1
|
Wu YC, Beets I, Fox BW, Fajardo Palomino D, Chen L, Liao CP, Vandewyer E, Lin LY, He CW, Chen LT, Lin CT, Schroeder FC, Pan CL. Intercellular sphingolipid signaling mediates aversive learning in C. elegans. Curr Biol 2025:S0960-9822(25)00429-4. [PMID: 40252647 DOI: 10.1016/j.cub.2025.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Physiological stress in non-neural tissues drives aversive learning for sensory cues associated with stress. However, the identities of signals derived from non-neural tissues and the mechanisms by which these signals mediate aversive learning remain elusive. Here, we show that intercellular sphingolipid signaling contributes to aversive learning under mitochondrial stress in C. elegans. We found that stress-induced aversive learning requires sphingosine kinase, SPHK-1, the enzyme that produces sphingosine-1-phosphate (S1P). Genetic and biochemical studies revealed an intercellular signaling pathway in which intestinal or hypodermal SPHK-1 signals through the neuronal G protein-coupled receptor, SPHR-1, and modulates responses of the octopaminergic RIC neuron to promote aversive learning. We further show that SPHK-1-mediated sphingolipid signaling is required for learned aversion of Chryseobacterium indologenes, a bacterial pathogen found in the natural habitats of C. elegans, which causes mitochondrial stress. Taken together, our work reveals a sphingolipid signaling pathway that communicates from intestinal or hypodermal tissues to neurons to promote aversive learning in response to mitochondrial stress and pathogen infection.
Collapse
Affiliation(s)
- Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Bennett William Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Li Chen
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Elke Vandewyer
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Liang-Yi Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Wei He
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Tzu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chih-Ta Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
2
|
Takasugi M, Arai H, Sugimoto K, Tsushima T, Hosomi R, Fukunaga K, Takahashi K. Lysophosphatidylcholine, rich in n-3 polyunsaturated fatty acids, inhibits leukotriene production by mouse mast cells. Lipids 2025. [PMID: 40170573 DOI: 10.1002/lipd.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
In fishery industries, large amounts of byproducts are discarded during processing; therefore, their use as a source of n-3 polyunsaturated fatty acids (PUFAs) is beneficial. In this study, we evaluated the potential anti-allergic effect of lysophosphatidylcholine (Lyso-PtdCho) derived from squid skin phosphatidylcholine (PtdCho) by measuring the production of leukotriene (LT) B4 and C4, which are chemical mediators produced by mast cells in immediate allergic reactions. Squid Lyso-PtdCho, with docosahexaenoic acid exclusively esterified at the sn-2 position, significantly inhibited LT production, whereas the original PtdCho obtained from squid skin showed no inhibitory activity. Lyso-PtdCho prepared from starfish viscera PtdCho, which exclusively binds eicosapentaenoic acid at the sn-2 position, also inhibited LT production, although the effect was moderate compared with that of the squid Lyso-PtdCho. It has been suggested that Lyso-PtdCho containing n-3 PUFA may alleviate allergic symptoms and contribute to the effective utilization of fishery wastes and processing byproducts.
Collapse
Affiliation(s)
- Mikako Takasugi
- Faculty of Life Science, Kyushu Sangyo University, Fukuoka, Japan
| | - Hirofumi Arai
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Hokkaido, Japan
| | - Koki Sugimoto
- Faculty of Food and Nutritional Sciences, Toyo University, Saitama, Japan
| | - Tadahiro Tsushima
- Oleo Fine Chemical Division, Bizen Chemical Co., Ltd, Okayama, Japan
| | - Ryota Hosomi
- Department of Life Science and Biotechnology, Kansai University, Osaka, Japan
| | - Kenji Fukunaga
- Department of Life Science and Biotechnology, Kansai University, Osaka, Japan
| | | |
Collapse
|
3
|
Bai R, Yue X, Tian X, Zhao H, Liu Y, Li T, Wu J. Lysophosphatidic acid 2 alleviates deep vein thrombosis via protective endothelial barrier function. Open Med (Wars) 2025; 20:20241137. [PMID: 39927163 PMCID: PMC11806235 DOI: 10.1515/med-2024-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025] Open
Abstract
Background The specific role of lysophosphatidic acid 2 (LPA2) in deep vein thrombosis (DVT) remains unclear. Methods An inferior vena cava annulus retraction model of DVT was established in wild-type (WT) and global LPA2 knockout (Lpar2 -/- ) mice. We examined the incidence of DVT, wet weight of thrombus, length of thrombus, assessed endothelial permeability through Evans blue dye assay in vivo, cell viability, and endothelial cell (EC) permeability of mouse inferior vena cava ECs in vitro. Proteomics, histopathology, immunohistochemistry, and western blotting were employed to investigate the role of LPA2 in DVT. Results Lpar2 deficiency increased vascular endothelial permeability and promoted the progression of DVT. Histological examination revealed aggravated inflammation in the thrombus of Lpar2 -/- DVT mice. In vitro, Lpar2 -/- resulted in increased permeability of ECs. Proteomic results indicated that DVT after Lpar2 -/- may be related to tight junction (TJ) protein. LPA2 agonist, 2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl] benzoic acid, significantly reduced vascular endothelial permeability as well as increased expression of the vascular endothelial TJ protein zonula occludens-1. Conclusion These data provide a novel mechanism of endothelial barrier protection of LPA2 in DVT.
Collapse
Affiliation(s)
- Ruifeng Bai
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Xinyang Yue
- Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, 100035, China
| | - Xuan Tian
- Department of Vascular Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Huiru Zhao
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Ying Liu
- Blood Transfusion Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin300100, China
| | - Jun Wu
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, 31 Xinjiekou East St., Beijing, 100035, China
| |
Collapse
|
4
|
Hilz MJ, Canavese F, de Rojas-Leal C, Lee DH, Linker RA, Wang R. Pre-existing parasympathetic dominance seems to cause persistent heart rate slowing after 6 months of fingolimod treatment in patients with multiple sclerosis. Clin Auton Res 2025; 35:59-73. [PMID: 39382757 PMCID: PMC11937153 DOI: 10.1007/s10286-024-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Vagomimetic fingolimod effects cause heart rate (HR) slowing upon treatment initiation but wear off with sphingosine-1-phosphate receptor downregulation. Yet, prolonged HR slowing may persist after months of fingolimod treatment. We evaluated whether cardiovascular autonomic modulation differs before and 6 months after fingolimod initiation between patients with RRMS with and without initially prolonged HR slowing upon fingolimod initiation. METHODS In 34 patients with RRMS, we monitored RR intervals (RRI) and blood pressure (BP), at rest and upon standing up before fingolimod initiation. Six hours and 6 months after fingolimod initiation, we repeated recordings at rest. At the three time points, we calculated autonomic parameters, including RRI standard deviation (RRI-SD), RRI-total-powers, RMSSD, RRI high-frequency [HF] powers, RRI and BP low-frequency (LF) powers, and baroreflex sensitivity (BRS). Between and among patients with and without prolonged HR slowing upon fingolimod initiation, we compared all parameters assessed at the three time points (analysis of variance [ANOVA] with post hoc testing; significance: p < 0.05). RESULTS Six hours after fingolimod initiation, all patients had decreased HRs but increased RRIs, RRI-SDs, RMSSDs, RRI-HF-powers, RRI-total-powers, and BRS; 11 patients had prolonged HR slowing. Before fingolimod initiation, these 11 patients did not decrease parasympathetic RMSSDs and RRI-HF-powers upon standing up. After 6 months, all parameters had reapproached pretreatment values but the 11 patients with prolonged HR slowing had lower HRs while the other 23 patients had lower parasympathetic RMSSDs and RRI-HF-powers, and BRS than before fingolimod initiation. CONCLUSION Our patients with prolonged HR slowing upon fingolimod initiation could not downregulate cardiovagal modulation upon standing up even before fingolimod initiation, and 6 months after fingolimod initiation still had more parasympathetic effect on HR while cardiovagal modulation and BRS were attenuated in the other 23 patients. Pre-existing parasympathetic predominance may cause prolonged HR slowing upon fingolimod initiation.
