1
|
Woo J, Cao G, Karmacharya N, Lee J, Lee J, Duru KC, McClenaghan C, An SS, Panettieri RA, Jude JA. Volume-Regulated Anion Channel Complex Modulates Mechano-Electrical Signal Responses in Human Airway Smooth Muscle Shortening. Am J Respir Cell Mol Biol 2025; 72:418-428. [PMID: 39470451 PMCID: PMC12005011 DOI: 10.1165/rcmb.2024-0160oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024] Open
Abstract
LRRC8A (leucine-rich repeat containing 8A) is an obligatory constituent of the volume-regulated anion channel (VRAC) that is fundamental to a wide range of biological processes, including regulating cell size, proliferation, and migration. Here we explored the physiological role of VRAC in excitation-contraction (E-C) coupling and shortening of human airway smooth muscle (HASM). In HASM cells, pharmacological inhibition of VRAC with DCPIB (4-[2-butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl]) (0.1-10 μM) markedly attenuated swell-activated Cl- conductance, and contractile agonist (histamine or carbachol)-induced cellular stiffening as measured by single-cell patch-clamp and optical magnetic twisting cytometry, respectively. In addition, HASM cells treated with DCPIB or transfected with LRRC8A-targeting siRNA showed reduced agonist-induced phosphorylation of protein kinase B (i.e., AKT), paxillin, MYPT1, and myosin light chain. Consistent with the changes of these E-C coupling effectors, DCPIB appreciably decreased agonist-induced small airways narrowing in human precision-cut lung slices. Taken together, our findings shed new light on the mechanistic link between HASM shortening and regulatory volume decrease via LRRC8A, revealing a previously unrecognized nodal point for modulation of E-C coupling and acute airway constriction.
Collapse
Affiliation(s)
- Joanna Woo
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Nikhil Karmacharya
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Jordan Lee
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Justin Lee
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Kingsley C. Duru
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and
| | - Conor McClenaghan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and
| | - Steven S. An
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Reynold A. Panettieri
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Joseph A. Jude
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
2
|
Yashiro K, Iwaki Y, Urata H, Kokubo M, Mori T, Sekioka Y, Isami K, Kato J, Wieting J, McGowan KM, Bridges TM, Boutaud O, Engers DW, Denton JS, Kurata H, Lindsley CW. Discovery of ONO-2920632 (VU6011887): A Highly Selective and CNS Penetrant TREK-2 (TWIK-Related K+ Channel 2) Preferring Activator In Vivo Tool Compound. ACS Chem Neurosci 2025; 16:960-967. [PMID: 39981749 PMCID: PMC11887051 DOI: 10.1021/acschemneuro.5c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Herein we describe our initial work on the K2P family of potassium ion channels with the chemical optimization and characterization of a novel series of TWIK-Related K+ Channel (TREK)-1/2 dual activators and TREK-2 preferring activators derived from a high-throughput screening hit. The exercise provided TREK activators with good CNS penetration and others with low CNS exposure to enable exploration of both central and peripheral TREK activation. From this, ONO-2920632 (VU6011887 = 19b) emerged as a reasonably potent (human Tl+; TREK-1 EC50 = 2.8 μM (95% Emax), TREK-2 EC50 = 0.30 μM (184% Emax)), first-generation CNS penetrant (rat Kp = 0.37) in vivo tool compound with selectivity versus the other K2P channels (>91-fold selective vs TASK1, TASK2, TASK3, TRAAK, TWIK2, and 31-fold selective vs TRESK) and no significant activity in a large ancillary pharmacology panel. ONO-2920632 (VU6011887) displayed robust, dose dependent efficacy when dosed orally in a mouse pain model (acetic acid writhing assay), where it was equipotent at 3 mg/kg to the assay standard indomethacin at 10 mg/kg. The therapeutic potential of TREK channel activation has long been hampered by a lack of selective, small molecule tools, and this work provides a variety of in vivo tool compounds for the community.
Collapse
Affiliation(s)
- Kentaro Yashiro
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Yuzo Iwaki
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Hirohito Urata
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Masaya Kokubo
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Takahiro Mori
- Research
Center of Neurology, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Yoko Sekioka
- Research
Center of Neurology, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Koichi Isami
- Research
Center of Neurology, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Junya Kato
- Pharmacokinetic
Research, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Joshua Wieting
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin M. McGowan
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jerod S. Denton
- Department
of Anesthesiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Haruto Kurata
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville Tennessee 37232, United States
| |
Collapse
|
3
|
Cao G, Guo J, Yang K, Xu R, Jia X, Wang X. DCPIB Attenuates Ischemia-Reperfusion Injury by Regulating Microglial M1/M2 Polarization and Oxidative Stress. Neuroscience 2024; 551:119-131. [PMID: 38734301 DOI: 10.1016/j.neuroscience.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The inflammatory response plays an indispensable role in ischemia-reperfusion injury, the most significant of which is the inflammatory response caused by microglial polarization. Anti-inflammatory therapy is also an important remedial measure after failed vascular reconstruction. Maintaining the internal homeostasis of the brain is a crucial measure for suppressing the inflammatory response. The mechanism underlying the relationship between DCPIB, a selective blocker of volume-regulated anion channels (VRAC), and inflammation induced by cerebral ischemia-reperfusion injury is currently unclear. The purpose of this study was to investigate the relationship between DCPIB and microglial M1/M2 polarization-mediated inflammation after cerebral ischemia-reperfusion injury. C57BL/6 mice were subjected to transient middle cerebral artery occlusion (tMCAO). DCPIB was administered by a lateral ventricular injection within 5 min after reperfusion. Behavioral assessments were conducted at 1, 3, and 7 days after tMCAO/R. Pathological injuries were evaluated using TTC assay, HE and Nissl staining, brain water content measurement, and immunofluorescence staining. The levels of inflammatory cytokines were analyzed using qPCR and ELISA. Additionally, the phenotypic variations of microglia were examined using immunofluorescence staining. In mouse tMCAO/R model, DCPIB administration markably reduced mortality, improved behavioral performance, and alleviated pathological injury. DCPIB treatment significantly inhibited the inflammatory response, promoted the conversion of M1 microglia to M2 microglia via the MAPK signaling pathway, and ultimately protected neurons from the microglia-mediated inflammatory response. In addition, DCPIB inhibited oxidative stress induced by cerebral ischemia-reperfusion injury. In conclusion, DCPIB attenuates cerebral ischemia-reperfusion injury by regulating microglial M1/M2 polarization and oxidative stress.
Collapse
Affiliation(s)
- Guihua Cao
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Jianbin Guo
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710032, China
| | - Kaikai Yang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Kostritskaia Y, Klüssendorf M, Pan YE, Hassani Nia F, Kostova S, Stauber T. Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206. Handb Exp Pharmacol 2024; 283:181-218. [PMID: 37468723 DOI: 10.1007/164_2023_673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Volume-regulated anion channels (VRACs) and the acid-sensitive outwardly rectifying anion channel (ASOR) mediate flux of chloride and small organic anions. Although known for a long time, they were only recently identified at the molecular level. VRACs are heteromers consisting of LRRC8 proteins A to E. Combining the essential LRRC8A with different LRRC8 paralogues changes key properties of VRAC such as conductance or substrate selectivity, which is how VRACs are involved in multiple physiological functions including regulatory volume decrease, cell proliferation and migration, cell death, purinergic signalling, fat and glucose metabolism, insulin signalling, and spermiogenesis. VRACs are also involved in pathological conditions, such as the neurotoxic release of glutamate and aspartate. Certain VRACs are also permeable to larger, organic anions, including antibiotics and anti-cancer drugs, making them an interesting therapeutic target. ASOR, also named proton-activated chloride channel (PAC), is formed by TMEM206 homotrimers on the plasma membrane and on endosomal compartments where it mediates chloride flux in response to extracytosolic acidification and plays a role in the shrinking and maturation of macropinosomes. ASOR has been shown to underlie neuronal swelling which causes cell death after stroke as well as promoting the metastasis of certain cancers, making them intriguing therapeutic targets as well.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Simona Kostova
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| |
Collapse
|
5
|
Michelucci A, Sforna L, Franciolini F, Catacuzzeno L. Hypoxia, Ion Channels and Glioblastoma Malignancy. Biomolecules 2023; 13:1742. [PMID: 38136613 PMCID: PMC10742235 DOI: 10.3390/biom13121742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The malignancy of glioblastoma (GBM), the most aggressive type of human brain tumor, strongly correlates with the presence of hypoxic areas within the tumor mass. Oxygen levels have been shown to control several critical aspects of tumor aggressiveness, such as migration/invasion and cell death resistance, but the underlying mechanisms are still unclear. GBM cells express abundant K+ and Cl- channels, whose activity supports cell volume and membrane potential changes, critical for cell proliferation, migration and death. Volume-regulated anion channels (VRAC), which mediate the swelling-activated Cl- current, and the large-conductance Ca2+-activated K+ channels (BK) are both functionally upregulated in GBM cells, where they control different aspects underlying GBM malignancy/aggressiveness. The functional expression/activity of both VRAC and BK channels are under the control of the oxygen levels, and these regulations are involved in the hypoxia-induced GBM cell aggressiveness. The present review will provide a comprehensive overview of the literature supporting the role of these two channels in the hypoxia-mediated GBM malignancy, suggesting them as potential therapeutic targets in the treatment of GBM.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (L.S.); (F.F.)
| | | | | | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (L.S.); (F.F.)
| |
Collapse
|
6
|
Wu L, Lin Y, Song J, Li L, Rao X, Wan W, Wei G, Hua F, Ying J. TMEM175: A lysosomal ion channel associated with neurological diseases. Neurobiol Dis 2023; 185:106244. [PMID: 37524211 DOI: 10.1016/j.nbd.2023.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Lysosomes are acidic intracellular organelles with autophagic functions that are critical for protein degradation and mitochondrial homeostasis, while abnormalities in lysosomal physiological functions are closely associated with neurological disorders. Transmembrane protein 175 (TMEM175), an ion channel in the lysosomal membrane that is essential for maintaining lysosomal acidity, has been proven to coordinate with V-ATPase to modulate the luminal pH of the lysosome to assist the digestion of abnormal proteins and organelles. However, there is considerable controversy about the characteristics of TMEM175. In this review, we introduce the research progress on the structural, modulatory, and functional properties of TMEM175, followed by evidence of its relevance for neurological disorders. Finally, we discuss the potential value of TMEM175 as a therapeutic target in the hope of providing new directions for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Longshan Li
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China.
