1
|
Li P, Wang J, Wang M, Chen X, Zhu H, Dong M. Development of GluN2A NMDA receptor positive allosteric modulators: Recent advances and perspectives. Bioorg Med Chem 2025; 124:118194. [PMID: 40239379 DOI: 10.1016/j.bmc.2025.118194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
N-methyl-d-aspartate (NMDA) receptors, functioning as glutamate-gated ion channels, mediate the permeation of Ca2+ and are essential for excitatory synaptic transmission and synaptic plasticity within the central nervous system (CNS). During brain development, there is a switch from an early dominance of GluN2B subunit expression to the incorporation of GluN2A subunits at mature synapses. NMDARs hypofunction is implicated in various psychiatric disorders, and activation of NMDARs containing GluN2A has recently attracted attention as a promising therapeutic approach for treating these diseases. This review focuses on the selective positive allosteric modulators (PAMs) that specifically target the ligand-binding domain (LBD) and N-terminal domain (NTD) regions of GluN2A subtype, as well as non-subunit selective PAMs, and discusses their implications in neuropsychiatric diseases such as stroke, depression, Alzheimer's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Ping Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Jiacheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Mengjiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China; National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongyu Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
2
|
Ju J, Li Z, Liu J, Peng X, Gao F. Biased Opioid Receptor Agonists: Balancing Analgesic Efficacy and Side-Effect Profiles. Int J Mol Sci 2025; 26:1862. [PMID: 40076488 PMCID: PMC11899445 DOI: 10.3390/ijms26051862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Opioids are the most effective option for severe pain. However, it is well documented that the side effects associated with prolonged opioid use significantly constrain dosage in the clinical setting. Recently, researchers have concentrated on the development of biased opioid receptor agonists that preferentially activate the G protein signaling pathway over β-arrestin signaling. This approach is based on the hypothesis that G protein signaling mediates analgesic effects, whereas β-arrestin signaling is implicated in adverse side effects. Although certain studies have demonstrated that the absence or inhibition of β-arrestin signaling can mitigate the incidence of side effects, recent research appears to challenge these earlier findings. In-depth investigations into biased signal transduction of opioid receptor agonists have been conducted, potentially offering novel insights for the development of biased opioid receptors. Consequently, this review elucidates the contradictory roles of β-arrestin signaling in the adverse reactions associated with opioid receptor activation. Furthermore, a comparative analysis was conducted to evaluate the efficacy of the classic G protein-biased agonists, TRV130 and PZM21, relative to the traditional non-biased agonist morphine. This review aims to inform the development of novel analgesic drugs that can optimize therapeutic efficacy and safety, while minimizing adverse reactions to the greatest extent possible.
Collapse
Affiliation(s)
| | | | | | | | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.J.); (Z.L.); (J.L.); (X.P.)
| |
Collapse
|
3
|
Ramos-Gonzalez N, Varga BR, Majumdar S. Advances in the structural understanding of opioid allostery. Trends Pharmacol Sci 2025; 46:98-101. [PMID: 39827063 PMCID: PMC12001378 DOI: 10.1016/j.tips.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Activation of the μ opioid receptor (MOR) can give analgesia, but also has dangerous side effects. Drugs that target MOR through an allosteric site, meaning they bind outside of the usual pocket, present a novel mode of receptor activation with different pharmacology relative to orthosteric drugs. Recent structural studies give valuable new information on how allosteric modulators interact with MOR.
Collapse
Affiliation(s)
- Nokomis Ramos-Gonzalez
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA; Center for Clinical Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - Balazs R Varga
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA; Center for Clinical Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - Susruta Majumdar
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA; Center for Clinical Pharmacology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
4
|
Li M, Gan X, Liu K, Walajapet R, Stanczyk MA, Stewart HC, Rech JC, White AD, Traynor JR. Structure-Activity Relationships and Molecular Pharmacology of Positive Allosteric Modulators of the Mu-Opioid Receptor. ACS Chem Neurosci 2025; 16:16-29. [PMID: 39661492 DOI: 10.1021/acschemneuro.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Positive allosteric modulation of the mu-opioid receptor is a promising strategy to address the ever-growing problem of acute and chronic pain management. Positive allosteric modulators (PAMs) of the mu-opioid receptor could be employed to enhance the efficacy of endogenous opioid peptides to a degree that provides pain relief without the need for traditional opioid drugs. Alternatively, PAMs might be used to enhance the action of opioid drugs and so provide an opioid-sparing effect, allowing for the use of lower doses of opioid agonists and potentially decreasing associated side effects. BMS-986122 (2-(3-bromo-4-methoxyphenyl)-3-[(4-chlorophenyl)-sulfonyl]-thiazolidine) has been previously identified as a PAM of the mu-opioid receptor. In the present work, we have designed and synthesized 33 analogs of BMS-986122 to explore the structure-activity relationships of this scaffold and confirm its allosteric mechanism of action. Among several newly identified modulators, the most promising compound (14b) had improved activity to increase the in vitro potency of the standard mu-opioid agonist DAMGO and showed in vivo activity in mice to enhance the antinociceptive action of morphine.
Collapse
Affiliation(s)
- Mengchu Li
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinmin Gan
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kun Liu
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rajeswaran Walajapet
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - M Alex Stanczyk
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hannah C Stewart
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jason C Rech
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D White
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R Traynor
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of CB 1 cannabinoid receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. Neuropharmacology 2024; 257:110052. [PMID: 38936657 PMCID: PMC11261750 DOI: 10.1016/j.neuropharm.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The direct blockade of CB1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB1. We recently reported that GAT358, a CB1-NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB1-allosteric mechanism of action. Whether a CB1-NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted opioid side-effects remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine in male rats. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar spinal cord. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors in male mice. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception and reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 also produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal cord. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB1-NAM.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Shahin A Saberi
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Romario Pacheco
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Emily Fender Sizemore
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sarah Stockman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
6
|
Igarashi-Hisayoshi Y, Ihara E, Bai X, Tanaka Y, Ogino H, Chinen T, Taguchi Y, Ogawa Y. Protective role of M 3 muscarinic acetylcholine receptor in indomethacin-induced small intestinal injury. J Mol Med (Berl) 2024; 102:1175-1186. [PMID: 39172154 DOI: 10.1007/s00109-024-02474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
EP4 prostanoid receptor (EP4R) contributes to the intestinal epithelial Cl- secretion, and inhibition of prostaglandin E (PGE) production by non-steroidal anti-inflammatory drugs (NSAIDs) plays a central role in NSAID-induced enteropathy. Although M3 muscarinic acetylcholine receptor (M3R) also contributes to the intestinal epithelial Cl- secretion, it remains unclear whether M3R is involved in NSAID-induced enteropathy due to a lack of selective agents. The present study explored how M3R is involved in the regulation of the intestinal epithelial Cl- secretion and its pathophysiological role in NSAID-induced enteropathy. Using the novel highly-selective M3 positive allosteric modulator PAM-369 that we recently developed, we evaluated the role of M3R in the intestinal epithelial secretion ex vivo by measuring the short circuit current (Isc) of intestinal epithelium with a Ussing chamber system and examined whether or not M3R protects against small intestinal injury in indomethacin-treated mice. Both the PGE1 derivative misoprostol and carbachol similarly increased the Isc in a concentration-dependent manner. The Isc increases were abolished either by receptor antagonists (an EP4R antagonist and a M3R antagonist, respectively) or by removal of extracellular Cl-. PAM-369 enhanced the carbachol-induced Isc by potentiating M3R, which could contribute to enhanced intestinal epithelial secretion. Treatment with PAM-369 ameliorated small intestinal injury in indomethacin-treated mice. Importantly, the M3R expression was significantly up-regulated, and PAM-369 potentiation of M3R was augmented in indomethacin-treated mice compared to untreated mice. These findings show that M3R plays a role in maintaining the intestinal epithelial secretion, which could contribute to protection against indomethacin-induced small intestinal injury. M3R is a promising target for treating or preventing NSAID-induced enteropathy. KEY MESSAGES: PAM-369, the M3 positive allosteric modulator, was used to potentiate M3R. PAM-369 enhanced carbachol-induced Isc in mouse ileum. PAM-369 ameliorated small intestinal injury in indomethacin-treated mice. M3R is a promising target for treating or preventing NSAID-induced enteropathy.
Collapse
Affiliation(s)
- Yoko Igarashi-Hisayoshi
- Research Center, Mochida Pharmaceutical Co., Ltd, 722 Uenohara, Jimba, Gotemba, 412-8524, Japan.
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Xiaopeng Bai
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Haruei Ogino
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takatoshi Chinen
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasushi Taguchi
- Research Center, Mochida Pharmaceutical Co., Ltd, 722 Uenohara, Jimba, Gotemba, 412-8524, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
7
|
Deer TR, Russo M, Grider JS, Sayed D, Lamer TJ, Dickerson DM, Hagedorn JM, Petersen EA, Fishman MA, FitzGerald J, Baranidharan G, De Ridder D, Chakravarthy KV, Al-Kaisy A, Hunter CW, Buchser E, Chapman K, Gilligan C, Hayek SM, Thomson S, Strand N, Jameson J, Simopoulos TT, Yang A, De Coster O, Cremaschi F, Christo PJ, Varshney V, Bojanic S, Levy RM. The Neurostimulation Appropriateness Consensus Committee (NACC)®: Recommendations for Spinal Cord Stimulation Long-Term Outcome Optimization and Salvage Therapy. Neuromodulation 2024; 27:951-976. [PMID: 38904643 DOI: 10.1016/j.neurom.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION The International Neuromodulation Society (INS) has recognized a need to establish best practices for optimizing implantable devices and salvage when ideal outcomes are not realized. This group has established the Neurostimulation Appropriateness Consensus Committee (NACC)® to offer guidance on matters needed for both our members and the broader community of those affected by neuromodulation devices. MATERIALS AND METHODS The executive committee of the INS nominated faculty for this NACC® publication on the basis of expertise, publications, and career work on the issue. In addition, the faculty was chosen in consideration of diversity and inclusion of different career paths and demographic categories. Once chosen, the faculty was asked to grade current evidence and along with expert opinion create consensus recommendations to address the lapses in information on this topic. RESULTS The NACC® group established informative and authoritative recommendations on the salvage and optimization of care for those with indwelling devices. The recommendations are based on evidence and expert opinion and will be expected to evolve as new data are generated for each topic. CONCLUSIONS NACC® guidance should be considered for any patient with less-than-optimal outcomes with a stimulation device implanted for treating chronic pain. Consideration should be given to these consensus points to salvage a potentially failed device before explant.