Collapse
Affiliation(s)
- Max J Hilz
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Francesca Canavese
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Carmen de Rojas-Leal
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Department of Neurology, Hospital Universitario Virgen de La Victoria, Malaga, Spain
| | - De-Hyung Lee
- Department of Neurology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Ruihao Wang
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
5
|
Gaidarov I, Komori HK, Stepniak DT, Bruinsma K, Dang H, Chen X, Anthony T, Gatlin J, Karimi‐Naser L, Ton A, Indersmitten T, Miller PE, Ghetti A, Abi‐Gerges N, Unett D, Al‐Shamma H, Rabbat CJ, Crosby C, Adams JW. Unique pharmacological properties of etrasimod among S1P receptor modulators. FEBS Open Bio 2025; 15:108-121. [PMID: 39564958 PMCID: PMC11705451 DOI: 10.1002/2211-5463.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
Etrasimod (ADP334) is an oral, once-daily, selective sphingosine 1-phosphate (S1P)1,4,5 receptor modulator for the treatment of moderately to severely active ulcerative colitis and in development for the treatment of immune-mediated inflammatory diseases. Interaction between S1P and its five receptor subtypes (S1P1-S1P5) plays a role in several physiologic systems, including the cardiovascular and immune systems. Since differences in S1PR binding and downstream intracellular signaling could contribute to distinct profiles of drug efficacy and safety, we directly compared the S1P1-5 selectivity profile of etrasimod to three marketed S1PR modulators: fingolimod, ozanimod, and siponimod. Using both heterologous expression systems and human umbilical vein endothelial cells that spontaneously express S1P1, we profiled key S1P1 downstream signaling pathways and found that etrasimod had similar potency to the other tested S1PR modulators in promoting β-arrestin recruitment and S1P1 internalization. However, etrasimod was notably less potent than other S1PR modulators in assays measuring S1P1-mediated G protein activation (GTPγS binding and cAMP inhibition). Relatively lower potency of etrasimod in inducing G protein signaling corresponded to significantly diminished activation of human cardiac G protein-coupled inwardly rectifying potassium channels when compared to ozanimod. Together with pharmacokinetic properties, this pharmacologic profile of etrasimod may contribute to the positive benefit risk profile of etrasimod observed during the phase III ELEVATE UC 52 and ELEVATE UC 12 trials in patients with moderately to severely active ulcerative colitis.
Collapse
|
6
|
Binish F, Xiao J. Deciphering the role of sphingosine 1-phosphate in central nervous system myelination and repair. J Neurochem 2025; 169:e16228. [PMID: 39290063 DOI: 10.1111/jnc.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid of the sphingolipid family and plays a pivotal role in the mammalian nervous system. Indeed, S1P is a therapeutic target for treating demyelinating diseases such as multiple sclerosis. Being part of an interconnected sphingolipid metabolic network, the amount of S1P available for signalling is equilibrated between its synthetic (sphingosine kinases 1 and 2) and degradative (sphingosine 1-phosphate lyase) enzymes. Once produced, S1P exerts its biological roles via signalling to a family of five G protein-coupled S1P receptors 1-5 (S1PR1-5). Despite significant progress, the precise roles that S1P metabolism and downstream signalling play in regulating myelin formation and repair remain largely opaque and somewhat controversial. Genetic or pharmacological studies adopting various model systems identify that stimulating S1P-S1PR signalling protects myelin-forming oligodendrocytes after central nervous system (CNS) injury and attenuates demyelination in vivo. However, evidence to support its role in remyelination of the mammalian CNS is limited, although blocking S1P synthesis sheds light on the role of endogenous S1P in promoting CNS remyelination. This review focuses on summarising the current understanding of S1P in CNS myelin formation and repair, discussing the complexity of S1P-S1PR interaction and the underlying mechanism by which S1P biosynthesis and signalling regulates oligodendrocyte myelination in the healthy and injured mammalian CNS, raising new questions for future investigation.
Collapse
Affiliation(s)
- Fatima Binish
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
7
|
Riese J, Kleinwort A, Hannemann M, Hähnel C, Kersting S, Schulze T. Sphingosine-1-phosphate receptor type 4 is critically involved in the regulation of peritoneal B-1 cell trafficking and distribution in vivo. Eur J Immunol 2024; 54:e2350882. [PMID: 39344245 PMCID: PMC11628879 DOI: 10.1002/eji.202350882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
B-1 cells are crucially involved in immune defense and regulation of inflammation and autoimmunity. B-1 cells are predominantly located in the peritoneal and pleural cavities, although body cavity B-1 cells recirculate systemically under steady-state conditions. The chemokines CXCL12 and CXCL13 have been identified as the main regulators of peritoneal B-cell trafficking. In mice deficient for sphingosine-1-phosphate receptor 4 (S1PR4), B-1a and B-1b cell numbers are reduced in the peritoneal cavity by an unknown mechanism. In this study, we show that S1PR4-mediated S1P signaling modifies the chemotactic response of peritoneal B cells to CXCL13 and CXCL12 in vitro. In vivo, S1PR4-mediated S1P signaling affects both immigration into and emigration from the peritoneal cavity. Long-term reconstitution experiments of scid mice with wt or s1pr4 -/- peritoneal B cells revealed a distinct distributional pattern in secondary lymphoid organs. As a functional consequence, both plasmatic and mucosal IgM levels, the main product of B-1a cells, are reduced in mice reconstituted with s1pr4 -/- peritoneal cells. In summary, our data identify S1PR4 as the second S1P receptor (besides S1PR1), which is critically involved in the regulation of peritoneal B-1 cell function.
