMID: 32404974 PMCID: PMC8318876 DOI: 10.1038/s41375-020-0862-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/29/2023]
|
31
|
Zhou T, Bloomquist MS, Ferguson LS, Reuther J, Marcogliese AN, Elghetany MT, Roy A, Rao PH, Lopez-Terrada DH, Redell MS, Punia JN, Curry CV, Fisher KE. Pediatric myeloid sarcoma: a single institution clinicopathologic and molecular analysis. Pediatr Hematol Oncol 2020; 37:76-89. [PMID: 31682773 DOI: 10.1080/08880018.2019.1683107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Myeloid sarcoma (MS) is a neoplastic condition composed of immature myeloid cells involving an extramedullary site. We investigated underlying chromosomal and molecular alterations to assess potential molecular markers of prognosis and outcome in this rare pediatric disease. We conducted a retrospective review of clinicopathologic and cytogenetic data from 33 pediatric patients with MS (ages 1 month-18 years) at our institution over a 32 year period (1984-2016). Tissue-based cancer microarray and targeted next-generation sequencing analysis were performed on six cases. The median age at diagnosis was 2.8 years with a male-to-female ratio of 2.6:1. MS is commonly presented with concomitant marrow involvement (n = 12, 36.4%) or as a recurrence of acute myeloid leukemia (AML; n = 14, 42.4%). The skin (n = 18, 54.5%) and soft tissue (n = 9, 27.3%) were the most common sites of involvement. Twenty-one of 25 samples (84.0%) harbored chromosomal aberrations; KMT2A alterations (n = 10, 40.0%) or complex cytogenetics (n = 7, 28.0%) were most frequent. Mutations in RAS, tyrosine kinase, cell signaling, and chromatin remodeling genes were detected. When compared to pediatric patients with AML without extramedullary involvement (EMI), inferior overall survival (OS) was observed (18.8 months vs. 89.3 months, p = .008). Pediatric patients with MS with non-favorable cytogenetics [abnormalities other than t(8;21), inv(16)/t(16;16), or t(15;17)] had a significantly lower OS compared to patients with AML with non-favorable cytogenetics and no extramedullary involvement (8.0 months vs. 28.1 months, p < .001). Pediatric MS is a rare disease with diverse clinical presentations. Non-favorable cytogenetics may be a poor prognostic marker for pediatric patients with MS and molecular diagnostics can assist with risk stratification and identify potentially actionable targets.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - M Suzanne Bloomquist
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Jacquelyn Reuther
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Andrea N Marcogliese
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - M Tarek Elghetany
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Angshumoy Roy
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Pulivarthi H Rao
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Dolores H Lopez-Terrada
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Michele S Redell
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jyotinder N Punia
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Choladda V Curry
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Kevin E Fisher
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
32
|
Zhang X, Jin J, Yu W. ASXL2 mutation is recurrent in non-de novo AML1-ETO-negative acute myeloid leukemia. Ann Hematol 2019; 98:2621-2623. [PMID: 31637484 DOI: 10.1007/s00277-019-03804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China.,Institute of Hematology, Zhejiang University, Zhejiang, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Zhejiang, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Zhejiang, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Zhejiang, Hangzhou, China.
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Zhejiang, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Zhejiang, Hangzhou, China.