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China.
| |
Collapse
|
7
|
Liu T, Li Y, Wang D, Stauber T, Zhao J. Trends in volume-regulated anion channel (VRAC) research: visualization and bibliometric analysis from 2014 to 2022. Front Pharmacol 2023; 14:1234885. [PMID: 37538172 PMCID: PMC10394876 DOI: 10.3389/fphar.2023.1234885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Objective: In this study, we utilized bibliometric methods to assess the worldwide scientific output and identify hotspots related to the research on the volume-regulated anion channel (VRAC) from 2014 to 2022. Methods: From Web of Science, we obtained studies related to VRAC published from 2014 to 2022. To analyzed the data, we utilized VOSviewer, a tool for visualizing network, to create networks based on the collaboration between countries, institutions, and authors. Additionally, we performed an analysis of journal co-citation, document citation, and co-occurrence of keywords. Furthermore, we employed CiteSpace (6.1. R6 Advanced) to analyzed keywords and co-cited references with the strongest burst. Results: The final analysis included a total of 278 related articles and reviews, covering the period from 2014 to 2022. The United States emerged as the leading country contributing to this field, while the University of Copenhagen stood out as the most prominent institution. The author with most publications and most citations was Thomas J. Jentsch. Among the cited references, the article by Voss et al. published in Science (2014) gained significant attention for its identification of LRRC8 heteromers as a crucial component of the volume-regulated anion channel VRAC. Pflügers Archiv European Journal of Physiology and Journal of Physiology-London were the leading journals in terms of the quantity of associated articles and citations. Through the analysis of keyword co-occurrence, it was discovered that VRAC is involved in various physiological processes including cell growth, migration, apoptosis, swelling, and myogenesis, as well as anion and organic osmolyte transport including chloride, taurine, glutamate and ATP. VRAC is also associated with related ion channels such as TMEM16A, TMEM16F, pannexin, and CFTR, and associated with various diseases including epilepsy, leukodystrophy, atherosclerosis, hypertension, cerebral edema, stroke, and different types of cancer including gastric cancer, glioblastoma and hepatocellular carcinoma. Furthermore, VRAC is involved in anti-tumor drug resistance by regulating the uptake of platinum-based drugs and temozolomide. Additionally, VRAC has been studied in the context of pharmacology involving DCPIB and flavonoids. Conclusion: The aim of this bibliometric analysis is to provide an overall perspective for research on VRAC. VRAC has become a topic of increasing interest, and our analysis shows that it continues to be a prominent area. This study offers insights into the investigation of VRAC channel and may guide researchers in identifying new directions for future research.
Collapse
Affiliation(s)
- Tianbao Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, China
| | - Yin Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Dawei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, China
| |
Collapse
|
8
|
Balkaya M, Dohare P, Chen S, Schober AL, Fidaleo AM, Nalwalk JW, Sah R, Mongin AA. Conditional deletion of LRRC8A in the brain reduces stroke damage independently of swelling-activated glutamate release. iScience 2023; 26:106669. [PMID: 37182109 PMCID: PMC10173736 DOI: 10.1016/j.isci.2023.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The ubiquitous volume-regulated anion channels (VRACs) facilitate cell volume control and contribute to many other physiological processes. Treatment with non-specific VRAC blockers or brain-specific deletion of the essential VRAC subunit LRRC8A is highly protective in rodent models of stroke. Here, we tested the widely accepted idea that the harmful effects of VRACs are mediated by release of the excitatory neurotransmitter glutamate. We produced conditional LRRC8A knockout either exclusively in astrocytes or in the majority of brain cells. Genetically modified mice were subjected to an experimental stroke (middle cerebral artery occlusion). The astrocytic LRRC8A knockout yielded no protection. Conversely, the brain-wide LRRC8A deletion strongly reduced cerebral infarction in both heterozygous (Het) and full KO mice. Yet, despite identical protection, Het mice had full swelling-activated glutamate release, whereas KO animals showed its virtual absence. These findings suggest that LRRC8A contributes to ischemic brain injury via a mechanism other than VRAC-mediated glutamate release.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Preeti Dohare
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Sophie Chen
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Alexandra L. Schober
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Antonio M. Fidaleo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Julia W. Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander A. Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
- Corresponding author
| |
Collapse
|
9
|
Figueroa EE, Denton JS. A SWELL time to develop the molecular pharmacology of the volume-regulated anion channel (VRAC). Channels (Austin) 2022; 16:27-36. [PMID: 35114895 PMCID: PMC8820792 DOI: 10.1080/19336950.2022.2033511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Newly emerging roles of LRRC8 volume-regulated anion channels (VRAC) raise important questions about the therapeutic potential of VRAC in the treatment of epilepsy, type 2 diabetes, and other human diseases. A critical barrier to evaluating whether VRAC represents a viable drug target is the lack of potent and specific small-molecule inhibitors and activators of the channel. Here we review recent progress in developing the molecular pharmacology of VRAC made by screening a library of FDA-approved drugs for novel channel modulators. We discuss the discovery and characterization of cysteinyl leukotriene receptor antagonists Pranlukast and Zafirlukast as novel VRAC inhibitors, and zinc pyrithione (ZPT), which apparently activates VRAC through a reactive oxygen species (ROS)-dependent mechanism. These ongoing efforts set the stage for developing a pharmacological toolkit for probing the integrative physiology, molecular pharmacology, and therapeutic potential of VRAC.
Collapse
Affiliation(s)
- Eric E. Figueroa
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmacology, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Li XT. The modulation of potassium channels by estrogens facilitates neuroprotection. Front Cell Dev Biol 2022; 10:998009. [PMID: 36393851 PMCID: PMC9643774 DOI: 10.3389/fcell.2022.998009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 08/31/2023] Open
Abstract
Estrogens, the sex hormones, have the potential to govern multiple cellular functions, such as proliferation, apoptosis, differentiation, and homeostasis, and to exert numerous beneficial influences for the cardiovascular system, nervous system, and bones in genomic and/or non-genomic ways. Converging evidence indicates that estrogens serve a crucial role in counteracting neurodegeneration and ischemic injury; they are thereby being considered as a potent neuroprotectant for preventing neurological diseases such as Alzheimer's disease and stroke. The underlying mechanism of neuroprotective effects conferred by estrogens is thought to be complex and multifactorial, and it remains obscure. It is well established that the K+ channels broadly expressed in a variety of neural subtypes determine the essential physiological features of neuronal excitability, and dysfunction of these channels is closely associated with diverse brain deficits, such as ataxia and epilepsy. A growing body of evidence supports a neuroprotective role of K+ channels in malfunctions of nervous tissues, with the channels even being a therapeutic target in clinical trials. As multitarget steroid hormones, estrogens also regulate the activity of distinct K+ channels to generate varying biological actions, and accumulated data delineate that some aspects of estrogen-mediated neuroprotection may arise from the impact on multiple K+ channels, including Kv, BK, KATP, and K2P channels. The response of these K+ channels after acute or chronic exposure to estrogens may oppose pathological abnormality in nervous cells, which serves to extend our understanding of these phenomena.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Guizhou University, Guiyang, China
- Department of Neuroscience, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
11
|
Kasuya G, Nureki O. Recent Advances in the Structural Biology of the Volume-Regulated Anion Channel LRRC8. Front Pharmacol 2022; 13:896532. [PMID: 35645818 PMCID: PMC9130832 DOI: 10.3389/fphar.2022.896532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 01/23/2023] Open
Abstract
Members of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC), which is activated by cell swelling and releases chloride ions (Cl−) or other osmolytes to counteract cell swelling. Although the LRRC8 protein family was identified as the molecular entity of VRAC only in 2014, due to recent advances in cryo-electron microscopy (cryo-EM), various LRRC8 structures, including homo-hexameric LRRC8A and LRRC8D structures, as well as inhibitor-bound and synthetic single-domain antibody-bound homo-hexameric LRRC8A structures, have been reported, thus extending our understanding of the molecular mechanisms of this protein family. In this review, we describe the important features of LRRC8 provided by these structures, particularly the overall architectures, and the suggested mechanisms underlying pore inhibition and allosteric modulation by targeting the intracellular leucine-rich repeat (LRR) domain.
Collapse
Affiliation(s)
- Go Kasuya
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
- *Correspondence: Go Kasuya, ; Osamu Nureki,
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Go Kasuya, ; Osamu Nureki,
| |
Collapse
|
12
|
Jeon D, Ryu K, Jo S, Kim I, Namkung W. VI-116, A Novel Potent Inhibitor of VRAC with Minimal Effect on ANO1. Int J Mol Sci 2022; 23:ijms23095168. [PMID: 35563558 PMCID: PMC9103758 DOI: 10.3390/ijms23095168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Volume-regulated anion channel (VRAC) is ubiquitously expressed and plays a pivotal role in vertebrate cell volume regulation. A heterologous complex of leucine-rich repeat containing 8A (LRRC8A) and LRRC8B-E constitutes the VRAC, which is involved in various processes such as cell proliferation, migration, differentiation, intercellular communication, and apoptosis. However, the lack of a potent and selective inhibitor of VRAC limits VRAC-related physiological and pathophysiological studies, and most previous VRAC inhibitors strongly blocked the calcium-activated chloride channel, anoctamin 1 (ANO1). In the present study, we performed a cell-based screening for the identification of potent and selective VRAC inhibitors. Screening of 55,000 drug-like small-molecules and subsequent chemical modification revealed 3,3′-((2-hydroxy-3-methoxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (VI-116), a novel potent inhibitor of VRAC. VI-116 fully inhibited VRAC-mediated I− quenching with an IC50 of 1.27 ± 0.18 μM in LN215 cells and potently blocked endogenous VRAC activity in PC3, HT29 and HeLa cells in a dose-dependent manner. Notably, VI-116 had no effect on intracellular calcium signaling up to 10 μM, which completely inhibited VRAC, and showed high selectivity for VRAC compared to ANO1 and ANO2. However, DCPIB, a VRAC inhibitor, significantly affected ATP-induced increases in intracellular calcium levels and Eact-induced ANO1 activation. In addition, VI-116 showed minimal effect on hERG K+ channel activity up to 10 μM. These results indicate that VI-116 is a potent and selective VRAC inhibitor and a useful research tool for pharmacological dissection of VRAC.