Collapse
Affiliation(s)
- Janik Riese
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Annabel Kleinwort
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Maurice Hannemann
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Celine Hähnel
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Stephan Kersting
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Tobias Schulze
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| |
Collapse
|
8
|
Akasaka H, Sano FK, Shihoya W, Nureki O. Structural mechanisms of potent lysophosphatidic acid receptor 1 activation by nonlipid basic agonists. Commun Biol 2024; 7:1444. [PMID: 39506093 PMCID: PMC11541586 DOI: 10.1038/s42003-024-07152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) is one of the G protein-coupled receptors activated by the lipid mediator, lysophosphatidic acid (LPA). LPA1 is associated with a variety of diseases, and LPA1 agonists have potential therapeutic value for treating obesity and depression. Although potent nonlipid LPA1 agonists have recently been identified, the mechanisms of nonlipid molecule-mediated LPA1 activation remain unclear. Here, we report a cryo-electron microscopy structure of the human LPA1-Gi complex bound to a nonlipid basic agonist, CpY, which has 30-fold higher agonistic activity as compared with LPA. Structural comparisons of LPA1 with other lipid GPCRs revealed that the negative charge in the characteristic binding pocket of LPA1 allows the selective recognition of CpY, which lacks a polar head. In addition, our structure show that the ethyl group of CpY directly pushes W2716.48 to fix the active conformation. Endogenous LPA lacks these chemical features, which thus represent the crucial elements of nonlipid agonists that potently activate LPA1. This study provides detailed mechanistic insights into the ligand recognition and activation of LPA1 by nonlipid agonists, expanding the scope for drug development targeting the LPA receptors.
Collapse
Affiliation(s)
- Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Janakiraman H, Gao Z, Zhu Y, Dong J, Becker SA, Janneh A, Ogretmen B, Camp ER. Targeting SNAI1-Mediated Colorectal Cancer Chemoresistance and Stemness by Sphingosine Kinase 2 Inhibition. World J Oncol 2024; 15:744-757. [PMID: 39328328 PMCID: PMC11424120 DOI: 10.14740/wjon1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT), cancer stem cells (CSCs), and colorectal cancer (CRC) therapy resistance are closely associated. Prior reports have demonstrated that sphingosine-1-phosphate (S1P) supports stem cells and maintains the CSC phenotype. We hypothesized that the EMT inducer SNAI1 drives S1P signaling to amplify CSC self-renewal capacity and chemoresistance. Methods CRC cell lines with or without ectopic expression of SNAI1 were used to study the role of S1P signaling as mediators of cancer stemness and 5-fluorouracil (5FU) chemoresistance. The therapeutic ability of sphingosine kinase 2 (SPHK2) was assessed using siRNA and ABC294640, a SPHK2 inhibitor. CSCs were isolated from patient-derived xenografts (PDXs) and assessed for SPHK2 and SNAI1 expression. Results Ectopic SNAI1 expressing cell lines demonstrated elevated SPHK2 expression and increased SPHK2 promoter activity. SPHK2 inhibition with siRNA or ABC294640 ablated in vitro self-renewal and sensitized cells to 5FU. CSCs isolated from CRC PDXs express increased SPHK2 relative to the non-CSC population. Combination ABC294640/5FU therapy significantly inhibited tumor growth in mice and enhanced 5FU response in therapy-resistant CRC patient-derived tumor organoids (PDTOs). Conclusions SNAI1/SPHK2 signaling mediates cancer stemness and 5FU resistance, implicating S1P as a therapeutic target for CRC. The S1P inhibitor ABC294640 holds potential as a therapeutic agent to target CSCs in therapy refractory CRC.
Collapse
Affiliation(s)
| | - Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yun Zhu
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiangling Dong
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Scott A Becker
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA 30322, USA
| | - Alhaji Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - E Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Qiu J, Liu J, Cai K, Xu T, Liu W, Lin F, Shi N. Efficacy and safety of the S1PR modulator etrasimod in the treatment of moderately to severely active ulcerative colitis during the induction phase: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1420455. [PMID: 39314756 PMCID: PMC11417464 DOI: 10.3389/fphar.2024.1420455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background The study aims to assess the efficacy and safety of the recently approved S1PR modulator etrasimod in adults with ulcerative colitis during the induction phase through meta-analysis. Methods A systemic search was performed for randomized controlled trials evaluating the efficacy and safety of the S1PR modulator etrasimod using electronic databases PubMed, Embase, the Cochrane Library, Clinical Trials, and the International Clinical Trials Registry Platform. Three studies with 943 patients met the inclusion criteria and were included in this analysis. The study's primary endpoint was the proportion of patients who achieved clinical remission at week 12. Key secondary endpoints included the proportion of patients with clinical response, endoscopic improvement, and histologic remission. The incidence of adverse effects (AEs), serious AEs (SAEs), and AE-related treatment discontinuation were statistically analyzed to determine the safety of etrasimod. Results This study revealed that etrasimod is superior to placebo at the primary endpoint clinical remission (OR = 3.09, 95% CI: 2.04-4.69), as well as at the secondary endpoints clinical response (OR = 2.56, 95% CI: 1.91-3.43), endoscopic improvement (OR = 2.15, 95% CI: 1.51-3.05), and histologic remission (OR = 3.39, 95% CI: 2.03-5.68). The proportion of patients with TEAE (OR = 1.34, 95% CI: 1.01-1.78) and SAE (OR = 0.77, 95% CI: 0.41-1.43) was similar between the etrasimod and placebo groups. Patients receiving etrasimod had slightly higher odds of experiencing headache (OR = 2.07, 95% CI: 1.01-4.23), and nausea (OR = 1.84, 95% CI: 0.72-4.72). The incidences of upper respiratory tract infection (OR = 0.79, 95% CI: 0.27-2.32), nasopharyngitis (OR = 0.40, 95% CI: 0.15-1.07), and urinary tract infection (OR = 1.82, 95% CI: 0.59-5.60) were generally lower in the etrasimod groups and no treatment-related serious infections were reported. Conclusion This study demonstrates that etrasimod is effective in treating moderately to severely active ulcerative colitis with a favorable benefit-risk profile at week 12. Etrasimod shows promise as a potential first-line oral therapy for individuals suffering from this disease. Additional RCTs with larger sample sizes and longer observation periods are needed to confirm the sustained efficacy of etrasimod beyond the initial phase.