| |
Collapse
|
33
|
Mustafa MI, Mohammed ZO, Murshed NS, Elfadol NM, Abdelmoneim AH, Hassan MA. In Silico Genetics Revealing 5 Mutations in CEBPA Gene Associated With Acute Myeloid Leukemia. Cancer Inform 2019; 18:1176935119870817. [PMID: 31621694 PMCID: PMC6777061 DOI: 10.1177/1176935119870817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is an extremely heterogeneous malignant
disorder; AML has been reported as one of the main causes of death in
children. The objective of this work was to classify the most deleterious
mutation in CCAAT/enhancer-binding protein-alpha (CEBPA)
and to predict their influence on the functional, structural, and expression
levels by various Bioinformatics analysis tools. Methods: The single nucleotide polymorphisms (SNPs) were claimed from the National
Center for Biotechnology Information (NCBI) database and then submitted into
various functional analysis tools, which were done to predict the influence
of each SNP, followed by structural analysis of modeled protein followed by
predicting the mutation effect on energy stability; the most damaging
mutations were chosen for additional investigation by Mutation3D, Project
hope, ConSurf, BioEdit, and UCSF Chimera tools. Results: A total of 5 mutations out of 248 were likely to be responsible for the
structural and functional variations in CEBPA protein, whereas in the
3′-untranslated region (3′-UTR) the result showed that among 350 SNPs in the
3′-UTR of CEBPA gene, about 11 SNPs were predicted. Among
these 11 SNPs, 65 alleles disrupted a conserved miRNA site and 22 derived
alleles created a new site of miRNA. Conclusions: In this study, the impact of functional mutations in the CEBPA gene was
investigated through different bioinformatics analysis techniques, which
determined that R339W, R288P, N292S, N292T, and D63N are pathogenic
mutations that have a possible functional and structural influence,
therefore, could be used as genetic biomarkers and may assist in genetic
studies with a special consideration of the large heterogeneity of AML.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, Africa City of Technology, Khartoum North, Sudan
| | - Zainab O Mohammed
- Department of Haematology, Ribat University Hospital, Khartoum, Sudan
| | - Naseem S Murshed
- Department of Biotechnology, Africa City of Technology, Khartoum North, Sudan
| | - Nafisa M Elfadol
- Department of Biotechnology, Africa City of Technology, Khartoum North, Sudan
| | | | - Mohamed A Hassan
- Department of Biotechnology, Africa City of Technology, Khartoum North, Sudan
| |
Collapse
|
34
|
Recurrent CCND3 mutations in MLL-rearranged acute myeloid leukemia. Blood Adv 2019; 2:2879-2889. [PMID: 30381403 DOI: 10.1182/bloodadvances.2018019398] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022] Open
Abstract
In acute myeloid leukemia (AML), MLL (KMT2A) rearrangements are among the most frequent chromosomal abnormalities; however, knowledge of the genetic landscape of MLL-rearranged AML is limited. In this study, we performed whole-exome sequencing (n = 9) and targeted sequencing (n = 56) of samples from pediatric MLL-rearranged AML patients enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 study. Additionally, we analyzed 105 pediatric t(8;21) AML samples and 30 adult MLL-rearranged AML samples. RNA-sequencing data from 31 patients published in a previous study were also reanalyzed. As a result, we identified 115 mutations in pediatric MLL-rearranged AML patients (2.1 mutations/patient), with mutations in signaling pathway genes being the most frequently detected (60.7%). Mutations in genes associated with epigenetic regulation (21.4%), transcription factors (16.1%), and the cohesin complex (8.9%) were also commonly detected. Novel CCND3 mutations were identified in 5 pediatric MLL-rearranged AML patients (8.9%) and 2 adult MLL-rearranged AML patients (3.3%). Recurrent mutations of CCND1 (n = 3, 2.9%) and CCND2 (n = 8, 7.6%) were found in pediatric t(8;21) AML patients, whereas no CCND3 mutations were found, suggesting that D-type cyclins exhibit a subtype-specific mutation pattern in AML. Treatment of MLL-rearranged AML cell lines with CDK4/6 inhibitors (abemaciclib and palbociclib) blocked G1 to S phase cell-cycle progression and impaired proliferation. Pediatric MLL-MLLT3-rearranged AML patients with coexisting mutations (n = 16) had significantly reduced relapse-free survival and overall survival compared with those without coexisting mutations (n = 9) (P = .048 and .046, respectively). These data provide insights into the genetics of MLL-rearranged AML and suggest therapeutic strategies.