Collapse
|
13
|
Cook JR, Gray AL, Lemarchand E, Schiessl I, Green JP, Newland MC, Dyer DP, Brough D, Lawrence CB. LRRC8A is dispensable for a variety of microglial functions and response to acute stroke. Glia 2022; 70:1068-1083. [PMID: 35150591 PMCID: PMC9304177 DOI: 10.1002/glia.24156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Microglia, resident brain immune cells, are critical in orchestrating responses to central nervous system (CNS) injury. Many microglial functions, such as phagocytosis, motility and chemotaxis, are suggested to rely on chloride channels, including the volume‐regulated anion channel (VRAC), but studies to date have relied on the use of pharmacological tools with limited specificity. VRAC has also been proposed as a drug target for acute CNS injury, and its role in microglial function is of considerable interest for developing CNS therapeutics. This study aimed to definitively confirm the contribution of VRAC in microglia function by using conditional LRRC8A‐knockout mice, which lacked the essential VRAC subunit LRRC8A in microglia. We demonstrated that while VRAC contributed to cell volume regulation, it had no effect on phagocytic activity, cell migration or P2YR12‐dependent chemotaxis. Moreover, loss of microglial VRAC did not affect microglial morphology or the extent of ischemic damage following stroke. We conclude that VRAC does not critically regulate microglial responses to brain injury and could be targetable in other CNS cell types (e.g., astrocytes) without impeding microglial function. Our results also demonstrate a role for VRAC in cell volume regulation but show that VRAC is not involved in several major cellular functions that it was previously thought to regulate, and point to other, alternative mechanisms of chloride transport in innate immunity.
Collapse
Affiliation(s)
- James R Cook
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna L Gray
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Eloise Lemarchand
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack P Green
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mary C Newland
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Gunasekar SK, Xie L, Kumar A, Hong J, Chheda PR, Kang C, Kern DM, My-Ta C, Maurer J, Heebink J, Gerber EE, Grzesik WJ, Elliot-Hudson M, Zhang Y, Key P, Kulkarni CA, Beals JW, Smith GI, Samuel I, Smith JK, Nau P, Imai Y, Sheldon RD, Taylor EB, Lerner DJ, Norris AW, Klein S, Brohawn SG, Kerns R, Sah R. Small molecule SWELL1 complex induction improves glycemic control and nonalcoholic fatty liver disease in murine Type 2 diabetes. Nat Commun 2022; 13:784. [PMID: 35145074 PMCID: PMC8831520 DOI: 10.1038/s41467-022-28435-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is associated with insulin resistance, impaired pancreatic β-cell insulin secretion, and nonalcoholic fatty liver disease. Tissue-specific SWELL1 ablation impairs insulin signaling in adipose, skeletal muscle, and endothelium, and impairs β-cell insulin secretion and glycemic control. Here, we show that ICl,SWELL and SWELL1 protein are reduced in adipose and β-cells in murine and human diabetes. Combining cryo-electron microscopy, molecular docking, medicinal chemistry, and functional studies, we define a structure activity relationship to rationally-design active derivatives of a SWELL1 channel inhibitor (DCPIB/SN-401), that bind the SWELL1 hexameric complex, restore SWELL1 protein, plasma membrane trafficking, signaling, glycemic control and islet insulin secretion via SWELL1-dependent mechanisms. In vivo, SN-401 restores glycemic control, reduces hepatic steatosis/injury, improves insulin-sensitivity and insulin secretion in murine diabetes. These findings demonstrate that SWELL1 channel modulators improve SWELL1-dependent systemic metabolism in Type 2 diabetes, representing a first-in-class therapeutic approach for diabetes and nonalcoholic fatty liver disease. Type 2 diabetes is associated with insulin resistance, impaired insulin secretion and liver steatosis. Here the authors report a proof-of-concept study for small molecule SWELL1 modulators as a therapeutic approach to treat diabetes and associated liver steatosis by enhancing systemic insulin-sensitivity and insulin secretion in mice.
Collapse
Affiliation(s)
- Susheel K Gunasekar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Litao Xie
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Juan Hong
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Pratik R Chheda
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
| | - Chen Kang
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Kern
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Chau My-Ta
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua Maurer
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - John Heebink
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Eva E Gerber
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Wojciech J Grzesik
- Stead Family Department of Pediatrics, Endocrinology and Diabetes Division, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Macaulay Elliot-Hudson
- Department of Internal Medicine, Cardiovascular Division, University of Iowa, Iowa City, IA, USA
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Phillip Key
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Chaitanya A Kulkarni
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
| | - Joseph W Beals
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, USA
| | - Gordon I Smith
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, USA
| | - Isaac Samuel
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Jessica K Smith
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Peter Nau
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Yumi Imai
- Department of Internal Medicine, Cardiovascular Division, University of Iowa, Iowa City, IA, USA
| | - Ryan D Sheldon
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Daniel J Lerner
- Senseion Therapeutics Inc, BioGenerator Labs, St Louis, MO, USA
| | - Andrew W Norris
- Stead Family Department of Pediatrics, Endocrinology and Diabetes Division, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, USA
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Robert Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Zuccolini P, Ferrera L, Remigante A, Picco C, Barbieri R, Bertelli S, Moran O, Gavazzo P, Pusch M. The VRAC blocker DCPIB directly gates the BK channels and increases intracellular Ca 2+ in Melanoma and Pancreatic Duct Adenocarcinoma (PDAC) cell lines. Br J Pharmacol 2022; 179:3452-3469. [PMID: 35102550 DOI: 10.1111/bph.15810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The Volume Regulated Anion Channel (VRAC) is known to be involved in different aspects of cancer cell behavior and response to therapies. For this reason, we investigated the effect of DCPIB, a presumably specific blocker of VRAC, in two types of cancer: pancreatic duct adenocarcinoma (PDAC) and melanoma. EXPERIMENTAL APPROACH For this investigation, we used patch-clamp electrophysiology, supported by Ca2+ imaging, gene expression analysis, docking simulation and mutagenesis. We employed two PDAC lines (Panc-1 and MiaPaCa-2), as well as a primary (IGR39) and a metastatic (IGR37) melanoma line. KEY RESULTS Surprisingly, DCPIB induced a dramatic increase of whole-cell currents in Panc-1, MiaPaca2 and IGR39, but not in IGR37 cells. The currents were mostly mediated by the KCa1.1 channel, commonly known as BK. We verified DCPIB activation of BK also in HEK293 cells transfected with the α subunit of the channel. Further experiments showed that in IGR39, and to a smaller degree also in Panc-1 cells, DCPIB induces a rapid Ca2+ influx. This, in turn, indirectly potentiates BK and, in IGR39 cells, additionally activates other Ca2+ -dependent channels. However, the Ca2+ influx is not required for BK activation by DCPIB: indeed, we found that the activation of BK by DCPIB involves the extracellular part of the protein and identified two residues crucial for binding. CONCLUSION AND IMPLICATIONS DCPIB directly targets BK channels and, in addition, can acutely increase intracellular Ca2+ . Our findings elongate the list of DCPIB effects that have to be taken into consideration for future development of DCPIB-based modulators of ion channels and other membrane proteins.
Collapse
Affiliation(s)
- Paolo Zuccolini
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Loretta Ferrera
- Institute of Biophysics, National Research Council, Genova, Italy.,U.O.C. Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | | | - Cristiana Picco
- Institute of Biophysics, National Research Council, Genova, Italy
| | | | - Sara Bertelli
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Oscar Moran
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Genova, Italy
| |
Collapse
|
16
|
Kolobkova Y, Pervaiz S, Stauber T. The expanding toolbox to study the LRRC8-formed volume-regulated anion channel VRAC. CURRENT TOPICS IN MEMBRANES 2021; 88:119-163. [PMID: 34862024 DOI: 10.1016/bs.ctm.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The volume-regulated anion channel (VRAC) is activated upon cell swelling and facilitates the passive movement of anions across the plasma membrane in cells. VRAC function underlies many critical homeostatic processes in vertebrate cells. Among them are the regulation of cell volume and membrane potential, glutamate release and apoptosis. VRAC is also permeable for organic osmolytes and metabolites including some anti-cancer drugs and antibiotics. Therefore, a fundamental understanding of VRAC's structure-function relationships, its physiological roles, its utility for therapy of diseases, and the development of compounds modulating its activity are important research frontiers. Here, we describe approaches that have been applied to study VRAC since it was first described more than 30 years ago, providing an overview of the recent methodological progress. The diverse applications reflecting a compromise between the physiological situation, biochemical definition, and biophysical resolution range from the study of VRAC activity using a classic electrophysiology approach, to the measurement of osmolytes transport by various means and the investigation of its activation using a novel biophysical approach based on fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Yulia Kolobkova
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Germany
| | - Sumaira Pervaiz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Tobias Stauber
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany.
| |
Collapse
|
17
|
Dynamic expression of homeostatic ion channels in differentiated cortical astrocytes in vitro. Pflugers Arch 2021; 474:243-260. [PMID: 34734327 PMCID: PMC8766406 DOI: 10.1007/s00424-021-02627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/02/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
The capacity of astrocytes to adapt their biochemical and functional features upon physiological and pathological stimuli is a fundamental property at the basis of their ability to regulate the homeostasis of the central nervous system (CNS). It is well known that in primary cultured astrocytes, the expression of plasma membrane ion channels and transporters involved in homeostatic tasks does not closely reflect the pattern observed in vivo. The individuation of culture conditions that promote the expression of the ion channel array found in vivo is crucial when aiming at investigating the mechanisms underlying their dynamics upon various physiological and pathological stimuli. A chemically defined medium containing growth factors and hormones (G5) was previously shown to induce the growth, differentiation, and maturation of primary cultured astrocytes. Here we report that under these culture conditions, rat cortical astrocytes undergo robust morphological changes acquiring a multi-branched phenotype, which develops gradually during the 2-week period of culturing. The shape changes were paralleled by variations in passive membrane properties and background conductance owing to the differential temporal development of inwardly rectifying chloride (Cl−) and potassium (K+) currents. Confocal and immunoblot analyses showed that morphologically differentiated astrocytes displayed a large increase in the expression of the inward rectifier Cl− and K+ channels ClC-2 and Kir4.1, respectively, which are relevant ion channels in vivo. Finally, they exhibited a large diminution of the intermediate filaments glial fibrillary acidic protein (GFAP) and vimentin which are upregulated in reactive astrocytes in vivo. Taken together the data indicate that long-term culturing of cortical astrocytes in this chemical-defined medium promotes a quiescent functional phenotype. This culture model could aid to address the regulation of ion channel expression involved in CNS homeostasis in response to physiological and pathological challenges.