Collapse
Affiliation(s)
- Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA.
| | - Marc Russo
- Hunter Pain Specialists, Newcastle, Australia
| | - Jay S Grider
- UKHealthCare Pain Services, Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Dawood Sayed
- The University of Kansas Health System, Kansas City, KS, USA
| | | | | | - Jonathan M Hagedorn
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erika A Petersen
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | - Ganesan Baranidharan
- Leeds Teaching Hospital National Health Service (NHS) Trust, University of Leeds, Leeds, UK
| | - Dirk De Ridder
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Adnan Al-Kaisy
- Guy's and St Thomas NHS Foundation Trust, The Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Corey W Hunter
- Ainsworth Institute, Ichan School of Medicine, Mt Sinai Hospital, New York, NY, USA
| | | | | | - Chris Gilligan
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Salim M Hayek
- Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Simon Thomson
- Pain & Neuromodulation Consulting Ltd, Nuffield Health Brentwood and The London Clinic, Brentwood, UK; Pain & Neuromodulation Centre, Mid & South Essex University NHS Hospitals, Basildon, UK
| | - Natalie Strand
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Thomas T Simopoulos
- Arnold Warfield Pain Management Center, Harvard Medical School, Boston, MA, USA
| | - Ajax Yang
- Spine and Pain Consultant, PLLC, Staten Island, NY, USA
| | | | - Fabián Cremaschi
- Department of Neurosciences, National University of Cuyo, Mendoza, Argentina
| | - Paul J Christo
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vishal Varshney
- Providence Healthcare, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stana Bojanic
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| |
Collapse
|
8
|
Fan YZ, Duan YL, Chen CT, Wang Y, Zhu AP. Advances in attenuating opioid-induced respiratory depression: A narrative review. Medicine (Baltimore) 2024; 103:e38837. [PMID: 39029082 PMCID: PMC11398798 DOI: 10.1097/md.0000000000038837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024] Open
Abstract
Opioids exert analgesic effects by agonizing opioid receptors and activating signaling pathways coupled to receptors such as G-protein and/or β-arrestin. Concomitant respiratory depression (RD) is a common clinical problem, and improvement of RD is usually achieved with specific antagonists such as naloxone; however, naloxone antagonizes opioid analgesia and may produce more unknown adverse effects. In recent years, researchers have used various methods to isolate opioid receptor-mediated analgesia and RD, with the aim of preserving opioid analgesia while attenuating RD. At present, the focus is mainly on the development of new opioids with weak respiratory inhibition or the use of non-opioid drugs to stimulate breathing. This review reports recent advances in novel opioid agents, such as mixed opioid receptor agonists, peripheral selective opioid receptor agonists, opioid receptor splice variant agonists, biased opioid receptor agonists, and allosteric modulators of opioid receptors, as well as in non-opioid agents, such as AMPA receptor modulators, 5-hydroxytryptamine receptor agonists, phosphodiesterase-4 inhibitors, and nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Yong-Zheng Fan
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| | - Yun-Li Duan
- Xiangyang No. 4 Middle School Compulsory Education Department, Xiangyang, China
| | - Chuan-Tao Chen
- Taihe Country People’s Hospital·The Taihe Hospital of Wannan Medical College, Fuyang, China
| | - Yu Wang
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| | - An-Ping Zhu
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| |
Collapse
|
9
|
Saito A, Alvi S, Valant C, Christopoulos A, Carbone SE, Poole DP. Therapeutic potential of allosteric modulators for the treatment of gastrointestinal motility disorders. Br J Pharmacol 2024; 181:2232-2246. [PMID: 36565295 DOI: 10.1111/bph.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Gastrointestinal motility is tightly regulated by the enteric nervous system (ENS). Disruption of coordinated enteric nervous system activity can result in dysmotility. Pharmacological treatment options for dysmotility include targeting of G protein-coupled receptors (GPCRs) expressed by neurons of the enteric nervous system. Current GPCR-targeting drugs for motility disorders bind to the highly conserved endogenous ligand-binding site and promote indiscriminate activation or inhibition of the target receptor throughout the body. This can be associated with significant side-effect liability and a loss of physiological tone. Allosteric modulators of GPCRs bind to a distinct site from the endogenous ligand, which is typically less conserved across multiple receptor subtypes and can modulate endogenous ligand signalling. Allosteric modulation of GPCRs that are important for enteric nervous system function may provide effective relief from motility disorders while limiting side-effects. This review will focus on how allosteric modulators of GPCRs may influence gastrointestinal motility, using 5-hydroxytryptamine (5-HT), acetylcholine (ACh) and opioid receptors as examples. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Ayame Saito
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Li P, Zhang Q, Zheng H, Qiao Y, Snyder GL, Martin T, Yao W, Zhang L, Davis RE. Discovery of ITI-333, a Novel Orally Bioavailable Molecule Targeting Multiple Receptors for the Treatment of Pain and Other Disorders. J Med Chem 2024; 67:9355-9373. [PMID: 38805667 PMCID: PMC11181336 DOI: 10.1021/acs.jmedchem.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Development of more efficacious medications with improved safety profiles to manage and treat multiple forms of pain is a critical element of healthcare. To this end, we have designed and synthesized a novel class of tetracyclic pyridopyrroloquinoxalinone derivatives with analgesic properties. The receptor binding profiles and analgesic properties of these tetracyclic compounds were studied. Systematic optimizations of this novel scaffold culminated in the discovery of the clinical candidate, (6bR,10aS)-8-[3-(4-fluorophenoxy)propyl]-6b,7,8,9,10,10a-hexahydro-1H-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalin-2(3H)-one (compound 5, ITI-333), which exhibited potent binding affinity to serotonin 5-HT2A (Ki = 8.3 nM) and μ-opioid receptors (MOR, Ki = 11 nM) and moderate affinity to adrenergic α1A (Ki = 28 nM) and dopamine D1 (Ki = 50 nM) receptors. ITI-333 acts as a 5-HT2A receptor antagonist, a MOR partial agonist, and an adrenergic α1A receptor antagonist. ITI-333 exhibited dose-dependent analgesic effects in rodent models of acute pain. Currently, this investigational new drug is in phase I clinical development.
Collapse
Affiliation(s)
- Peng Li
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Qiang Zhang
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Hailin Zheng
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Yupu Qiao
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Gretchen L. Snyder
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Terry Martin
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Wei Yao
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Lei Zhang
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Robert E. Davis
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| |
Collapse
|
11
|
Kaneko S, Imai S, Uchikubo-Kamo T, Hisano T, Asao N, Shirouzu M, Shimada I. Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator. Nat Commun 2024; 15:3544. [PMID: 38740791 DOI: 10.1038/s41467-024-47792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) play pivotal roles in various physiological processes. These receptors are activated to different extents by diverse orthosteric ligands and allosteric modulators. However, the mechanisms underlying these variations in signaling activity by allosteric modulators remain largely elusive. Here, we determine the three-dimensional structure of the μ-opioid receptor (MOR), a class A GPCR, in complex with the Gi protein and an allosteric modulator, BMS-986122, using cryogenic electron microscopy. Our results reveal that BMS-986122 binding induces changes in the map densities corresponding to R1673.50 and Y2545.58, key residues in the structural motifs conserved among class A GPCRs. Nuclear magnetic resonance analyses of MOR in the absence of the Gi protein reveal that BMS-986122 binding enhances the formation of the interaction between R1673.50 and Y2545.58, thus stabilizing the fully-activated conformation, where the intracellular half of TM6 is outward-shifted to allow for interaction with the Gi protein. These findings illuminate that allosteric modulators like BMS-986122 can potentiate receptor activation through alterations in the conformational dynamics in the core region of GPCRs. Together, our results demonstrate the regulatory mechanisms of GPCRs, providing insights into the rational development of therapeutics targeting GPCRs.
Collapse
MESH Headings
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Allosteric Regulation
- Humans
- Cryoelectron Microscopy
- Protein Binding
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- HEK293 Cells
- Ligands
- Models, Molecular
- Protein Conformation
Collapse
Affiliation(s)
- Shun Kaneko
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Imai
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan.
| | | | - Tamao Hisano
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
| | - Nobuaki Asao
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
| | - Ichio Shimada
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan.
- Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
12
|
González AM, Jubete AG. Dualism, allosteric modulation, and biased signaling of opioid receptors: Future therapeutic potential. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2024; 71:298-303. [PMID: 37683976 DOI: 10.1016/j.redare.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/30/2022] [Indexed: 09/10/2023]
Abstract
Opioids are still the drugs of choice for the treatment of acute post-surgical pain and chronic cancer pain. Overprescribing of these drugs has given rise to an "opioid crisis" in some countries. In this context, attention has been drawn to the therapeutic potential of various ligands that act as allosteric modulators of orthosteric binding sites and modulate the drug's activity, affinity, potency, and even efficacy.