Collapse
|
35
|
Bell CC, Fennell KA, Chan YC, Rambow F, Yeung MM, Vassiliadis D, Lara L, Yeh P, Martelotto LG, Rogiers A, Kremer BE, Barbash O, Mohammad HP, Johanson TM, Burr ML, Dhar A, Karpinich N, Tian L, Tyler DS, MacPherson L, Shi J, Pinnawala N, Yew Fong C, Papenfuss AT, Grimmond SM, Dawson SJ, Allan RS, Kruger RG, Vakoc CR, Goode DL, Naik SH, Gilan O, Lam EYN, Marine JC, Prinjha RK, Dawson MA. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat Commun 2019; 10:2723. [PMID: 31222014 PMCID: PMC6586637 DOI: 10.1038/s41467-019-10652-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022] Open
Abstract
Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bone Marrow/pathology
- CRISPR-Cas Systems/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Epigenesis, Genetic/drug effects
- Female
- Gene Expression Regulation, Leukemic/drug effects
- HEK293 Cells
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Sequence Analysis, RNA
- Single-Cell Analysis
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/drug effects
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Charles C Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Katie A Fennell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Miriam M Yeung
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dane Vassiliadis
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Luis Lara
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Paul Yeh
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Aljosja Rogiers
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Brandon E Kremer
- Epigenetics DPU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Olena Barbash
- Epigenetics DPU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Helai P Mohammad
- Epigenetics DPU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Arindam Dhar
- Epigenetics DPU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | - Luyi Tian
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dean S Tyler
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Laura MacPherson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Junwei Shi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nathan Pinnawala
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Chun Yew Fong
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Anthony T Papenfuss
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Sean M Grimmond
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah-Jane Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ryan G Kruger
- Epigenetics DPU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | - David L Goode
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Shalin H Naik
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rab K Prinjha
- Epigenetics DPU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
36
|
Antony F, Deantonio C, Cotella D, Soluri MF, Tarasiuk O, Raspagliesi F, Adorni F, Piazza S, Ciani Y, Santoro C, Macor P, Mezzanzanica D, Sblattero D. High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids. Oncoimmunology 2019; 8:e1614856. [PMID: 31428516 PMCID: PMC6685609 DOI: 10.1080/2162402x.2019.1614856] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
The identification of effective biomarkers for early diagnosis, prognosis, and response to treatments remains a challenge in ovarian cancer (OC) research. Here, we present an unbiased high-throughput approach to profile ascitic fluid autoantibodies in order to obtain a tumor-specific antigen signature in OC. We first reported the reactivity of immunoglobulins (Igs) purified from OC patient ascites towards two different OC cell lines. Using a discovery set of Igs, we selected tumor-specific antigens from a phage display cDNA library. After biopanning, 700 proteins were expressed as fusion protein and used in protein array to enable large-scale immunoscreening with independent sets of cancer and noncancerous control. Finally, the selected antigens were validated by ELISA. The initial screening identified eight antigenic clones: CREB3, MRPL46, EXOSC10, BCOR, HMGN2, HIP1R, OLFM4, and KIAA1755. These antigens were all validated by ELISA in a study involving ascitic Igs from 153 patients (69 with OC, 34 with other cancers and 50 without cancer), with CREB3 showing the highest sensitivity (86.95%) and specificity (98%). Notably, we were able to identify an association between the tumor-associated (TA) antibody response and the response to a first-line tumor treatment (platinum-based chemotherapy). A stronger association was found by combining three antigens (BCOR, CREB3, and MRLP46) as a single antibody signature. Measurement of an ascitic fluid antibody response to multiple TA antigens may aid in the identification of new prognostic signatures in OC patients and shift attention to new potentially relevant targets.
Collapse
Affiliation(s)
- Frank Antony
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Cecilia Deantonio
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Diego Cotella
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Maria Felicia Soluri
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Olga Tarasiuk
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | | | - Fulvio Adorni
- Epidemiology Unit, Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Silvano Piazza
- Bioinformatics and Functional Genomics Unit, Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (LNCIB), Area Science Park Trieste, Italy
| | - Yari Ciani
- Bioinformatics and Functional Genomics Unit, Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (LNCIB), Area Science Park Trieste, Italy
| | - Claudio Santoro
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Paolo Macor
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Delia Mezzanzanica
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | |
Collapse
|
37
|
Abstract
BCOR is a gene that encodes for an epigenetic regulator involved in the specification of cell differentiation and body structure development and takes part in the noncanonical polycomb repressive complex 1. This review provides a comprehensive summary of BCOR’s involvement in oncology, illustrating that various BCOR aberrations, such as the internal tandem duplications of the PCGF Ub-like fold discriminator domain and different gene fusions (mainly BCOR–CCNB3, BCOR–MAML3 and ZC3H7B–BCOR), represent driver elements of various sarcomas such as clear cell sarcoma of the kidney, primitive mesenchymal myxoid tumor of infancy, small round blue cell sarcoma, endometrial stromal sarcoma and histologically heterogeneous CNS neoplasms group with similar genomic methylation patterns known as CNS-HGNET-BCOR. Furthermore, other BCOR alterations (often loss of function mutations) recur in a large variety of mesenchymal, epithelial, neural and hematological tumors, suggesting a central role in cancer evolution.