Collapse
|
18
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
19
|
Figueroa EE, Denton JS. Zinc pyrithione activates the volume-regulated anion channel through an antioxidant-sensitive mechanism. Am J Physiol Cell Physiol 2021; 320:C1088-C1098. [PMID: 33826406 PMCID: PMC8285639 DOI: 10.1152/ajpcell.00070.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Leucine-rich repeat-containing 8 (LRRC8) volume-regulated anion channels (VRACs) play important physiological roles in diverse cell types and may represent therapeutic targets for various diseases. To date, however, the pharmacological tools for evaluating the druggability of VRACs have been limited to inhibitors, as no activators of the channel have been reported. We therefore performed a fluorescence-based high-throughput screening (HTS) of 1,184 Food and Drug Administration-approved drugs for compounds that increase VRAC activity. The most potent VRAC potentiator identified was zinc pyrithione (ZPT), which is used commercially as an antifouling agent and for treating dandruff and other skin disorders. In intracellular Yellow Fluorescent Protein YFP(F46L/H148Q/I152L)-quenching assays, ZPT potentiates the rate and extent of swelling-induced iodide influx dose dependently with a half-maximal effective concentration (EC50) of 5.7 µM. Whole cell voltage-clamp experiments revealed that coapplication of hypotonic solution and 30 µM ZPT to human embryonic kidney 293 or human colorectal carcinoma 116 cells increases the rate of swelling-induced VRAC activation by approximately 10-fold. ZPT potentiates swelling-induced VRAC currents after currents have reached a steady state and activates currents in the absence of cell swelling. Neither ZnCl2 nor free pyrithione activated VRAC; however, treating cells with a mixture of ZnCl2 and pyrithione led to robust channel activation. Finally, the effects of ZPT on VRAC were inhibited by reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and NAD(P)H oxidase inhibitor diphenyleneiodonium chloride, suggesting the mechanism of action involves ROS generation. The discovery of ZPT as a potentiator/activator of VRAC demonstrates the utility of HTS for identifying small-molecule modulators of VRAC and adds to a growing repertoire of pharmacological tool compounds for probing the molecular physiology and regulation of this important channel.
Collapse
Affiliation(s)
- Eric E. Figueroa
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jerod S. Denton
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee,2Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee,3Vanderbilt Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee
| |
Collapse
|
20
|
Natale AM, Deal PE, Minor DL. Structural Insights into the Mechanisms and Pharmacology of K 2P Potassium Channels. J Mol Biol 2021; 433:166995. [PMID: 33887333 PMCID: PMC8436263 DOI: 10.1016/j.jmb.2021.166995] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023]
Abstract
Leak currents, defined as voltage and time independent flows of ions across cell membranes, are central to cellular electrical excitability control. The K2P (KCNK) potassium channel class comprises an ion channel family that produces potassium leak currents that oppose excitation and stabilize the resting membrane potential in cells in the brain, cardiovascular system, immune system, and sensory organs. Due to their widespread tissue distribution, K2Ps contribute to many physiological and pathophysiological processes including anesthesia, pain, arrythmias, ischemia, hypertension, migraine, intraocular pressure regulation, and lung injury responses. Structural studies of six homomeric K2Ps have established the basic architecture of this channel family, revealed key moving parts involved in K2P function, uncovered the importance of asymmetric pinching and dilation motions in the K2P selectivity filter (SF) C-type gate, and defined two K2P structural classes based on the absence or presence of an intracellular gate. Further, a series of structures characterizing K2P:modulator interactions have revealed a striking polysite pharmacology housed within a relatively modestly sized (~70 kDa) channel. Binding sites for small molecules or lipids that control channel function are found at every layer of the channel structure, starting from its extracellular side through the portion that interacts with the membrane bilayer inner leaflet. This framework provides the basis for understanding how gating cues sensed by different channel parts control function and how small molecules and lipids modulate K2P activity. Such knowledge should catalyze development of new K2P modulators to probe function and treat a wide range of disorders.
Collapse
Affiliation(s)
- Andrew M Natale
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Parker E Deal
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience University of California, San Francisco, CA 94158, USA; Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
Huang L, Xu G, Jiang R, Luo Y, Zuo Y, Liu J. Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels. Curr Neuropharmacol 2021; 20:16-26. [PMID: 33827408 PMCID: PMC9199554 DOI: 10.2174/1570159x19666210407152528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors such as mechanical stretch, temperature, and pH. In the the peripheral nervous system (PNS), K2P channels are widely expressed in nociceptive neurons and play a critical roles in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.
Collapse
Affiliation(s)
- Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Guangyin Xu
- Department of Physiology and Neurobiology, Institute of Neuroscience, Medical College of Soochow University, Suzhou, 215123, Jiangsu. China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yunxia Zuo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| |
Collapse
|
22
|
LRRC8 family proteins within lysosomes regulate cellular osmoregulation and enhance cell survival to multiple physiological stresses. Proc Natl Acad Sci U S A 2020; 117:29155-29165. [PMID: 33139539 DOI: 10.1073/pnas.2016539117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
LRRC8 family proteins on the plasma membrane play a critical role in cellular osmoregulation by forming volume-regulated anion channels (VRACs) necessary to prevent necrotic cell death. We demonstrate that intracellular LRRC8 proteins acting within lysosomes also play an essential role in cellular osmoregulation. LRRC8 proteins on lysosome membranes generate large lysosomal volume-regulated anion channel (Lyso-VRAC) currents in response to low cytoplasmic ionic strength conditions. When a double-leucine L706L707 motif at the C terminus of LRRC8A was mutated to alanines, normal plasma membrane VRAC currents were still observed, but Lyso-VRAC currents were absent. We used this targeting mutant, as well as pharmacological tools, to demonstrate that Lyso-VRAC currents are necessary for the formation of large lysosome-derived vacuoles, which store and then expel excess water to maintain cytosolic water homeostasis. Thus, Lyso-VRACs allow lysosomes of mammalian cells to act as the cell`s "bladder." When Lyso-VRAC current was selectively eliminated, the extent of necrotic cell death to sustained stress was greatly increased, not only in response to hypoosmotic stress, but also to hypoxic and hypothermic stresses. Thus Lyso-VRACs play an essential role in enabling cells to mount successful homeostatic responses to multiple stressors.
Collapse
|
23
|
Abstract
The contribution of an impaired astrocytic K+ regulation system to epileptic neuronal hyperexcitability has been increasingly recognized in the last decade. A defective K+ regulation leads to an elevated extracellular K+ concentration ([K+]o). When [K+]o reaches peaks of 10-12 mM, it is strongly associated with seizure initiation during hypersynchronous neuronal activities. On the other hand, reactive astrocytes during a seizure attack restrict influx of K+ across the membrane both passively and actively. In addition to decreased K+ buffering, aberrant Ca2+ signaling and declined glutamate transport have also been observed in astrogliosis in epileptic specimens, precipitating an increased neuronal discharge and induction of seizures. This review aims to provide an overview of experimental findings that implicated astrocytic modulation of extracellular K+ in the mechanism of epileptogenesis.
Collapse
Affiliation(s)
- Fushun Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA; Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan Province, China
| | - Xiaoming Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | - Jun Zhang
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health; Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA
| |
Collapse
|
24
|
Kolenicova D, Tureckova J, Pukajova B, Harantova L, Kriska J, Kirdajova D, Vorisek I, Kamenicka M, Valihrach L, Androvic P, Kubista M, Vargova L, Anderova M. High potassium exposure reveals the altered ability of astrocytes to regulate their volume in the aged hippocampus of GFAP/EGFP mice. Neurobiol Aging 2019; 86:162-181. [PMID: 31757575 DOI: 10.1016/j.neurobiolaging.2019.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
In this study, we focused on age-related changes in astrocyte functioning, predominantly on the ability of astrocytes to regulate their volume in response to a pathological stimulus, namely extracellular 50 mM K+ concentration. The aim of our project was to identify changes in the expression and function of transport proteins in the astrocytic membrane and properties of the extracellular space, triggered by aging. We used three-dimensional confocal morphometry, gene expression profiling, immunohistochemical analysis, and diffusion measurement in the hippocampal slices from 3-, 9-, 12-, and 18-month-old mice, in which astrocytes are visualized by enhanced green fluorescent protein under the control of the promoter for human glial fibrillary acidic protein. Combining a pharmacological approach and the quantification of astrocyte volume changes evoked by hyperkalemia, we found that marked diversity in the extent of astrocyte swelling in the hippocampus during aging is due to the gradually declining participation of Na+-K+-Cl- transporters, glutamate transporters (glutamate aspartate transporter and glutamate transporter 1), and volume-regulated anion channels. Interestingly, there was a redistribution of Na+-K+-Cl- cotransporter and glutamate transporters from astrocytic soma to processes. In addition, immunohistochemical analysis confirmed an age-dependent decrease in the content of Na+-K+-Cl- cotransporter in astrocytes. The overall extracellular volume changes revealed a similar age-dependent diversity during hyperkalemia as observed in astrocytes. In addition, the recovery of the extracellular space was markedly impaired in aged animals.
Collapse
Affiliation(s)
- Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Barbora Pukajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Harantova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Monika Kamenicka
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
25
|
Figueroa EE, Kramer M, Strange K, Denton JS. CysLT1 receptor antagonists pranlukast and zafirlukast inhibit LRRC8-mediated volume regulated anion channels independently of the receptor. Am J Physiol Cell Physiol 2019; 317:C857-C866. [PMID: 31390227 PMCID: PMC6850990 DOI: 10.1152/ajpcell.00281.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Volume-regulated anion channels (VRACs) encoded by the leucine-rich repeat containing 8 (LRRC8) gene family play critical roles in myriad cellular processes and might represent druggable targets. The dearth of pharmacological compounds available for studying VRAC physiology led us to perform a high-throughput screen of 1,184 of US Food and Drug Administration-approved drugs for novel VRAC modulators. We discovered the cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, pranlukast, as a novel inhibitor of endogenous VRAC expressed in human embryonic kidney 293 (HEK293) cells. Pranlukast inhibits VRAC voltage-independently, reversibly, and dose-dependently with a maximal efficacy of only ~50%. The CysLT1R pathway has been implicated in activation of VRAC in other cell types, prompting us to test whether pranlukast requires the CysLT1R for inhibition of VRAC. Quantitative PCR analysis demonstrated that CYSLTR1 mRNA is virtually undetectable in HEK293 cells. Furthermore, the CysLT1R agonist leukotriene D4 had no effect on VRAC activity and failed to stimulate Gq-coupled receptor signaling. Heterologous expression of the CysLT1R reconstituted LTD4-CysLT1R- Gq-calcium signaling in HEK293 cells but had no effect on VRAC inhibition by pranlukast. Finally, we show the CysLT1R antagonist zafirlukast inhibits VRAC with an IC50 of ~17 µM and does so with full efficacy. Our data suggest that both pranlukast and zafirlukast are likely direct channel inhibitors that work independently of the CysLT1R. This study provides clarifying insights into the putative role of leukotriene signaling in modulation of VRAC and identifies two new chemical scaffolds that can be used for development of more potent and specific VRAC inhibitors.