Collapse
Affiliation(s)
- A M González
- Service of Anesthesiology, Universitary Hospital Marqués de Valdecilla, Santander, Cantabria, Spain.
| | - A G Jubete
- Service of Anesthesiology, Universitary Hospital Marqués de Valdecilla, Santander, Cantabria, Spain
| |
Collapse
|
13
|
Straszak D, Woźniak S, Siwek A, Głuch-Lutwin M, Kołaczkowski M, Pietrzak A, Drop B, Matosiuk D. Novel 1-(1-Arylimiazolin-2-Yl)-3-Arylalkilurea Derivatives with Modulatory Activity on Opioid MOP Receptors. Molecules 2024; 29:571. [PMID: 38338317 PMCID: PMC10856196 DOI: 10.3390/molecules29030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
μ-opioid receptor ligands such as morphine and fentanyl are the most known and potent painkillers. However, the severe side effects seen with their use significantly limit their widespread use. The continuous broadening of knowledge about the properties of the interactions of the MOP receptor (human mu opioid receptor, OP3) with ligands and specific intracellular signaling pathways allows for the designation of new directions of research with respect to compounds with analgesic effects in a mechanism different from classical ligands. Allosteric modulation is an extremely promising line of research. Compounds with modulator properties may provide a safer alternative to the currently used opioids. The aim of our research was to obtain a series of urea derivatives of 1-aryl-2-aminoimidazoline and to determine their activity, mechanism of biological action and selectivity toward the MOP receptor. The obtained compounds were subjected to functional tests (cAMP accumulation and β-arrestin recruitment) in vitro. One of the obtained compounds, when administered alone, did not show any biological activity, while when co-administered with DAMGO, it inhibited β-arrestin recruitment. These results indicate that this compound is a negative allosteric modulator (NAM) of the human MOP receptor.
Collapse
Affiliation(s)
- Dominik Straszak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| | - Sylwia Woźniak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Aldona Pietrzak
- Department of Dermatology, Venereology, and Paediatric Dermatology, Faculty of Medicine, Medical University, Staszica 11, 20-080 Lublin, Poland;
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics, Medical University, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| |
Collapse
|
14
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of cannabinoid CB 1 receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574477. [PMID: 38260598 PMCID: PMC10802405 DOI: 10.1101/2024.01.06.574477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The direct blockade of CB 1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB 1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB 1 . We recently reported that GAT358, a CB 1 -NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB 1 -allosteric mechanism of action. Whether a CB 1 -NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted side-effects of opioids remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar dorsal horn. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception. GAT358 also reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal dorsal horn. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing in mice. Our results support the therapeutic potential of CB 1 -NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB 1 -NAMs. Highlights CB 1 negative allosteric modulator (NAM) GAT358 attenuated morphine tolerance GAT358 reduced morphine-induced slowing of colonic motility but not fecal productionGAT358 was antinociceptive for formalin pain alone and when combined with morphineGAT358 reduced formalin-evoked Fos protein expression in the lumbar spinal cordGAT358 mitigated naloxone precipitated withdrawal after chronic morphine dosing.
Collapse
|
15
|
He Y, Su Q, Zhao L, Zhang L, Yu L, Shi J. Historical perspectives and recent advances in small molecule ligands of selective/biased/multi-targeted μ/δ/κ opioid receptor (2019-2022). Bioorg Chem 2023; 141:106869. [PMID: 37797454 DOI: 10.1016/j.bioorg.2023.106869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The opioids have been used for more than a thousand years and are not only the most widely prescribed drugs for moderate to severe pain and acute pain, but also the preferred drugs. However, their non-analgesic effects, especially respiratory depression and potential addiction, are important factors that plague the safety of clinical use and are an urgent problem for pharmacological researchers to address. Current research on analgesic drugs has evolved into different directions: de-opioidization; application of pharmacogenomics to individualize the use of opioids; development of new opioids with less adverse effects. The development of new opioid drugs remains a hot research topic, and with the in-depth study of opioid receptors and intracellular signal transduction mechanisms, new research ideas have been provided for the development of new opioid analgesics with less side effects and stronger analgesic effects. The development of novel opioid drugs in turn includes selective opioid receptor ligands, biased opioid receptor ligands, and multi-target opioid receptor ligands and positive allosteric modulators (PAMs) or antagonists and the single compound as multi-targeted agnoists/antagonists for different receptors. PAMs strategies are also getting newer and are the current research hotspots, including the BMS series of compounds and others, which are extensive and beyond the scope of this review. This review mainly focuses on the selective/biased/multi-targeted MOR/DOR/KOR (mu opioid receptor/delta opioid receptor/kappa opioid receptor) small molecule ligands and involves some cryo-electron microscopy (cryoEM) and structure-based approaches as well as the single compound as multi-targeted agnoists/antagonists for different receptors from 2019 to 2022, including discovery history, activities in vitro and vivo, and clinical studies, in an attempt to provide ideas for the development of novel opioid analgesics with fewer side effects.
Collapse
Affiliation(s)
- Ye He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lijuan Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lu Yu
- Department of Respiratory Medicine, Sichuan Academy of Medical Sciences and Sichuan provincial People's Hospital, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
16
|
Arai I, Tsuji M, Saito S, Takeda H. Experimental Study: Interleukin-31 Augments Morphine-Induced Antinociceptive Activity and Suppress Tolerance Development in Mice. Int J Mol Sci 2023; 24:16548. [PMID: 38003738 PMCID: PMC10671644 DOI: 10.3390/ijms242216548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Morphine-induced antinociception is partially reduced in interleukin-31 (IL-31) receptor A (IL-31RA)-deficient mice, indicating that IL-31RA is crucial for morphine-induced peripheral antinociception. Herein, we examined the combined effects of IL-31 and morphine on the antinociceptive activity and itch-associated scratching behavior (LLS) in mice and elucidated the regulatory mechanisms. A hot-plate test was used to assess antinociception. LLS was automatically detected and recorded via a computer. IL-31RA mRNA expression was assessed using real-time polymerase chain reaction. Repeated pre-treatment with IL-31 resulted in significant antinociceptive activity. Repeated administration of morphine decreased the morphine-induced antinociceptive activity, LLS counts, and regular dose and inhibited IL-31-induced LLS. These results suggested that the repeated administration of morphine depleted inter-neuronal IL-31RA levels, preventing morphine-induced antinociception. Therefore, IL-31 may be helpful as an adjunct analgesic to morphine. To explore the benefits of IL-31, its influence on morphine-induced antinociceptive tolerance in mice was examined. An IL-31 and morphine combination increased the analgesic action, which increased the expression of DRG neuronal IL-31RA, elucidating the site of peripheral antinociception of morphine. This site may induce exocytosis of IL-31RA in the sensory nervous system. Collectively, the suppressive effect of IL-31 on morphine-induced antinociceptive tolerance may result from IL-31RA supplementation in sensory nerves.
Collapse
Affiliation(s)
- Iwao Arai
- Department of Pharmacology, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8510, Japan
- Division of Environmental Allergy, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Tokyo 105-8461, Japan
| | - Minoru Tsuji
- Department of Pharmacology, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8510, Japan
| | - Saburo Saito
- Division of Environmental Allergy, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Tokyo 105-8461, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8510, Japan
| |
Collapse
|
17
|
Creanga-Murariu I, Filipiuc LE, Cuciureanu M, Tamba BI, Alexa-Stratulat T. Should oncologists trust cannabinoids? Front Pharmacol 2023; 14:1211506. [PMID: 37521486 PMCID: PMC10373070 DOI: 10.3389/fphar.2023.1211506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Cannabis enjoyed a "golden age" as a medicinal product in the late 19th, early 20th century, but the increased risk of overdose and abuse led to its criminalization. However, the 21st century have witnessed a resurgence of interest and a large body of literature regarding the benefits of cannabinoids have emerged. As legalization and decriminalization have spread around the world, cancer patients are increasingly interested in the potential utility of cannabinoids. Although eager to discuss cannabis use with their oncologist, patients often find them to be reluctant, mainly because clinicians are still not convinced by the existing evidence-based data to guide their treatment plans. Physicians should prescribe cannabis only if a careful explanation can be provided and follow up response evaluation ensured, making it mandatory for them to be up to date with the positive and also negative aspects of the cannabis in the case of cancer patients. Consequently, this article aims to bring some clarifications to clinicians regarding the sometimes-confusing various nomenclature under which this plant is mentioned, current legislation and the existing evidence (both preclinical and clinical) for the utility of cannabinoids in cancer patients, for either palliation of the associated symptoms or even the potential antitumor effects that cannabinoids may have.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Leontina Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Magda Cuciureanu
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | | |
Collapse
|
18
|
Lambert DG. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis. BJA OPEN 2023; 6:100141. [PMID: 37588171 PMCID: PMC10430815 DOI: 10.1016/j.bjao.2023.100141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 08/18/2023]
Abstract
Opioids are a mainstay in acute pain management and produce their effects and side effects (e.g., tolerance, opioid-use disorder and immune suppression) by interaction with opioid receptors. I will discuss opioid pharmacology in some controversial areas of enquiry of anaesthetic relevance. The main opioid target is the µ (mu,MOP) receptor but other members of the opioid receptor family, δ (delta; DOP) and κ (kappa; KOP) opioid receptors also produce analgesic actions. These are naloxone-sensitive. There is important clinical development relating to the Nociceptin/Orphanin FQ (NOP) receptor, an opioid receptor that is not naloxone-sensitive. Better understanding of the drivers for opioid effects and side effects may facilitate separation of side effects and production of safer drugs. Opioids bind to the receptor orthosteric site to produce their effects and can engage monomer or homo-, heterodimer receptors. Some ligands can drive one intracellular pathway over another. This is the basis of biased agonism (or functional selectivity). Opioid actions at the orthosteric site can be modulated allosterically and positive allosteric modulators that enhance opioid action are in development. As well as targeting ligand-receptor interaction and transduction, modulating receptor expression and hence function is also tractable. There is evidence for epigenetic associations with different types of pain and also substance misuse. As long as the opioid narrative is defined by the 'opioid crisis' the drive to remove them could gather pace. This will deny use where they are effective, and access to morphine for pain relief in low income countries.
