1
|
Ghosh HS, Patel RV, Claus EB, Gonzalez Castro LN, Wen PY, Ligon KL, Meredith DM, Bi WL. Canonical amplifications and CDKN2A/B loss refine IDH1/2-mutant astrocytoma prognosis. Neuro Oncol 2025; 27:993-1003. [PMID: 39584448 PMCID: PMC12083226 DOI: 10.1093/neuonc/noae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Molecular features have been incorporated alongside histologic criteria to improve glioma diagnostics and prognostication. CDKN2A/B homozygous-loss associates with worse survival in IDH1/2-mutant astrocytomas (IDHmut-astrocytomas), the presence of which denotes a grade 4 tumor independent of histologic features. However, no molecular features distinguish survival amongst histologically defined grade 2 and 3 IDHmut-astrocytomas. METHODS We assembled a cohort of patients ≥19 years old diagnosed with an IDHmut-astrocytoma between 1989 and 2020 from public datasets and several academic medical centers. Multivariate modeling and unbiased clustering were used to stratify risk. RESULTS We identified 998 IDHmut-astrocytoma patients (41.5% female; 85.6% white). Tumor grade, CDKN2A/B loss, and/or ≥1 focal amplification were associated with reduced survival. Grade 2/3 patients with intact CDKN2A/B and no focal amplifications survived the longest (OS 205.7 months). Survival for grade 2/3 cases with either CDKN2A/B hemizygous-loss or focal amplifications (80.4, 88.7 months respectively) did not differ significantly from grade 4 cases with intact CDKN2A/B and no amplifications (91.5 months, P = .93). Grade 4 patients with either hemizygous or homozygous loss of CDKN2A/B had the shortest survival (OS 31.9, 32.5 months respectively), followed by grade 4 cases with intact CDKN2A/B and focal gene amplifications (OS 55.9 months). Integrating CDKN2A/B status and amplifications alongside histopathologic grade refined overall survival prediction. Unbiased clustering revealed 9 distinct molecular profiles, with differential survival. IDHmut-astrocytomas with any CDKN2A/B loss clustered together, regardless of grade, and exhibited the poorest outcomes. CONCLUSIONS Combining CDKN2A/B hemizygous-loss and focal gene amplifications reveals a group of IDHmut-astrocytoma patients with an intermediate prognosis, refining IDHmut-astrocytoma classification.
Collapse
Affiliation(s)
- Hia S Ghosh
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ruchit V Patel
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Elizabeth B Claus
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Luis Nicolas Gonzalez Castro
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David M Meredith
- Department of Pathology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Li Y, Shen X, Zhang J, Xian X, Chen S, Zeng J, Hu W. Adult diffuse IDH-wildtype lower-grade gliomas with PDGFRA gain/amplification should be upgraded as glioblastoma. J Neuropathol Exp Neurol 2025:nlaf039. [PMID: 40238212 DOI: 10.1093/jnen/nlaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
We explored the prognostic significance of platelet-derived growth factor receptor α (PDGFRA) gain/amplification in grade 2-4 adult gliomas to assess its value as an upgrading indicator. Fluorescence in situ hybridization was performed to detect PDGFRA gain/amplification in 321 glioma specimens from Sun Yat-sen University Cancer Center (SYSUCC). Data from 1934 cases with available next-generation sequencing results from The Cancer Genome Atlas (TCGA) and cBioPortal were also analyzed. Of the adult grade 2-4 gliomas, 12.15% (39/321), 8.76% (93/1062), and 6.88% (60/872) had PDGFRA gain/amplification in the SYSUCC, TCGA, and cBioPortal cohorts, respectively. Grade 4 glioblastomas had a greater PDGFRA gain/amplification rate than lower-grade gliomas (LGGs) in all cohorts (all P < .05). PDGFRA gain/amplification was associated with older age, greater World Health Organization grade, isocitrate dehydrogenase (IDH)-wildtype, intact 1p/19q, telomerase reverse transcriptase promoter-wildtype, greater Ki67 index, epidermal growth factor receptor amplification, and chromosome 7+/10- alterations. PDGFRA gain/amplification predicted poor overall survival (OS) in grade 2-4 gliomas, particularly IDH-wildtype LGGs, in all cohorts (all P < .05). OS was worse in PDGFRA-amplified IDH-wildtype LGGs than in IDH-wildtype glioblastomas in the cBioPortal (P = .031) and SYSUCC (P = .026) cohorts. PDGFRA gain/amplification predicted poor OS in adult diffuse IDH-wildtype LGGs and may serve as an upgrading indicator.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiujiao Shen
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ji Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinyi Xian
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaoyu Chen
- Guangzhou LBP Medical Technology Co., Ltd., Guangzhou, China
| | - Jing Zeng
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanming Hu
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Li Y, Shen X, Zhang J, Xian X, Chen S, Zeng J, Hu W. Adult diffuse IDH-wildtype lower-grade gliomas with PDGFRA gain/amplification should be upgraded as glioblastoma. J Neuropathol Exp Neurol 2025. [DOI: 40238212 10.1093/jnen/nlaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
Abstract
We explored the prognostic significance of platelet-derived growth factor receptor α (PDGFRA) gain/amplification in grade 2-4 adult gliomas to assess its value as an upgrading indicator. Fluorescence in situ hybridization was performed to detect PDGFRA gain/amplification in 321 glioma specimens from Sun Yat-sen University Cancer Center (SYSUCC). Data from 1934 cases with available next-generation sequencing results from The Cancer Genome Atlas (TCGA) and cBioPortal were also analyzed. Of the adult grade 2-4 gliomas, 12.15% (39/321), 8.76% (93/1062), and 6.88% (60/872) had PDGFRA gain/amplification in the SYSUCC, TCGA, and cBioPortal cohorts, respectively. Grade 4 glioblastomas had a greater PDGFRA gain/amplification rate than lower-grade gliomas (LGGs) in all cohorts (all P < .05). PDGFRA gain/amplification was associated with older age, greater World Health Organization grade, isocitrate dehydrogenase (IDH)-wildtype, intact 1p/19q, telomerase reverse transcriptase promoter-wildtype, greater Ki67 index, epidermal growth factor receptor amplification, and chromosome 7+/10− alterations. PDGFRA gain/amplification predicted poor overall survival (OS) in grade 2-4 gliomas, particularly IDH-wildtype LGGs, in all cohorts (all P < .05). OS was worse in PDGFRA-amplified IDH-wildtype LGGs than in IDH-wildtype glioblastomas in the cBioPortal (P = .031) and SYSUCC (P = .026) cohorts. PDGFRA gain/amplification predicted poor OS in adult diffuse IDH-wildtype LGGs and may serve as an upgrading indicator.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Oncology in South China , Guangzhou,
- Guangdong Provincial Clinical Research Center for Cancer , Guangzhou,
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center , Guangzhou,
| | - Xiujiao Shen
- State Key Laboratory of Oncology in South China , Guangzhou,
- Guangdong Provincial Clinical Research Center for Cancer , Guangzhou,
- Department of Pathology, Sun Yat-sen University Cancer Center , Guangzhou,
| | - Ji Zhang
- State Key Laboratory of Oncology in South China , Guangzhou,
- Guangdong Provincial Clinical Research Center for Cancer , Guangzhou,
- Department of Neurosurgery, Sun Yat-sen University Cancer Center , Guangzhou,
| | - Xinyi Xian
- State Key Laboratory of Oncology in South China , Guangzhou,
- Guangdong Provincial Clinical Research Center for Cancer , Guangzhou,
- Department of Pathology, Sun Yat-sen University Cancer Center , Guangzhou,
| | - Shaoyu Chen
- Guangzhou LBP Medical Technology Co., Ltd. , Guangzhou,
| | - Jing Zeng
- State Key Laboratory of Oncology in South China , Guangzhou,
- Guangdong Provincial Clinical Research Center for Cancer , Guangzhou,
- Department of Pathology, Sun Yat-sen University Cancer Center , Guangzhou,
| | - Wanming Hu
- State Key Laboratory of Oncology in South China , Guangzhou,
- Guangdong Provincial Clinical Research Center for Cancer , Guangzhou,
- Department of Pathology, Sun Yat-sen University Cancer Center , Guangzhou,
| |
Collapse
|
4
|
Rai M, Okah P, Shefali SA, Fitt AJ, Shen MZ, Molomjamts M, Pepin R, Nemkov T, D'Alessandro A, Tennessen JM. New alleles of D-2-hydroxyglutarate dehydrogenase enable studies of oncometabolite function in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645621. [PMID: 40236175 PMCID: PMC11996423 DOI: 10.1101/2025.03.27.645621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
D-2-hydroxyglutarate (D-2HG) is a potent oncometabolite capable of disrupting chromatin architecture, altering metabolism, and promoting cellular dedifferentiation. As a result, ectopic D-2HG accumulation induces neurometabolic disorders and promotes progression of multiple cancers. However, the disease-associated effects of ectopic D-2HG accumulation are dependent on genetic context. Specifically, neomorphic mutations in the mammalian genes Isocitrate dehydrogenase 1 ( IDH1 ) and IDH2 result in the production of enzymes that inappropriately generate D-2HG from α-ketoglutarate (αKG). Within this genetic background, D-2HG acts as an oncometabolite and is associated with multiple cancers, including several diffuse gliomas. In contrast, loss-of-function mutations in the gene D-2-hydroxyglutarate dehydrogenase (D2hgdh) render cells unable to degrade D-2HG, resulting in excessive buildup of this molecule. D2hgdh mutations, however, are not generally associated with elevated cancer risk. This discrepancy raises the question as to why ectopic D-2HG accumulation in humans induces context-dependent disease outcomes. To enable such genetic studies in vivo , we generated two novel loss-of-function mutations in the Drosophila melanogaster gene D2hgdh and validated that these alleles result in ectopic D-2HG. Moreover, we observed that D2hgdh mutations induce developmental and metabolomic phenotypes indicative of elevated D-2HG accumulation. Overall, our efforts provide the Drosophila community with new mutant strains that can be used to study D-2HG function in human disease models as well as in the context of normal growth, metabolism, and physiology.
Collapse
|
5
|
Jangir H, Yadav S, Hayagrivas MB, Singh J, Sumanta Das, Sahu S, Roy C, Sharma MC, Sarkar C, Suri A, Suri V. CLINICAL utility of assessing CDKN2A status in recurrent astrocytomas. Brain Tumor Pathol 2025; 42:21-25. [PMID: 40080309 DOI: 10.1007/s10014-025-00496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
IDH-mutant astrocytomas exhibit a more indolent natural history and better prognosis compared to their IDH-wild type counterparts. WHO 2021 classification integrated CDKN2A/B homozygous deletion as a crucial criterion for grading these tumors, emphasizing its prognostic implications. FISH assay is commonly used to assess CDKN2A status, but guidelines for interpreting FISH results for glioma prognostication are not well-defined in the literature. We conducted an ambispective study involving 22 cases of recurrent IDH-mutant astrocytomas, including primary tumor samples. Histopathological assessments, including WHO grading and molecular profiling, were performed. Immunohistochemistry confirmed IDH mutation status, and FISH analysis evaluated CDKN2A homozygous deletion. Homozygous CDKN2A deletion was detected in only 1/22 (4.8%) of primary tumors, which was grade 3 astrocytoma, and significantly more frequent in recurrent cases, particularly in histological grade 2/3 tumors (35.3%). Patients harboring CDKN2A deletions exhibited significantly poorer overall survival, highlighting its prognostic significance. Our findings highlight the clinical relevance of CDKN2A assessment in recurrent IDH-mutant astrocytomas and its utility as a prognostic marker. We propose a selective approach to FISH testing, focusing on primary grade 3 and all recurrent cases, regardless of histology grade, to optimize diagnostic accuracy and stratification for personalized treatment strategies.