Collapse
Affiliation(s)
- Eric E. Figueroa
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Meghan Kramer
- 2Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, Tennessee
| | - Kevin Strange
- 2Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, Tennessee,3Novo Biosciences, Inc., Bar Harbor, Maine
| | - Jerod S. Denton
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee,2Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, Tennessee
| |
Collapse
|
26
|
Towards a TREK-1/2 (TWIK-Related K+ Channel 1 and 2) dual activator tool compound: Multi-dimensional optimization of BL-1249. Bioorg Med Chem Lett 2019; 29:1601-1604. [DOI: 10.1016/j.bmcl.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022]
|
27
|
Lv J, Liang Y, Zhang S, Lan Q, Xu Z, Wu X, Kang L, Ren J, Cao Y, Wu T, Lin KL, Yung KKL, Cao X, Pang J, Zhou P. DCPIB, an Inhibitor of Volume-Regulated Anion Channels, Distinctly Modulates K2P Channels. ACS Chem Neurosci 2019; 10:2786-2793. [PMID: 30935201 DOI: 10.1021/acschemneuro.9b00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
K2P potassium channels stabilize the resting membrane potential in nearly all cells and have been implicated in several neuronal, cardiovascular, and immune diseases. DCPIB, a known specific and potent inhibitor of volume-regulated anion channels (VRAC), has been reported to activate TREK1 and TREK2 in astrocytes and in vitro recently. In the present study, we demonstrated DCPIB also voltage dependently activated TRAAK besides TREK1/TREK2, showing DCPIB activated all TREK subfamily members. In contrast, the compound potently inhibited several other K2P channels with no voltage dependence, including TRESK, TASK1, and TASK3. DCPIB displayed superior selectivity toward TRESK with an IC50 of 0.14 μM, demonstrating at least 100-fold higher affinity over TREK1/TRAAK channels. Furthermore, the impaired ion selectivity filter region greatly impaired the activating effect of DCPIB on TREK1 but not the inhibitory effect of DCPIB on TRESK. This indicates distinct molecular determinants underlying the effect of DCPIB on TREK1 or TRESK channels. Our results showed that DCPIB played diverse effects on K2P channels and could be a useful tool for further investigating structure-function studies of K2P channels.
Collapse
Affiliation(s)
- Jinyan Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Qunsheng Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lijun Kang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ka Li Lin
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Wilson CS, Bach MD, Ashkavand Z, Norman KR, Martino N, Adam AP, Mongin AA. Metabolic constraints of swelling-activated glutamate release in astrocytes and their implication for ischemic tissue damage. J Neurochem 2019; 151:255-272. [PMID: 31032919 DOI: 10.1111/jnc.14711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/01/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
Volume-regulated anion channel (VRAC) is a glutamate-permeable channel that is activated by physiological and pathological cell swelling and promotes ischemic brain damage. However, because VRAC opening requires cytosolic ATP, it is not clear if and how its activity is sustained in the metabolically compromised CNS. In the present study, we used cultured astrocytes - the cell type which shows prominent swelling in stroke - to model how metabolic stress and changes in gene expression may impact VRAC function in the ischemic and post-ischemic brain. The metabolic state of primary rat astrocytes was modified with chemical inhibitors and examined using luciferin-luciferase ATP assays and a Seahorse analyzer. Swelling-activated glutamate release was quantified with the radiotracer D-[3 H]aspartate. The specific contribution of VRAC to swelling-activated glutamate efflux was validated by RNAi knockdown of the essential subunit, leucine-rich repeat-containing 8A (LRRC8A); expression levels of VRAC components were measured with qRT-PCR. Using this methodology, we found that complete metabolic inhibition with the glycolysis blocker 2-deoxy-D-glucose and the mitochondrial poison sodium cyanide reduced astrocytic ATP levels by > 90% and abolished glutamate release from swollen cells (via VRAC). When only mitochondrial respiration was inhibited by cyanide or rotenone, the intracellular ATP levels and VRAC activity were largely preserved. Bypassing glycolysis by providing the mitochondrial substrates pyruvate and/or glutamine led to partial recovery of ATP levels and VRAC activity. Unexpectedly, the metabolic block of VRAC was overridden when ATP-depleted cells were exposed to extreme cell swelling (≥ 50% reduction in medium osmolarity). Twenty-four hour anoxic adaptation caused a moderate reduction in the expression levels of the VRAC component LRRC8A, but no significant changes in VRAC activity. Overall, our findings suggest that (i) astrocytic VRAC activity and metabolism can be sustained by low levels of glucose and (ii) the inhibitory influence of diminishing ATP levels and the stimulatory effect of cellular swelling are the two major factors that govern VRAC activity in the ischemic brain.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Martin D Bach
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Zahra Ashkavand
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Kenneth R Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
29
|
The Volume-Regulated Anion Channel LRRC8/VRAC Is Dispensable for Cell Proliferation and Migration. Int J Mol Sci 2019; 20:ijms20112663. [PMID: 31151189 PMCID: PMC6600467 DOI: 10.3390/ijms20112663] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Cells possess the capability to adjust their volume for various physiological processes, presumably including cell proliferation and migration. The volume-regulated anion channel (VRAC), formed by LRRC8 heteromers, is critically involved in regulatory volume decrease of vertebrate cells. The VRAC has also been proposed to play a role in cell cycle progression and cellular motility. Indeed, recent reports corroborated this notion, with potentially important implications for the VRAC in cancer progression. In the present study, we examined the role of VRAC during cell proliferation and migration in several cell types, including C2C12 myoblasts, human colon cancer HCT116 cells, and U251 and U87 glioblastoma cells. Surprisingly, neither pharmacological inhibition of VRAC with 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid (DCPIB), carbenoxolone or 5-nitro-2-(3-phenylpropyl-amino)benzoic acid (NPPB), nor siRNA-mediated knockdown or gene knockout of the essential VRAC subunit LRRC8A affected cell growth and motility in any of the investigated cell lines. Additionally, we found no effect of the VRAC inhibition using siRNA treatment or DCPIB on PI3K/Akt signaling in glioblastoma cells. In summary, our work suggests that VRAC is dispensable for cell proliferation or migration.
Collapse
|
30
|
Caramia M, Sforna L, Franciolini F, Catacuzzeno L. The Volume-Regulated Anion Channel in Glioblastoma. Cancers (Basel) 2019; 11:cancers11030307. [PMID: 30841564 PMCID: PMC6468384 DOI: 10.3390/cancers11030307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Malignancy of glioblastoma multiforme (GBM), the most common and aggressive form of human brain tumor, strongly depends on its enhanced cell invasion and death evasion which make surgery and accompanying therapies highly ineffective. Several ion channels that regulate membrane potential, cytosolic Ca2+ concentration and cell volume in GBM cells play significant roles in sustaining these processes. Among them, the volume-regulated anion channel (VRAC), which mediates the swelling-activated chloride current (IClswell) and is highly expressed in GBM cells, arguably plays a major role. VRAC is primarily involved in reestablishing the original cell volume that may be lost under several physiopathological conditions, but also in sustaining the shape and cell volume changes needed for cell migration and proliferation. While experimentally VRAC is activated by exposing cells to hypotonic solutions that cause the increase of cell volume, in vivo it is thought to be controlled by several different stimuli and modulators. In this review we focus on our recent work showing that two conditions normally occurring in pathological GBM tissues, namely high serum levels and severe hypoxia, were both able to activate VRAC, and their activation was found to promote cell migration and resistance to cell death, both features enhancing GBM malignancy. Also, the fact that the signal transduction pathway leading to VRAC activation appears to involve GBM specific intracellular components, such as diacylglicerol kinase and phosphatidic acid, reportedly not involved in the activation of VRAC in healthy tissues, is a relevant finding. Based on these observations and the impact of VRAC in the physiopathology of GBM, targeting this channel or its intracellular regulators may represent an effective strategy to contrast this lethal tumor.
Collapse
Affiliation(s)
- Martino Caramia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy.
| | - Luigi Sforna
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy.
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy.
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy.
| |
Collapse
|
31
|
Canella R, Martini M, Cavicchio C, Cervellati F, Benedusi M, Valacchi G. Involvement of the TREK-1 channel in human alveolar cell membrane potential and its regulation by inhibitors of the chloride current. J Cell Physiol 2019; 234:17704-17713. [PMID: 30805940 DOI: 10.1002/jcp.28396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
K+ channels of the alveolar epithelium control the driving force acting on the ionic and solvent flow through the cell membrane contributing to the maintenance of cell volume and the constitution of epithelial lining fluid. In the present work, we analyze the effect of the Cl- channel inhibitors: (4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-inden-5-yl)oxy] butanoic acid (DCPIB) and 9-anthracenecarboxylic acid (9-AC) on the total current in a type II pneumocytes (A549 cell line) model by patch clamp, immunocytochemical, and gene knockdown techniques. We noted that DCPIB and 9-AC promote the activation of K conductance. In fact, they significantly increase the intensity of the current and shift its reversal potential to values more negative than the control. By silencing outward rectifier channel in its anoctamin 6 portion, we excluded a direct involvement of Cl- ions in modulation of IK and, by means of functional tests with its specific inhibitor spadin, we identified the TREK-1 channel as the presumable target of both drugs. As the activity of TREK-1 has a key role for the correct functioning of the alveolar epithelium, the identification of DCPIB and 9-AC molecules as its activators suggests their possible use to build new pharmacological tools for the modulation of this channel.