Collapse
Affiliation(s)
- Jingyue Qiu
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, Beijing, China
| | - Jiakuo Liu
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, Beijing, China
| | - Kexin Cai
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, Beijing, China
| | - Ting Xu
- Pharmaceutical Department, PLA Rocket Force Medical Center, Beijing, China
| | - Wenwen Liu
- Shandong Provincial Center for ADR Monitoring, Jinan, Shandong, China
| | - Fei Lin
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Clinical Medical College, Chengdu Medical College, Chengdu, China
| | - Ning Shi
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
11
|
Birgbauer E. Lysophospholipid receptors in neurodegeneration and neuroprotection. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024; 4:349-365. [PMID: 39247084 PMCID: PMC11379401 DOI: 10.37349/ent.2024.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
The central nervous system (CNS) is one of the most complex physiological systems, and treatment of CNS disorders represents an area of major medical need. One critical aspect of the CNS is its lack of regeneration, such that damage is often permanent. The damage often leads to neurodegeneration, and so strategies for neuroprotection could lead to major medical advances. The G protein-coupled receptor (GPCR) family is one of the major receptor classes, and they have been successfully targeted clinically. One class of GPCRs is those activated by bioactive lysophospholipids as ligands, especially sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA). Research has been increasingly demonstrating the important roles that S1P and LPA, and their receptors, play in physiology and disease. In this review, I describe the role of S1P and LPA receptors in neurodegeneration and potential roles in neuroprotection. Much of our understanding of the role of S1P receptors has been through pharmacological tools. One such tool, fingolimod (also known as FTY720), which is a S1P receptor agonist but a functional antagonist in the immune system, is clinically efficacious in multiple sclerosis by producing a lymphopenia to reduce autoimmune attacks; however, there is evidence that fingolimod is also neuroprotective. Furthermore, fingolimod is neuroprotective in many other neuropathologies, including stroke, Parkinson's disease, Huntington's disease, Rett syndrome, Alzheimer's disease, and others that are discussed here. LPA receptors also appear to be involved, being upregulated in a variety of neuropathologies. Antagonists or mutations of LPA receptors, especially LPA1, are neuroprotective in a variety of conditions, including cortical development, traumatic brain injury, spinal cord injury, stroke and others discussed here. Finally, LPA receptors may interact with other receptors, including a functional interaction with plasticity related genes.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| |
Collapse
|
12
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
13
|
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, De Leonardis G, D’Alessandro R, Lotesoriere C, Giannelli G. Autotaxin-Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications. Int J Mol Sci 2024; 25:7737. [PMID: 39062979 PMCID: PMC11277072 DOI: 10.3390/ijms25147737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
14
|
Son SE, Lee YJ, Shin YJ, Kim DH, Im DS. GPR55 Antagonist CID16020046 Attenuates Obesity-Induced Airway Inflammation by Suppressing Chronic Low-Grade Inflammation in the Lungs. Int J Mol Sci 2024; 25:7358. [PMID: 39000464 PMCID: PMC11242637 DOI: 10.3390/ijms25137358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
GPR55 is a receptor for lysophosphatidylinositols (LPIs) in digestive metabolites. Overnutrition leads to obesity, insulin resistance, and increased LPI levels in the plasma. The involvement of LPIs and GPR55 in adiposity, hepatic steatosis, and atherosclerosis has been previously elucidated. However, the therapeutic efficacy of GPR55 antagonists against obesity-induced airway inflammation has not been studied. The present study investigated whether CID16020046, a selective antagonist of GPR55, could modulate obesity-induced airway inflammation caused by a high-fat diet (HFD) in C57BL/6 mice. Administration of CID16020046 (1 mg/kg) inhibits HFD-induced adiposity and glucose intolerance. Analysis of immune cells in BALF showed that CID16020046 inhibited HFD-induced increase in immune cell infiltration. Histological analysis revealed the HFD induced hypersecretion of mucus and extensive fibrosis in the lungs. CID16020046 inhibited these HFD-induced pathological features. qRT-PCR revealed the HFD-induced increase in the expression of Ifn-γ, Tnf-α, Il-6, Il-13, Il-17A, Il-1β, Nlrp3, and Mpo mRNAs in the lungs. CID16020046 inhibited the HFD-induced increases in these genes. The expression levels of adipokines were regulated by the HFD and CID16020046. AdipoQ in the lungs and gonadal white adipose tissue was decreased by the HFD and reversed by CID16020046. In contrast, Lep was increased by the HFD and suppressed by CID16020046. The findings suggest the potential application of the GPR55 antagonist CID16020046 in obesity-induced airway inflammation.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
| | - Ye-Ji Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
| | - Yoon-Jung Shin
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
| | - Dong-Hyun Kim
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
15
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
16
|
Li L, Zhou R, Sun L. Application of Theiler's murine encephalomyelitis virus in treatment of multiple sclerosis. Front Microbiol 2024; 15:1415365. [PMID: 38989030 PMCID: PMC11233754 DOI: 10.3389/fmicb.2024.1415365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infected mice have been often used as an animal model for Multiple sclerosis (MS) due to their similar pathology in the central nervous system (CNS). So far, there has been no effective treatment or medicine to cure MS completely. The drugs used in the clinic can only reduce the symptoms of MS, delay its recurrence, and increase the interval between relapses. MS can be caused by many factors, and clinically MS drugs are used to treat MS regardless of what factors are caused rather than MS caused by a specific factor. This can lead to inappropriate medicine, which may be one of the reasons why MS has not been completely cured. Therefore, this review summarized the drugs investigated in the TMEV-induced disease (TMEV-IDD) model of MS, so as to provide medication guidance and theoretical basis for the treatment of virus-induced MS.
Collapse
Affiliation(s)
- Lin Li
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Rui Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lin Sun
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
17
|
Solís KH, Romero-Ávila MT, Rincón-Heredia R, García-Sáinz JA. Lysophosphatidic Acid Receptor 3 (LPA3): Signaling and Phosphorylation Sites. Int J Mol Sci 2024; 25:6491. [PMID: 38928196 PMCID: PMC11203643 DOI: 10.3390/ijms25126491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
LPA3 receptors were expressed in TREx HEK 293 cells, and their signaling and phosphorylation were studied. The agonist, lysophosphatidic acid (LPA), increased intracellular calcium and ERK phosphorylation through pertussis toxin-insensitive processes. Phorbol myristate acetate, but not LPA, desensitizes LPA3-mediated calcium signaling, the agonists, and the phorbol ester-induced LPA3 internalization. Pitstop 2 (clathrin heavy chain inhibitor) markedly reduced LPA-induced receptor internalization; in contrast, phorbol ester-induced internalization was only delayed. LPA induced rapid β-arrestin-LPA3 receptor association. The agonist and the phorbol ester-induced marked LPA3 receptor phosphorylation, and phosphorylation sites were detected using mass spectrometry. Phosphorylated residues were detected in the intracellular loop 3 (S221, T224, S225, and S229) and in the carboxyl terminus (S321, S325, S331, T333, S335, Y337, and S343). Interestingly, phosphorylation sites are within sequences predicted to constitute β-arrestin binding sites. These data provide insight into LPA3 receptor signaling and regulation.
Collapse
Affiliation(s)
- K. Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - M. Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico;
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| |
Collapse
|
18
|
Shi L, Luo B, Deng L, Zhang Q, Li Y, Sun D, Zhang H, Zhuang L. The lncRNA TRG-AS1 promotes the growth of colorectal cancer cells through the regulation of P2RY10/GNA13. Scand J Gastroenterol 2024; 59:710-721. [PMID: 38357893 DOI: 10.1080/00365521.2024.2318363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The lncRNA TRG-AS1 and its co-expressed gene P2RY10 are important for colorectal cancer (CRC) occurrence and development. The purpose of our research was to explore the roles of TRG-AS1 and P2RY10 in CRC progression. METHODS The abundance of TRG-AS1 and P2RY10 in CRC cell lines (HT-29 and LoVo) and normal colon cells FHC was determined and difference between CRC cells and normal cells was compared. LoVo cells were transfected with si-TRG-AS1 and si-P2RY10 constructs. Subsequently, the viability, colony formation, and migration of the transfected cells were analyzed using cell counting kit-8, clonogenicity, and scratch-wound/Transwell® assays, respectively. Cells overexpressing GNA13 were used to further explore the relationship between TRG-AS1 and P2RY10 along with their downstream functions. Finally, nude mice were injected with different transfected cell types to observe tumor formation in vivo. RESULTS TRG-AS1 and P2RY10 were significantly upregulated in HT-29 and LoVo compared to FHC cells. TRG-AS1 knockdown and P2RY10 silencing suppressed the viability, colony formation, and migration of LoVo cells. TRG-AS1 knockdown downregulated the expression of P2RY10, GNA12, and GNA13, while P2RY10 silencing downregulated the expression of TRG-AS1, GNA12, and GNA13. Additionally, GNA13 overexpression reversed the cell growth and gene expression changes in LoVo cells induced by TRG-AS1 knockdown or P2RY10 silencing. In vivo experiments revealed that CRC tumor growth was suppressed by TRG-AS1 knockdown and P2RY10 silencing. CONCLUSIONS TRG-AS1 knockdown repressed the growth of HT-29 and LoVo by regulating P2RY10 and GNA13 expression.