Collapse
Affiliation(s)
- Hemlata Jangir
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sahil Yadav
- All India Institute of Medical Sciences, New Delhi, India
| | - M B Hayagrivas
- All India Institute of Medical Sciences, New Delhi, India
| | - Jyotsna Singh
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sumanta Das
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Saumya Sahu
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Charli Roy
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Shi Z, Li KK, Kwan JS, Chung NY, Wong S, Chu AW, Chen H, Chan DT, Mao Y, Ng H. The molecular history of IDH-mutant astrocytomas without adjuvant treatment. Brain Pathol 2025; 35:e13300. [PMID: 39473241 PMCID: PMC11835445 DOI: 10.1111/bpa.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/05/2024] [Indexed: 02/20/2025] Open
Abstract
Hypermutation and malignant transformation are potential complications arising from temozolomide treatment of IDH-mutant gliomas. However, the natural history of IDH-mutant low-grade gliomas without temozolomide treatment is actually under-studied. We retrieved retrospectively from our hospitals paired tumors from 19 patients with IDH-mutant, 1p19q non-codeleted Grade 2 astrocytomas where no interim adjuvant treatment with either temozolomide or radiotherapy was given between primary resections and first recurrences. Tissues from multiple recurrences were available from two patients and radiotherapy but not temozolomide was given before the last specimens were resected. We studied the natural molecular history of these low-grade IDH-mutant astrocytomas without pressure of temozolomide with DNA methylation profiling and copy number variation (CNV) analyses, targeted DNA sequencing, TERTp sequencing, FISH for ALT and selected biomarkers. Recurrences were mostly higher grades (15/19 patients) and characterized by new CNVs not present in the primary tumors (17/19 cases). Few novel mutations were identified in recurrences. Tumors from 17/19 (89.5%) patients showed either CDKN2A homozygous deletion, MYC or PDGFRA focal and non-focal gains at recurrences. There was no case of hypermutation. Phylogenetic trees constructed for tumors for the two patients with multiple recurrences suggested a lack of subclone development in their evolution when under no pressure from temozolomide. In summary, our studies demonstrated, in contrast to the phenomenon of temozolomide-induced hypermutation, IDH-mutant, 1p19q non-codeleted Grade 2 astrocytomas which had not been treated by temozolomide, acquired new CNVs at tumor recurrences. These findings improve our understanding of the molecular life history of IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Zhi‐Feng Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- Hong Kong and Shanghai Brain Consortium (HSBC)Hong KongChina
| | - Kay Ka‐Wai Li
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Johnny Sheung‐Him Kwan
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
- Hong Kong Genome InstituteHong Kong Science ParkShatin, Hong KongChina
| | - Nellie Yuk‐Fei Chung
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Sze‐Ching Wong
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Abby Wai‐Yan Chu
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Hong Chen
- Department of Pathology, Huashan HospitalFudan UniversityShanghaiChina
| | - Danny Tat‐Ming Chan
- Division of Neurosurgery, Department of SurgeryThe Chinese University of Hong KongShatin, Hong KongChina
| | - Ying Mao
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- Hong Kong and Shanghai Brain Consortium (HSBC)Hong KongChina
| | - Ho‐Keung Ng
- Hong Kong and Shanghai Brain Consortium (HSBC)Hong KongChina
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
7
|
Onishi S, Yamasaki F, Amatya VJ, Yonezawa U, Taguchi A, Ozono I, Khairunnisa NI, Go Y, Takeshima Y, Horie N. Prognostic value of immunohistochemical staining for H3K27me3 and EZH2 in astrocytoma, IDH-mutant. J Neurooncol 2025; 172:185-194. [PMID: 39636550 PMCID: PMC11832638 DOI: 10.1007/s11060-024-04897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND H3 histone 27 lysine (H3K27) trimethylation (H3K27me3), which is catalyzed by enhancer of zeste homolog 2 (EZH2), regulates gene expression through epigenetic mechanisms. H3K27me3 is used as a diagnostic marker for diffuse midline glioma and as a surrogate marker to distinguish posterior fossa ependymoma A and B. However, the clinical significance of the EZH2-H3K27me3 axis in astrocytoma, IDH-mutant has not been reported, prompting this investigation. METHODS Thirty-three patients with astrocytoma, IDH-mutant treated at our institute were included in this study. Immunohistochemistry (IHC) targeting H3K27me3, H3K27M, EZH2, EZH inhibitory protein, IDH1-R132H, p53, ATRX, Ki-67, and MTAP was performed. Kaplan-Meier analysis and Cox regression analysis were performed to analyze the correlations of overall survival (OS) and progression-free survival (PFS) with various factors, including age, World Health Organization (WHO) grade, the extent of resection, and immunohistochemical results. RESULTS The mean patient age was 40.6 ± 11.0 years. IHC for H3K27me3 was positive in 19 patients and negative in 14 patients. The WHO grade and Ki-67 index were significantly higher in the H3K27me3-positive group (p = 0.004 and p = 0.024, respectively). OS and PFS were significantly shorter in the H3K27me3-positive group (p = 0.002 and p = 0.026, respectively). Furthermore, the H3K27me3 and EZH2 double-positive group was associated with a higher WHO grade and higher Ki-67 index (p = 0.001 and p = 0.024, respectively). In the analysis of patients with WHO grade 2/3, double positivity for H3K27me3 and EZH2 was linked to significantly shorter OS and PFS (p = 0.0053 and p = 0.0048, respectively). CONCLUSION Positivity for H3K27me3, especially double positivity for H3K27me3 and EZH2, could be a poor prognostic factor for astrocytoma, IDH-mutant. These results suggest the utility of H3K27me3 and EZH2 as candidate markers for estimating the malignancy of astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Novita Ikbar Khairunnisa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Yukari Go
- Medical Division Technical Center, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| |
Collapse
|
8
|
Curry RN, McDonald MF, He P, Lozzi B, Ko Y, O’Reilly I, Rosenbaum A, Kwon W, Fahim L, Marcus J, Powell N, Wang S, Ma J, Multani A, Choi DJ, Sardar D, Mohila C, Lee J, Gallo M, Harmanci A, Harmanci AS, Deneen B, Rao G. Mutant IDH impairs chromatin binding by PDGFB to promote chromosome instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639365. [PMID: 40060572 PMCID: PMC11888161 DOI: 10.1101/2025.02.20.639365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Non-canonical roles for growth factors in the nucleus have been previously described, but their mechanism of action and biological roles remain enigmatic. Platelet-derived growth factor B (PDGFB) can drive formation of low-grade glioma and here we show that it localizes to the nucleus of human glioma cells where it binds chromatin to preserve genome stability and cell lineage. Failure of PDGFB to localize to the nucleus leads to chromosomal abnormalities, aberrant heterochromatin architecture and accelerated tumorigenesis. Furthermore, nuclear localization of PDGFB is reliant upon the expression levels and mutation status of isocitrate dehydrogenase (IDH). Unexpectedly, we identified macrophages as the predominant source of PDGFB in human, finding that immune-derived PDGFB can localize to the nucleus of glioma cells. Collectively, these studies show that immune derived PDGFB enters the nucleus of glioma cells to maintain genomic stability, while identifying a new mechanism by which IDH mutations promote gliomagenesis.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Pediatric Neuro-Oncology Research Program, Texas Children’s Hospital, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Malcolm F. McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX
| | - Peihao He
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Yeunjung Ko
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Isabella O’Reilly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Anna Rosenbaum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Leyla Fahim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Joshua Marcus
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Noah Powell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Su Wang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Jin Ma
- Cytogenetics and Cell Authentication Core, MD Anderson Cancer Center, Houston, TX
| | - Asha Multani
- Cytogenetics and Cell Authentication Core, MD Anderson Cancer Center, Houston, TX
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Debo Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Carrie Mohila
- Department of Neuropatholgy, Texas Children’s Hospital, Houston, TX
| | - Jason Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Marco Gallo
- Pediatric Neuro-Oncology Research Program, Texas Children’s Hospital, Houston, TX
| | - Arif Harmanci
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX
| | - Akdes Serin Harmanci
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
9
|
Al-Hussaini M, Al-Ani A, Amarin JZ, Al Sharie S, Obeidat M, Musharbash A, Al Shurbaji AA, Ibrahimi AK, Al-Mousa A, Sarhan N, Amayiri N, Amarin R, Alawabdeh T, Alzoubi Q, Abu Laban D, Maraqa B, Jamal K, Mansour A. Epidemiology and Outcome of Primary Central Nervous System Tumors Treated at King Hussein Cancer Center. Cancers (Basel) 2025; 17:590. [PMID: 40002185 PMCID: PMC11852727 DOI: 10.3390/cancers17040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Primary central nervous system (CNS) tumors are often associated with relatively poor outcomes. Data on the epidemiology and outcome of CNS tumors in Jordan are scarce. We aim to report the epidemiology and outcome of primary CNS tumors of patients managed at a comprehensive cancer care center in Jordan. METHODS We performed a retrospective chart review of all Jordanian patients with a primary CNS tumor diagnosis who were managed at the center between July 2003 and June 2019. We included all entities described in the 2021 CNS WHO classification system, in addition to pituitary neuroendocrine tumors (PitNETs). We used the Kaplan-Meier method to estimate the 1-year, 2-year, and 5-year overall survival (OS) rates for each entity. RESULTS AND FINDINGS We included 2094 cases. The numbers of pediatrics and adults were 652 (31.1%) and 1442 (68.9%), respectively. The three most common groups of tumors were "gliomas, glioneuronal tumors, and neuronal tumors" (n = 1200 [57.30%]), followed by meningiomas (n = 261 [12.5%]), embryonal tumors (n = 234 [11.2%]). The three most common tumor families were adult-type diffuse gliomas (n = 709 [33.8%]), medulloblastoma (n = 199 [9.5%]), and circumscribed astrocytic gliomas (n = 183 [8.7%]). The median survival for the entire cohort was 97 months (95CI; 81-112). Survival was significantly worse for males and adults compared to their respective counterparts. Among the most common tumor group, "gliomas, glioneuronal tumors, and neuronal tumors", OS rates for adult-type diffuse gliomas were significantly lower than all other types. Overall, adult gliomas with IDH-mutations had a survival advantage over wildtype cases (IDH-mutant 1-year OS, 89% [82-97%] vs. IDH-wildtype 1-year OS, 60% [52-70%]; p < 0.001). CONCLUSIONS We present a detailed analysis of the primary CNS tumors diagnosed in the largest cancer center in Jordan between 2003 and 2019. We compared the epidemiology and overall survival of these patients to worldwide estimates and found the epidemiology and outcome of these tumors comparable to worldwide trends.
Collapse
Affiliation(s)
- Maysa Al-Hussaini
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman 11941, Jordan
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Abdallah Al-Ani
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (J.Z.A.); (S.A.S.); (K.J.)
| | - Justin Z. Amarin
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (J.Z.A.); (S.A.S.); (K.J.)
| | - Sarah Al Sharie
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (J.Z.A.); (S.A.S.); (K.J.)
| | - Mouness Obeidat
- Department of Surgery, King Hussein Cancer Center, Amman 11941, Jordan; (M.O.); (A.M.); (A.A.A.S.)
| | - Awni Musharbash
- Department of Surgery, King Hussein Cancer Center, Amman 11941, Jordan; (M.O.); (A.M.); (A.A.A.S.)
| | - Amer A. Al Shurbaji
- Department of Surgery, King Hussein Cancer Center, Amman 11941, Jordan; (M.O.); (A.M.); (A.A.A.S.)
| | - Ahmad Kh. Ibrahimi
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.K.I.); (A.A.-M.); (N.S.)
| | - Abdellatif Al-Mousa
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.K.I.); (A.A.-M.); (N.S.)
| | - Nasim Sarhan
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.K.I.); (A.A.-M.); (N.S.)
| | - Nisreen Amayiri
- Department of Pediatrics, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Rula Amarin
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.); (T.A.)
| | - Tala Alawabdeh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.); (T.A.)
| | - Qasem Alzoubi
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan; (Q.A.); (D.A.L.); (A.M.)
| | - Dima Abu Laban
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan; (Q.A.); (D.A.L.); (A.M.)
| | - Bayan Maraqa
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Khaled Jamal
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (J.Z.A.); (S.A.S.); (K.J.)
| | - Asem Mansour
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan; (Q.A.); (D.A.L.); (A.M.)
| |
Collapse
|
10
|
Ozeki Y, Honda-Kitahara M, Yanagisawa S, Takahashi M, Ohno M, Miyakita Y, Kikuchi M, Nakano T, Hosoya T, Sugino H, Satomi K, Yoshida A, Igaki H, Kubo Y, Ichimura K, Suzuki H, Masutomi K, Kondo A, Narita Y. Early progressive disease within 2 years in isocitrate dehydrogenase (IDH)-mutant astrocytoma may indicate radiation necrosis. Jpn J Clin Oncol 2025; 55:106-112. [PMID: 39660448 DOI: 10.1093/jjco/hyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Isocitrate dehydrogenase-mutant astrocytoma without cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion typically follows a slow clinical course. However, some cases show early progression on magnetic resonance imaging, and these characteristics remain under-reported. This study aimed to elucidate the characteristics of isocitrate dehydrogenase-mutant astrocytoma showing early progression on magnetic resonance imaging. METHODS This retrospective study included 52 cases of primary astrocytoma, isocitrate dehydrogenase-mutant, Central Nervous System (CNS) 5 World Health Organization grade 2-3 according to the World Health Organization 2021 classification. Patients underwent surgery followed by radiation therapy and/or chemotherapy at our institution from 2006 to 2019. Progression-free survival and overall survival were analyzed. RESULTS There were 24 and 28 grade 2 and grade 3 astrocytomas, respectively. The median patient age was 38 years. Forty-three patients underwent radiotherapy. Progression was diagnosed by magnetic resonance imaging in 22 patients with initial radiotherapy. Thirteen of the 22 patients underwent surgery, and seven of the 13 patients received surgery within 24 months of the initial radiotherapy. Histopathologically, radiation necrosis was confirmed in four of these seven patients (57.1%). The true progression-free survival rate, excluding radiation necrosis, at 2 years after surgery was 91.3% for grade 2 astrocytoma and 88.5% for grade 3 astrocytoma. The 5-year overall survival rate was 85.7% for grade 2 tumours and 76.4% for grade 3 tumours. CONCLUSIONS Radiation necrosis should be considered in cases showing early progression of isocitrate dehydrogenase-mutant astrocytoma, and a second surgery should be performed to confirm true recurrence or radiation necrosis. Astrocytomas with telomerase reverse-transcriptase promoter mutations may relapse relatively early and should be followed up with caution.