Collapse
|
19
|
Chan WKB, Carlson HA, Traynor JR. Application of Mixed-Solvent Molecular Dynamics Simulations for Prediction of Allosteric Sites on G Protein-Coupled Receptors. Mol Pharmacol 2023; 103:274-285. [PMID: 36868791 PMCID: PMC10166447 DOI: 10.1124/molpharm.122.000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
The development of small molecule allosteric modulators acting at G protein-coupled receptors (GPCRs) is becoming increasingly attractive. Such compounds have advantages over traditional drugs acting at orthosteric sites on these receptors, in particular target specificity. However, the number and locations of druggable allosteric sites within most clinically relevant GPCRs are unknown. In the present study, we describe the development and application of a mixed-solvent molecular dynamics (MixMD)-based method for the identification of allosteric sites on GPCRs. The method employs small organic probes with druglike qualities to identify druggable hotspots in multiple replicate short-timescale simulations. As proof of principle, we first applied the method retrospectively to a test set of five GPCRs (cannabinoid receptor type 1, C-C chemokine receptor type 2, M2 muscarinic receptor, P2Y purinoceptor 1, and protease-activated receptor 2) with known allosteric sites in diverse locations. This resulted in the identification of the known allosteric sites on these receptors. We then applied the method to the μ-opioid receptor. Several allosteric modulators for this receptor are known, although the binding sites for these modulators are not known. The MixMD-based method revealed several potential allosteric sites on the mu-opioid receptor. Implementation of the MixMD-based method should aid future efforts in the structure-based drug design of drugs targeting allosteric sites on GPCRs. SIGNIFICANCE STATEMENT: Allosteric modulation of G protein-coupled receptors (GPCRs) has the potential to provide more selective drugs. However, there are limited structures of GPCRs bound to allosteric modulators, and obtaining such structures is problematic. Current computational methods utilize static structures and therefore may not identify hidden or cryptic sites. Here we describe the use of small organic probes and molecular dynamics to identify druggable allosteric hotspots on GPCRs. The results reinforce the importance of protein dynamics in allosteric site identification.
Collapse
Affiliation(s)
- Wallace K B Chan
- Department of Pharmacology and Edward F. Domino Research Center (W.K.B.C., J.R.T.) and Department of Medicinal Chemistry (H.A.C., J.R.T.), University of Michigan, Ann Arbor, Michigan
| | - Heather A Carlson
- Department of Pharmacology and Edward F. Domino Research Center (W.K.B.C., J.R.T.) and Department of Medicinal Chemistry (H.A.C., J.R.T.), University of Michigan, Ann Arbor, Michigan
| | - John R Traynor
- Department of Pharmacology and Edward F. Domino Research Center (W.K.B.C., J.R.T.) and Department of Medicinal Chemistry (H.A.C., J.R.T.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Xu L, Zou DJ, Firestein S. Odor mixtures: A chord with silent notes. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1135486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The olfactory world is one of complex mixtures and blends containing up to hundreds of molecules. Many of those molecules can act as agonists, antagonists or enhancers at different receptors. This complicates the mechanism by which higher centers construct perceptions of complex mixtures. We propose that along with structural chemistry, psychophysics, the techniques of medicinal chemistry and machine learning can begin to shed light on this difficult neural problem.
Collapse
|
21
|
Igarashi-Hisayoshi Y, Ihara E, Bai X, Higashi C, Ikeda H, Tanaka Y, Hirano M, Ogino H, Chinen T, Taguchi Y, Ogawa Y. Determination of Region-Specific Roles of the M 3 Muscarinic Acetylcholine Receptor in Gastrointestinal Motility. Dig Dis Sci 2023; 68:439-450. [PMID: 35947306 DOI: 10.1007/s10620-022-07637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/20/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND The specific role of the M3 muscarinic acetylcholine receptor in gastrointestinal motility under physiological conditions is unclear, due to a lack of subtype-selective compounds. AIMS The objective of this study was to determine the region-specific role of the M3 receptor in gastrointestinal motility. METHODS We developed a novel positive allosteric modulator (PAM) for the M3 receptor, PAM-369. The effects of PAM-369 on the carbachol-induced contractile response of porcine esophageal smooth muscle and mouse colonic smooth muscle (ex vivo) and on the transit in mouse small intestine and rat colon (in vivo) were examined. RESULTS PAM-369 selectively potentiated the M3 receptor under the stimulation of its orthosteric ligands without agonistic or antagonistic activity. Half-maximal effective concentrations of PAM activity for human, mouse, and rat M3 receptors were 0.253, 0.345, and 0.127 μM, respectively. PAM-369 enhanced carbachol-induced contraction in porcine esophageal smooth muscle and mouse colonic smooth muscle without causing any contractile responses by itself. The oral administration of 30 mg/kg PAM-369 increased the small intestinal transit in both normal motility and loperamide-induced intestinal dysmotility mice but had no effects on the colonic transit, although the M3 receptor mRNA expression is higher in the colon than in the small intestine. CONCLUSIONS This study provided the first direct evidence that the M3 receptor has different region-specific roles in the motility function between the small intestine and colon in physiological and pathophysiological contexts. Selective PAMs designed for targeted subtypes of muscarinic receptors are useful for elucidating the subtype-specific function.
Collapse
Affiliation(s)
- Yoko Igarashi-Hisayoshi
- Research Center, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, 412-8524, Japan.
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Xiaopeng Bai
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chika Higashi
- Research Center, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, 412-8524, Japan
| | - Hiroko Ikeda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mayumi Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Haruei Ogino
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takatoshi Chinen
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasushi Taguchi
- Research Center, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, 412-8524, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
22
|
Mizuguchi T, Miyano K, Yamauchi R, Yoshida Y, Takahashi H, Yamazaki A, Ono H, Inagaki M, Nonaka M, Uezono Y, Fujii H. The first structure-activity relationship study of oxytocin as a positive allosteric modulator for the µ opioid receptor. Peptides 2023; 159:170901. [PMID: 36347314 DOI: 10.1016/j.peptides.2022.170901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Positive allosteric modulators (PAMs) of G protein-coupled receptors (GPCRs) have drawn attention as novel drug candidates. PAMs can enhance the activities of endogenous agonists which are not only secreted at appropriate times and in parts of the body, but also are immediately metabolized. Therefore, they are expected to show fewer side effects than exogeneous orthosteric ligands. Recently, we have reported that oxytocin (OT) functioned as a PAM of the μ opioid receptor (MOR) which was one of the most potent targets for analgesics. OT is thus thought to be a useful compound for the development of novel analgesics. In this study, several OT analogs were synthesized and evaluated with an intact cell-based assay to investigate the crucial structures of OT for exerting the PAM activity. The assay results indicated that the cyclic structure formed by an intramolecular disulfide bond and the three C-terminal residues containing a small Gly residue of OT were essential for their function as a MOR-PAM. Intriguingly, two analogs having an amide or an ethylene tether instead of the intramolecular disulfide bridge did not have any PAM effects. The results suggested that the disulfide linkage of OT would be a key structure for exerting the PAM activity at the MOR.