Collapse
Affiliation(s)
- Longqing Shi
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Baoyang Luo
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Linghui Deng
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Zhang
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Yuanjiu Li
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Donglin Sun
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Hua Zhang
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Lin Zhuang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Córdova-Casanova A, Cruz-Soca M, Gallardo FS, Faundez-Contreras J, Bock-Pereda A, Chun J, Vio CP, Casar JC, Brandan E. LPA-induced expression of CCN2 in muscular fibro/adipogenic progenitors (FAPs): Unraveling cellular communication networks. Matrix Biol 2024; 130:36-46. [PMID: 38723870 DOI: 10.1016/j.matbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.
Collapse
Affiliation(s)
- Adriana Córdova-Casanova
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; P Universidad Católica de Chile, Santiago, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; P Universidad Católica de Chile, Santiago, Chile
| | | | | | - Alexia Bock-Pereda
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; P Universidad Católica de Chile, Santiago, Chile
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carlos P Vio
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
20
|
Solís KH, Romero-Ávila MT, Rincón-Heredia R, García-Sáinz JA. LPA 3 Receptor Phosphorylation Sites: Roles in Signaling and Internalization. Int J Mol Sci 2024; 25:5508. [PMID: 38791546 PMCID: PMC11122405 DOI: 10.3390/ijms25105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Lysophosphatidic acid (LPA) type 3 (LPA3) receptor mutants were generated in which the sites detected phosphorylated were substituted by non-phosphorylatable amino acids. Substitutions were made in the intracellular loop 3 (IL3 mutant), the carboxyl terminus (Ctail), and both domains (IL3/Ctail). The wild-type (WT) receptor and the mutants were expressed in T-REx HEK293 cells, and the consequences of the substitutions were analyzed employing different functional parameters. Agonist- and LPA-mediated receptor phosphorylation was diminished in the IL3 and Ctail mutants and essentially abolished in the IL3/Ctail mutant, confirming that the main phosphorylation sites are present in both domains and their role in receptor phosphorylation eliminated by substitution and distributed in both domains. The WT and mutant receptors increased intracellular calcium and ERK 1/2 phosphorylation in response to LPA and PMA. The agonist, Ki16425, diminished baseline intracellular calcium, which suggests some receptor endogenous activity. Similarly, baseline ERK1/2 phosphorylation was diminished by Ki16425. An increase in baseline ERK phosphorylation was detected in the IL3/Ctail mutant. LPA and PMA-induced receptor interaction with β-arrestin 2 and LPA3 internalization were severely diminished in cells expressing the mutants. Mutant-expressing cells also exhibit increased baseline proliferation and response to different stimuli, which were inhibited by the antagonist Ki16425, suggesting a role of LPA receptors in this process. Migration in response to different attractants was markedly increased in the Ctail mutant, which the Ki16425 antagonist also attenuated. Our data experimentally show that receptor phosphorylation in the distinct domains is relevant for LPA3 receptor function.
Collapse
Affiliation(s)
- K. Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - M. Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico;
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| |
Collapse
|
21
|
Lee CA, Schreiber S, Bressler B, Adams JW, Oh DA, Tang YQ, Zhang J, Komori HK, Grundy JS. Safety, Pharmacokinetics, and Pharmacodynamics of Etrasimod: Single and Multiple Ascending Dose Studies in Healthy Adults. Clin Pharmacol Drug Dev 2024; 13:534-548. [PMID: 38345530 DOI: 10.1002/cpdd.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 04/25/2024]
Abstract
Etrasimod is an investigational, once-daily, oral, selective sphingosine 1-phosphate receptor 1,4,5 modulator in development for immune-mediated inflammatory diseases (IMIDs). Here, we report the human safety, pharmacokinetics, and pharmacodynamics of etrasimod obtained from both a single ascending dose (SAD; 0.1-5 mg) study and a multiple ascending dose (MAD; 0.35-3 mg once daily) study. Overall, 99 healthy volunteers (SAD n = 40, MAD n = 59) completed the 2 studies. Evaluated single and multiple doses were well tolerated up to 3 mg without severe adverse events (AEs). Gastrointestinal disorders were the most common etrasimod-related AEs. Over the evaluated single- and multiple-dose ranges, dose-proportional and marginally greater-than-dose-proportional etrasimod plasma exposure were observed, respectively. At steady state, etrasimod oral clearance and half-life mean values ranged from 1.0 to 1.2 L/h and 29.7 to 36.4 hours, respectively. Dose-dependent total peripheral lymphocyte reductions occurred following etrasimod single and multiple dosing. Etrasimod multiple dosing resulted in reductions from baseline in total lymphocyte counts ranging from 41.1% to 68.8% after 21 days. Lymphocyte counts returned to normal range within 7 days following treatment discontinuation. Heart rate lowering from pretreatment baseline on etrasimod dosing was typically mild, with mean reductions seen after the first dose of up to 19.5 bpm (5 mg dose). The favorable safety, pharmacokinetic, and pharmacodynamic properties of etrasimod in humans supported its further development and warranted its investigation for treatment of IMIDs.