Collapse
Affiliation(s)
- Yukie Ozeki
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Neurosurgery, Saitama Cancer Center, Saitama, Japan
| | - Mai Honda-Kitahara
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Miu Kikuchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyuki Nakano
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomohiro Hosoya
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Kubo
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ichimura
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenkichi Masutomi
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Ma X, Sun C, Ding X, Xu J, Zhang Y, Deng T, Wang Y, Yang H, Ding R, Li H, Wang D, Zheng M. Mechanism analysis and targeted therapy of IDH gene mutation in glioma. Am J Cancer Res 2025; 15:248-270. [PMID: 39949933 PMCID: PMC11815359 DOI: 10.62347/nsxc2205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Isocitrate dehydrogenase (IDH) is a pivotal enzyme responsible for catalyzing the oxidative decarboxylation of isocitrate into α-ketoglutarate (α-KG). This enzyme serves as a crucial regulator in the tricarboxylic acid cycle (TCA cycle), acting as a rate-limiting step. Its role extends beyond mere metabolic function, influencing cellular homeostasis and overall cell function. In the past decade, prominent research in cancer genetics has revealed that genes responsible for encoding isocitrate dehydrogenase are commonly mutated across various human malignancies. Significant research in the field has shown that these mutations are commonly found in diseases like glioma, acute myeloid leukemia (AML), cholangiocarcinoma (CCA), chondrosarcoma, and thyroid cancer (TC). As research on IDH progresses, deeper insights into the biological effects of IDH mutations have been gained, unveiling their potential role in tumorigenesis. In addition, IDH mutants' unique activities creates new pathways in tumor metabolism, gene rearrangement, and therapeutic resistance. Currently, innovative molecular targeting strategies for genes bearing mutations in IDH have been devised to enhance the therapeutic efficacy against cancers harboring IDH mutations. These methods represent a promising avenue for improving treatment outcomes in IDH-mutated malignancies. This article mainly summarizes the related research on glioma caused by IDH mutation, and focuses on the biological characteristics and transformation of IDH.
Collapse
Affiliation(s)
- Xingyuan Ma
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Chao Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing 100070, China
| | - Xiao Ding
- The Third Department of Surgery, Armed Police Hospital of TianjinTianjin 300163, China
| | - Jiaqi Xu
- Edinburgh Medical School, The University of EdinburghEdinburgh EH16 4SB, Scotland, UK
| | - Yuhang Zhang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Tingzhen Deng
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Yatao Wang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Haijun Yang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Ruiwen Ding
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Haotian Li
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Dawen Wang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Maohua Zheng
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| |
Collapse
|
12
|
Evans L, Trinder S, Dodgshun A, Eisenstat DD, Whittle JR, Hansford JR, Valvi S. IDH-mutant gliomas in children and adolescents - from biology to clinical trials. Front Oncol 2025; 14:1515538. [PMID: 39876890 PMCID: PMC11773619 DOI: 10.3389/fonc.2024.1515538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Gliomas account for nearly 30% of all primary central nervous system (CNS) tumors in children and adolescents and young adults (AYA), contributing to significant morbidity and mortality. The updated molecular classification of gliomas defines molecularly diverse subtypes with a spectrum of tumors associated with age-distinct incidence. In adults, gliomas are characterized by the presence or absence of mutations in isocitrate dehydrogenase (IDH), with mutated IDH (mIDH) gliomas providing favorable outcomes and avenues for targeted therapy with the emergence of mIDH inhibitors. Despite their rarity, IDH mutations have been reported in 5-15% of pediatric glioma cases. Those with primary mismatch-repair deficient mIDH astrocytomas (PMMRDIA) have a particularly poor prognosis. Here, we describe the biology of mIDH gliomas and review the literature regarding the emergence of mIDH inhibitors, including clinical trials in adults. Given the paucity of clinical trial data from pediatric patients with mIDH glioma, we propose guidelines for the inclusion of pediatric and AYA patients with gliomas onto prospective trials and expanded access programs as well as the potential of combined mIDH inhibition and immunotherapy in the treatment of patients with PMMRDIA at high risk of progression.
Collapse
Affiliation(s)
- Louise Evans
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Sarah Trinder
- Kids Cancer Centre, Sydney Children’s Hospital, Sydney, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Andrew Dodgshun
- Department of Pediatrics, University of Otago, Christchurch, New Zealand
- Children’s Hematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Stem Cell Medicine, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - James R. Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Personalized Oncology Division, Walter and Eliza Hall Institute (WEHI), Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Pediatric Neuro-Oncology, Precision Cancer Medicine, South Australia Health and Medical Reseach Institute, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Pediatric and Adolescent Oncology/Hematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumor Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- School of Medicine, Division of Pediatrics, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
O'Hara MH, Jegede O, Dickson MA, DeMichele AM, Piekarz R, Gray RJ, Wang V, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Onitilo A, Tricoli JV, Conley BA, Arteaga CL, Harris LN, O'Dwyer PJ, Chen AP, Flaherty KT. Phase II Study of Palbociclib in Patients with Tumors with CDK4 or CDK6 Amplification: Results from the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol Z1C. Clin Cancer Res 2025; 31:56-64. [PMID: 39437014 PMCID: PMC11721435 DOI: 10.1158/1078-0432.ccr-24-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Amplification of cyclin-dependent kinase 4 (CDK4) and CDK6 is a feature of a variety of malignancies, and preclinical evidence suggests that inhibition of CDK4/6 is a plausible treatment strategy in these tumors. Subprotocol Z1C of the NCI-Molecular Analysis for Therapy Choice trial was designed to evaluate the CDK4/6 inhibitor palbociclib in CDK4- or CDK6-amplified tumors. PATIENTS AND METHODS Patients had a solid malignancy or lymphoma with progression on at least one systemic therapy for advanced disease or with no standard-of-care therapy available. Tumors with ≥7 copies of CDK4 or CDK6 were considered amplified and molecularly eligible. Enrolled patients were treated with palbociclib 125 mg daily on days 1 to 21 of a 28-day cycle. The primary endpoint was objective response rate. RESULTS Forty-three patients were enrolled on subprotocol Z1C, and 38 patients were deemed eligible, treated, and included in analyses; 25 patients were eligible, treated, and centrally confirmed to have CDK4 or CDK6 amplification and comprised the primary analysis cohort for objective response rate endpoint. Among the 25 patients in the primary cohort, one patient had a partial response, 4 patients had stable disease, and 16 patients had progressive disease as best response. Four patients were not evaluable due to lack of follow-up scans. Among the 38 evaluable patients, one patient had a partial response, 10 patients had stable disease, and 21 patients had progressive disease as best response. Partial response and stable disease were seen only in patients with CDK4 amplification. Median progression-free survival was 2.0 months, and median overall survival was 8.8 months. CONCLUSIONS Palbociclib showed limited activity in histology-agnostic CDK4- or CDK6-amplified tumors, although central nervous system tumors may be worthy of future investigation.
Collapse
Affiliation(s)
- Mark H O'Hara
- Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Opeyemi Jegede
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Mark A Dickson
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Angela M DeMichele
- Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard Piekarz
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Robert J Gray
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Victoria Wang
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Lisa M McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Lawrence V Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - David R Patton
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | - P Mickey Williams
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Barbara A Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | | | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Peter J O'Dwyer
- Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Clinic, National Cancer Institute, Bethesda, Maryland
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
14
|
Fleming JL, Chakravarti A. Recent Advancements and Future Perspectives on Molecular Biomarkers in Adult Lower-Grade Gliomas. Cancer J 2025; 31:e0758. [PMID: 39841423 DOI: 10.1097/ppo.0000000000000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ABSTRACT There has been a significant paradigm shift in the clinical management of lower-grade glioma patients given the recent updates to the 2021 World Health Organization classification along with long-term results from randomized phase III clinical trials. As a result, we are now better able to diagnose and assign patients to the most appropriate treatment course. This review provides a comprehensive summary of the most robust and reliable molecular biomarkers for adult lower-grade gliomas and discusses current challenges facing this patient population that future correlative biology studies combined with advancements in technologies could help overcome.
Collapse
Affiliation(s)
- Jessica L Fleming
- From the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | |
Collapse
|
15
|
Rodriguez Almaraz E, Guerra GA, Al-Adli NN, Young JS, Dada A, Quintana D, Taylor JW, Oberheim Bush NA, Clarke JL, Butowski NA, de Groot J, Pekmezci M, Perry A, Bollen AW, Scheffler AW, Glidden DV, Phillips JJ, Costello JF, Chang EF, Hervey-Jumper S, Berger MS, Francis SS, Chang SM, Solomon DA. Longitudinal profiling of IDH-mutant astrocytomas reveals acquired RAS-MAPK pathway mutations associated with inferior survival. Neurooncol Adv 2025; 7:vdaf024. [PMID: 40051658 PMCID: PMC11883348 DOI: 10.1093/noajnl/vdaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background Isocitrate dehydrogenase (IDH)-mutant astrocytomas represent the most frequent primary intraparenchymal brain tumor in young adults, which typically arise as low-grade neoplasms that often progress and transform to higher grade despite current therapeutic approaches. However, the genetic alterations underlying high-grade transformation and disease progression of IDH-mutant astrocytomas remain inadequately defined. Methods Genomic profiling was performed on 205 IDH-mutant astrocytomas from 172 patients from both initial treatment-naive and recurrent post-treatment tumor specimens. Molecular findings were integrated with clinical outcomes and pathologic features to define the associations of novel genetic alterations in the RAS-MAPK signaling pathway. Results Likely oncogenic alterations within the RAS-MAPK mitogenic signaling pathway were identified in 13% of IDH-mutant astrocytomas, which involved the KRAS, NRAS, BRAF, NF1, SPRED1, and LZTR1 genes. These included focal amplifications and known activating mutations in oncogenic components (e.g. KRAS, BRAF), as well as deletions and truncating mutations in negative regulatory components (e.g. NF1, SPRED1). These RAS-MAPK pathway alterations were enriched in recurrent tumors and occurred nearly always in high-grade tumors, often co-occurring with CDKN2A homozygous deletion. Patients whose IDH-mutant astrocytomas harbored these oncogenic RAS-MAPK pathway alterations had inferior survival compared to those with RAS-MAPK wild-type tumors. Conclusions These findings highlight novel genetic perturbations in the RAS-MAPK pathway as a likely mechanism contributing to the high-grade transformation and treatment resistance of IDH-mutant astrocytomas that may be a potential therapeutic target for affected patients and used for future risk stratification.
Collapse
Affiliation(s)
- Eduardo Rodriguez Almaraz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Geno A Guerra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nadeem N Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Abraham Dada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Daniel Quintana
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennie W Taylor
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennifer L Clarke
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nicholas A Butowski
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - John de Groot
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Aaron W Scheffler
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Stephen S Francis
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| |
Collapse
|
16
|
Lim-Fat MJ, Cotter JA, Touat M, Vogelzang J, Sousa C, Pisano W, Geduldig J, Bhave V, Driver J, Kao PC, McGovern A, Ma C, Margol AS, Cole K, Smith A, Goldman S, Kaneva K, Truong A, Nazemi KJ, Wood MD, Wright KD, London WB, Warren KE, Wen PY, Bi WL, Alexandrescu S, Reardon DA, Ligon KL, Yeo KK. A comparative analysis of IDH-mutant glioma in pediatric, young adult, and older adult patients. Neuro Oncol 2024; 26:2364-2376. [PMID: 39082676 PMCID: PMC11630535 DOI: 10.1093/neuonc/noae142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The frequency and significance of IDH mutations in glioma across age groups are incompletely understood. We performed a multi-center retrospective age-stratified comparison of patients with IDH-mutant gliomas to identify age-specific differences in clinico-genomic features, treatments, and outcomes. METHODS Clinical, histologic, and sequencing data from patients with IDH-mutant, grades 2-4 gliomas, were collected from collaborating institutions between 2013 and 2019. Patients were categorized as pediatric (<19 years), young adult (YA; 19-39 years), or older adult (≥40 years). Clinical presentation, treatment, histologic, and molecular features were compared across age categories using Fisher's exact test or analysis-of-variance. Cox proportional-hazards regression was used to determine the association of age and other covariates with overall (OS) and progression-free survival (PFS). RESULTS We identified a cohort of 379 patients (204 YA) with IDH-mutant glioma with clinical data. There were 155 (41%) oligodendrogliomas and 224 (59%) astrocytomas. YA showed significantly shorter PFS and shorter median time-to-malignant transformation (MT) compared to pediatric and adult groups, but no significant OS difference. Adjusting for pathology type, extent of resection, and upfront therapy in multivariable analysis, the YA group was independently prognostic of shorter PFS than pediatric and adult groups. Among astrocytomas, CDK4/6 copy number amplifications were associated with both shorter PFS and shorter OS. Among oligodendrogliomas, PIK3CA and CDKN2A/2B alterations were associated with shorter OS. CONCLUSIONS IDH-mutant glioma YA patients had significantly shorter PFS and time to MT but did not differ in OS compared to pediatric and adult groups. Treatment approaches varied significantly by patient age and warrant further study as addressable age-associated outcome drivers.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (M.J.L.-F.)