Collapse
Affiliation(s)
- Rita Canella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Martini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlotta Cavicchio
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| |
Collapse
|
32
|
Schewe M, Sun H, Mert Ü, Mackenzie A, Pike ACW, Schulz F, Constantin C, Vowinkel KS, Conrad LJ, Kiper AK, Gonzalez W, Musinszki M, Tegtmeier M, Pryde DC, Belabed H, Nazare M, de Groot BL, Decher N, Fakler B, Carpenter EP, Tucker SJ, Baukrowitz T. A pharmacological master key mechanism that unlocks the selectivity filter gate in K + channels. Science 2019; 363:875-880. [PMID: 30792303 PMCID: PMC6982535 DOI: 10.1126/science.aav0569] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Potassium (K+) channels have been evolutionarily tuned for activation by diverse biological stimuli, and pharmacological activation is thought to target these specific gating mechanisms. Here we report a class of negatively charged activators (NCAs) that bypass the specific mechanisms but act as master keys to open K+ channels gated at their selectivity filter (SF), including many two-pore domain K+ (K2P) channels, voltage-gated hERG (human ether-à-go-go-related gene) channels and calcium (Ca2+)-activated big-conductance potassium (BK)-type channels. Functional analysis, x-ray crystallography, and molecular dynamics simulations revealed that the NCAs bind to similar sites below the SF, increase pore and SF K+ occupancy, and open the filter gate. These results uncover an unrecognized polypharmacology among K+ channel activators and highlight a filter gating machinery that is conserved across different families of K+ channels with implications for rational drug design.
Collapse
Affiliation(s)
- Marcus Schewe
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany.
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Structural Biology, 13125 Berlin, Germany
| | - Ümit Mert
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Alexandra Mackenzie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Friederike Schulz
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Cristina Constantin
- Institute of Physiology II, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
- Centers for Biological Signaling Studies CIBSS and BIOSS, 79104 Freiburg, Germany
| | - Kirsty S Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Linus J Conrad
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Wendy Gonzalez
- Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, 3465548 Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3465548 Talca, Chile
| | - Marianne Musinszki
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Marie Tegtmeier
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - David C Pryde
- Pfizer Worldwide Medicinal Chemistry, Neuroscience and Pain Research Unit, Portway Building, Granta Park, Great Abington, Cambridgeshire CB21 6GS, UK
| | - Hassane Belabed
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Medicinal Chemistry, 13125 Berlin, Germany
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Medicinal Chemistry, 13125 Berlin, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Bernd Fakler
- Institute of Physiology II, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
- Centers for Biological Signaling Studies CIBSS and BIOSS, 79104 Freiburg, Germany
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK
| | - Stephen J Tucker
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany.
| |
Collapse
|
33
|
Osei-Owusu J, Yang J, Vitery MDC, Qiu Z. Molecular Biology and Physiology of Volume-Regulated Anion Channel (VRAC). CURRENT TOPICS IN MEMBRANES 2018; 81:177-203. [PMID: 30243432 DOI: 10.1016/bs.ctm.2018.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Volume-Regulated Anion Channel (VRAC) is activated by cell swelling and plays a key role in cell volume regulation. VRAC is ubiquitously expressed in vertebrate cells and also implicated in many other physiological and cellular processes including fluid secretion, glutamate release, membrane potential regulation, cell proliferation, migration, and apoptosis. Although its biophysical properties have been well characterized, the molecular identity of VRAC remained a mystery for almost three decades. The field was transformed by recent discoveries showing that the leucine-rich repeat-containing protein 8A (LRRC8A, also named SWELL1) and its four other homologs form heteromeric VRAC channels. The composition of LRRC8 subunits determines channel properties and substrate selectivity of a large variety of different VRACs. Incorporating purified SWELL1-containing protein complexes into lipid bilayers is sufficient to reconstitute channel activities, a finding that supports the decrease in intracellular ionic strength as the mechanism of VRAC activation during cell swelling. Characterization of Swell1 knockout mice uncovers the important role of VRAC in T cell development, pancreatic β-cell glucose-stimulated insulin secretion, and adipocyte metabolic function. The ability to permeate organic osmolytes and metabolites is a major feature of VRAC. The list of VRAC substrates is expected to grow, now also including some cancer drugs and antibiotics even under non-cell swelling conditions. Therefore, a critical role of VRAC in drug resistance and cell-cell communication is emerging. This review summarizes the exciting recent progress on the structure-function relationship and physiology of VRAC and discusses key future questions to be solved.
Collapse
Affiliation(s)
- James Osei-Owusu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maria Del Carmen Vitery
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Formaggio F, Saracino E, Mola MG, Rao SB, Amiry-Moghaddam M, Muccini M, Zamboni R, Nicchia GP, Caprini M, Benfenati V. LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes. FASEB J 2018; 33:101-113. [PMID: 29957062 DOI: 10.1096/fj.201701397rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Consolidated evidence indicates that astroglial cells are critical in the homeostatic regulation of cellular volume by means of ion channels and aquaporin-4. Volume-regulated anion channel (VRAC) is the chloride channel that is activated upon cell swelling and critically contributes to cell volume regulation in astrocytes. The molecular identity of VRAC has been recently defined, revealing that it belongs to the leucine-rich repeat-containing 8 (LRRC8) protein family. However, there is a lack of evidence demonstrating that LRRC8A underpins VRAC currents in astrocyte. Nonetheless, direct evidence of the role of LRRC8A in astrocytic regulatory volume decrease remains to be proved. Here, we aim to bridge this gap in knowledge by combining RNA interference specific for LRRC8A with patch-clamp analyses and a water-permeability assay. We demonstrated that LRRC8A molecular expression is essential for swelling-activated chloride current via VRAC in primary-cultured cortical astrocytes. The knockdown of LRRC8A with a specific short interference RNA abolished the recovery of the cell volume after swelling induced by hypotonic challenge. In addition, immunoblotting, immunofluorescence, confocal imaging, and immunogold electron microscopy demonstrated that LRRC8A is expressed in the plasma membrane of primary cortical astrocytes and in situ in astrocytes at the perivascular interface with endothelial cells. Collectively, our results suggest that LRRC8A is an essential subunit of VRAC and a key factor for astroglial volume homeostasis.-Formaggio, F., Saracino, E., Mola, M. G., Rao, S. B., Amiry-Moghaddam, M., Muccini, M., Zamboni, R., Nicchia, G. P., Caprini, M., Benfenati, V. LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes.
Collapse
Affiliation(s)
- Francesco Formaggio
- Laboratory of Human and General Physiology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Institute for the Study of Nanostructured Materials, National Research Council of Italy, Bologna, Italy
| | - Emanuela Saracino
- Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Bologna, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies, and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Shreyas Balachandra Rao
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mahmood Amiry-Moghaddam
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michele Muccini
- Institute for the Study of Nanostructured Materials, National Research Council of Italy, Bologna, Italy
| | - Roberto Zamboni
- Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Bologna, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies, and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy.,Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | - Marco Caprini
- Laboratory of Human and General Physiology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Institute for the Study of Nanostructured Materials, National Research Council of Italy, Bologna, Italy
| | - Valentina Benfenati
- Institute for the Study of Nanostructured Materials, National Research Council of Italy, Bologna, Italy.,Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Bologna, Italy
| |
Collapse
|
35
|
Stuhlmann T, Planells-Cases R, Jentsch TJ. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat Commun 2018. [PMID: 29773801 DOI: 10.1038/s41467‐018‐04353‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glucose homeostasis depends critically on insulin that is secreted by pancreatic β-cells. Serum glucose, which is directly sensed by β-cells, stimulates depolarization- and Ca2+-dependent exocytosis of insulin granules. Here we show that pancreatic islets prominently express LRRC8A and LRRC8D, subunits of volume-regulated VRAC anion channels. Hypotonicity- or glucose-induced β-cell swelling elicits canonical LRRC8A-dependent VRAC currents that depolarize β-cells to an extent that causes electrical excitation. Glucose-induced excitation and Ca2+ responses are delayed in onset, but not abolished, in β-cells lacking the essential VRAC subunit LRRC8A. Whereas Lrrc8a disruption does not affect tolbutamide- or high-K+-induced insulin secretion from pancreatic islets, it reduces first-phase glucose-induced insulin secretion. Mice lacking VRAC in β-cells have normal resting serum glucose levels but impaired glucose tolerance. We propose that opening of LRRC8/VRAC channels increases glucose sensitivity and insulin secretion of β-cells synergistically with KATP closure. Neurotransmitter-permeable LRRC8D-containing VRACs might have additional roles in autocrine/paracrine signaling within islets.
Collapse
Affiliation(s)
- Till Stuhlmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Graduate Program of the Faculty for Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
36
|
Stuhlmann T, Planells-Cases R, Jentsch TJ. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat Commun 2018; 9:1974. [PMID: 29773801 PMCID: PMC5958052 DOI: 10.1038/s41467-018-04353-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Glucose homeostasis depends critically on insulin that is secreted by pancreatic β-cells. Serum glucose, which is directly sensed by β-cells, stimulates depolarization- and Ca2+-dependent exocytosis of insulin granules. Here we show that pancreatic islets prominently express LRRC8A and LRRC8D, subunits of volume-regulated VRAC anion channels. Hypotonicity- or glucose-induced β-cell swelling elicits canonical LRRC8A-dependent VRAC currents that depolarize β-cells to an extent that causes electrical excitation. Glucose-induced excitation and Ca2+ responses are delayed in onset, but not abolished, in β-cells lacking the essential VRAC subunit LRRC8A. Whereas Lrrc8a disruption does not affect tolbutamide- or high-K+-induced insulin secretion from pancreatic islets, it reduces first-phase glucose-induced insulin secretion. Mice lacking VRAC in β-cells have normal resting serum glucose levels but impaired glucose tolerance. We propose that opening of LRRC8/VRAC channels increases glucose sensitivity and insulin secretion of β-cells synergistically with KATP closure. Neurotransmitter-permeable LRRC8D-containing VRACs might have additional roles in autocrine/paracrine signaling within islets.
Collapse
Affiliation(s)
- Till Stuhlmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Graduate Program of the Faculty for Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
37
|
Wong R, Chen W, Zhong X, Rutka JT, Feng ZP, Sun HS. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion. J Cell Physiol 2018; 233:363-370. [PMID: 28262948 DOI: 10.1002/jcp.25891] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current ICl,swell . In this study, we investigated the effects of ICl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of ICl,swell , DCPIB, potently reduced the ICl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the ICl,swell may be a potential drug target for GBM.