Collapse
Affiliation(s)
- Caroline A Lee
- Arena Pharmaceuticals, A Wholly Owned Subsidiary of Pfizer Inc, San Diego, CA, USA
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Excellence Cluster Precision Medicine in Inflammation, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Brian Bressler
- Department of Medicine, Division of Gastroenterology, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - John W Adams
- Arena Pharmaceuticals, A Wholly Owned Subsidiary of Pfizer Inc, San Diego, CA, USA
| | - Dooman Alexander Oh
- Arena Pharmaceuticals, A Wholly Owned Subsidiary of Pfizer Inc, San Diego, CA, USA
| | - Yong Q Tang
- Arena Pharmaceuticals, A Wholly Owned Subsidiary of Pfizer Inc, San Diego, CA, USA
| | - Jinkun Zhang
- Arena Pharmaceuticals, A Wholly Owned Subsidiary of Pfizer Inc, San Diego, CA, USA
| | | | - John S Grundy
- Arena Pharmaceuticals, A Wholly Owned Subsidiary of Pfizer Inc, San Diego, CA, USA
| |
Collapse
|
22
|
Oka T, Matsuzawa Y, Tsuneyoshi M, Nakamura Y, Aoshima K, Tsugawa H. Multiomics analysis to explore blood metabolite biomarkers in an Alzheimer's Disease Neuroimaging Initiative cohort. Sci Rep 2024; 14:6797. [PMID: 38565541 PMCID: PMC10987653 DOI: 10.1038/s41598-024-56837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that commonly causes dementia. Identifying biomarkers for the early detection of AD is an emerging need, as brain dysfunction begins two decades before the onset of clinical symptoms. To this end, we reanalyzed untargeted metabolomic mass spectrometry data from 905 patients enrolled in the AD Neuroimaging Initiative (ADNI) cohort using MS-DIAL, with 1,304,633 spectra of 39,108 unique biomolecules. Metabolic profiles of 93 hydrophilic metabolites were determined. Additionally, we integrated targeted lipidomic data (4873 samples from 1524 patients) to explore candidate biomarkers for predicting progressive mild cognitive impairment (pMCI) in patients diagnosed with AD within two years using the baseline metabolome. Patients with lower ergothioneine levels had a 12% higher rate of AD progression with the significance of P = 0.012 (Wald test). Furthermore, an increase in ganglioside (GM3) and decrease in plasmalogen lipids, many of which are associated with apolipoprotein E polymorphism, were confirmed in AD patients, and the higher levels of lysophosphatidylcholine (18:1) and GM3 d18:1/20:0 showed 19% and 17% higher rates of AD progression, respectively (Wald test: P = 3.9 × 10-8 and 4.3 × 10-7). Palmitoleamide, oleamide, diacylglycerols, and ether lipids were also identified as significantly altered metabolites at baseline in patients with pMCI. The integrated analysis of metabolites and genomics data showed that combining information on metabolites and genotypes enhances the predictive performance of AD progression, suggesting that metabolomics is essential to complement genomic data. In conclusion, the reanalysis of multiomics data provides new insights to detect early development of AD pathology and to partially understand metabolic changes in age-related onset of AD.
Collapse
Affiliation(s)
- Takaki Oka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yuki Matsuzawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Momoka Tsuneyoshi
- Human Biology Integration Foundation, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Ken Aoshima
- Microbes & Host Defense Domain, Eisai Co., Ltd., Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
23
|
Gao Z, Janakiraman H, Xiao Y, Kang SW, Dong J, Choi J, Ogretmen B, Lee HS, Camp ER. Sphingosine-1-Phosphate Inhibition Increases Endoplasmic Reticulum Stress to Enhance Oxaliplatin Sensitivity in Pancreatic Cancer. World J Oncol 2024; 15:169-180. [PMID: 38545484 PMCID: PMC10965266 DOI: 10.14740/wjon1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 05/02/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer resistant to current therapies, including oxaliplatin (Oxa). Growing evidence supports the ability of cancers to harness sphingolipid metabolism for survival. Sphingosine-1-phosphate (S1P) is an anti-apoptotic, pro-survival mediator that can influence cellular functions such as endoplasmic reticulum (ER) stress. We hypothesize that PDAC drives dysregulated sphingolipid metabolism and that S1P inhibition can enhance ER stress to improve therapeutic response to Oxa in PDAC. Methods RNA sequencing data of sphingolipid mediators from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) datasets were analyzed. Murine and human PDAC cell lines were treated with small interfering RNA (siRNA) against sphingosine kinase-2 (SPHK2) or ABC294640 (ABC) and incubated with combinations of vehicle control or Oxa. In an orthotopic syngeneic KPC PDAC model, tumors were treated with either vehicle control, Oxa, ABC, or combination therapy. Results RNA sequencing analysis revealed multiple significantly differentially expressed sphingolipid mediators (P < 0.05). In vitro, both siRNA knockdown of SPHK2 and ABC sensitized cells to Oxa therapy (P < 0.05), and induced eukaryotic initiation factor 2α (eIF2α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) phosphorylation, hallmarks of ER stress. In vitro therapy also increased extracellular high mobility group box 1 (HMGB1) release (P < 0.05), necessary for immunogenic cell death (ICD). In vivo combination therapy increased apoptotic markers as well as the intensity of HMGB1 staining compared to control (P < 0.05). Conclusions Our evidence suggests that sphingolipid metabolism is dysregulated in PDAC. Furthermore, S1P inhibition can sensitize PDAC to Oxa therapy through increasing ER stress and can potentiate ICD induction. This highlights a potential therapeutic target for chemosensitizing PDAC as well as an adjunct for future chemoimmunotherapy strategies.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Yang Xiao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiangling Dong
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jasmine Choi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ernest Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
25
|
Akefe IO, Saber SH, Matthews B, Venkatesh BG, Gormal RS, Blackmore DG, Alexander S, Sieriecki E, Gambin Y, Bertran-Gonzalez J, Vitale N, Humeau Y, Gaudin A, Ellis SA, Michaels AA, Xue M, Cravatt B, Joensuu M, Wallis TP, Meunier FA. The DDHD2-STXBP1 interaction mediates long-term memory via generation of saturated free fatty acids. EMBO J 2024; 43:533-567. [PMID: 38316990 PMCID: PMC10897203 DOI: 10.1038/s44318-024-00030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation and memory acquisition, suggesting the involvement of phospholipase A1 (PLA1) activity in synaptic plasticity. Here, we show that genetic ablation of the PLA1 isoform DDHD2 in mice dramatically reduces saturated FFA responses to memory acquisition across the brain. Furthermore, DDHD2 loss also decreases memory performance in reward-based learning and spatial memory models prior to the development of neuromuscular deficits that mirror human spastic paraplegia. Via pulldown-mass spectrometry analyses, we find that DDHD2 binds to the key synaptic protein STXBP1. Using STXBP1/2 knockout neurosecretory cells and a haploinsufficient STXBP1+/- mouse model of human early infantile encephalopathy associated with intellectual disability and motor dysfunction, we show that STXBP1 controls targeting of DDHD2 to the plasma membrane and generation of saturated FFAs in the brain. These findings suggest key roles for DDHD2 and STXBP1 in lipid metabolism and in the processes of synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Academy for Medical Education, Medical School, The University of Queensland, 288 Herston Road, 4006, Brisbane, QLD, Australia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bharat G Venkatesh
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Emma Sieriecki
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | - Yann Gambin
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | | | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 CNRS - Université de Strasbourg, Strasbourg, France
| | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Arnaud Gaudin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sevannah A Ellis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alysee A Michaels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia.