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Mehdi Touat
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Jayne Vogelzang
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Cecilia Sousa
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Will Pisano
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jack Geduldig
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Varun Bhave
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joseph Driver
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Pei-Chi Kao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Alana McGovern
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Clement Ma
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Ontario, Canada
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Ashley S Margol
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Kristina Cole
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amy Smith
- Department of Pediatrics, Orlando Health Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Stewart Goldman
- Department of Child Health Phoenix Children’s & University of Arizona Medical School-Phoenix AZ, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago (S.G.*, K.K.*)
| | - Kristiyana Kaneva
- Tempus Labs, Inc., Chicago, Illinois, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - AiLien Truong
- Department of Pediatrics, OHSU Doernbecher Children’s Hospital, Portland, Oregon, USA
| | - Kellie J Nazemi
- Department of Pediatrics, OHSU Doernbecher Children’s Hospital, Portland, Oregon, USA
| | - Matthew D Wood
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karen D Wright
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Wendy B London
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Katherine E Warren
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sanda Alexandrescu
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston Massachusetts, USA
| | - David A Reardon
- Adolescent and Young Adult Neuro-Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Kee Kiat Yeo
- Adolescent and Young Adult Neuro-Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Wu S, Ma C, Cai J, Yang C, Liu X, Luo C, Yang J, Xiong Z, Cao D, Chen H. A clinically feasible algorithm for the parallel detection of glioma-associated copy number variation markers based on shallow whole genome sequencing. J Pathol Clin Res 2024; 10:e70005. [PMID: 39375998 PMCID: PMC11458885 DOI: 10.1002/2056-4538.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Molecular features are incorporated into the integrated diagnostic system for adult diffuse gliomas. Of these, copy number variation (CNV) markers, including both arm-level (1p/19q codeletion, +7/-10 signature) and gene-level (EGFR gene amplification, CDKN2A/B homozygous deletion) changes, have revolutionized the diagnostic paradigm by updating the subtyping and grading schemes. Shallow whole genome sequencing (sWGS) has been widely used for CNV detection due to its cost-effectiveness and versatility. However, the parallel detection of glioma-associated CNV markers using sWGS has not been optimized in a clinical setting. Herein, we established a model-based approach to classify the CNV status of glioma-associated diagnostic markers with a single test. To enhance its clinical utility, we carried out hypothesis testing model-based analysis through the estimation of copy ratio fluctuation level, which was implemented individually and independently and, thus, avoided the necessity for normal controls. Besides, the customization of required minimal tumor fraction (TF) was evaluated and recommended for each glioma-associated marker to ensure robust classification. As a result, with 1× sequencing depth and 0.05 TF, arm-level CNVs could be reliably detected with at least 99.5% sensitivity and specificity. For EGFR gene amplification and CDKN2A/B homozygous deletion, the corresponding TF limits were 0.15 and 0.45 to ensure the evaluation metrics were both higher than 97%. Furthermore, we applied the algorithm to an independent glioma cohort and observed the expected sample distribution and prognostic stratification patterns. In conclusion, we provide a clinically applicable algorithm to classify the CNV status of glioma-associated markers in parallel.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
- National Center for Neurological DisordersShanghaiPR China
- Neurosurgical Institute of Fudan UniversityShanghaiPR China
| | - Chenyu Ma
- Genetron Health (Beijing) Co. LtdBeijingPR China
| | - Jiawei Cai
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated HospitalFujian Medical UniversityFuzhouPR China
| | | | - Xiaojia Liu
- Department of Pathology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
- National Center for Neurological DisordersShanghaiPR China
- Neurosurgical Institute of Fudan UniversityShanghaiPR China
| | - Jingyi Yang
- Genetron Health (Beijing) Co. LtdBeijingPR China
| | - Zhang Xiong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
- National Center for Neurological DisordersShanghaiPR China
- Neurosurgical Institute of Fudan UniversityShanghaiPR China
| | - Dandan Cao
- Genetron Health (Beijing) Co. LtdBeijingPR China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| |
Collapse
|
18
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
19
|
Lee SH, Kim TG, Ryu KH, Kim SH, Kim YZ. CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas. Biomedicines 2024; 12:2256. [PMID: 39457569 PMCID: PMC11505494 DOI: 10.3390/biomedicines12102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: We primarily investigated the prognostic role of CDKN2A homozygous deletion in CNS WHO grade 4 gliomas. Additionally, we plan to examine traditional prognostic factors for grade 4 gliomas and validate the findings. Materials: We conducted a retrospective analysis of the glioma cohorts at our institute. We reviewed medical records spanning a 15-year period and examined pathological slides for an updated diagnosis according to the 2021 WHO classification of CNS tumors. We examined the IDH1/2 mutation and CDKN2A deletion using NGS analysis with ONCOaccuPanel®. Further, we examined traditional prognostic factors, including age, WHO performance status, extent of resection, and MGMT promoter methylation status. Results: The mean follow-up duration was 27.5 months (range: 4.1-43.5 months) and mean overall survival (OS) was 20.7 months (SD, ±1.759). After the exclusion of six patients with a poor status of pathologic samples, a total of 136 glioblastoma cases diagnosed by previous WHO classification criteria were newly classified into 29 (21.3%) astrocytoma, IDH-mutant, and CNS WHO grade 4 cases, and 107 (78.7%) glioblastoma, IDH-wildtype, and CNS WHO grade 4 cases. Among them, 61 (56.0%) had CDKN2A deletions. The high-risk group with CDKN2A deletion regardless of IDH1/2 mutation had a mean OS of 16.65 months (SD, ±1.554), the intermediate-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 21.85 months (SD, ±2.082), and the low-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 33.38 months (SD, ±2.946). Multifactor analysis showed that age (≥50 years vs. <50 years; HR 4.645), WHO performance (0, 1 vs. 2; HR 5.002), extent of resection (gross total resection vs. others; HR 5.528), MGMT promoter methylation, (methylated vs. unmethylated; HR 5.078), IDH1/2 mutation (mutant vs. wildtype; HR 6.352), and CDKN2A deletion (absence vs. presence; HR 13.454) were associated with OS independently. Conclusions: The present study suggests that CDKN2A deletion plays a powerful prognostic role in CNS WHO grade 4 gliomas. Even if CNS WHO grade 4 gliomas have mutant IDH1/2, they may have poor clinical outcomes because of CDKN2A deletion.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Kyeong Hwa Ryu
- Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Seok Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Young Zoon Kim
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| |
Collapse
|
20
|
van den Bent MJ, French PJ, Brat D, Tonn JC, Touat M, Ellingson BM, Young RJ, Pallud J, von Deimling A, Sahm F, Figarella Branger D, Huang RY, Weller M, Mellinghoff IK, Cloughsey TF, Huse JT, Aldape K, Reifenberger G, Youssef G, Karschnia P, Noushmehr H, Peters KB, Ducray F, Preusser M, Wen PY. The biological significance of tumor grade, age, enhancement, and extent of resection in IDH-mutant gliomas: How should they inform treatment decisions in the era of IDH inhibitors? Neuro Oncol 2024; 26:1805-1822. [PMID: 38912846 PMCID: PMC11449017 DOI: 10.1093/neuonc/noae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 06/25/2024] Open
Abstract
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
Collapse
Affiliation(s)
| | - Pim J French
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Mehdi Touat
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Johan Pallud
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Université Paris Cité, Paris, France
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Figarella Branger
- DFB Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tim F Cloughsey
- Department of Neurology, TC David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gilbert Youssef
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp Karschnia
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital+Michigan State University, Detroit, Michigan, USA
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Francois Ducray
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, LabEx Dev2CAN, Centre de Recherche en Cancérologie de Lyon, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Onishi S, Kojima M, Yamasaki F, Amatya VJ, Yonezawa U, Taguchi A, Ozono I, Go Y, Takeshima Y, Hiyama E, Horie N. T2-FLAIR mismatch sign, an imaging biomarker for CDKN2A-intact in non-enhancing astrocytoma, IDH-mutant. Neurosurg Rev 2024; 47:412. [PMID: 39117984 PMCID: PMC11310237 DOI: 10.1007/s10143-024-02632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION The WHO classification of central nervous system tumors (5th edition) classified astrocytoma, IDH-mutant accompanied with CDKN2A/B homozygous deletion as WHO grade 4. Loss of immunohistochemical (IHC) staining for methylthioadenosine phosphorylase (MTAP) was developed as a surrogate marker for CDKN2A-HD. Identification of imaging biomarkers for CDKN2A status is of immense clinical relevance. In this study, we explored the association between radiological characteristics of non-enhancing astrocytoma, IDH-mutant to the CDKN2A/B status. METHODS Thirty-one cases of astrocytoma, IDH-mutant with MTAP results by IHC were included in this study. The status of CDKN2A was diagnosed by IHC staining for MTAP in all cases, which was further confirmed by comprehensive genomic analysis in 12 cases. The T2-FLAIR mismatch sign, cystic component, calcification, and intratumoral microbleeding were evaluated. The relationship between the radiological features and molecular pathological diagnosis was analyzed. RESULTS Twenty-six cases were identified as CDKN2A-intact while 5 cases were CDKN2A-HD. The presence of > 33% and > 50% T2-FLAIR mismatch was observed in 23 cases (74.2%) and 14 cases (45.2%), respectively, and was associated with CDKN2A-intact astrocytoma (p = 0.0001, 0.0482). None of the astrocytoma, IDH-mutant with CDKN2A-HD showed T2-FLAIR mismatch sign. Cystic component, calcification, and intratumoral microbleeding were not associated with CDKN2A status. CONCLUSION In patients with non-enhancing astrocytoma, IDH-mutant, the T2-FLAIR mismatch sign is a potential imaging biomarker for the CDKN2A-intact subtype. This imaging biomarker may enable preoperative prediction of CDKN2A status among astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Masato Kojima
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan.
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Yukari Go
- Medical Division Technical Center, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| |
Collapse
|
22
|
Wang Y, Xing H, Guo X, Chen W, Wang Y, Liang T, Wang H, Li Y, Jin S, Shi Y, Liu D, Yang T, Xia Y, Li J, Wu J, Liu Q, Qu T, Guo S, Li H, Zhang K, Wang Y, Ma W. Clinical features, MRI, molecular alternations, and prognosis of astrocytoma based on WHO 2021 classification of central nervous system tumors: A single-center retrospective study. Cancer Med 2024; 13:e7369. [PMID: 38970209 PMCID: PMC11226410 DOI: 10.1002/cam4.7369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND The diagnosis of glioma has advanced since the release of the WHO 2021 classification with more molecular alterations involved in the integrated diagnostic pathways. Our study aimed to present our experience with the clinical features and management of astrocytoma, IDH mutant based on the latest WHO classification. METHODS Patients diagnosed with astrocytoma, IDH-mutant based on the WHO 5th edition classification of CNS tumors at our center from January 2009 to January 2022 were included. Patients were divided into WHO 2-3 grade group and WHO 4 grade group. Integrate diagnoses were retrospectively confirmed according to WHO 2016 and 2021 classification. Clinical and MRI characteristics were reviewed, and survival analysis was performed. RESULTS A total of 60 patients were enrolled. 21.67% (13/60) of all patients changed tumor grade from WHO 4th edition classification to WHO 5th edition. Of these, 21.43% (6/28) of grade II astrocytoma and 58.33% (7/12) of grade III astrocytoma according to WHO 4th edition classification changed to grade 4 according to WHO 5th edition classification. Sex (p = 0.042), recurrent glioma (p = 0.006), and Ki-67 index (p < 0.001) of pathological examination were statistically different in the WHO grade 2-3 group (n = 27) and WHO grade 4 group (n = 33). CDK6 (p = 0.004), FGFR2 (p = 0.003), and MYC (p = 0.004) alterations showed an enrichment in the WHO grade 4 group. Patients with higher grade showed shorter mOS (mOS = 75.9 m, 53.6 m, 26.4 m for grade 2, 3, and 4, respectively, p = 0.01). CONCLUSIONS Patients diagnosed as WHO grade 4 according to the 5th edition WHO classification based on molecular alterations are more likely to have poorer prognosis. Therefore, treatment should be tailored to their individual needs. Further research is needed for the management of IDH-mutant astrocytoma is needed in the future.
Collapse
Affiliation(s)
- Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- '4+4' Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- '4+4' Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Tsinghua University Ringgold standard institution School of Medicine, Tsinghua UniversityBeijingChina
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| |
Collapse
|
23
|
Shi ZF, Li KKW, Liu APY, Chung NYF, Wong SC, Chen H, Woo PYM, Chan DTM, Mao Y, Ng HK. The Molecular Landscape of Primary CNS Lymphomas (PCNSLs) in Children and Young Adults. Cancers (Basel) 2024; 16:1740. [PMID: 38730692 PMCID: PMC11083424 DOI: 10.3390/cancers16091740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Pediatric brain tumors are often noted to be different from their adult counterparts in terms of molecular features. Primary CNS lymphomas (PCNSLs) are mostly found in elderly adults and are uncommon in children and teenagers. There has only been scanty information about the molecular features of PCNSLs at a young age. We examined PCNSLs in 34 young patients aged between 7 and 39 years for gene rearrangements of BCl2, BCL6, CCND1, IRF4, IGH, IGL, IGK, and MYC, homozygous deletions (HD) of CDKN2A, and HLA by FISH. Sequencing was performed using WES, panel target sequencing, or Sanger sequencing due to the small amount of available tissues. The median OS was 97.5 months and longer than that for older patients with PCNSLs. Overall, only 14 instances of gene rearrangement were found (5%), and patients with any gene rearrangement were significantly older (p = 0.029). CDKN2A HD was associated with a shorter OS (p < 0.001). Only 10/31 (32%) showed MYD88 mutations, which were not prognostically significant, and only three of them were L265P mutations. CARD11 mutations were found in 8/24 (33%) cases only. Immunophenotypically, the cases were predominantly GCB, in contrast to older adults (61%). In summary, we showed that molecular findings identified in the PCNSLs of the older patients were only sparingly present in pediatric and young adult patients.
Collapse
Affiliation(s)
- Zhi-Feng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.K.-W.L.); (N.Y.-F.C.); (S.-C.W.)
| | - Anthony Pak-Yin Liu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.K.-W.L.); (N.Y.-F.C.); (S.-C.W.)
| | - Sze-Ching Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.K.-W.L.); (N.Y.-F.C.); (S.-C.W.)
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Peter Yat-Ming Woo
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (P.Y.-M.W.); (D.T.-M.C.)
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (P.Y.-M.W.); (D.T.-M.C.)