Collapse
Affiliation(s)
- Annalisa Astolfi
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Michele Fiore
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Valentina Indio
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Salvatore N Bertuccio
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy.,Department of Medical & Surgical Sciences, University of Bologna, S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| |
Collapse
|
38
|
Hu Y, Chen A, Zheng X, Lu J, He H, Yang J, Zhang Y, Sui P, Yang J, He F, Wang Y, Xiao P, Liu X, Zhou Y, Pei D, Cheng C, Ribeiro RC, Hu S, Wang QF. Ecological principle meets cancer treatment: treating children with acute myeloid leukemia with low-dose chemotherapy. Natl Sci Rev 2019; 6:469-479. [PMID: 34691895 PMCID: PMC8291445 DOI: 10.1093/nsr/nwz006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/08/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Standard chemotherapy regimens for remission induction of pediatric acute myeloid leukemia (AML) are associated with significant morbidity and mortality. We performed a cohort study to determine the impact of reducing the intensity of remission induction chemotherapy on the outcomes of selected children with AML treated with a low-dose induction regimen plus granulocyte colony stimulating factor (G-CSF) (low-dose chemotherapy (LDC)/G-CSF). Complete response (CR) after two induction courses was attained in 87.0% (40/46) of patients receiving LDC/G-CSF. Post-remission therapy was offered to all patients, and included standard consolidation and/or stem cell transplantation. During the study period, an additional 94 consecutive children with AML treated with standard chemotherapy (SDC) for induction (80/94 (85.1%) of the patients attained CR after induction II, P = 0.953) and post-remission. In this non-randomized study, there were no significant differences in 4-year event-free (67.4 vs. 70.7%; P = 0.99) and overall (70.3 vs. 74.6%, P = 0.69) survival in the LDC/G-CSF and SDC cohorts, respectively. After the first course of induction, recovery of white blood cell (WBC) and platelet counts were significantly faster in patients receiving LDC/G-CSF than in those receiving SDC (11.5 vs. 18.5 d for WBCs (P < 0.001); 15.5 vs. 22.0 d for platelets (P < 0.001)). To examine the quality of molecular response, targeted deep sequencing was performed. Of 137 mutations detected at diagnosis in 20 children who attained hematological CR after two courses of LDC/G-CSF (n = 9) or SDC (n = 11), all of the mutations were below the reference value (variant allelic frequency <2.5%) after two courses, irrespective of the treatment group. In conclusion, children with AML receiving LDC/G-CSF appear to have similar outcomes and mutation clearance levels, but significantly lower toxicity than those receiving SDC. Thus, LDC/G-CSF should be further evaluated as an effective alternative to remission induction in pediatric AML.