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- The School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
26
|
Suilik HA, Jaber F, Abuelazm M, Ramadan A, Elzeftawy MA, Elrosasy A, Youssef RA, Abdelazeem B, Hashash JG, Farraye FA, Ghoz H. Sphingosine 1-phosphate (S1P) receptor modulators as an induction and maintenance therapy for ulcerative colitis: a systematic review and meta-analysis of randomized controlled trials. Inflamm Res 2024; 73:183-198. [PMID: 38153524 DOI: 10.1007/s00011-023-01829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/02/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVE One sphingosine-1-phosphate (S1P) receptor modulator is approved (ozanimod) and another (etrasimod) is under investigation for the induction and maintenance of remission of ulcerative colitis (UC). We aim to evaluate the efficacy and safety of S1P modulators in patients with active UC. METHODS We conducted a systematic review and meta-analysis synthesizing randomized controlled trials (RCTs), which were retrieved by systematically searching: PubMed, Web of Science, SCOPUS, and Cochrane through May 13th, 2023. We used the fixed-effect model to pool dichotomous data using risk ratio (RR) with a 95% confidence interval (CI). RESULTS Five RCTs with a total of 1990 patients were included. S1P receptor modulators were significantly associated with increased clinical response during both the induction (RR 1.71 with 95% CI [1.50, 1.94], P = 0.00001) and maintenance phases (RR 1.89 with 95% CI [1.33, 2.69], P = 0.0004); clinical remission rates during both induction (RR 2.76 with 95% CI [1.88, 4.05], P = 0.00001) and maintenance phases (RR 3.34 with 95% CI [1.41, 7.94], P = 0.006); endoscopic improvement during both induction (RR 2.15 with 95% CI [1.71, 2.70], P = 0.00001) and maintenance phases (RR 2.41 with 95% CI [1.15, 5.05], P = 0.02); and histologic remission during both induction (RR 2.60 with 95% CI [1.89, 3.57] [1.17, 2.10], P = 0.00001) and maintenance phases (RR 2.52 with 95% CI [1.89, 3.37], P = 0.00001). Finally, there was no difference regarding safety outcomes as compared to placebo in both the induction and maintenance phases. CONCLUSION S1P receptor modulators are effective in inducing and maintaining remission in patients with moderate to severe UC.
Collapse
Affiliation(s)
| | - Fouad Jaber
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.
| | | | - Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Amr Elrosasy
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Basel Abdelazeem
- West Virginia University, Morgantown, WV, USA
- Michigan State University, East Lansing, MI, USA
| | - Jana G Hashash
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Francis A Farraye
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Hassan Ghoz
- Division of Gastroenterology and Hepatology, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
27
|
Massironi S, Elvevi A, Panceri R, Mulinacci G, Colella G, Biondi A, Invernizzi P, Danese S, Vespa E. Eosinophilic esophagitis: does age matter? Expert Rev Clin Immunol 2024; 20:211-223. [PMID: 37870118 DOI: 10.1080/1744666x.2023.2274940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus with increasing prevalence worldwide. It is a multifactorial disease caused by a combination of immunologic, genetic, and environmental factors. The clinical presentation of EoE varies largely, especially between different age groups. While diagnostic criteria and therapeutic goals are similar in children and adults, there are differences in treatment, with a more cautious approach in children to avoid growth disturbances. In addition, close monitoring and follow-up are essential in children to ensure uninterrupted growth. AREAS COVERED A search in PubMed/MEDLINE, EMBASE, and SCOPUS databases was conducted to identify relevant studies published between January 2010 and January 2023 to give an overview of the state-of-the-art of EoE epidemiology, diagnosis, and treatment while focusing on similarities and differences between the adult and the pediatric population. EXPERT OPINION The current state of research indicates that while significant progress has been made in understanding and treating EoE, further research and advances are needed to optimize diagnostic strategies, tailored treatment approaches, monitoring, and follow-up, and improve long-term outcomes for patients. With further innovation, the management of EoE can become more precise and tailored, leading to better patient outcomes and improved quality of life.
Collapse
Affiliation(s)
- Sara Massironi
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Roberto Panceri
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Giacomo Mulinacci
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giacomo Colella
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Andrea Biondi
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Pietro Invernizzi
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy, and Vita-Salute, San Raffaele University, Milan, Italy
| | - Edoardo Vespa
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy, and Vita-Salute, San Raffaele University, Milan, Italy
| |
Collapse
|
28
|
Xu X, Han Y, Zhu T, Fan F, Wang X, Liu Y, Luo D. The role of SphK/S1P/S1PR signaling pathway in bone metabolism. Biomed Pharmacother 2023; 169:115838. [PMID: 37944444 DOI: 10.1016/j.biopha.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
There are a large number of people worldwide who suffer from osteoporosis, which imposes a huge economic burden, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine kinase (SphK) is an enzyme that plays a crucial role in the synthesis of sphingosine-1-phosphate (S1P). S1P with paracrine and autocrine activities that act through its cell surface S1P receptors (S1PRs) and intracellular signals. In osteoporosis, S1P is indispensable for both normal and disease conditions. S1P has complicated roles in regulating osteoblast and osteoclast, respectively, and there have been exciting developments in understanding how SphK/S1P/S1PR signaling regulates these processes in response to osteoporosis therapy. Here, we review the proliferation, differentiation, apoptosis, and functions of S1P, specifically detailing the roles of S1P and S1PRs in osteoblasts and osteoclasts. Finally, we focus on the S1P-based therapeutic approaches in bone metabolism, which may provide valuable insights into potential therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yi Han
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Tianxin Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Faxin Fan
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Xin Wang
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yuqing Liu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Duosheng Luo
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China.
| |
Collapse
|
29
|
Jonnalagadda D, Kihara Y, Groves A, Ray M, Saha A, Ellington C, Lee-Okada HC, Furihata T, Yokomizo T, Quadros EV, Rivera R, Chun J. FTY720 requires vitamin B 12-TCN2-CD320 signaling in astrocytes to reduce disease in an animal model of multiple sclerosis. Cell Rep 2023; 42:113545. [PMID: 38064339 PMCID: PMC11066976 DOI: 10.1016/j.celrep.2023.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Vitamin B12 (B12) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P1. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B12 pathways. Genetic and pharmacological S1P1 inhibition upregulates a transcobalamin 2 (TCN2)-B12 receptor, CD320, in immediate-early astrocytes (ieAstrocytes; a c-Fos-activated astrocyte subset that tracks with experimental autoimmune encephalomyelitis [EAE] severity). CD320 is also reduced in MS plaques. Deficiency of CD320 or dietary B12 restriction worsens EAE and eliminates FTY720's efficacy while concomitantly downregulating type I interferon signaling. TCN2 functions as a chaperone for FTY720 and sphingosine, whose complex induces astrocytic CD320 internalization, suggesting a delivery mechanism of FTY720/sphingosine via the TCN2-CD320 pathway. Taken together, the B12-TCN2-CD320 pathway is essential for the mechanism of action of FTY720.
Collapse
Affiliation(s)
- Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Aran Groves
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Neuroscience Graduate Program, School of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Manisha Ray
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Clayton Ellington
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Edward V Quadros
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Abdelwahid MS, Ohsawa K, Uwamizu A, Kano K, Aoki J, Doi T. Synthesis and Biological Evaluation of Lysophosphatidic Acid Analogues Using Conformational Restriction and Bioisosteric Replacement Strategies. ACS OMEGA 2023; 8:49278-49288. [PMID: 38162765 PMCID: PMC10753746 DOI: 10.1021/acsomega.3c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Lysophosphatidic acid (LPA) is a key player in many physiological and pathophysiological processes. The biological activities of LPA are mediated through interactions with-at least-six subtypes of G-protein-coupled receptors (GPCRs) named LPA1-6. Developing a pharmacological tool molecule that activates LPA subtype receptors selectively will allow a better understanding of their specific physiological roles. Here, we designed and synthesized conformationally restricted 25 1-oleoyl LPA analogues MZN-001 to MZN-025 by incorporating its glycerol linker into dihydropyran, tetrahydropyran, and pyrrolidine rings and variating the lipophilic chain. The agonistic activities of these compounds were evaluated using the TGFα shedding assay. Overall, the synthesized analogues exhibited significantly reduced agonistic activities toward LPA1, LPA2, and LPA6, while demonstrating potent activities toward LPA3, LPA4, and LPA5 compared to the parent LPA. Specifically, MZN-010 showed more than 10 times greater potency (EC50 = 4.9 nM) than the standard 1-oleoyl LPA (EC50 = 78 nM) toward LPA5 while exhibiting significantly lower activity on LPA1, LPA2, and LPA6 and comparable potency toward LPA3 and LPA4. Based on the MZN-010 scaffold, we synthesized additional analogues with improved selectivity and potency toward LPA5. Compound MZN-021, which contains a saturated lipophilic chain, exhibited 50 times more potent activity (EC50 = 1.2 nM) than the natural LPA against LPA5 with over a 45-fold higher selectivity when compared to those of other LPA receptors. Thus, MZN-021 was found to be a potent and selective LPA5 agonist. The findings of this study could contribute to broadening the current knowledge about the stereochemical and three-dimensional arrangement of LPA pharmacophore components inside LPA receptors and paving the way toward synthesizing other subtype-selective pharmacological probes.