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Ho-Keung Ng
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.K.-W.L.); (N.Y.-F.C.); (S.-C.W.)
| |
Collapse
|
24
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
25
|
Yasuda S, Yano H, Ikegame Y, Ikuta S, Maruyama T, Kumagai M, Muragaki Y, Iwama T, Shinoda J, Izumo T. Predicting Isocitrate Dehydrogenase Status in Non-Contrast-Enhanced Adult-Type Astrocytic Tumors Using Diffusion Tensor Imaging and 11C-Methionine, 11C-Choline, and 18F-Fluorodeoxyglucose PET. Cancers (Basel) 2024; 16:1543. [PMID: 38672625 PMCID: PMC11048577 DOI: 10.3390/cancers16081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to differentiate the isocitrate dehydrogenase (IDH) status among non-enhanced astrocytic tumors using preoperative MRI and PET. We analyzed 82 patients with non-contrast-enhanced, diffuse, supratentorial astrocytic tumors (IDH mutant [IDH-mut], 55 patients; IDH-wildtype [IDH-wt], 27 patients) who underwent MRI and PET between May 2012 and December 2022. We calculated the fractional anisotropy (FA) and mean diffusivity (MD) values using diffusion tensor imaging. We evaluated the tumor/normal brain uptake (T/N) ratios using 11C-methionine, 11C-choline, and 18F-fluorodeoxyglucose PET; extracted the parameters with significant differences in distinguishing the IDH status; and verified their diagnostic accuracy. Patients with astrocytomas were significantly younger than those with glioblastomas. The following MRI findings were significant predictors of IDH-wt instead of IDH-mut: thalamus invasion, contralateral cerebral hemisphere invasion, location adjacent to the ventricular walls, higher FA value, and lower MD value. The T/N ratio for all tracers was significantly higher for IDH-wt than for IDH-mut. In a composite diagnosis based on nine parameters, including age, 84.4% of cases with 0-4 points were of IDH-mut; conversely, 100% of cases with 6-9 points were of IDH-wt. Composite diagnosis using all parameters, including MRI and PET findings with significant differences, may help guide treatment decisions for early-stage gliomas.
Collapse
Affiliation(s)
- Shoji Yasuda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Hirohito Yano
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
- Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuka Ikegame
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
| | - Soko Ikuta
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (S.I.); (T.M.); (Y.M.)
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (S.I.); (T.M.); (Y.M.)
| | - Morio Kumagai
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (S.I.); (T.M.); (Y.M.)
| | - Toru Iwama
- Department of Neurosurgery, Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Jun Shinoda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
- Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| |
Collapse
|
26
|
Nakashima T, Yamamoto R, Ohno M, Sugino H, Takahashi M, Funakoshi Y, Nambu S, Uneda A, Yanagisawa S, Uzuka T, Arakawa Y, Hanaya R, Ishida J, Yoshimoto K, Saito R, Narita Y, Suzuki H. Development of a rapid and comprehensive genomic profiling test supporting diagnosis and research for gliomas. Brain Tumor Pathol 2024; 41:50-60. [PMID: 38332448 DOI: 10.1007/s10014-023-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/25/2023] [Indexed: 02/10/2024]
Abstract
A prompt and reliable molecular diagnosis for brain tumors has become crucial in precision medicine. While Comprehensive Genomic Profiling (CGP) has become feasible, there remains room for enhancement in brain tumor diagnosis due to the partial lack of essential genes and limitations in broad copy number analysis. In addition, the long turnaround time of commercially available CGPs poses an additional obstacle to the timely implementation of results in clinics. To address these challenges, we developed a CGP encompassing 113 genes, genome-wide copy number changes, and MGMT promoter methylation. Our CGP incorporates not only diagnostic genes but also supplementary genes valuable for research. Our CGP enables us to simultaneous identification of mutations, gene fusions, focal and broad copy number alterations, and MGMT promoter methylation status, with results delivered within a minimum of 4 days. Validation of our CGP, through comparisons with whole-genome sequencing, RNA sequencing, and pyrosequencing, has certified its accuracy and reliability. We applied our CGP for 23 consecutive cases of intracranial mass lesions, which demonstrated its efficacy in aiding diagnosis and prognostication. Our CGP offers a comprehensive and rapid molecular profiling for gliomas, which could potentially apply to clinical practices and research primarily in the field of brain tumors.
Collapse
Affiliation(s)
- Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ryo Yamamoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yusuke Funakoshi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shohei Nambu
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobaya-Shi, Mibu, Shimotsuga-Gun, Tochigi, 321-0293, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho Shogoin Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Joji Ishida
- Department of Neurosurgery, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Science, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka City, 812-8582, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
27
|
Satgunaseelan L, Sy J, Shivalingam B, Sim HW, Alexander KL, Buckland ME. Prognostic and predictive biomarkers in central nervous system tumours: the molecular state of play. Pathology 2024; 56:158-169. [PMID: 38233331 DOI: 10.1016/j.pathol.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Central nervous system (CNS) tumours were one of the first cancer types to adopt and integrate molecular profiling into routine clinical diagnosis in 2016. The vast majority of these biomarkers, used to discriminate between tumour types, also offered prognostic information. With the advent of The Cancer Genome Atlas (TCGA) and other large genomic datasets, further prognostic sub-stratification was possible within tumour types, leading to increased precision in CNS tumour grading. This review outlines the evolution of the molecular landscape of adult CNS tumours, through the prism of World Health Organization (WHO) Classifications. We begin our journey in the pre-molecular era, where high-grade gliomas were divided into 'primary' and 'secondary' glioblastomas. Molecular alterations explaining these clinicopathological observations were the first branching points of glioma diagnostics, with the discovery of IDH1/2 mutations and 1p/19q codeletion. Subsequently, the rigorous characterisation of paediatric gliomas led to the unearthing of histone H3 alterations as a key event in gliomagenesis, which also had implications for young adult patients. Simultaneously, studies investigating prognostic biomarkers within tumour types were undertaken. Certain genomic phenotypes were found to portend unfavourable outcomes, for example, MYCN amplification in spinal ependymoma. The arrival of methylation profiling, having revolutionised the diagnosis of CNS tumours, now promises to bring increased prognostic accuracy, as has been shown in meningiomas. While MGMT promoter hypermethylation has remained a reliable biomarker of response to cytotoxic chemotherapy, targeted therapy in CNS tumours has unfortunately not had the success of other cancers. Therefore, predictive biomarkers have lagged behind the identification of prognostic biomarkers in CNS tumours. Emerging research from new clinical trials is cause for guarded optimism and may shift our conceptualisation of predictive biomarker testing in CNS tumours.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Joanne Sy
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Brindha Shivalingam
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Hao-Wen Sim
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Kimberley L Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Ranade M, Epari S, Shetty O, Dhanavade S, Chavan S, Sahay A, Sahu A, Shetty P, Moiyadi A, Singh V, Dasgupta A, Chatterjee A, Kannan S, Gupta T. CDKN2A/B deletion in IDH-mutant astrocytomas: An evaluation by Fluorescence in-situ hybridization. J Neurooncol 2024:10.1007/s11060-024-04569-7. [PMID: 38265748 DOI: 10.1007/s11060-024-04569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION CDKN2A/B homozygous deletion is one of the defining features of grade 4 in IDH-mutant astrocytic tumours. AIM To evaluate CDKN2A/B-deletion in IDH-mutant astrocytic tumours and its clinicopathological impact. MATERIALS AND METHODS CDKN2A/B-deletion was evaluated by Fluorescence in-situ hybridisation (FISH) and interpreted by two recently accepted methods. RESULTS Eighty-three out of 94 cases (histologically-grade 2: 3, grade 3: 46, grade 4: 34) were interpretable on FISH. Concordant CDKN2A/B-deletion was observed in 71% (27/38) of lower-grade tumours (n = 49) and 90% (27/30) of histological grade 4 tumours (n = 34). Both the interpretation methods showed good agreement (Kappa = 0.75). CDKN2A/B-deletion showed an inverse correlation for < 10% MIB-1 labeling index (p = 0.01) while that by method-2 showed a significant correlation for grade 4 (p = 0.02). No significant correlation was observed for any other clinicopathological parameters. Twenty-four patients showed progression/recurrence (including deaths), and no significant difference in frequency of CDKN2A/B deletion was observed among cases with disease progression across different histological grades. CONCLUSIONS CDKN2A/B-deletion was observed across all the histological grades of IDH-mutant astrocytic tumours, expectedly more in the higher grade. FISH, as a method, can be used for the detection of CDKN2A/B homozygous deletion, when there is concordant interpretation.
Collapse
Affiliation(s)
- Manali Ranade
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sridhar Epari
- Department of Pathology (Including Molecular Pathology Division), Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India.
| | - Omshree Shetty
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sandeep Dhanavade
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sheetal Chavan
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology (Including Molecular Pathology Division), Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Arpita Sahu
- Department of Radiology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vikash Singh
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sadhana Kannan
- Department of Biostatistics, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
29
|
Gundogdu F, Babaoglu B, Soylemezoglu F. Reliability assessment of methylthioadenosine phosphorylase immunohistochemistry as a surrogate biomarker for CDKN2A homozygous deletion in adult-type IDH-mutant diffuse gliomas. J Neuropathol Exp Neurol 2024; 83:107-114. [PMID: 38109891 PMCID: PMC10799299 DOI: 10.1093/jnen/nlad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
According to the 2021 World Health Organization classification of brain tumors, astrocytomas containing a CDKN2A/B homozygous deletion (HD) are designated as grade 4 even when no microvascular proliferation and/or necrosis is present. In this study, we aimed to investigate the relationship between CDKN2A HD and loss of methylthioadenosine phosphorylase (MTAP) expression in adult-type IDH-mutant gliomas and to assess the sensitivity and specificity of MTAP immunohistochemistry (IHC) along with interobserver agreement as a surrogate biomarker for CDKN2A HD. Eighty-eight astrocytomas and 71 oligodendrogliomas cases that were diagnosed between 2014 and 2021 at Hacettepe University were selected and tissue microarrays were conducted to perform CDKN2A fluorescence in situ hybridization and MTAP IHC. Twenty-five (15.7%) cases harbored CDKN2A HD. MTAP loss was detected in 28 (15.7%) cases by the first observer and 27 (17%) cases by the second observer. The sensitivity and specificity of MTAP were calculated as 88% and 95.52%-96.27% for 2 observers. A very good/perfect agreement was noted between the observers (Cohen kappa coefficient = 0.938). Intratumoral heterogeneity was observed in 4 cases. MTAP IHC was found to be a reliable surrogate biomarker as a possible alternative to CDKN2A HD identification with a high sensitivity and specificity along with high interobserver agreement.
Collapse
Affiliation(s)
- Fatma Gundogdu
- Department of Pathology, Hacettepe University, Ankara, Turkey
| | - Berrin Babaoglu
- Department of Pathology, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
30
|
Shi ZF, Li KKW, Chan DTM, Mao Y, Ng HK. Alternative lengthening of telomeres is seen in a proportion of oligodendrogliomas and is associated with a worse prognosis. Neurooncol Adv 2024; 6:vdae006. [PMID: 38371225 PMCID: PMC10873776 DOI: 10.1093/noajnl/vdae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Summary
Oligodendrogliomas are known to be mutated for TERTp, and in this report, we evaluated 112 IDH-mutant, 1p19q codeleted oligodendrogliomas for ALT by FISH, and FISH for copy number changes of CDKN2A, MYC, PDGFRA, EGFR, chromosomes +7/10 and TERT-rearrangement. Enigmatically, 35.7% of cases were ALT-positive in spite of the vast majority of them being TERTp-mutant. ALT was associated with a shorter PFS (p=0.009) and remained an independent prognosticator in multivariate analysis. ALT was also associated with MYC amplification. ALT-positive cases were further examined with targeted sequencing. No genes were found to be of prognostic significance in this group.
Collapse
Affiliation(s)
- Zhi-Feng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Ho-Keung Ng
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
31
|
Tateishi K, Miyake Y, Nakamura T, Iwashita H, Hayashi T, Oshima A, Honma H, Hayashi H, Sugino K, Kato M, Satomi K, Fujii S, Komori T, Yamamoto T, Cahill DP, Wakimoto H. Genetic alterations that deregulate RB and PDGFRA signaling pathways drive tumor progression in IDH2-mutant astrocytoma. Acta Neuropathol Commun 2023; 11:186. [PMID: 38012788 PMCID: PMC10680361 DOI: 10.1186/s40478-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
In IDH-mutant astrocytoma, IDH2 mutation is quite rare and biological mechanisms underlying tumor progression in IDH2-mutant astrocytoma remain elusive. Here, we report a unique case of IDH2 mutant astrocytoma, CNS WHO grade 3 that developed tumor progression. We performed a comprehensive genomic and epigenomic analysis for primary and recurrent tumors and found that both tumors harbored recurrent IDH2R172K and TP53R248W mutation with CDKN2A/B hemizygous deletion. We also found amplifications of CDK4 and MDM2 with PDGFRA gain in the recurrent tumor and upregulated protein expressions of these genes. We further developed, for the first time, a xenograft mouse model of IDH2R172K and TP53R248W mutant astrocytoma from the recurrent tumor, but not from the primary tumor. Consistent with parent recurrent tumor cells, amplifications of CDK4 and MDM2 and PDGFRA gain were found, while CDKN2A/B was identified as homozygous deletion in the xenografts, qualifying for integrated diagnosis of astrocytoma, IDH2-mutant, CNS WHO grade 4. Cell viability assay found that CDK4/6 inhibitor and PDGFR inhibitor potently decreased cell viability in recurrent tumor cells, as compared to primary tumor cells. These findings suggest that gene alterations that activate retinoblastoma (RB) signaling pathways and PDGFR may drive tumor progression and xenograft formation in IDH2-mutant astrocytoma, which is equivalent to progressive IDH1-mutant astrocytoma. Also, our findings suggest that these genomic alterations may represent therapeutic targets in IDH2-mutant astrocytoma.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan.
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan.
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan.