Collapse
Affiliation(s)
- Yixin Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Aili Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinchang Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Hailong He
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Jin Yang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China.,Department of Pediatrics, Nothern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Ya Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pinpin Sui
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Peifang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Xin Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Raul C Ribeiro
- Department of Oncology and Global Medicine, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Fazio G, Massa V, Grioni A, Bystry V, Rigamonti S, Saitta C, Galbiati M, Rizzari C, Consarino C, Biondi A, Selicorni A, Cazzaniga G. First evidence of a paediatric patient with Cornelia de Lange syndrome with acute lymphoblastic leukaemia. J Clin Pathol 2019; 72:558-561. [PMID: 30948435 DOI: 10.1136/jclinpath-2019-205707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 11/04/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a rare autosomal-dominant genetic disorder characterised by prenatal and postnatal growth and mental retardation, facial dysmorphism and upper limb abnormalities. Germline mutations of cohesin complex genes SMC1A, SMC3, RAD21 or their regulators NIPBL and HDAC8 have been identified in CdLS as well as somatic mutations in myeloid disorders. We describe the first case of a paediatric patient with CdLS with B-cell precursor Acute Lymphoblastic Leukaemia (ALL). The patient did not show any unusual cytogenetic abnormality, and he was enrolled into the high risk arm of AIEOP-BFM ALL2009 protocol because of slow early response, but 3 years after discontinuation, he experienced an ALL relapse. We identified a heterozygous mutation in exon 46 of NIPBL, causing frameshift and a premature stop codon (RNA-Targeted Next generation Sequencing Analysis). The analysis of the family indicated a de novo origin of this previously not reported deleterious variant. As for somatic cohesin mutations in acute myeloid leukaemia, also this ALL case was not affected by aneuploidy, thus suggesting a major impact of the non-canonical role of NIPBL in gene regulation. A potential biological role of NIPBL in leukaemia has still to be dissected.
Collapse
Affiliation(s)
- Grazia Fazio
- Centro di Ricerca Tettamanti, Clinica Pediatrica, Università di Milano, Bicocca, Monza, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Andrea Grioni
- Centro di Ricerca Tettamanti, Clinica Pediatrica, Università di Milano, Bicocca, Monza, Italy.,Central European Institute of Technology, Masarykova Univerzita, Brno, Czech Republic
| | - Vojtech Bystry
- Central European Institute of Technology, Masarykova Univerzita, Brno, Czech Republic
| | - Silvia Rigamonti
- Centro di Ricerca Tettamanti, Clinica Pediatrica, Università di Milano, Bicocca, Monza, Italy.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Claudia Saitta
- Centro di Ricerca Tettamanti, Clinica Pediatrica, Università di Milano, Bicocca, Monza, Italy
| | - Marta Galbiati
- Centro di Ricerca Tettamanti, Clinica Pediatrica, Università di Milano, Bicocca, Monza, Italy
| | - Carmelo Rizzari
- Pediatric Department, Monza Brianza per il Bambino e la sua Mamma (MBBM) Foundation, Monza, Italy
| | - Caterina Consarino
- Ematologia ed Oncologia Pediatrica, Presidio Ospedaliero Ciaccio-De Lellis, Catanzaro, Italy
| | - Andrea Biondi
- Centro di Ricerca Tettamanti, Clinica Pediatrica, Università di Milano, Bicocca, Monza, Italy.,Pediatric Department, Monza Brianza per il Bambino e la sua Mamma (MBBM) Foundation, Monza, Italy
| | - Angelo Selicorni
- Department of Pediatrics, Presidio S. Fermo, ASST Lariana, Como, Italy
| | - Giovanni Cazzaniga
- Centro di Ricerca Tettamanti, Clinica Pediatrica, Università di Milano, Bicocca, Monza, Italy .,Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Monza, Italy
| |
Collapse
|
40
|
Abstract
Wilms tumour is the most common renal malignancy of childhood. The disease is curable in the majority of cases, albeit at considerable cost in terms of late treatment-related effects in some children. However, one in ten children with Wilms tumour will die of their disease despite modern treatment approaches. The genetic changes that underpin Wilms tumour have been defined by studies of familial cases and by unbiased DNA sequencing of tumour genomes. Together, these approaches have defined the landscape of cancer genes that are operative in Wilms tumour, many of which are intricately linked to the control of fetal nephrogenesis. Advances in our understanding of the germline and somatic genetic changes that underlie Wilms tumour may translate into better patient outcomes. Improvements in risk stratification have already been seen through the introduction of molecular biomarkers into clinical practice. A host of additional biomarkers are due to undergo clinical validation. Identifying actionable mutations has led to potential new targets, with some novel compounds undergoing testing in early phase trials. Avenues that warrant further exploration include targeting Wilms tumour cancer genes with a non-redundant role in nephrogenesis and targeting the fetal renal transcriptome.