Collapse
Affiliation(s)
- Raymond Wong
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Wenliang Chen
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Xiao Zhong
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - James T Rutka
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Zhong-Ping Feng
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Departments of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Gaitán-Peñas H, Gradogna A, Laparra-Cuervo L, Solsona C, Fernández-Dueñas V, Barrallo-Gimeno A, Ciruela F, Lakadamyali M, Pusch M, Estévez R. Investigation of LRRC8-Mediated Volume-Regulated Anion Currents in Xenopus Oocytes. Biophys J 2017; 111:1429-1443. [PMID: 27705766 PMCID: PMC5052465 DOI: 10.1016/j.bpj.2016.08.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Volume-regulated anion channels (VRACs) play an important role in controlling cell volume by opening upon cell swelling. Recent work has shown that heteromers of LRRC8A with other LRRC8 members (B, C, D, and E) form the VRAC. Here, we used Xenopus oocytes as a simple system to study LRRC8 proteins. We discovered that adding fluorescent proteins to the C-terminus resulted in constitutive anion channel activity. Using these constructs, we reproduced previous findings indicating that LRRC8 heteromers mediate anion and osmolyte flux with subunit-dependent kinetics and selectivity. Additionally, we found that LRRC8 heteromers mediate glutamate and ATP flux and that the inhibitor carbenoxolone acts from the extracellular side, binding to probably more than one site. Our results also suggest that the stoichiometry of LRRC8 heteromers is variable, with a number of subunits ≥6, and that the heteromer composition depends on the relative expression of different subunits. The system described here enables easy structure-function analysis of LRRC8 proteins.
Collapse
Affiliation(s)
- Héctor Gaitán-Peñas
- Unitat de Fisiología, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; U-750, CIBERER, ISCIII, Spain
| | | | - Lara Laparra-Cuervo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Carles Solsona
- Unitat de Neurobiologia, Departament Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat
| | - Victor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat
| | - Alejandro Barrallo-Gimeno
- Unitat de Fisiología, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; U-750, CIBERER, ISCIII, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat
| | - Melike Lakadamyali
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | | | - Raúl Estévez
- Unitat de Fisiología, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; U-750, CIBERER, ISCIII, Spain.
| |
Collapse
|
39
|
Friard J, Tauc M, Cougnon M, Compan V, Duranton C, Rubera I. Comparative Effects of Chloride Channel Inhibitors on LRRC8/VRAC-Mediated Chloride Conductance. Front Pharmacol 2017; 8:328. [PMID: 28620305 PMCID: PMC5449500 DOI: 10.3389/fphar.2017.00328] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023] Open
Abstract
Chloride channels play an essential role in a variety of physiological functions and in human diseases. Historically, the field of chloride channels has long been neglected owing to the lack of powerful selective pharmacological agents that are needed to overcome the technical challenge of characterizing the molecular identities of these channels. Recently, members of the LRRC8 family have been shown to be essential for generating the volume-regulated anion channel (VRAC) current, a chloride conductance that governs the regulatory volume decrease (RVD) process. The inhibitory effects of six commonly used chloride channel inhibitors on VRAC/LRRC8-mediated chloride transport were tested in wild-type HEK-293 cells expressing LRRC8 proteins and devoid of other types of chloride channels (CFTR and ANO1/2). We explored the effectiveness of the inhibitors using the patch-clamp whole-cell approach and fluorescence-based quantification of cellular volume changes during hypotonic challenge. Both DCPIB and NFA inhibited VRAC current in a whole-cell configuration, with IC50 values of 5 ± 1 μM and 55 ± 2 μM, respectively. Surprisingly, GlyH-101 and PPQ-102, two CFTR inhibitors, also inhibited VRAC conductance at concentrations in the range of their current use, with IC50 values of 10 ± 1 μM and 20 ± 1 μM, respectively. T16Ainh-A01, a so-called specific inhibitor of calcium-activated Cl- conductance, blocked the chloride current triggered by hypo-osmotic challenge, with an IC50 of 6 ± 1 μM. Moreover, RVD following hypotonic challenge was dramatically reduced by these inhibitors. CFTRinh-172 was the only inhibitor that had almost no effect on VRAC/LRRC8-mediated chloride conductance. All inhibitors tested except CFTRinh-172 inhibited VRAC/LRRC8-mediated chloride conductance and cellular volume changes during hypotonic challenge. These results shed light on the apparent lack of chloride channel inhibitors specificity and raise the question of how these inhibitors actually block chloride conductances.
Collapse
Affiliation(s)
- Jonas Friard
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| | - Michel Tauc
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| | - Marc Cougnon
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| | - Vincent Compan
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de MontpellierMontpellier, France
| | - Christophe Duranton
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| | - Isabelle Rubera
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| |
Collapse
|
40
|
Foote JR, Behe P, Frampton M, Levine AP, Segal AW. An Exploration of Charge Compensating Ion Channels across the Phagocytic Vacuole of Neutrophils. Front Pharmacol 2017; 8:94. [PMID: 28293191 PMCID: PMC5329019 DOI: 10.3389/fphar.2017.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Neutrophils phagocytosing bacteria and fungi exhibit a burst of non-mitochondrial respiration that is required to kill and digest the engulfed microbes. This respiration is accomplished by the movement of electrons across the wall of the phagocytic vacuole by the neutrophil NADPH oxidase, NOX2. In this study, we have attempted to identify the non-proton ion channels or transporters involved in charge compensation by examining the effect of inhibitors on vacuolar pH and cross-sectional area, and on oxygen consumption. The chloride channel inhibitors 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid (DCPIB) and flufenamic acid (FFA) were the most effective inhibitors of alkalinisation in human neutrophil vacuoles, suggesting an efflux of chloride from the vacuole. The proton channel inhibitor, zinc (Zn2+), combined with DCPIB caused more vacuolar swelling than either compound alone, suggesting the conductance of osmotically active cations into the vacuole. Support for cation influx was provided by the broad-spectrum cation transport inhibitors anandamide and quinidine which inhibited vacuolar alkalinisation and swelling when applied with zinc. Oxygen consumption was generally unaffected by these anion or cation inhibitors alone, but when combined with Zn2+ it was dramatically reduced, suggesting that multiple channels in combination can compensate the charge. In an attempt to identify specific channels, we tested neutrophils from knock-out mouse models including CLIC1, ClC3, ClC4, ClC7, KCC3, KCNQ1, KCNE3, KCNJ15, TRPC1/3/5/6, TRPA1/TRPV1, TRPM2, and TRPV2, and double knockouts of CLIC1, ClC3, KCC3, TRPM2, and KCNQ1 with HVCN1, and humans with channelopathies involving BEST1, ClC7, CFTR, and MCOLN1. No gross abnormalities in vacuolar pH or area were found in any of these cells suggesting that we had not tested the correct channel, or that there is redundancy in the system. The respiratory burst was suppressed in the KCC3-/- and enhanced in the CLIC1-/- cells, but was normal in all others, including ClC3-/-. These results suggest charge compensation by a chloride conductance out of the vacuole and by cation/s into it. The identity of these channels remains to be established.
Collapse
Affiliation(s)
- Juliet R Foote
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| | - Philippe Behe
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| | - Mathew Frampton
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| | - Adam P Levine
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| | - Anthony W Segal
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| |
Collapse
|
41
|
Vivier D, Soussia IB, Rodrigues N, Lolignier S, Devilliers M, Chatelain FC, Prival L, Chapuy E, Bourdier G, Bennis K, Lesage F, Eschalier A, Busserolles J, Ducki S. Development of the First Two-Pore Domain Potassium Channel TWIK-Related K+ Channel 1-Selective Agonist Possessing in Vivo Antinociceptive Activity. J Med Chem 2017; 60:1076-1088. [DOI: 10.1021/acs.jmedchem.6b01285] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Delphine Vivier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Ismail Ben Soussia
- Labex
ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université Côte d’Azur, F-06560 Valbonne, France
| | - Nuno Rodrigues
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Maïly Devilliers
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Franck C. Chatelain
- Labex
ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université Côte d’Azur, F-06560 Valbonne, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Geoffrey Bourdier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Khalil Bennis
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Florian Lesage
- Labex
ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université Côte d’Azur, F-06560 Valbonne, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Pharmacologie, F-63003 Clermont-Ferrand, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Sylvie Ducki
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
42
|
Ryoo K, Park JY. Two-pore Domain Potassium Channels in Astrocytes. Exp Neurobiol 2016; 25:222-232. [PMID: 27790056 PMCID: PMC5081468 DOI: 10.5607/en.2016.25.5.222] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes.