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Akito Oshima
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hirokuni Honma
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiroaki Hayashi
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kyoka Sugino
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Miyui Kato
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoshi Fujii
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Hu LS, D'Angelo F, Weiskittel TM, Caruso FP, Fortin Ensign SP, Blomquist MR, Flick MJ, Wang L, Sereduk CP, Meng-Lin K, De Leon G, Nespodzany A, Urcuyo JC, Gonzales AC, Curtin L, Lewis EM, Singleton KW, Dondlinger T, Anil A, Semmineh NB, Noviello T, Patel RA, Wang P, Wang J, Eschbacher JM, Hawkins-Daarud A, Jackson PR, Grunfeld IS, Elrod C, Mazza GL, McGee SC, Paulson L, Clark-Swanson K, Lassiter-Morris Y, Smith KA, Nakaji P, Bendok BR, Zimmerman RS, Krishna C, Patra DP, Patel NP, Lyons M, Neal M, Donev K, Mrugala MM, Porter AB, Beeman SC, Jensen TR, Schmainda KM, Zhou Y, Baxter LC, Plaisier CL, Li J, Li H, Lasorella A, Quarles CC, Swanson KR, Ceccarelli M, Iavarone A, Tran NL. Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures. Nat Commun 2023; 14:6066. [PMID: 37770427 PMCID: PMC10539500 DOI: 10.1038/s41467-023-41559-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA.
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - Fulvio D'Angelo
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Taylor M Weiskittel
- Mayo Clinic Alix School of Medicine Minnesota, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Francesca P Caruso
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Shannon P Fortin Ensign
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Mylan R Blomquist
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Matthew J Flick
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Lujia Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christopher P Sereduk
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kevin Meng-Lin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gustavo De Leon
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashley Nespodzany
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Javier C Urcuyo
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashlyn C Gonzales
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Lee Curtin
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Kyle W Singleton
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Aliya Anil
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Natenael B Semmineh
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teresa Noviello
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Reyna A Patel
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Panwen Wang
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Junwen Wang
- Division of Applied Oral Sciences & Community Dental Care, The University of Hong Kong, Hong Kong SAR, China
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | | | - Pamela R Jackson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Itamar S Grunfeld
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA
| | | | - Gina L Mazza
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Sam C McGee
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA
| | - Lisa Paulson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | | - Kris A Smith
- Department of Neurosurgery, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Banner University Medical Center, University of Arizona, Phoenix, AZ, USA
| | - Bernard R Bendok
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Richard S Zimmerman
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Chandan Krishna
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Devi P Patra
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Naresh P Patel
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Mark Lyons
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Matthew Neal
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kliment Donev
- Department of Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Alyx B Porter
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Scott C Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Kathleen M Schmainda
- Departments of Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Leslie C Baxter
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Departments of Psychiatry and Psychology, Mayo Clinic, AZ, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Anna Lasorella
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - C Chad Quarles
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin R Swanson
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Michele Ceccarelli
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
33
|
Yokoda RT, Cobb WS, Yong RL, Crary JF, Viapiano MS, Walker JM, Umphlett M, Tsankova NM, Richardson TE. CDKN2A mutations have equivalent prognostic significance to homozygous deletion in IDH-mutant astrocytoma. J Neuropathol Exp Neurol 2023; 82:845-852. [PMID: 37550258 DOI: 10.1093/jnen/nlad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Homozygous deletion of CDKN2A/B is currently considered a molecular signature for grade 4 in IDH-mutant astrocytomas, irrespective of tumor histomorphology. The 2021 WHO Classification of CNS Tumors does not currently include grading recommendations for histologically lower-grade (grade 2-3) IDH-mutant astrocytoma with CDKN2A mutation or other CDKN2A alterations, and little is currently known about the prognostic implications of these alternative CDKN2A inactivating mechanisms. To address this, we evaluated a cohort of institutional and publicly available IDH-mutant astrocytomas, 15 with pathogenic mutations in CDKN2A, 47 with homozygous CDKN2A deletion, and 401 with retained/wildtype CDKN2A. The IDH-mutant astrocytomas with mutant and deleted CDKN2A had significantly higher overall copy number variation compared to those with retained/wildtype CDKN2A, consistent with more aggressive behavior. Astrocytoma patients with CDKN2A mutation had significantly worse progression-free (p = 0.0025) and overall survival (p < 0.0001) compared to grade-matched patients with wildtype CDKN2A, but statistically equivalent progression-free survival and overall survival outcomes to patients with CDKN2A deletion. No significant survival difference was identified between CDKN2A mutant cases with or without loss of the second allele. These findings suggest that CDKN2A mutation has a detrimental effect on survival in otherwise lower-grade IDH-mutant astrocytomas, similar to homozygous CDKN2A deletion, and should be considered for future grading schemes.
Collapse
Affiliation(s)
- Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Raymund L Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
34
|
Chen W, Guo S, Wang Y, Shi Y, Guo X, Liu D, Li Y, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Li H, Yang T, Zhang K, Wang Y, Ma W. Novel insight into histological and molecular astrocytoma, IDH-mutant, Grade 4 by the updated WHO classification of central nervous system tumors. Cancer Med 2023; 12:18666-18678. [PMID: 37667984 PMCID: PMC10557904 DOI: 10.1002/cam4.6476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The latest fifth edition of the World Health Organization (WHO) classification of the central nervous system (CNS) tumors (WHO CNS 5 classification) released in 2021 defined astrocytoma, IDH-mutant, Grade 4. However, the understanding of this subtype is still limited. We conducted this study to describe the features of astrocytoma, IDH-mutant, Grade 4 and explored the similarities and differences between histological and molecular subtypes. METHODS Patients who underwent surgery from January 2011 to January 2022, classified as astrocytoma, IDH-mutant, Grade 4 were included in this study. Clinical, radiological, histopathological, molecular pathological, and survival data were collected for analysis. RESULTS Altogether 33 patients with astrocytoma, IDH-mutant, Grade 4 were selected, including 20 with histological and 13 with molecular WHO Grade 4 astrocytoma. Tumor enhancement, intratumoral-necrosis like presentation, larger peritumoral edema, and more explicit tumor margins were frequently observed in histological WHO Grade 4 astrocytoma. Additionally, molecular WHO Grade 4 astrocytoma showed a tendency for relatively longer overall survival, while a statistical significance was not reached (47 vs. 25 months, p = 0.22). TP53, CDK6, and PIK3CA alteration was commonly observed, while PIK3R1 (p = 0.033), Notch1 (p = 0.027), and Mycn (p = 0.027) alterations may affect the overall survival of molecular WHO Grade 4 astrocytomas. CONCLUSIONS Our study scrutinized IDH-mutant, Grade 4 astrocytoma. Therefore, further classification should be considered as the prognosis varied between histological and molecular WHO Grade 4 astrocytomas. Notably, therapies aiming at PIK3R1, Notch 1, and Mycn may be beneficial.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- 4+4 Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- 4+4 Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| |
Collapse
|
35
|
Park YW, Vollmuth P, Foltyn-Dumitru M, Sahm F, Ahn SS, Chang JH, Kim SH. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 1-Key Points of the Fifth Edition and Summary of Imaging Findings on Adult-Type Diffuse Gliomas. J Magn Reson Imaging 2023; 58:677-689. [PMID: 37069792 DOI: 10.1002/jmri.28743] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
The fifth edition of the World Health Organization (WHO) classification of central nervous system tumors published in 2021 advances the role of molecular diagnostics in the classification of gliomas by emphasizing integrated diagnoses based on histopathology and molecular information and grouping tumors based on genetic alterations. Importantly, molecular biomarkers that provide important prognostic information are now a parameter for establishing tumor grades in gliomas. Understanding the 2021 WHO classification is crucial for radiologists for daily imaging interpretation as well as communication with clinicians. Although imaging features are not included in the 2021 WHO classification, imaging can serve as a powerful tool to impact the clinical practice not only prior to tissue confirmation but beyond. This review represents the first of a three-installment review series on the 2021 WHO classification for gliomas, glioneuronal tumors, and neuronal tumors and implications on imaging diagnosis. This Part 1 Review focuses on the major changes to the classification of gliomas and imaging findings on adult-type diffuse gliomas. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Philipp Vollmuth
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Martha Foltyn-Dumitru
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Kros JM, Rushing E, Uwimana AL, Hernández-Laín A, Michotte A, Al-Hussaini M, Bielle F, Mawrin C, Marucci G, Tesileanu CMS, Stupp R, Baumert B, van den Bent M, French PJ, Gorlia T. Mitotic count is prognostic in IDH mutant astrocytoma without homozygous deletion of CDKN2A/B. Results of consensus panel review of EORTC trial 26053 (CATNON) and EORTC trial 22033-26033. Neuro Oncol 2023; 25:1443-1449. [PMID: 36571817 PMCID: PMC10398806 DOI: 10.1093/neuonc/noac282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Gliomas with IDH1/2 mutations without 1p19q codeletion have been identified as the distinct diagnostic entity of IDH mutant astrocytoma (IDHmut astrocytoma). Homozygous deletion of Cyclin-dependent kinase 4 inhibitor A/B (CDKN2A/B) has recently been incorporated in the grading of these tumors. The question of whether histologic parameters still contribute to prognostic information on top of the molecular classification, remains unanswered. Here we evaluated consensus histologic parameters for providing additional prognostic value in IDHmut astrocytomas. METHODS An international panel of seven neuropathologists scored 13 well-defined histologic features in virtual microscopy images of 192 IDHmut astrocytomas from EORTC trial 22033-26033 (low-grade gliomas) and 263 from EORTC 26053 (CATNON) (1p19q non-codeleted anaplastic glioma). For 192 gliomas the CDKN2A/B status was known. Consensus (agreement ≥ 4/7 panelists) histologic features were tested together with homozygous deletion (HD) of CDKN2A/B for independent prognostic power. RESULTS Among consensus histologic parameters, the mitotic count (cut-off of 2 mitoses per 10 high power fields standardized to a field diameter of 0.55 mm and an area of 0.24 mm2) significantly influences PFS (P = .0098) and marginally the OS (P = .07). Mitotic count also significantly affects the PFS of tumors with HD CDKN2A/B, but not the OS, possibly due to limited follow-up data. CONCLUSION The mitotic index (cut-off 2 per 10 40× HPF) is of prognostic significance in IDHmut astrocytomas without HD CDKN2A/B. Therefore, the mitotic index may direct the therapeutic approach for patients with IDHmut astrocytomas with native CDKN2A/B status.
Collapse
Affiliation(s)
- Johan M Kros
- Department of Pathology, Laboratory for Tumor Immunopathology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Elisabeth Rushing
- Department of Neuropathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Aimé L Uwimana
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Aurelio Hernández-Laín
- Department of Pathology (Neuropathology), Hospital Universitario 12 de Octubre Research Institute, Madrid, Spain
| | - Alex Michotte
- Medische Oncologie, Oncologisch Centrum, Academisch Ziekenhuis Vrije Universiteit Brussel (AZ-VUB), Brussel, Belgium
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Centre, Amman, Jordan
| | - Franck Bielle
- Sorbonne Université, AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, Service de Neuropathologie, Paris, France
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - C Mircea S Tesileanu
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Roger Stupp
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brigitta Baumert
- Department of Radiation Oncology, MediClin Robert Janker Clinic and Clinical Cooperation Unit Neurooncology, University of Bonn Medical Centre, Bonn, Germany
| | | | - Pim J French
- Neurooncology Unit, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Thierry Gorlia
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| |
Collapse
|
37
|
Tran S, Thomas A, Aliouat I, Karachi C, Lozano F, Mokhtari K, Dehais C, Feuvret L, Carpentier C, Giry M, Doukani A, Lerond J, Marie Y, Sanson M, Idbaih A, Carpentier A, Hoang-Xuan K, Touat M, Capelle L, Bielle F. A threshold for mitotic activity and post-surgical residual volume defines distinct prognostic groups for astrocytoma IDH-mutant. Neuropathol Appl Neurobiol 2023; 49:e12928. [PMID: 37503540 DOI: 10.1111/nan.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
AIMS The distinction between CNS WHO grade 2 and grade 3 is instrumental in choosing between observational follow-up and adjuvant treatment for resected astrocytomas IDH-mutant. However, the criteria of CNS WHO grade 2 vs 3 have not been updated since the pre-IDH era. METHODS Maximal mitotic activity in consecutive high-power fields corresponding to 3 mm2 was examined for 118 lower-grade astrocytomas IDH-mutant. The prognostic value for time-to-treatment (TTT) and overall survival (OS) of mitotic activity and other putative prognostic factors (including age, performance status, pre-surgical tumour volume, multilobar involvement, post-surgical residual tumour volume and midline involvement) was assessed for tumours with ATRX loss and the absence of CDKN2A homozygous deletion or CDK4 amplification, contrast enhancement, histological necrosis and microvascular proliferation. RESULTS Seventy-one per cent of the samples had <6 mitoses per 3 mm2 . Mitotic activity, residual volume and multilobar involvement were independent prognostic factors of TTT. The threshold of ≥6 mitoses per 3 mm2 identified patients with a shorter TTT (median 18.5 months). A residual volume ≥1 cm3 also identified patients with a shorter TTT (median 24.5 months). The group defined by <6 mitoses per 3 mm2 and a residual volume <1 cm3 had the longest TTT (median 73 months) and OS (100% survival at 7 years). These findings were confirmed in a validation cohort of 52 tumours. CONCLUSIONS Mitotic activity and post-surgical residual volume can be combined to evaluate the prognosis for patients with resected astrocytomas IDH-mutant. Patients with <6 mitoses per 3 mm2 and a residual volume <1 cm3 were the best candidates for observational follow-up.