Collapse
Affiliation(s)
- Taryn Dora Treger
- Wellcome Sanger Institute, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tanzina Chowdhury
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kathy Pritchard-Jones
- UCL Great Ormond Street Institute of Child Health, London, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
41
|
Chaudhury S, O'Connor C, Cañete A, Bittencourt-Silvestre J, Sarrou E, Prendergast Á, Choi J, Johnston P, Wells CA, Gibson B, Keeshan K. Age-specific biological and molecular profiling distinguishes paediatric from adult acute myeloid leukaemias. Nat Commun 2018; 9:5280. [PMID: 30538250 PMCID: PMC6290074 DOI: 10.1038/s41467-018-07584-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) affects children and adults of all ages. AML remains one of the major causes of death in children with cancer and for children with AML relapse is the most common cause of death. Here, by modelling AML in vivo we demonstrate that AML is discriminated by the age of the cell of origin. Young cells give rise to myeloid, lymphoid or mixed phenotype acute leukaemia, whereas adult cells give rise exclusively to AML, with a shorter latency. Unlike adult, young AML cells do not remodel the bone marrow stroma. Transcriptional analysis distinguishes young AML by the upregulation of immune pathways. Analysis of human paediatric AML samples recapitulates a paediatric immune cell interaction gene signature, highlighting two genes, RGS10 and FAM26F as prognostically significant. This work advances our understanding of paediatric AML biology, and provides murine models that offer the potential for developing paediatric specific therapeutic strategies. Acute myeloid leukaemia (AML) affects people of all ages. Here, the authors model AML in vivo and demonstrate that the age of the cell of origin impacts leukaemia development and the genetic signature where adult cells of origin give rise exclusively to AML and young cells of origin give rise to myeloid, lymphoid or mixed phenotype acute leukaemia.
Collapse
Affiliation(s)
- Shahzya Chaudhury
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.,Royal Hospital for Children, Glasgow, Scotland, UK
| | - Caitríona O'Connor
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ana Cañete
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Evgenia Sarrou
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Áine Prendergast
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jarny Choi
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Pamela Johnston
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christine A Wells
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | | | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
42
|
Rau RE, Loh ML. Using genomics to define pediatric blood cancers and inform practice. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:286-300. [PMID: 30504323 PMCID: PMC6245969 DOI: 10.1182/asheducation-2018.1.286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the past decade, there has been exponential growth in the number of genome sequencing studies performed across a spectrum of human diseases as sequencing technologies and analytic pipelines improve and costs decline. Pediatric hematologic malignancies have been no exception, with a multitude of next generation sequencing studies conducted on large cohorts of patients in recent years. These efforts have defined the mutational landscape of a number of leukemia subtypes and also identified germ-line genetic variants biologically and clinically relevant to pediatric leukemias. The findings have deepened our understanding of the biology of many childhood leukemias. Additionally, a number of recent discoveries may positively impact the care of pediatric leukemia patients through refinement of risk stratification, identification of targetable genetic lesions, and determination of risk for therapy-related toxicity. Although incredibly promising, many questions remain, including the biologic significance of identified genetic lesions and their clinical implications in the context of contemporary therapy. Importantly, the identification of germ-line mutations and variants with possible implications for members of the patient's family raises challenging ethical questions. Here, we review emerging genomic data germane to pediatric hematologic malignancies.