Collapse
Affiliation(s)
- Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Risa Yamauchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Yoshida
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Takahashi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ami Yamazaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruka Ono
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miku Inagaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
23
|
Iyer V, Rangel-Barajas C, Woodward TJ, Kulkarni A, Cantwell L, Crystal JD, Mackie K, Rebec GV, Thakur GA, Hohmann AG. Negative allosteric modulation of CB 1 cannabinoid receptor signaling suppresses opioid-mediated reward. Pharmacol Res 2022; 185:106474. [PMID: 36179954 PMCID: PMC9948526 DOI: 10.1016/j.phrs.2022.106474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 01/18/2023]
Abstract
Blockade of cannabinoid type 1 (CB1)-receptor signaling decreases the rewarding properties of many drugs of abuse and has been proposed as an anti-addiction strategy. However, psychiatric side-effects limit the clinical potential of orthosteric CB1 antagonists. Negative allosteric modulators (NAMs) represent a novel and indirect approach to attenuate CB1 signaling by decreasing affinity and/or efficacy of CB1 ligands. We hypothesized that a CB1-NAM would block opioid reward while avoiding the unwanted effects of orthosteric CB1 antagonists. GAT358, a CB1-NAM, failed to elicit cardinal signs of direct CB1 activation or inactivation when administered by itself. GAT358 decreased catalepsy and hypothermia but not antinociception produced by the orthosteric CB1 agonist CP55,940, suggesting that a CB1-NAM blocked cardinal signs of CB1 activation. Next, GAT358 was evaluated using in vivo assays of opioid-induced dopamine release and reward in male rodents. In the nucleus accumbens shell, a key component of the mesocorticolimbic reward pathway, morphine increased electrically-evoked dopamine efflux and this effect was blocked by a dose of GAT358 that lacked intrinsic effects on evoked dopamine efflux. Moreover, GAT358 blocked morphine-induced reward in a conditioned place preference (CPP) assay without producing reward or aversion alone. GAT358-induced blockade of morphine CPP was also occluded by GAT229, a CB1 positive allosteric modulator (CB1-PAM), and absent in CB1-knockout mice. Finally, GAT358 also reduced oral oxycodone (but not water) consumption in a two-bottle choice paradigm. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preventing opioid reward and treating opioid abuse while avoiding unwanted side-effects.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | - Taylor J. Woodward
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jonathon D. Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ken Mackie
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - George V. Rebec
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Andrea G. Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA,Corresponding Author: Andrea G. Hohmann, Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-7007,
| |
Collapse
|
24
|
Qiu Q, Chew JCJ, Irwin MG. Opioid MOP receptor agonists in late-stage development for the treatment of postoperative pain. Expert Opin Pharmacother 2022; 23:1831-1843. [DOI: 10.1080/14656566.2022.2141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Qiu Qiu
- Department of Anaesthesiology, Queen Mary Hospital, Hong Kong, Special Administrative Region, China
| | - Joshua CJ Chew
- Department of Anaesthesiology, Queen Mary Hospital, Hong Kong, Special Administrative Region, China
- Department of Anaesthesiology, The University of Hong Kong, Special Administrative Region, China
| | - Michael G Irwin
- Department of Anaesthesiology, The University of Hong Kong, Special Administrative Region, China
| |
Collapse
|
25
|
Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci 2022; 16:1014768. [PMID: 36341476 PMCID: PMC9628214 DOI: 10.3389/fnsys.2022.1014768] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
26
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Drakopoulos A, Moianos D, Prifti GM, Zoidis G, Decker M. Opioid ligands addressing unconventional binding sites and more than one opioid receptor subtype. ChemMedChem 2022; 17:e202200169. [PMID: 35560796 DOI: 10.1002/cmdc.202200169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Opioid receptors (ORs) represent one of the most significant groups of G-protein coupled receptor (GPCR) drug targets and also act as prototypical models for GPCR function. In a constant effort to develop drugs with less side effects, and tools to explore the ORs nature and function, various (poly)pharmacological ligand design approaches have been performed. That is, besides classical ligands, a great number of bivalent ligands (i.e. aiming on two distinct OR subtypes), univalent heteromer-selective ligands and bitopic and allosteric ligands have been synthesized for the ORs. The scope of our review is to present the most important of the aforementioned ligands, highlight their properties and exhibit the current state-of-the-art pallet of promising drug candidates or useful molecular tools for the ORs.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- University of Gothenburg: Goteborgs Universitet, Department of Chemistry and Molecular Biology, Kemigåden 4, 431 45, Göteborg, SWEDEN
| | - Dimitrios Moianos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Georgia-Myrto Prifti
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Grigoris Zoidis
- National and Kapodistrian University of Athens, Department of Pharmaceutical Chemistry, Panepistimioupolis-Zografou, 15771, Athens, GREECE
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| |
Collapse
|
28
|
Straszak D, Siwek A, Głuch-Lutwin M, Mordyl B, Kołaczkowski M, Pietrzak A, Rahnama-Hezavah M, Drop B, Matosiuk D. Modulation of the MOP Receptor (μ Opioid Receptor) by Imidazo[1,2- a]imidazole-5,6-Diones: In Search of the Elucidation of the Mechanism of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092930. [PMID: 35566280 PMCID: PMC9100072 DOI: 10.3390/molecules27092930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
The μ-opioid receptors belong to the family of G protein-coupled receptors (GPCRs), and their activation triggers a cascade of intracellular relays with the final effect of analgesia. Classical agonists of this receptor, such as morphine, are the main targets in the treatment of both acute and chronic pain. However, the dangerous side effects, such as respiratory depression or addiction, significantly limit their widespread use. The allosteric centers of the receptors exhibit large structural diversity within particular types and even subtypes. Currently, a considerable interest is aroused by the modulation of μ-opioid receptors. The application of such a technique may result in a reduction in the dose or even discontinuation of classical opiates, thus eliminating the side effects typical of this class of drugs. Our aim is to obtain a series of 1-aryl-5,6(1H)dioxo-2,3-dihydroimidazo[1,2-a]imidazole derivatives and provide more information about their activity and selectivity on OP3 (MOP, human mu opioid receptor). The study was based on an observation that some carbonyl derivatives of 1-aryl-2-aminoimidazoline cooperate strongly with morphine or DAMGO in sub-threshold doses, producing similar results to those of normal active doses. To elucidate the possible mechanism of such enhancement, we performed a few in vitro functional tests (involving cAMP and β-arrestin recruitment) and a radioligand binding assay on CHO-K1 cells with the expression of the OP3 receptor. One of the compounds had no orthosteric affinity or intrinsic activity, but inhibited the efficiency of DAMGO. These results allow to conclude that this compound is a negative allosteric modulator (NAM) of the human μ-opioid receptor.
Collapse
Affiliation(s)
- Dominik Straszak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Barbara Mordyl
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Aldona Pietrzak
- Department of Dermatology, Venereology, and Paediatric Dermatology, Faculty of Medicine, Medical University, Staszica 11, 20-080 Lublin, Poland;
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University, Chodzki 6, 20-093 Lublin, Poland;
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics, Medical University, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
29
|
Abstract
SignificanceThe allosteric modulators, which bind to nonorthosteric sites to enhance the signaling activities of G-protein-coupled receptors (GPCRs), are new candidates for GPCR-targeting drugs. Our solution NMR analyses of the μ-opioid receptor (MOR) revealed that the MOR activity was determined by a conformational equilibrium between three conformations. Interestingly, an allosteric modulator shifted the equilibrium toward a conformation with the highest activity to a level that cannot be reached by orthosteric ligands alone, leading to the increased activity of MOR. Our NMR analyses also identified the binding site of the allosteric modulator, including the residues contributing to the regulation of the equilibrium. These findings provide insights into the rational developments of novel allosteric modulators.
Collapse
|
30
|
Castroman P, Quiroga O, Mayoral Rojals V, Gómez M, Moka E, Pergolizzi Jr J, Varrassi G. Reimagining How We Treat Acute Pain: A Narrative Review. Cureus 2022; 14:e23992. [PMID: 35547466 PMCID: PMC9084930 DOI: 10.7759/cureus.23992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Acute pain may be influenced by biopsychosocial factors. Conditioned pain modulation, distraction, peripheral nerve stimulation, and cryoneurolysis may be helpful in its treatment. New developments in opioids, such as opioids with bifunctional targets and oliceridine, may be particularly suited for acute pain care. Allosteric modulators can enhance receptor subtype selectivity, offering analgesia with fewer and/or less severe side effects. Neuroinflammation in acute pain is caused by direct insult to the central nervous system and is distinct from neuroinflammation in degenerative disorders. Pharmacologic agents targeting the neuroinflammatory process are limited at this time. Postoperative pain is a prevalent form of acute pain and must be recognized as a global public health challenge. This type of pain may be severe, impede rehabilitation, and is often under-treated. A subset of surgical patients develops chronic postsurgical pain. Acute pain is not just temporally limited pain that often resolves on its own. It is an important subject for further research as acute pain may transition into more damaging and debilitating chronic pain. Reimagining how we treat acute pain will help us better address this urgent unmet medical need.
Collapse
|
31
|
Mayoral V. An overview of the use and misuse/abuse of opioid analgesics in different world regions and future perspectives. Pain Manag 2022; 12:535-555. [PMID: 35118876 DOI: 10.2217/pmt-2021-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opioids are an important therapeutic option for severe resistant chronic pain but, in the absence of proper oversight, their use has risks. The level of prescription opioid misuse/abuse differs among countries, due to differences in healthcare systems and pain management approaches. However, evaluating the true dimension of prescription opioid misuse/abuse is complicated by statistical reporting which often does not differentiate between prescription and illicit opioid use, or between prescription opioid use by patients and nonpatients, highlighting a need for greater uniformity. Parallel efforts to educate patients and the general public about opioid risks, facilitate appropriate analgesic prescribing and identify alternative formulations or options to use instead of or with opioids, may contribute to optimizing prescription opioid use for pain management.
Collapse
Affiliation(s)
- Victor Mayoral
- Pain Unit, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
32
|
Bird MF, McDonald J, Horley B, O’Doherty JP, Fraser B, Gibson CL, Guerrini R, Caló G, Lambert DG. MOP and NOP receptor interaction: Studies with a dual expression system and bivalent peptide ligands. PLoS One 2022; 17:e0260880. [PMID: 35061679 PMCID: PMC8782398 DOI: 10.1371/journal.pone.0260880] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Opioids targeting mu;μ (MOP) receptors produce analgesia in the peri-operative period and palliative care. They also produce side effects including respiratory depression, tolerance/dependence and addiction. The N/OFQ opioid receptor (NOP) also produces analgesia but is devoid of the major MOP side effects. Evidence exists for MOP-NOP interaction and mixed MOP-NOP ligands produce analgesia with reduced side effects. We have generated a HEKMOP/NOP human expression system and used bivalent MOP-NOP and fluorescent ligands to (i) probe for receptor interaction and (ii) consequences of that interaction. We used HEKMOP/NOP cells and two bivalent ligands; Dermorphin-N/OFQ (MOP agonist-NOP agonist; DeNO) and Dermorphin-UFP101 (MOP agonist-NOP antagonist; De101). We have determined receptor binding profiles, GTPγ[35S] binding, cAMP formation and ERK1/2 activation. We have also probed MOP and NOP receptor interactions in HEK cells and hippocampal neurones using the novel MOP fluorescent ligand, DermorphinATTO488 and the NOP fluorescent ligand N/OFQATTO594. In HEKMOP/NOP MOP ligands displaced NOP binding and NOP ligands displaced MOP binding. Using fluorescent probes in HEKMOP/NOP cells we demonstrated MOP-NOP probe overlap and a FRET signal indicating co-localisation. MOP-NOP were also co-localised in hippocampal tissue. In GTPγ[35S] and cAMP assays NOP stimulation shifted the response to MOP rightwards. At ERK1/2 the response to bivalent ligands generally peaked later. We provide evidence for MOP-NOP interaction in recombinant and native tissue. NOP activation reduces responsiveness of MOP activation; this was shown with conventional and bivalent ligands.