Collapse
Affiliation(s)
- Suzanne Tran
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neuropathology, Paris, France
| | - Alice Thomas
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Ilyes Aliouat
- Department of Neurosurgery, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Carine Karachi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Neurosurgery, Paris, France
| | - Fernando Lozano
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Karima Mokhtari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neuropathology, Paris, France
| | - Caroline Dehais
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Loïc Feuvret
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Radiotherapy, Paris, France
| | - Catherine Carpentier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Marine Giry
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Abiba Doukani
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique Pitié-Salpêtrière, P3S, Paris, France
| | - Julie Lerond
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Sorbonne Université, AP-HP, Paris, France
| | - Yannick Marie
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Marc Sanson
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
- Sorbonne Université, AP-HP, Paris, France
- Department of Neuropathology, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Alexandre Carpentier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Neurosurgery, Paris, France
| | - Khê Hoang-Xuan
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Mehdi Touat
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Laurent Capelle
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Neurosurgery, Paris, France
| | - Franck Bielle
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neuropathology, Paris, France
- Sorbonne Université, AP-HP, Paris, France
- Department of Neuropathology, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
38
|
Lasocki A, Buckland ME, Molinaro T, Xie J, Whittle JR, Wei H, Gaillard F. Correlating MRI features with additional genetic markers and patient survival in histological grade 2-3 IDH-mutant astrocytomas. Neuroradiology 2023; 65:1215-1223. [PMID: 37316586 PMCID: PMC10338396 DOI: 10.1007/s00234-023-03175-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE The increasing importance of molecular markers for classification and prognostication of diffuse gliomas has prompted the use of imaging features to predict genotype ("radiogenomics"). CDKN2A/B homozygous deletion has only recently been added to the diagnostic paradigm for IDH[isocitrate dehydrogenase]-mutant astrocytomas; thus, associated radiogenomic literature is sparse. There is also little data on whether different IDH mutations are associated with different imaging appearances. Furthermore, given that molecular status is now generally obtained routinely, the additional prognostic value of radiogenomic features is less clear. This study correlated MRI features with CDKN2A/B status, IDH mutation type and survival in histological grade 2-3 IDH-mutant brain astrocytomas. METHODS Fifty-eight grade 2-3 IDH-mutant astrocytomas were identified, 50 with CDKN2A/B results. IDH mutations were stratified into IDH1-R132H and non-canonical mutations. Background and survival data were obtained. Two neuroradiologists independently assessed the following MRI features: T2-FLAIR mismatch (<25%, 25-50%, >50%), well-defined tumour margins, contrast-enhancement (absent, wispy, solid) and central necrosis. RESULTS 8/50 tumours with CDKN2A/B results demonstrated homozygous deletion; slightly shorter survival was not significant (p=0.571). IDH1-R132H mutations were present in 50/58 (86%). No MRI features correlated with CDKN2A/B status or IDH mutation type. T2-FLAIR mismatch did not predict survival (p=0.977), but well-defined margins predicted longer survival (HR 0.36, p=0.008), while solid enhancement predicted shorter survival (HR 3.86, p=0.004). Both correlations remained significant on multivariate analysis. CONCLUSION MRI features did not predict CDKN2A/B homozygous deletion, but provided additional positive and negative prognostic information which correlated more strongly with prognosis than CDKN2A/B status in our cohort.
Collapse
Affiliation(s)
- Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Grattan St, Melbourne, Melbourne, Victoria, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- Department of Radiology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Tahlia Molinaro
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jing Xie
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - James R Whittle
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Heng Wei
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Frank Gaillard
- Department of Radiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Radiology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
39
|
Venneker S, Bovée JVMG. IDH Mutations in Chondrosarcoma: Case Closed or Not? Cancers (Basel) 2023; 15:3603. [PMID: 37509266 PMCID: PMC10377514 DOI: 10.3390/cancers15143603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour isocitrate dehydrogenase 1 and -2 (IDH) gene mutations. Several studies have confirmed that these mutations are key players in the early stages of cartilage tumour development, but their role in later stages remains ambiguous. The prognostic value of IDH mutations remains unclear and preclinical studies have not identified effective treatment modalities (in)directly targeting these mutations. In contrast, the IDH mutation status is a prognostic factor in other cancers, and IDH mutant inhibitors as well as therapeutic strategies targeting the underlying vulnerabilities induced by IDH mutations seem effective in these tumour types. This discrepancy in findings might be ascribed to a difference in tumour type, elevated D-2-hydroxyglutarate levels, and the type of in vitro model (endogenous vs. genetically modified) used in preclinical studies. Moreover, recent studies suggest that the (epi)genetic landscape in which the IDH mutation functions is an important factor to consider when investigating potential therapeutic strategies or patient outcomes. These findings imply that the dichotomy between IDH wildtype and mutant is too simplistic and additional subgroups indeed exist within chondrosarcoma. Future studies should focus on the identification, characterisation, and tailoring of treatments towards these biological subgroups within IDH wildtype and mutant chondrosarcoma.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
40
|
Yuile A, Satgunaseelan L, Wei JQ, Rodriguez M, Back M, Pavlakis N, Hudson A, Kastelan M, Wheeler HR, Lee A. CDKN2A/B Homozygous Deletions in Astrocytomas: A Literature Review. Curr Issues Mol Biol 2023; 45:5276-5292. [PMID: 37504251 PMCID: PMC10378679 DOI: 10.3390/cimb45070335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Genomic alterations of CDKN2A and CDKN2B in astrocytomas have been an evolving area of study for decades. Most recently, there has been considerable interest in the effect of CDKN2A and/or CDKN2B (CDKN2A/B) homozygous deletions (HD) on the prognosis of isocitrate dehydrogenase (IDH)-mutant astrocytomas. This is highlighted by the adoption of CDKN2A/B HD as an essential criterion for astrocytoma and IDH-mutant central nervous system (CNS) WHO grade 4 in the fifth edition of the World Health Organisation (WHO) Classification of Central Nervous System Tumours (2021). The CDKN2A and CDKN2B genes are located on the short arm of chromosome 9. CDKN2A encodes for two proteins, p14 and p16, and CDKN2B encodes for p15. These proteins regulate cell growth and angiogenesis. Interpreting the impact of CDKN2A/B alterations on astrocytoma prognosis is complicated by recent changes in tumour classification and a lack of uniform standards for testing CDKN2A/B. While the prognostic impact of CDKN2A/B HD is established, the role of different CDKN2A/B alterations-heterozygous deletions (HeD), point mutations, and promoter methylation-is less clear. Consequently, how these alternations should be incorporated into patient management remains controversial. To this end, we reviewed the literature on different CDKN2A/B alterations in IDH-mutant astrocytomas and their impact on diagnosis and management. We also provided a historical review of the changing impact of CDKN2A/B alterations as glioma classification has evolved over time. Through this historical context, we demonstrate that CDKN2A/B HD is an important negative prognostic marker in IDH-mutant astrocytomas; however, the historical data is challenging to interpret given changes in tumour classification over time, variation in the quality of evidence, and variations in the techniques used to identify CDKN2A/B deletions. Therefore, future prospective studies using uniform classification and detection techniques are required to improve the clinical interpretation of this molecular marker.
Collapse
Affiliation(s)
- Alexander Yuile
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| | - Laveniya Satgunaseelan
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Joe Q Wei
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
| | - Michael Rodriguez
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
- Department of Pathology, Prince of Wales Hospital, Sydney, NSW 2065, Australia
| | - Michael Back
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
- Department of Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
| | - Amanda Hudson
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
| | - Marina Kastelan
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| | - Helen R Wheeler
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| | - Adrian Lee
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| |
Collapse
|
41
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
42
|
Sugur HS, Rao S, Sravya P, Athul Menon K, Arivazhagan A, Mehta B, Santosh V. IRX1 is a novel gene, overexpressed in high-grade IDH-mutant astrocytomas. Pathol Res Pract 2023; 245:154464. [PMID: 37116364 DOI: 10.1016/j.prp.2023.154464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND IDH-mutant astrocytomas include CNS WHO grade 2 (A2), grade 3 (A3) and grade 4 (A4), of which A3 and A4 are high-grade. A3 has a heterogenous clinical outcome that cannot be explained entirely by the existing molecular biomarkers. We comprehensively studied the transcriptome profile of A3 to determine clinical significance. METHODS TCGA mRNA-sequencing data of A3 was analyzed to derive differentially expressed genes (DEG), which were short-listed using various approaches. mRNA expression of the short-listed genes was validated using NanoString platform on a uniformly treated and molecularly characterized A3 cohort. Protein expression of one prognostically significant gene, Iroquois-class homeodomain (IRX1) was assessed by immunohistochemistry and correlated with patient survival and tumor recurrence. IRX1 expression was also studied in different grades of astrocytoma. Since DNA methyltransferase 3 alpha (DNMT3A) influences IRX1 expression, its mutations were evaluated in a subset of tumors. RESULTS TCGA analysis identified 96 DEG in A3 tumours. 57 genes were short-listed and finally narrowed down to 14 genes. mRNA values of 12/14 genes validated in our cohort. On multiple-variable analysis, IRX1 was the most prognostically relevant gene, with respect to progression free survival of patients. Further, IRX1 immunoexpression was significantly higher in A3 and A4 when compared to A2 and glioblastoma. Higher IRX1 immunoexpression correlated with poor prognosis in patients with A3 tumours. Also, a higher IRX1 expression was associated with DNMT3A mutation. CONCLUSION Our study identifies IRX1 as a novel biomarker overexpressed in high-grade IDH-mutant astrocytomas with prognostic significance in A3. DNMT3A mutation probably modulates IRX1 expression.
Collapse
Affiliation(s)
- Harsha S Sugur
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka 560029, India
| | - Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka 560029, India
| | - Palavalasa Sravya
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka 560029, India
| | - K Athul Menon
- Theracues Innovations Pvt. Ltd, Sahakar Nagar, Bangalore, Karnataka 560092, India
| | - Arimappamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka 560029, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka 560029, India.
| |
Collapse
|
43
|
Shimizu Y, Suzuki M, Akiyama O, Ogino I, Matsushita Y, Satomi K, Yanagisawa S, Ohno M, Takahashi M, Miyakita Y, Narita Y, Ichimura K, Kondo A. Utility of real-time polymerase chain reaction for the assessment of CDKN2A homozygous deletion in adult-type IDH-mutant astrocytoma. Brain Tumor Pathol 2023; 40:93-100. [PMID: 36788155 DOI: 10.1007/s10014-023-00450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
The World Health Organization Classification of Tumors of the Central Nervous System 5th Edition (WHO CNS5) introduced a newly defined astrocytoma, IDH-mutant grade 4, for adult diffuse glioma classification. One of the diagnostic criteria is the presence of a CDKN2A/B homozygous deletion (HD). Here, we report a robust and cost-effective quantitative polymerase chain reaction (qPCR)-based test for assessing CDKN2A HD. A TaqMan copy number assay was performed using a probe located within CDKN2A. The linear correlation between the Ct values and relative CDKN2A copy number was confirmed using a serial mixture of DNA from normal blood and U87MG cells. The qPCR assay was performed in 109 IDH-mutant astrocytomas, including 14 tumors with CDKN2A HD, verified either by multiplex ligation-dependent probe amplification (MLPA) or CytoScan HD microarray platforms. Receiver operating characteristic curve analysis indicated that a cutoff value of 0.85 yielded optimal sensitivity (100%) and specificity (99.0%) for determining CDKN2A HD. The assay applies to DNA extracted from frozen or formalin-fixed paraffin-embedded tissue samples. Survival was significantly shorter in patients with than in those without CDKN2A HD, assessed by either MLPA/CytoScan or qPCR. Thus, our qPCR method is clinically applicable for astrocytoma grading and prognostication, compatible with the WHO CNS5.