Collapse
Affiliation(s)
- Rachel E. Rau
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
43
|
Alterations of 63 hub genes during lingual carcinogenesis in C57BL/6J mice. Sci Rep 2018; 8:12626. [PMID: 30135512 PMCID: PMC6105652 DOI: 10.1038/s41598-018-31103-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
Abstract
To identify potential biomarkers of lingual cancer, 75 female C57BL/6J mice were subjected to 16-week oral delivery of 4-nitroquinoline-1-oxide (4NQO; 50 mg/L), with 10 mice used as controls. Lingual mucosa samples representative of normal tissue (week 0) and early (week 12) and advanced (week 28) tumorigenesis were harvested for microarray and methylated DNA immunoprecipitation sequencing (MeDIP-Seq). Combined analysis with Short Time-series Expression Miner (STEM), the Cytoscape plugin cytoHubba, and screening of differentially expressed genes enabled identification of 63 hub genes predominantly altered in the early stage rather than the advanced stage. Validation of microarray results was carried out using qRT-PCR. Of 63 human orthologous genes, 35 correlated with human oral squamous cell carcinoma. KEGG analysis showed "pathways in cancer", involving 13 hub genes, as the leading KEGG term. Significant alterations in promoter methylation were confirmed at Tbp, Smad1, Smad4, Pdpk1, Camk2, Atxn3, and Cdh2. HDAC2, TBP, and EP300 scored ≥10 on Maximal Clique Centrality (MCC) in STEM profile 11 and were overexpressed in human tongue cancer samples. However, expression did not correlate with smoking status, tumor differentiation, or overall survival. These results highlight potentially useful candidate biomarkers for lingual cancer prevention, diagnosis, and treatment.
Collapse
|
44
|
Wlodarski MW, Sahoo SS, Niemeyer CM. Monosomy 7 in Pediatric Myelodysplastic Syndromes. Hematol Oncol Clin North Am 2018; 32:729-743. [DOI: 10.1016/j.hoc.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Tarlock K, Zhong S, He Y, Ries R, Severson E, Bailey M, Morley S, Balasubramanian S, Erlich R, Lipson D, Otto GA, Vergillo JA, Kolb EA, Ross JS, Mughal T, Stephens PJ, Miller V, Meshinchi S, He J. Distinct age-associated molecular profiles in acute myeloid leukemia defined by comprehensive clinical genomic profiling. Oncotarget 2018; 9:26417-26430. [PMID: 29899868 PMCID: PMC5995178 DOI: 10.18632/oncotarget.25443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Large scale comprehensive genomic profiling (CGP) has led to an improved understanding of oncogenic mutations in acute myeloid leukemia (AML), as well as identification of alterations that can serve as targets for potential therapeutic intervention. We sought to gain insight into age-associated variants in AML through comparison of extensive DNA and RNA-based GP results from pediatric and adult AML. Sequencing of 932 AML specimens (179 pediatric (age 0-18), 753 adult (age ≥ 19)) from diagnostic, relapsed, and refractory times points was performed. Comprehensive DNA (405 genes) and RNA (265) sequencing to identify a variety of structural and short variants was performed. We found that structural variants were highly prevalent in the pediatric cohort compared to the adult cohort (57% vs. 30%; p < 0.001), with certain structural variants detected only in the pediatric cohort. Fusions were the most common structural variant and were highly prevalent in AML in very young children occurring in 68% of children < 2 years of age. We observed an inverse trend in the prevalence of fusions compared to the average number of mutations per patient. In contrast to pediatric AML, adult AML was marked by short variants and multiple mutations per patient. Mutations that were common in adult AML were much less common in the adolescent and young adult cohort and were rare or absent in the pediatric cohort. Clinical CGP demonstrates the biologic differences in pediatric vs. adult AML that have significant therapeutic impacts on prognosis, therapeutic allocation, disease monitoring, and the use of more targeted therapies.
Collapse
Affiliation(s)
- Katherine Tarlock
- Department of Hematology/Oncology, Seattle Children's Hospital, Seattle WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | | | - Yuting He
- Foundation Medicine, Cambridge MA, USA
| | - Rhonda Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | | | | | | | | | | | | | | | | | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours-Alfred I. DuPont Hospital for Children, Wilmington DE, USA
| | | | - Tariq Mughal
- Foundation Medicine, Cambridge MA, USA.,Tufts University Medical Center, Boston MA, USA
| | | | | | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | - Jie He
- Foundation Medicine, Cambridge MA, USA
| |
Collapse
|
46
|
Newcombe AA, Gibson BES, Keeshan K. Harnessing the potential of epigenetic therapies for childhood acute myeloid leukemia. Exp Hematol 2018; 63:1-11. [PMID: 29608923 DOI: 10.1016/j.exphem.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
There is a desperate need for new and effective therapeutic approaches to acute myeloid leukemia (AML) in both children and adults. Epigenetic aberrations are common in adult AML, and many novel epigenetic compounds that may improve patient outcomes are in clinical development. Mutations in epigenetic regulators occur less frequently in AML in children than in adults. Investigating the potential benefits of epigenetic therapy in pediatric AML is an important issue and is discussed in this review.