Collapse
Affiliation(s)
- Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| |
Collapse
|
43
|
Sforna L, Cenciarini M, Belia S, Michelucci A, Pessia M, Franciolini F, Catacuzzeno L. Hypoxia Modulates the Swelling-Activated Cl Current in Human Glioblastoma Cells: Role in Volume Regulation and Cell Survival. J Cell Physiol 2016; 232:91-100. [PMID: 27028592 DOI: 10.1002/jcp.25393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/25/2016] [Indexed: 12/18/2022]
Abstract
The malignancy of glioblastoma multiforme (GBM), the most common human brain tumor, correlates with the presence of hypoxic areas, but the underlying mechanisms are unclear. GBM cells express abundant Cl channels whose activity supports cell volume and membrane potential changes, ultimately leading to cell proliferation, migration, and escaping death. In non-tumor tissues Cl channels are modulated by hypoxia, which prompted us to verify whether hypoxia would also modulate Cl channels in GBM cells. Our results show that in GBM cell lines, acute application of a hypoxic solution activates a Cl current displaying the biophysical and pharmacological features of the swelling-activated Cl current (ICl,swell ). We also found that acute hypoxia increased the cell volume by about 20%, and a 30% hypertonic solution partially inhibited the hypoxia-activated Cl current, suggesting that cell swelling and the activation of the Cl current are sequential events. Notably, the hypoxia-induced cell swelling was followed by a regulatory volume decrease (RVD) mediated mainly by ICl,swell . Since, a hypoxia-induced prolonged cell swelling is usually regarded as a death insult, we hypothesized that the hypoxia-activated Cl current could limit cell swelling and prevent necrotic death of GBM cells under hypoxic conditions. In accordance, we found that the ICl,swell inhibitor DCPIB hampered the RVD process, and more importantly it sensibly increased the hypoxia-induced necrotic death in these cells. Taken together, these results suggest that Cl channels are strongly involved in the survival of GBM cells in a hypoxic environment, and may thus represent a new therapeutic target for this malignant tumor. J. Cell. Physiol. 232: 91-100, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.,Department of Experimental Medicine, University of Perugia, Italy
| | - Marta Cenciarini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Antonio Michelucci
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti 'G. d'Annunzio', Italy
| | - Mauro Pessia
- Department of Experimental Medicine, University of Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
44
|
Banerjee A, Ghatak S, Sikdar SK. l-Lactate mediates neuroprotection against ischaemia by increasing TREK1 channel expression in rat hippocampal astrocytes in vitro. J Neurochem 2016; 138:265-81. [PMID: 27062641 DOI: 10.1111/jnc.13638] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022]
Abstract
Brain ischaemia is a highly debilitating condition where shortage of oxygen and glucose leads to profuse cell death. Lactate is a neuroprotective metabolite whose concentrations increase up to 15-30 mmol/L during ischaemia and TREK1 is a neuroprotective potassium channel which is upregulated during ischaemia. The aim of this study was to investigate the effect of l-lactate on TREK1 expression and to evaluate the role of l-lactate-TREK1 interaction in conferring neuroprotection in ischaemia-prone hippocampus. We show that 15-30 mmol/L l-lactate increases functional TREK1 protein expression by 1.5-3-fold in hippocampal astrocytes using immunostaining and electrophysiology. Studies with transcription blocker actinomycin-D and quantitative PCR indicate that the increase in TREK1 expression is due to enhanced TREK1 mRNA transcription. We further report that l-lactate-mediated increase in TREK1 expression is via protein kinase A (PKA)-dependent pathway. This is the first report of an ischaemic metabolite affecting functional expression of an ion channel. Our studies in an in vitro model of ischaemia using oxygen glucose deprivation show that 30 mmol/L l-lactate fails to reduce cell death in rat hippocampal slices treated with TREK1 blockers, PKA inhibitors and gliotoxin. The above effects were specific to l-lactate as pyruvate failed to increase TREK1 expression and reduce cell death. l-Lactate-induced TREK1 upregulation is a novel finding of physiological significance as TREK1 channels contribute to neuroprotection by enhancing potassium buffering and glutamate clearance capacity of astrocytes. We propose that l-lactate promotes neuronal survival in hippocampus by increasing TREK1 channel expression via PKA pathway in astrocytes during ischaemia. Insufficient blood supply to the brain leads to cerebral ischaemia and increase in extracellular lactate concentrations. We incubated hippocampal astrocytes in lactate and observed increase in TREK1 channel expression via protein kinase A (PKA). Inhibition of TREK1, PKA and metabolic impairment of astrocytes prevented lactate from reducing cell death in ischaemic hippocampus. This pathway serves as an alternate mechanism of neuroprotection. Cover image for this issue: doi: 10.1111/jnc.13326.
Collapse
Affiliation(s)
- Aditi Banerjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Swagata Ghatak
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
45
|
The ICl,swell inhibitor DCPIB blocks Kir channels that possess weak affinity for PIP2. Pflugers Arch 2016; 468:817-24. [PMID: 26837888 DOI: 10.1007/s00424-016-1794-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/17/2016] [Accepted: 01/20/2016] [Indexed: 12/15/2022]
Abstract
Inwardly rectifying K(+) (Kir) channels are important contributors to the resting membrane potential and regulate cellular excitability. The activity of Kir channels depends critically on the phospholipid PIP2. Several modulators of the activity of Kir channels alter the apparent affinity of the channel to PIP2. Channels with high apparent affinity to PIP2 may not respond to a given modulator, but mutations that decrease such affinity can render the channel susceptible to modulation. Here, we identify a known inhibitor of the swelling-activated Cl(-) current, DCPIB, as an effective inhibitor of a number of Kir channels both in native cardiac cells and in heterologous expression systems. We show that the apparent affinity to PIP2 determines whether DCPIB will serve as an efficient blocker of Kir channels. These effects are consistent with a model in which DCPIB competes with PIP2 for a common binding site.
Collapse
|
46
|
Lakomá J, Donadio V, Liguori R, Caprini M. Characterization of Human Dermal Fibroblasts in Fabry Disease. J Cell Physiol 2016; 231:192-203. [PMID: 26058984 DOI: 10.1002/jcp.25072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
Fabry disease (FD) is a hereditary X-linked metabolic lysosomal storage disorder due to insufficient amounts or a complete lack of the lysosomal enzyme α-galactosidase A (α-GalA). The loss of α-GalA activity leads to an abnormal accumulation of globotriaosylcerami (Gb3) in lysosomes and other cellular components of different tissues and cell types, affecting the cell function. However, whether these biochemical alterations also modify functional processes associated to the cell mitotic ability is still unknown. The goal of the present study was to characterize lineages of human dermal fibroblasts (HDFs) of FD patients and healthy controls focusing on Gb3 accumulation, expression of chloride channels that regulate proliferation, and proliferative activity. The biochemical and functional analyses indicate the existence of quantitative differences in some but not all the parameters of cytoskeletal organization, proliferation, and differentiation processes.
Collapse
Affiliation(s)
- Jarmila Lakomá
- Laboratory of Human General Physiology, Department of Pharmacy Biotechnology FaBiT, University of Bologna, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences, AUSL Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences, AUSL Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Caprini
- Laboratory of Human General Physiology, Department of Pharmacy Biotechnology FaBiT, University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Vivier D, Bennis K, Lesage F, Ducki S. Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target? J Med Chem 2015; 59:5149-57. [PMID: 26588045 DOI: 10.1021/acs.jmedchem.5b00671] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Potassium (K(+)) channels are membrane proteins expressed in most living cells that selectively control the flow of K(+) ions. More than 80 genes encode the K(+) channel subunits in the human genome. The TWIK-related K(+) channel (TREK-1) belongs to the two-pore domain K(+) channels (K2P) and displays various properties including sensitivity to physical (membrane stretch, acidosis, temperature) and chemical stimuli (signaling lipids, volatile anesthetics). The distribution of TREK-1 in the central nervous system, coupled with the physiological consequences of its opening and closing, leads to the emergence of this channel as an attractive therapeutic target. We review the TREK-1 channel, its structural and functional properties, and the pharmacological agents (agonists and antagonists) able to modulate its gating.
Collapse
Affiliation(s)
- Delphine Vivier
- Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Khalil Bennis
- Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Florian Lesage
- Labex ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université de Nice Sophia Antipolis, F-06560 Valbonne, France
| | - Sylvie Ducki
- Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| |
Collapse
|
48
|
Mongin AA. Volume-regulated anion channel--a frenemy within the brain. Pflugers Arch 2015; 468:421-41. [PMID: 26620797 DOI: 10.1007/s00424-015-1765-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
| |
Collapse
|
49
|
Ghatak S, Banerjee A, Sikdar SK. Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. J Physiol 2015; 594:59-81. [PMID: 26445100 DOI: 10.1113/jp270706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/21/2015] [Indexed: 02/01/2023] Open
Abstract
KEY POINTS The physiological metabolite, lactate and the two-pore domain leak potassium channel, TREK1 are known neuroprotectants against cerebral ischaemia. However, it is not known whether lactate interacts with TREK1 channel to provide neuroprotection. In this study we show that lactate increases TREK1 channel activity and hyperpolarizes CA1 stratum radiatum astrocytes in hippocampal slices. Lactate increases open probability and decreases longer close time of the human (h)TREK1 channel in a concentration dependent manner. Lactate interacts with histidine 328 (H328) in the carboxy terminal domain of hTREK1 channel to decrease its dwell time in the longer closed state. This interaction was dependent on the charge on H328. Lactate-insensitive mutant H328A hTREK1 showed pH sensitivity similar to wild-type hTREK1, indicating that the effect of lactate on hTREK1 is independent of pH change. A rise in lactate concentration and the leak potassium channel TREK1 have been independently associated with cerebral ischaemia. Recent literature suggests lactate to be neuroprotective and TREK1 knockout mice show an increased sensitivity to brain and spinal cord ischaemia; however, the connecting link between the two is missing. Therefore we hypothesized that lactate might interact with TREK1 channels. In the present study, we show that lactate at ischaemic concentrations (15-30 mm) at pH 7.4 increases TREK1 current in CA1 stratum radiatum astrocytes and causes membrane hyperpolarization. We confirm the intracellular action of lactate on TREK1 in hippocampal slices using monocarboxylate transporter blockers and at single channel level in cell-free inside-out membrane patches. The intracellular effect of lactate on TREK1 is specific since other monocarboxylates such as pyruvate and acetate at pH 7.4 failed to increase TREK1 current. Deletion and point mutation experiments suggest that lactate decreases the longer close dwell time incrementally with increase in lactate concentration by interacting with the histidine residue at position 328 (H328) in the carboxy terminal domain of the TREK1 channel. The interaction of lactate with H328 is dependent on the charge on the histidine residue since isosteric mutation of H328 to glutamine did not show an increase in TREK1 channel activity with lactate. This is the first demonstration of a direct effect of lactate on ion channel activity. The action of lactate on the TREK1 channel signifies a separate neuroprotective mechanism in ischaemia since it was found to be independent of the effect of acidic pH on channel activity.
Collapse
Affiliation(s)
- Swagata Ghatak
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Aditi Banerjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
50
|
Fujii T, Takahashi Y, Takeshima H, Saitoh C, Shimizu T, Takeguchi N, Sakai H. Inhibition of gastric H+,K+-ATPase by 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), an inhibitor of volume-regulated anion channel. Eur J Pharmacol 2015; 765:34-41. [PMID: 26277321 DOI: 10.1016/j.ejphar.2015.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/24/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022]
Abstract
4-(2-Butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB) has been used as an inhibitor of volume-regulated anion channel (VRAC), which is expressed in almost all cells (IC50 is around 4 µM). Here, we found that DCPIB significantly inhibited the activities of gastric proton pump (H+,K+-ATPase) in isolated gastric tubulovesicles and the membrane sample of the H+,K+-ATPase-expressing cells, and their IC50 values were around 9 µM. In the tubulovesicles, no significant expression of leucine rich repeat containing 8 family member A (LRRC8A), an essential component of VRAC, was observed. The inhibitory effect of DCPIB was also found in the membrane sample obtained from the cells in which LRRC8A had been knocked down. On the other hand, DCPIB had no significant effect on the activity of Na+,K+-ATPase or Ca2+-ATPase. In the H+,K+-ATPase-expressing cells, DCPIB inhibited the 86Rb+ transport activity of H+,K+-ATPase but not that of Na+,K+-ATPase. DCPIB had no effect on the activity of Cl- channels other than VRAC in the cells. These results suggest that DCPIB directly inhibits H+,K+-ATPase activity. DCPIB may be a beneficial tool for studying the H+,K+-ATPase function in vitro.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuji Takahashi
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Chisato Saitoh
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Noriaki Takeguchi
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|