Collapse
Affiliation(s)
- Yuzaburo Shimizu
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Osamu Akiyama
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan.,Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
44
|
Park YW, Park KS, Park JE, Ahn SS, Park I, Kim HS, Chang JH, Lee SK, Kim SH. Qualitative and Quantitative Magnetic Resonance Imaging Phenotypes May Predict CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytomas: A Multicenter Study. Korean J Radiol 2023; 24:133-144. [PMID: 36725354 PMCID: PMC9892217 DOI: 10.3348/kjr.2022.0732] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Cyclin-dependent kinase inhibitor (CDKN)2A/B homozygous deletion is a key molecular marker of isocitrate dehydrogenase (IDH)-mutant astrocytomas in the 2021 World Health Organization. We aimed to investigate whether qualitative and quantitative MRI parameters can predict CDKN2A/B homozygous deletion status in IDH-mutant astrocytomas. MATERIALS AND METHODS Preoperative MRI data of 88 patients (mean age ± standard deviation, 42.0 ± 11.9 years; 40 females and 48 males) with IDH-mutant astrocytomas (76 without and 12 with CDKN2A/B homozygous deletion) from two institutions were included. A qualitative imaging assessment was performed. Mean apparent diffusion coefficient (ADC), 5th percentile of ADC, mean normalized cerebral blood volume (nCBV), and 95th percentile of nCBV were assessed via automatic tumor segmentation. Logistic regression was performed to determine the factors associated with CDKN2A/B homozygous deletion in all 88 patients and a subgroup of 47 patients with histological grades 3 and 4. The discrimination performance of the logistic regression models was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS In multivariable analysis of all patients, infiltrative pattern (odds ratio [OR] = 4.25, p = 0.034), maximal diameter (OR = 1.07, p = 0.013), and 95th percentile of nCBV (OR = 1.34, p = 0.049) were independent predictors of CDKN2A/B homozygous deletion. The AUC, accuracy, sensitivity, and specificity of the corresponding model were 0.83 (95% confidence interval [CI], 0.72-0.91), 90.4%, 83.3%, and 75.0%, respectively. On multivariable analysis of the subgroup with histological grades 3 and 4, infiltrative pattern (OR = 10.39, p = 0.012) and 95th percentile of nCBV (OR = 1.24, p = 0.047) were independent predictors of CDKN2A/B homozygous deletion, with an AUC accuracy, sensitivity, and specificity of the corresponding model of 0.76 (95% CI, 0.60-0.88), 87.8%, 80.0%, and 58.1%, respectively. CONCLUSION The presence of an infiltrative pattern, larger maximal diameter, and higher 95th percentile of the nCBV may be useful MRI biomarkers for CDKN2A/B homozygous deletion in IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Sung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Ji Eun Park
- Department of Radiology, Ulsan University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Inho Park
- Center for Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology, Ulsan University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
45
|
Reuss DE. Updates on the WHO diagnosis of IDH-mutant glioma. J Neurooncol 2023; 162:461-469. [PMID: 36717507 DOI: 10.1007/s11060-023-04250-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE The WHO classification of Tumors of the Central Nervous System represents the international standard classification for brain tumors. In 2021 the 5th edition (WHO CNS5) was published, and this review summarizes the changes regarding IDH-mutant gliomas and discusses unsolved issues and future perspectives. METHODS This review is based on the 5th edition of the WHO Blue Book of CNS tumors (WHO CNS5) and relevant related papers. RESULTS Major changes include taxonomy and nomenclature of IDH-mutant gliomas. Essential and desirable criteria for classification were established considering technical developments. For the first time molecular features are not only relevant for the classification of IDH-mutant gliomas but may impact grading as well. CONCLUSION WHO CNS5 classification moves forward towards a classification which is founded on tumor biology and serves clinical needs. The rapidly increasing knowledge on the molecular landscape of IDH-mutant gliomas is expected to further refine classification and grading in the future.
Collapse
Affiliation(s)
- David E Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
46
|
Ahmad Z, Rahim S, Abdul-Ghafar J, Chundriger Q, Ud Din N. Events in CNS Tumor Pathology Post-2016 WHO CNS: cIMPACT-NOW Updates and Other Advancements: A Comprehensive Review Plus a Summary of the Salient Features of 2021 WHO CNS 5. Int J Gen Med 2023; 16:107-127. [PMID: 36644568 PMCID: PMC9833325 DOI: 10.2147/ijgm.s394872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction The 2016 World Health Organization Classification (WHO) of Tumors of the Central Nervous System (CNS) represented a major change. It recommended an "integrated diagnosis" comprising histologic and molecular information facilitating a more precise diagnosis of specific CNS tumors. Its goal was to provide greater diagnostic precision and reproducibility resulting in more clinical relevance and predictive value, ultimately leading to better patient care. Advances in molecular classification, mostly resulting from DNA methylation array profiling of CNS tumors, were occurring at a very rapid pace and required more rapid integration into clinical practice. Methods cIMPACT-NOW updates and other recent papers plus salient features of 2021 WHO CNS5 in this comprehensive write-up were reviewed. Results CNS tumor classification needs to be updated at a rapid pace and mechanisms put into place to guide diagnosticians and clinicians in the interim period if major changes in the classification of tumor types came to light. Recognizing the need to integrate these into clinical practice more rapidly and without inordinate delay, the International Society of Neuropathology (ISN) 2016 sponsored an initiative called cIMPACT-NOW. Discussion and/or Conclusion Goal of cIMPACT-NOW was to provide clarification regarding contentious issues arising in the wake of the 2016 WHO CNS update as well as report new advancements in molecular classification of CNS tumors and new tumor entities emerging as a result of these advancements. cIMPACT-NOW updates: It thus laid the foundation for the 5th edition of the WHO Classification of CNS tumors (2021 WHO CNS 5). We have discussed cIMPACT updates in detail in this review. In addition, molecular diagnostics including DNA methylation-based classification of CNS tumors and the practical use of molecular classification in the prognostication and treatment of CNS tumors is discussed. Finally, the salient features of the new CNS tumor classification are summarized.
Collapse
Affiliation(s)
- Zubair Ahmad
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Shabina Rahim
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Jamshid Abdul-Ghafar
- Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan,Correspondence: Jamshid Abdul-Ghafar, Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan, Tel +93 792 827 287, Email
| | - Qurratulain Chundriger
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
47
|
Horbinski C, Nabors LB, Portnow J, Baehring J, Bhatia A, Bloch O, Brem S, Butowski N, Cannon DM, Chao S, Chheda MG, Fabiano AJ, Forsyth P, Gigilio P, Hattangadi-Gluth J, Holdhoff M, Junck L, Kaley T, Merrell R, Mrugala MM, Nagpal S, Nedzi LA, Nevel K, Nghiemphu PL, Parney I, Patel TR, Peters K, Puduvalli VK, Rockhill J, Rusthoven C, Shonka N, Swinnen LJ, Weiss S, Wen PY, Willmarth NE, Bergman MA, Darlow S. NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022. J Natl Compr Canc Netw 2023; 21:12-20. [PMID: 36634606 DOI: 10.6004/jnccn.2023.0002] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2-3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2-4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non-AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel's most recent recommendations regarding molecular profiling of gliomas.
Collapse
Affiliation(s)
- Craig Horbinski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | | | - Steven Brem
- Abramson Cancer Center at the University of Pennsylvania
| | | | | | - Samuel Chao
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Milan G Chheda
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Pierre Gigilio
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | | | | | | | | | | | - Lucien A Nedzi
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Kathryn Nevel
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | | | | | | | | | - Vinay K Puduvalli
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | | | - Lode J Swinnen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | |
Collapse
|
48
|
Vij M, Yokoda RT, Rashidipour O, Tran I, Vasudevaraja V, Snuderl M, Yong RL, Cobb WS, Umphlett M, Walker JM, Tsankova NM, Richardson TE. The prognostic impact of subclonal IDH1 mutation in grade 2-4 astrocytomas. Neurooncol Adv 2023; 5:vdad069. [PMID: 37324217 PMCID: PMC10263115 DOI: 10.1093/noajnl/vdad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Background Isocitrate dehydrogenase (IDH) mutations are thought to represent an early oncogenic event in glioma evolution, found with high penetrance across tumor cells; however, in rare cases, IDH mutation may exist only in a small subset of the total tumor cells (subclonal IDH mutation). Methods We present 2 institutional cases with subclonal IDH1 R132H mutation. In addition, 2 large publicly available cohorts of IDH-mutant astrocytomas were mined for cases harboring subclonal IDH mutations (defined as tumor cell fraction with IDH mutation ≤0.67) and the clinical and molecular features of these subclonal cases were compared to clonal IDH-mutant astrocytomas. Results Immunohistochemistry (IHC) performed on 2 institutional World Health Organization grade 4 IDH-mutant astrocytomas revealed only a minority of tumor cells in each case with IDH1 R132H mutant protein, and next-generation sequencing (NGS) revealed remarkably low IDH1 variant allele frequencies compared to other pathogenic mutations, including TP53 and/or ATRX. DNA methylation classified the first tumor as high-grade IDH-mutant astrocytoma with high confidence (0.98 scores). In the publicly available datasets, subclonal IDH mutation was present in 3.9% of IDH-mutant astrocytomas (18/466 tumors). Compared to clonal IDH-mutant astrocytomas (n = 156), subclonal cases demonstrated worse overall survival in grades 3 (P = .0106) and 4 (P = .0184). Conclusions While rare, subclonal IDH1 mutations are present in a subset of IDH-mutant astrocytomas of all grades, which may lead to a mismatch between IHC results and genetic/epigenetic classification. These findings suggest a possible prognostic role of IDH mutation subclonality, and highlight the potential clinical utility of quantitative IDH1 mutation evaluation by IHC and NGS.
Collapse
Affiliation(s)
- Meenakshi Vij
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Omid Rashidipour
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivy Tran
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | | | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | - Raymund L Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
49
|
Suman S, Sharma R, Katiyar V, Mahajan S, Suri A, Sharma MC, Sarkar C, Suri V. Role of CDKN2A deletion in grade 2/3 IDH-mutant astrocytomas: need for selective approach in resource-constrained settings. Neurosurg Focus 2022; 53:E17. [PMID: 36455270 DOI: 10.3171/2022.9.focus22427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVE The authors aimed to assess the frequency of homozygous CDKN2A deletion in isocitrate dehydrogenase (IDH)-mutant diffuse astrocytomas (grade 2/3) and to narrow down the clinicopathological indications in which the CDKN2A fluorescence in situ hybridization (FISH) assay is cost-effective in resource-constrained settings. METHODS IDH-mutant astrocytomas were analyzed for ATRX, p53, MIB1-LI, and p16 expression using immunohistochemistry. The FISH assay was used to evaluate CDKN2A deletion and 1p/19q codeletion. Survival outcomes were assessed according to the different molecular markers. RESULTS A total of 150 adult patients with IDH-mutant grade 2 (n = 95) and grade 3 (n = 55) astrocytomas (145 primary and 5 recurrent) were analyzed. Using a cutoff value of 30% for defining significant homozygous CDKN2A deletion, none of the grade 2 and 10.9% (6/55) of grade 3 astrocytomas showed this deletion (4 primary and 2 recurrent grade 3 tumors) and were reclassified as grade 4. This mutation was more frequent in recurrent (40%, 2/5) than primary (2.76%, 4/145) gliomas. Half (3/6, 50%) of the CDKN2A-deleted cases demonstrated poor outcomes; 2 of these cases experienced recurrence at 12 and 36 months after surgery, and 1 died at 5 months. The majority of CDKN2A-deleted cases showed marked cellularity (100%), pleomorphism (100%), brisk mitosis (83.3%), and tumor giant cell formation (83.4%). None of the cases with retained p16 expression harbored this deletion. Both overall survival (p = 0.039) and progression-free survival (p = 0.0045) were found to be worse in cases with p16 loss. Selectively performing CDKN2A FISH only in high-risk cases with histomorphological features of anaplasia, p16 loss, or recurrent tumors achieved a sensitivity and negative predictive value of 100%. This approach would have resulted in saving 41.1% of the original expenditure ($6900 US per 150 samples) and 27.6 person-minutes per sample without compromising the identification of deleted cases. CONCLUSIONS Homozygous CDKN2A deletion is conspicuously absent in grade 2 and rare in primary grade 3 IDH-mutant astrocytomas. The authors propose that restricting use of the FISH assay to cases showing histomorphological features of anaplasia, p16 loss, or recurrent tumors will help this platform to be utilized in the most cost-effective manner in resource-constrained settings.
Collapse
Affiliation(s)
| | - Ravi Sharma
- 2Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Varidh Katiyar
- 2Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Ashish Suri
- 2Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
50
|
Hu W, Duan H, Zhong S, Zeng J, Mou Y. High frequency of PDGFRA and MUC family gene mutations in diffuse hemispheric glioma, H3 G34-mutant: a glimmer of hope? J Transl Med 2022; 20:64. [DOI: 35109850 10.1186/s12967-022-03258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/17/2022] [Indexed: 05/20/2025] Open
Abstract
Abstract
Background
Diffuse hemispheric glioma H3 G34-mutant (G34-DHG) is a new type of pediatric-type diffuse high-grade glioma in the fifth edition of the WHO Classification of Tumors of the Central Nervous System. The current treatment for G34-DHG involves a combination of surgery and conventional radiotherapy or chemotherapy; however, the therapeutic efficacy of this approach is not satisfactory. In recent years, molecular targeted therapy and immunotherapy have achieved significant benefits in a variety of tumors. In-depth understanding of molecular changes and immune infiltration in G34-DHGs will help to establish personalized tumor treatment strategies. Here, we report the clinicopathological, molecular and immune infiltration characteristics of G34-DHG cases from our center along with cases from the HERBY Trial and the Chinese Glioma Genome Atlas database (CGGA).
Methods
Hematoxylin–eosin (HE) and immunohistochemistry (IHC) staining were used to present the clinicopathological characteristics of 10 Chinese G34-DHG patients treated at our institution. To address the molecular characteristics of G34-DHG, we performed whole-exome sequencing (WES) and RNA sequencing (RNA-seq) analyses of 5 patients from our center and 3 Chinese patients from the Chinese Glioma Genome Atlas (CGGA) database. Additionally, 7 European G34-DHG patients from the HERBY Trail were also subjected to analyses, with 7 cases of WES data and 2 cases of RNA-seq data. Six G34-DHG patients from another organization were used as external validation.
Results
WES showed a high frequency of PDGFRA mutation in G34-DHGs (12/15). We further identified frequent mutations in MUC family genes in G34-DHGs, including MUC16 (8/15) and MUC17 (8/15). Although no statistical difference was found, PDGFRA mutation tended to be an indicator for worse prognosis whereas MUC16/MUC17 mutation indicated a favorable prognosis in G34-DHGs. RNA sequencing results revealed that most G34-DHG are considered to be immune cold tumors. However, one patient in our cohort with MUC16 mutation showed significant immune infiltration, and the total overall survival of this patient reached 75 months.
Conclusions
Our results demonstrate that G34-DHG is a new high-grade glioma with high frequency of PDGFRA and MUC gene family mutations. PDGFRA may serve as an indicator of poor prognosis and an effective therapeutic target. Moreover, MUC16 tends to be a favorable prognostic factor and indicates high immune infiltration in certain patients, and these findings may provide a new direction for targeted therapy and immunotherapy of patients with G34-DHGs.
Collapse
|