Collapse
Affiliation(s)
- M. F. Bird
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - J. McDonald
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - B. Horley
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - J. P. O’Doherty
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - B. Fraser
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - C. L. Gibson
- School of Psychology, University of Nottingham, Psychology Building, University Park, Nottingham, United Kingdom
| | - R. Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - G. Caló
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - D. G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
33
|
Mas-Orea X, Basso L, Blanpied C, Gaveriaux-Ruff C, Cenac N, Dietrich G. Delta opioid receptors on nociceptive sensory neurons mediate peripheral endogenous analgesia in colitis. J Neuroinflammation 2022; 19:7. [PMID: 34991641 PMCID: PMC8740424 DOI: 10.1186/s12974-021-02352-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammatory visceral pain is endogenously controlled by enkephalins locally released by mucosal CD4+ T lymphocytes in mice. The present study aimed at identifying opioid receptor(s) expressed on nociceptive sensory nerves involved in this peripheral opioid-mediated analgesia. METHODS The peripheral analgesia associated with the accumulation of CD4+ T lymphocytes within the inflamed colonic mucosa was assessed in conditional knockout mice specifically deleted for either of the two opioid receptors for enkephalins (i.e., µ (MOR) and δ (DOR) receptors) in Nav1.8-expressing sensory neurons in the dextran sulfate sodium (DSS)-induced colitis model. RESULTS Endogenous analgesia is lost in conditional knockout mice for DOR, but not MOR at the later phase of the DSS-induced colitis. The absence of either of the opioid receptors on sensory nerves had no impact on both the colitis severity and the rate of T lymphocytes infiltrating the inflamed colonic mucosa. CONCLUSION The key role of DOR on primary afferents in relieving intestinal inflammatory pain opens new therapeutic opportunities for peripherally restricted DOR analgesics to avoid most of the side effects associated with MOR-targeting drugs used in intestinal disorders.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | - Lilian Basso
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
- INFINITy, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Catherine Blanpied
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | | | - Nicolas Cenac
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | - Gilles Dietrich
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
34
|
Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022:725-769. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Leysen H, Walter D, Christiaenssen B, Vandoren R, Harputluoğlu İ, Van Loon N, Maudsley S. GPCRs Are Optimal Regulators of Complex Biological Systems and Orchestrate the Interface between Health and Disease. Int J Mol Sci 2021; 22:ijms222413387. [PMID: 34948182 PMCID: PMC8708147 DOI: 10.3390/ijms222413387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023] Open
Abstract
GPCRs arguably represent the most effective current therapeutic targets for a plethora of diseases. GPCRs also possess a pivotal role in the regulation of the physiological balance between healthy and pathological conditions; thus, their importance in systems biology cannot be underestimated. The molecular diversity of GPCR signaling systems is likely to be closely associated with disease-associated changes in organismal tissue complexity and compartmentalization, thus enabling a nuanced GPCR-based capacity to interdict multiple disease pathomechanisms at a systemic level. GPCRs have been long considered as controllers of communication between tissues and cells. This communication involves the ligand-mediated control of cell surface receptors that then direct their stimuli to impact cell physiology. Given the tremendous success of GPCRs as therapeutic targets, considerable focus has been placed on the ability of these therapeutics to modulate diseases by acting at cell surface receptors. In the past decade, however, attention has focused upon how stable multiprotein GPCR superstructures, termed receptorsomes, both at the cell surface membrane and in the intracellular domain dictate and condition long-term GPCR activities associated with the regulation of protein expression patterns, cellular stress responses and DNA integrity management. The ability of these receptorsomes (often in the absence of typical cell surface ligands) to control complex cellular activities implicates them as key controllers of the functional balance between health and disease. A greater understanding of this function of GPCRs is likely to significantly augment our ability to further employ these proteins in a multitude of diseases.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Bregje Christiaenssen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Romi Vandoren
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Department of Chemistry, Middle East Technical University, Çankaya, Ankara 06800, Turkey
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Correspondence:
| |
Collapse
|
36
|
Opioid Receptors and Protonation-Coupled Binding of Opioid Drugs. Int J Mol Sci 2021; 22:ijms222413353. [PMID: 34948150 PMCID: PMC8707250 DOI: 10.3390/ijms222413353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.
Collapse
|
37
|
Olson KM, Traynor JR, Alt A. Allosteric Modulator Leads Hiding in Plain Site: Developing Peptide and Peptidomimetics as GPCR Allosteric Modulators. Front Chem 2021; 9:671483. [PMID: 34692635 PMCID: PMC8529114 DOI: 10.3389/fchem.2021.671483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Allosteric modulators (AMs) of G-protein coupled receptors (GPCRs) are desirable drug targets because they can produce fewer on-target side effects, improved selectivity, and better biological specificity (e.g., biased signaling or probe dependence) than orthosteric drugs. An underappreciated source for identifying AM leads are peptides and proteins-many of which were evolutionarily selected as AMs-derived from endogenous protein-protein interactions (e.g., transducer/accessory proteins), intramolecular receptor contacts (e.g., pepducins or extracellular domains), endogenous peptides, and exogenous libraries (e.g., nanobodies or conotoxins). Peptides offer distinct advantages over small molecules, including high affinity, good tolerability, and good bioactivity, and specific disadvantages, including relatively poor metabolic stability and bioavailability. Peptidomimetics are molecules that combine the advantages of both peptides and small molecules by mimicking the peptide's chemical features responsible for bioactivity while improving its druggability. This review 1) discusses sources and strategies to identify peptide/peptidomimetic AMs, 2) overviews strategies to convert a peptide lead into more drug-like "peptidomimetic," and 3) critically analyzes the advantages, disadvantages, and future directions of peptidomimetic AMs. While small molecules will and should play a vital role in AM drug discovery, peptidomimetics can complement and even exceed the advantages of small molecules, depending on the target, site, lead, and associated factors.
Collapse
Affiliation(s)
- Keith M. Olson
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, United States
| | - John R. Traynor
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Alt
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
38
|
Palmer CB, Meyrath M, Canals M, Kostenis E, Chevigné A, Szpakowska M. Atypical opioid receptors: unconventional biology and therapeutic opportunities. Pharmacol Ther 2021; 233:108014. [PMID: 34624426 DOI: 10.1016/j.pharmthera.2021.108014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating four opioid receptors, namely μ (mu, MOP), δ (delta, DOP), κ (kappa, KOP) and the nociceptin/orphanin FQ receptor (NOP). Interestingly, several other receptors are also activated by endogenous opioid peptides and influence opioid-driven signaling and biology. However, they do not meet the criteria to be recognized as classical opioid receptors, as they are phylogenetically distant from them and are insensitive to classical non-selective opioid receptor antagonists (e.g. naloxone). Nevertheless, accumulating reports suggest that these receptors may be interesting alternative targets, especially for the development of safer analgesics. Five of these opioid peptide-binding receptors belong to the family of G protein-coupled receptors (GPCRs)-two are members of the Mas-related G protein-coupled receptor X family (MrgX1, MrgX2), two of the bradykinin receptor family (B1, B2), and one is an atypical chemokine receptor (ACKR3). Additionally, the ion channel N-methyl-d-aspartate receptors (NMDARs) are also activated by opioid peptides. In this review, we recapitulate the implication of these alternative receptors in opioid-related disorders and discuss their unconventional biology, with members displaying signaling to scavenging properties. We provide an overview of their established and emerging roles and pharmacology in the context of pain management, as well as their clinical relevance as alternative targets to overcome the hurdles of chronic opioid use. Given the involvement of these receptors in a wide variety of functions, including inflammation, chemotaxis, anaphylaxis or synaptic transmission and plasticity, we also discuss the challenges associated with the modulation of both their canonical and opioid-driven signaling.
Collapse
Affiliation(s)
- Christie B Palmer
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
39
|
Chakraborty S, Uprety R, Daibani AE, Rouzic VL, Hunkele A, Appourchaux K, Eans SO, Nuthikattu N, Jilakara R, Thammavong L, Pasternak GW, Pan YX, McLaughlin JP, Che T, Majumdar S. Kratom Alkaloids as Probes for Opioid Receptor Function: Pharmacological Characterization of Minor Indole and Oxindole Alkaloids from Kratom. ACS Chem Neurosci 2021; 12:2661-2678. [PMID: 34213886 PMCID: PMC8328003 DOI: 10.1021/acschemneuro.1c00149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dry leaves of kratom (mitragyna speciosa) are anecdotally consumed as pain relievers and antidotes against opioid withdrawal and alcohol use disorders. There are at least 54 alkaloids in kratom; however, investigations to date have focused around mitragynine, 7-hydroxy mitragynine (7OH), and mitragynine pseudoindoxyl (MP). Herein, we probe a few minor indole and oxindole based alkaloids, reporting the receptor affinity, G-protein activity, and βarrestin-2 signaling of corynantheidine, corynoxine, corynoxine B, mitraciliatine, and isopaynantheine at mouse and human opioid receptors. We identify corynantheidine as a mu opioid receptor (MOR) partial agonist, whereas its oxindole derivative corynoxine was an MOR full agonist. Similarly, another alkaloid mitraciliatine was found to be an MOR partial agonist, while isopaynantheine was a KOR agonist which showed reduced βarrestin-2 recruitment. Corynantheidine, corynoxine, and mitraciliatine showed MOR dependent antinociception in mice, but mitraciliatine and corynoxine displayed attenuated respiratory depression and hyperlocomotion compared to the prototypic MOR agonist morphine in vivo when administered supraspinally. Isopaynantheine on the other hand was identified as the first kratom derived KOR agonist in vivo. While these minor alkaloids are unlikely to play the majority role in the biological actions of kratom, they represent excellent starting points for further diversification as well as distinct efficacy and signaling profiles with which to probe opioid actions in vivo.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amal E Daibani
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Valerie L Rouzic
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amanda Hunkele
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Nitin Nuthikattu
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rahul Jilakara
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lisa Thammavong
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
40
|
Mas-Orea X, Sebert M, Benamar M, Petitfils C, Blanpied C, Saoudi A, Deraison C, Barreau F, Cenac N, Dietrich G. Peripheral Opioid Receptor Blockade Enhances Epithelial Damage in Piroxicam-Accelerated Colitis in IL-10-Deficient Mice. Int J Mol Sci 2021; 22:7387. [PMID: 34299013 PMCID: PMC8304158 DOI: 10.3390/ijms22147387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/02/2023] Open
Abstract
Mucosal CD4+ T lymphocytes display a potent opioid-mediated analgesic activity in interleukin (IL)-10 knockout mouse model of inflammatory bowel diseases (IBD). Considering that endogenous opioids may also exhibit anti-inflammatory activities in the periphery, we examined the consequences of a peripheral opioid receptor blockade by naloxone-methiodide, a general opioid receptor antagonist unable to cross the blood-brain barrier, on the development of piroxicam-accelerated colitis in IL-10-deficient (IL-10-/-) mice. Here, we show that IL-10-deficient mice treated with piroxicam exhibited significant alterations of the intestinal barrier function, including permeability, inflammation-related bioactive lipid mediators, and mucosal CD4+ T lymphocyte subsets. Opioid receptor antagonization in the periphery had virtually no effect on colitis severity but significantly worsened epithelial cell apoptosis and intestinal permeability. Thus, although the endogenous opioid tone is not sufficient to reduce the severity of colitis significantly, it substantially contributes to the protection of the physical integrity of the epithelial barrier.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Morgane Sebert
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Mehdi Benamar
- INFINITY, Université de Toulouse—Paul Sabatier, INSERM, CNRS, UPS, 31000 Toulouse, France; (M.B.); (A.S.)