Collapse
Affiliation(s)
| | - Brenda E S Gibson
- Department of Paediatric Haematology, Royal Hospital for Children, Glasgow, UK
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
47
|
Molecular characteristic of acute leukemias with t(16;21)/FUS-ERG. Ann Hematol 2018; 97:977-988. [PMID: 29427188 DOI: 10.1007/s00277-018-3267-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
T(16;21)(p11;q22)/FUS-ERG is a rare but recurrent translocation in acute leukemias and in some types of solid tumors. Due to multiple types of FUS-ERG transcripts, PCR-based minimal residual disease detection is impeded. In this study, we evaluated a cohort of pediatric patients with t(16;21)(p11;q22)/FUS-ERG and revealed fusion gene breakpoints. We implemented next-generation sequencing (NGS) on long PCR amplicons for the detection of fusion genes with unknown partners or DNA breakpoints. That allowed us to describe different fusion variants of FUS/ERG in different patients and to detect MRD on both RNA and DNA levels. We also found several accompanying mutations in epigenetic regulators (DNMT3A, ASXL1, BCOR) by targeted NGS approach in AML cases. These mutations preceded full transformation by t(16;21)(p11;q22)/FUS-ERG and allowed us to trace clonal evolution on all steps of therapy. As a casual observation, the ASXL1 mutation was found in the unrelated donor hematopoietic cells.
Collapse
|
48
|
Aziz H, Ping CY, Alias H, Ab Mutalib NS, Jamal R. Gene Mutations as Emerging Biomarkers and Therapeutic Targets for Relapsed Acute Myeloid Leukemia. Front Pharmacol 2017; 8:897. [PMID: 29270125 PMCID: PMC5725465 DOI: 10.3389/fphar.2017.00897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
It is believed that there are key differences in the genomic profile between adult and childhood acute myeloid leukemia (AML). Relapse is the significant contributor of mortality in patients with AML and remains as the leading cause of cancer death among children, posing great challenges in the treatment of AML. The knowledge about the genomic lesions in childhood AML is still premature as most genomic events defined in children were derived from adult cohorts. However, the emerging technologies of next generation sequencing have narrowed the gap of knowledge in the biology of AML by the detection of gene mutations for each sub-type which have led to the improvement in terms of prognostication as well as the use of targeted therapies. In this review, we describe the recent understanding of the genomic landscape including the prevalence of mutation, prognostic impact, and targeted therapies that will provide an insight into the pathogenesis of AML relapse in both adult and childhood cases.
Collapse
Affiliation(s)
- Habsah Aziz
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chow Y Ping
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamidah Alias
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Gruszka AM, Valli D, Alcalay M. Understanding the molecular basis of acute myeloid leukemias: where are we now? Int J Hematol Oncol 2017; 6:43-53. [PMID: 30302223 DOI: 10.2217/ijh-2017-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Although the treatment modalities for acute myeloid leukemia (AML) have not changed much over the past 40 years, distinct progress has been made in deciphering the basic biology underlying the pathogenesis of this group of hematological disorders. Studies show that AML development is a multicause, multistep and multipathway process. Accordingly, AMLs constitute a heterogeneous group of diseases. The thorough understanding of the molecular basis of AML is paving the way for better therapeutic approaches. Multiple novel drugs are being introduced and new, more efficient and less toxic formulations of conventional therapeutics are becoming available. Here, we review the recent advances in the comprehension of the molecular processes that lead to the onset of AML and its translation into clinical practice.
Collapse
Affiliation(s)
- Alicja M Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy
| | - Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Oncology & Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy.,Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Oncology & Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| |
Collapse
|
50
|
Laing AA, Harrison CJ, Gibson BE, Keeshan K. Unlocking the potential of anti-CD33 therapy in adult and childhood acute myeloid leukemia. Exp Hematol 2017; 54:40-50. [DOI: 10.1016/j.exphem.2017.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
|