| | - Camille Petitfils
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Catherine Blanpied
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Abdelhadi Saoudi
- INFINITY, Université de Toulouse—Paul Sabatier, INSERM, CNRS, UPS, 31000 Toulouse, France; (M.B.); (A.S.)
| | - Céline Deraison
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Frederick Barreau
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Nicolas Cenac
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Gilles Dietrich
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| |
Collapse
|
41
|
Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proc Natl Acad Sci U S A 2021; 118:2000017118. [PMID: 33846240 DOI: 10.1073/pnas.2000017118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than β-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.
Collapse
|
42
|
Manandhar P, Murnion BP, Grimsey NL, Connor M, Santiago M. Do gabapentin or pregabalin directly modulate the µ receptor? PeerJ 2021; 9:e11175. [PMID: 33954038 PMCID: PMC8048397 DOI: 10.7717/peerj.11175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/08/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pregabalin and gabapentin improve neuropathic pain symptoms but there are emerging concerns regarding their misuse. This is more pronounced among patients with substance use disorder, particularly involving opioids. Co-ingestion of gabapentinoids with opioids is increasingly identified in opioid related deaths, however, the molecular mechanism behind this is still unclear. We have sought to determine whether pregabalin or gabapentin directly modulates acute μ receptor signaling, or μ receptor activation by morphine. METHODS The effects of pregabalin and gabapentin were assessed in HEK 293 cells stably transfected with the human μ receptor. Their effect on morphine induced hyperpolarization, cAMP production and ERK phosphorylation were studied using fluorescent-based membrane potential assay, bioluminescence based CAMYEL assay and ELISA assay, respectively. Pregabalin/gabapentin effects on morphine-induced hyperpolarization were also investigated in AtT20 cells. RESULTS Pregabalin or gabapentin (1 µM, 100 µM each) did not activate the µ receptor or affect K channel activation or ERK phosphorylation produced by morphine. Neither drug affected the desensitization of K channel activation produced by prolonged (30 min) application of morphine. Gabapentin (1 µM, 100 µM) and pregabalin (1 µM) did not affect inhibition of forskolin-stimulated cAMP production by morphine. However, pregabalin (100 µM) potentiated forskolin mediated cAMP production, although morphine still inhibited cAMP levels with a similar potency to control. DISCUSSION Pregabalin or gabapentin did not activate or modulate µ receptor signaling in three different assays. Our data do not support the hypothesis that gabapentin or pregabalin augment opioid effects through direct or allosteric modulation of the µ receptor. Pregabalin at a high concentration increases cAMP production independent of morphine. The mechanism of enhanced opioid-related harms from co-ingestion of pregabalin or gabapentin with opioids needs further investigation.
Collapse
Affiliation(s)
- Preeti Manandhar
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Bridin Patricia Murnion
- Drug and Alcohol Services, Central Coast Local Health District, Hamlyn Terrace, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Natasha L. Grimsey
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marina Santiago
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
43
|
Abstract
Opioids such as morphine and oxycodone are analgesics frequently prescribed for the treatment of moderate or severe pain. Unfortunately, these medications are associated with exceptionally high abuse potentials and often cause fatal side effects, mainly through the μ-opioid receptor (MOR). Efforts to discover novel, safer, and more efficacious analgesics targeting MOR have encountered challenges. In this review, we summarize alternative strategies and targets that could be used to develop safer nonopioid analgesics. A molecular understanding of G protein-coupled receptor activation and signaling has illuminated not only the complexities of receptor pharmacology but also the potential for pathway-selective agonists and allosteric modulators as safer medications. The availability of structures of pain-related receptors, in combination with high-throughput computational tools, has accelerated the discovery of multitarget ligands with promising pharmacological profiles. Emerging clinical evidence also supports the notion that drugs targeting peripheral opioid receptors have potential as improved analgesic agents.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
44
|
Fasciani I, Petragnano F, Aloisi G, Marampon F, Carli M, Scarselli M, Maggio R, Rossi M. Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:ph13110388. [PMID: 33202534 PMCID: PMC7696972 DOI: 10.3390/ph13110388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia was first described by Emil Krapelin in the 19th century as one of the major mental illnesses causing disability worldwide. Since the introduction of chlorpromazine in 1952, strategies aimed at modifying the activity of dopamine receptors have played a major role for the treatment of schizophrenia. The introduction of atypical antipsychotics with clozapine broadened the range of potential targets for the treatment of this psychiatric disease, as they also modify the activity of the serotoninergic receptors. Interestingly, all marketed drugs for schizophrenia bind to the orthosteric binding pocket of the receptor as competitive antagonists or partial agonists. In recent years, a strong effort to develop allosteric modulators as potential therapeutic agents for schizophrenia was made, mainly for the several advantages in their use. In particular, the allosteric binding sites are topographically distinct from the orthosteric pockets, and thus drugs targeting these sites have a higher degree of receptor subunit specificity. Moreover, “pure” allosteric modulators maintain the temporal and spatial fidelity of native orthosteric ligand. Furthermore, allosteric modulators have a “ceiling effect”, and their modulatory effect is saturated above certain concentrations. In this review, we summarize the progresses made in the identification of allosteric drugs for dopamine and serotonin receptors, which could lead to a new generation of atypical antipsychotics with a better profile, especially in terms of reduced side effects.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Marampon
- Department of Radiotherapy, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Marco Carli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Marco Scarselli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
- Correspondence:
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK;
| |
Collapse
|
45
|
Orden C, Santos M, Ceprian M, Tendillo FJ. The effect of cannabidiol on sevoflurane minimum alveolar concentration reduction produced by morphine in rats. Vet Anaesth Analg 2020; 48:74-81. [PMID: 33303398 DOI: 10.1016/j.vaa.2020.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/09/2020] [Accepted: 04/05/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the effect of cannabidiol (CBD) on sevoflurane minimum alveolar concentration (MACSEV) reduction produced by morphine in rats. STUDY DESIGN Randomized, blinded trial. ANIMALS A total of 75 male Wistar Han rats weighing 276 ± 23 g (mean and standard deviation), aged 3 months. METHODS Cannabidiol (CBD) was prepared in an ethanol-solutol-saline vehicle. Animals were randomly divided into 15 groups and given an intraperitoneal bolus of 1, 3, 5, 6.5, 7.5 or 10 mg kg-1 of CBD alone (CBD1, CBD3, CBD5, CBD6.5, CBD7.5 and CBD10 respectively) or combined with 5 mg kg-1 of morphine (MOR+CBD1, MOR+CBD3, MOR+CBD5, MOR+CBD6.5, MOR+CBD7.5 and MOR+CBD10). While three controls groups: MOR+saline, MOR+vehicle and vehicle were given an intraperitoneal bolus of morphine with saline, morphine with vehicle or vehicle alone respectively. The MACSEV was determined from alveolar gas samples at the time of tail clamp application. The MACSEV reduction was analyzed using a one-way ANOVA followed by Tukey's test. Additionally, Kruskal-Wallis test for non-normally-distributed data was performed. Data are presented as mean ± standard deviation. P < 0.05 RESULTS: The mean MACSEV was not reduced by the action of CBD administered alone, but the addition of morphine to the different doses of CBD significantly reduced the MACSEV. That reduction was greatest in the MOR+CBD1, MOR+CBD7.5 and MOR+CBD10 groups (29 ± 5%, 32 ± 5% and 30 ± 6% respectively), less in MOR+CBD3 and MOR+CBD6.5 groups (24 ± 3% and 26 ± 4% respectively) and least in MOR+CBD5 group (17 ± 2%). However, only the MOR+CBD5 group was statistically significantly different from MOR+CBD1, MOR+CBD7.5 and MOR+CBD10 groups. CONCLUSIONS AND CLINICAL RELEVANCE MACSEV in rat was unaltered by the action of CBD alone, the reduction in MACSEV produced by morphine was not enhanced by the addition of CBD at the doses studied.
Collapse
Affiliation(s)
- Cristina Orden
- Medical and Surgical Research Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain.
| | - Martín Santos
- Medical and Surgical Research Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - María Ceprian
- Medical and Surgical Research Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain; Department of Biochemistry and Molecular Biology III, CIBERNED, IRICYS, School of Medicine, Universidad Complutense de Madrid, Spain
| | - Francisco J Tendillo
- Medical and Surgical Research Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| |
Collapse
|
46
|
Kan T, Yoshikawa M, Watanabe M, Miura M, Ito K, Matsuda M, Iwao K, Kobayashi H, Suzuki T, Suzuki T. Sialorphin Potentiates Effects of [Met 5]Enkephalin without Toxicity by Action other than Peptidase Inhibition. J Pharmacol Exp Ther 2020; 375:104-114. [PMID: 32759368 DOI: 10.1124/jpet.120.266080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
This dose-response study investigated the effects of sialorphin on [Met5]enkephalin (ME)-induced inhibition of contractions in mouse vas deferens and antinociception in male rats. Differences were compared among combinations of three chemical peptidase inhibitors: amastatin, captopril, and phosphoramidon. The ratio of potencies of ME in mouse vas deferens pretreated with both sialorphin (100 µM) and a mixture of the three peptidase inhibitors (1 µM each) was higher than that with the mixture of peptidase inhibitors alone at any dose. Intrathecal administration of sialorphin (100-400 nmol) significantly and dose dependently increased ME (3 nmol)-induced antinociception with the mixture of three peptidase inhibitors (10 nmol each). The degree of antinociception with a combination of any two of the peptidase inhibitors (10 nmol each) in the absence of sialorphin was less than that in the presence of sialorphin (200 nmol). Pretreatment with both sialorphin (200 nmol) and the mixture of three peptidase inhibitors (10 nmol each) produced an approximately 100-fold augmentation in ME (10 nmol)-induced antinociception, but without signs of toxicity such as motor dysfunction in rats. Radioligand receptor binding assay revealed that sialorphin did not affect either binding affinity or maximal binding capacity of [d-Ala2,N-MePhe4,Gly-ol5]enkephalin. These results indicate that sialorphin potentiates the effects of ME without toxicity by a mechanism other than peptidase inhibition and with no effect on its affinity to µ-opioid receptors. SIGNIFICANCE STATEMENT: Sialorphin is regarded as an endogenous peptidase inhibitor that interacts with enkephalin-degrading enzymes. The results of these in vitro and in vivo studies confirm that sialorphin potentiates the effects of [Met5]enkephalin without toxicity by an action other than peptidase inhibition. This suggests that sialorphin offers the advantage of reducing or negating the side effects of opioid drugs and endogenous opioid peptides.
Collapse
Affiliation(s)
- Takugi Kan
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Masanobu Yoshikawa
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Mariko Watanabe
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Masaaki Miura
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Kenji Ito
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Mitsumasa Matsuda
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Kayoko Iwao
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Kobayashi
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Takeshi Suzuki
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Toshiyasu Suzuki
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
47
|
Sadee W, Oberdick J, Wang Z. Biased Opioid Antagonists as Modulators of Opioid Dependence: Opportunities to Improve Pain Therapy and Opioid Use Management. Molecules 2020; 25:4163. [PMID: 32932935 PMCID: PMC7571197 DOI: 10.3390/molecules25184163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Opioid analgesics are effective pain therapeutics but they cause various adverse effects and addiction. For safer pain therapy, biased opioid agonists selectively target distinct μ opioid receptor (MOR) conformations, while the potential of biased opioid antagonists has been neglected. Agonists convert a dormant receptor form (MOR-μ) to a ligand-free active form (MOR-μ*), which mediates MOR signaling. Moreover, MOR-μ converts spontaneously to MOR-μ* (basal signaling). Persistent upregulation of MOR-μ* has been invoked as a hallmark of opioid dependence. Contrasting interactions with both MOR-μ and MOR-μ* can account for distinct pharmacological characteristics of inverse agonists (naltrexone), neutral antagonists (6β-naltrexol), and mixed opioid agonist-antagonists (buprenorphine). Upon binding to MOR-μ*, naltrexone but not 6β-naltrexol suppresses MOR-μ*signaling. Naltrexone blocks opioid analgesia non-competitively at MOR-μ*with high potency, whereas 6β-naltrexol must compete with agonists at MOR-μ, accounting for ~100-fold lower in vivo potency. Buprenorphine's bell-shaped dose-response curve may also result from opposing effects on MOR-μ and MOR-μ*. In contrast, we find that 6β-naltrexol potently prevents dependence, below doses affecting analgesia or causing withdrawal, possibly binding to MOR conformations relevant to opioid dependence. We propose that 6β-naltrexol is a biased opioid antagonist modulating opioid dependence at low doses, opening novel avenues for opioid pain therapy and use management.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Aether Therapeutics Inc., 4200 Marathon Blvd. Austin, TX 78756, USA
- Pain and Addiction Research Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - John Oberdick
- Department of Neuroscience, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Zaijie Wang
- Departments of Pharmaceutical Sciences and Neurology, University of Illinois at Chicago. Chicago, IL 60612, USA;
| |
Collapse
|
48
|
Slepukhina MA, Ivashchenko DV, Sheina MA, Muradian AA, Blagovestnov DA, Sychev DA. Pain pharmacogenetics. Drug Metab Pers Ther 2020; 35:dmpt-2020-2939. [PMID: 32776897 DOI: 10.1515/dmpt-2020-2939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 11/15/2022]
Abstract
Pain is a significant problem in medicine. The use of PGx markers to personalize postoperative analgesia can increase its effectiveness and avoid undesirable reactions. This article describes the mechanisms of nociception and antinociception and shows the pathophysiological mechanisms of pain in the human body. The main subject of this article is pharmacogenetic approach to the selection of anesthetics. Current review presents data for local and general anesthetics, opioids, and non-steroidal anti-inflammatory drugs. None of the anesthetics currently has clinical guidelines for pharmacogenetic testing. This literature review summarizes the results of original research available, to date, and draws attention to this area.
Collapse
Affiliation(s)
| | - Dmitriy V Ivashchenko
- Child Psychiatry and Psychotherapy Department, Department of Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Maria A Sheina
- Department of Anesthesiology and Intensive Care, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Dmitriy A Sychev
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
49
|
β-Arrestin 2 and ERK1/2 Are Important Mediators Engaged in Close Cooperation between TRPV1 and µ-Opioid Receptors in the Plasma Membrane. Int J Mol Sci 2020; 21:ijms21134626. [PMID: 32610605 PMCID: PMC7370190 DOI: 10.3390/ijms21134626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
The interactions between TRPV1 and µ-opioid receptors (MOR) have recently attracted much attention because these two receptors play important roles in pain pathways and can apparently modulate each other’s functioning. However, the knowledge about signaling interactions and crosstalk between these two receptors is still limited. In this study, we investigated the mutual interactions between MOR and TRPV1 shortly after their activation in HEK293 cells expressing these two receptors. After activation of one receptor we observed significant changes in the other receptor’s lateral mobility and vice versa. However, the changes in receptor movement within the plasma membrane were not connected with activation of the other receptor. We also observed that plasma membrane β-arrestin 2 levels were altered after treatment with agonists of both these receptors. Knockdown of β-arrestin 2 blocked all changes in the lateral mobility of both receptors. Furthermore, we found that β-arrestin 2 can play an important role in modulating the effectiveness of ERK1/2 phosphorylation after activation of MOR in the presence of TRPV1. These data suggest that β-arrestin 2 and ERK1/2 are important mediators between these two receptors and their signaling pathways. Collectively, MOR and TRPV1 can mutually affect each other’s behavior and β-arrestin 2 apparently plays a key role in the bidirectional crosstalk between these two receptors in the plasma membrane.
Collapse
|
50
|
Slivicki RA, Iyer V, Mali SS, Garai S, Thakur GA, Crystal JD, Hohmann AG. Positive Allosteric Modulation of CB 1 Cannabinoid Receptor Signaling Enhances Morphine Antinociception and Attenuates Morphine Tolerance Without Enhancing Morphine- Induced Dependence or Reward. Front Mol Neurosci 2020; 13:54. [PMID: 32410959 PMCID: PMC7199816 DOI: 10.3389/fnmol.2020.00054] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
Opioid analgesics represent a critical treatment for chronic pain in the analgesic ladder of the World Health Organization. However, their use can result in a number of unwanted side-effects including incomplete efficacy, constipation, physical dependence, and overdose liability. Cannabinoids enhance the pain-relieving effects of opioids in preclinical studies and dampen unwanted side-effects resulting from excessive opioid intake. We recently reported that a CB1 positive allosteric modulator (PAM) exhibits antinociceptive efficacy in models of pathological pain and lacks the adverse side effects of direct CB1 receptor activation. In the present study, we evaluated whether a CB1 PAM would enhance morphine’s therapeutic efficacy in an animal model of chemotherapy-induced neuropathic pain and characterized its impact on unwanted side-effects associated with chronic opioid administration. In paclitaxel-treated mice, both the CB1 PAM GAT211 and the opioid analgesic morphine reduced paclitaxel-induced behavioral hypersensitivities to mechanical and cold stimulation in a dose-dependent manner. Isobolographic analysis revealed that combinations of GAT211 and morphine resulted in anti-allodynic synergism. In paclitaxel-treated mice, a sub-threshold dose of GAT211 prevented the development of tolerance to the anti-allodynic effects of morphine over 20 days of once daily dosing. However, GAT211 did not reliably alter somatic withdrawal signs (i.e., jumps, paw tremors) in morphine-dependent neuropathic mice challenged with naloxone. In otherwise naïve mice, GAT211 also prolonged antinociceptive efficacy of morphine in the tail-flick test and reduced the overall right-ward shift in the ED50 for morphine to produce antinociception in the tail-flick test, consistent with attenuation of morphine tolerance. Pretreatment with GAT211 did not alter somatic signs of μ opioid receptor dependence in mice rendered dependent upon morphine via subcutaneous implantation of a morphine pellet. Moreover, GAT211 did not reliably alter μ-opioid receptor-mediated reward as measured by conditioned place preference to morphine. Our results suggest that a CB1 PAM may be beneficial in enhancing and prolonging the therapeutic properties of opioids while potentially sparing unwanted side-effects (e.g., tolerance) that occur with repeated opioid treatment.
Collapse
Affiliation(s)
- Richard A Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sumanta Garai
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Jonathon D Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| |
Collapse
|