Collapse
Affiliation(s)
- Mazin
A. S. Abdelwahid
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kosuke Ohsawa
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Akiharu Uwamizu
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kuniyuki Kano
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junken Aoki
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Doi
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
31
|
Kobayashi Y, Uneuchi F, Naruse T, Matsuda D, Okumura-Kitajima L, Kajiyama H, Wada R, Yonemoto Y, Nakano K, Toki H, Kamigaso S, Yamagishi J, Tokura S, Kakinuma H, Kuroda S. Lead generation from N-[benzyl(4-phenylbutyl)carbamoyl]amino acid as a novel LPA 1 antagonist for the treatment of systemic sclerosis. Eur J Med Chem 2023; 260:115749. [PMID: 37639822 DOI: 10.1016/j.ejmech.2023.115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Lysophosphatidic acid (LPA), a bioactive phospholipid, binds to the G protein-coupled LPA1 receptor on the surfaces of immune cells, to promote progression of fibrosis of the skin and organs through inducing infiltration of immune cells into tissues, chemokine production, inflammatory cytokine production, and fibroblast transformation. Anti-fibrotic effects of LPA1 blockade have been reported in animal models of scleroderma and scleroderma patients. In the study reported herein, we identified the novel urea compound 5 as a hit compound with LPA1 antagonist activity from our in-house library and synthesized the lead compound TP0541640 (18) by structural transformation utilizing a structure-based drug design (SBDD) approach. Compound 18 possessed potent in vitro LPA1 antagonist activity and exhibited a dose-dependent inhibitory effect against LPA-induced histamine release in mice. Furthermore, 18 significantly suppressed collagen production and skin thickening in a mouse model of bleomycin-induced skin fibrosis. Herein, we describe the compound design strategies and in vivo studies in greater detail.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Fumito Uneuchi
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Takumi Naruse
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Daisuke Matsuda
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | | | - Hiromitsu Kajiyama
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Reiko Wada
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Yuki Yonemoto
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Koichiro Nakano
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Hidetoh Toki
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Shunsuke Kamigaso
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Jyunya Yamagishi
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Seiken Tokura
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| | - Hiroyuki Kakinuma
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan.
| | - Shoichi Kuroda
- Taisho Pharmaceutical Co., Ltd., 1-403, Kita-Ku, Saitama, 331-9530, Japan
| |
Collapse
|
32
|
Olianas MC, Dedoni S, Onali P. Differential targeting of lysophosphatidic acid LPA 1, LPA 2, and LPA 3 receptor signalling by tricyclic and tetracyclic antidepressants. Eur J Pharmacol 2023; 959:176064. [PMID: 37758013 DOI: 10.1016/j.ejphar.2023.176064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
We previously reported that in different cell types antidepressant drugs activate lysophosphatidic acid (LPA) LPA1 receptor to induce proliferative and prosurvival responses. Here, we further characterize this unique action of antidepressants by examining their effects on two additional LPA receptor family members, LPA2 and LPA3. Human LPA1-3 receptors were stably expressed in HEK-293 cells (HEK-LPA1, -LPA2 and -LPA3 cells) and their functional activity was determined by Western blot and immunofluorescence. LPA effectively stimulated the phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in HEK-LPA1, -LPA2, and -LPA3 cells. The tricyclic antidepressants amitriptyline, clomipramine, imipramine and desipramine increased phospho-ERK1/2 levels in HEK-LPA1 and -LPA3 cells but were relatively poor agonists in LPA2-expressing cells. The tetracyclic antidepressants mianserin and mirtazapine were active at all three LPA receptors. When combined with LPA, both amitriptyline and mianserin potentiated Gi/o-mediated phosphorylation of ERK1/2 induced by LPA in HEK-LPA1, -LPA2 and -LPA3 cells, CHO-K1 fibroblasts and HT22 hippocampal neuroblasts. This potentiation was associated with enhanced phosphorylation of CREB and S6 ribosomal protein, two molecular targets of activated ERK1/2. The antidepressants also potentiated LPA-induced Gq/11-mediated phosphorylation of AMP-activated protein kinase in HEK-LPA1 and -LPA3 cells. Conversely, amitriptyline and mianserin were found to inhibit LPA-induced Rho activation in HEK-LPA1 and LPA2 cells. These results indicate that tricyclic and tetracyclic antidepressants can act on LPA1, LPA2 and LPA3 receptor subtypes and exert differential effects on LPA signalling through these receptors.
Collapse
Affiliation(s)
- Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, (CA), Italy
| | - Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, (CA), Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, (CA), Italy.
| |
Collapse
|
33
|
Bai R, Pei J, Pei S, Cong X, Chun J, Wang F, Chen X. LPA 2 Alleviates Septic Acute Lung Injury via Protective Endothelial Barrier Function Through Activation of PLC-PKC-FAK. J Inflamm Res 2023; 16:5095-5109. [PMID: 38026263 PMCID: PMC10640838 DOI: 10.2147/jir.s419578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Increased endothelial permeability of pulmonary vessels is a primary pathological characteristic of septic acute lung injury (ALI). Previously, elevated lysophosphatidic acid (LPA) levels and LPA2 (an LPA receptor) expression have been found in the peripheral blood and lungs of septic mice, respectively. However, the specific role of LPA2 in septic ALI remains unclear. Methods A lipopolysaccharide (LPS)-induced model of sepsis was established in wild-type (WT) and global LPA2 knockout (Lpar2-/-) mice. We examined mortality, lung injury, assessed endothelial permeability through Evans blue dye (EBD) assay in vivo, and transendothelial electrical resistance (TEER) of mouse lung microvascular endothelial cells (MLMECs) in vitro. Enzyme-linked immunosorbent assay (ELISA), histopathological, immunofluorescence, immunohistochemistry, and Western blot were employed to investigate the role of LPA2 in septic ALI. Results Lpar2 deficiency increased vascular endothelial permeability, impaired lung injury, and increased mortality. Histological examination revealed aggravated inflammation, edema, hemorrhage and alveolar septal thickening in the lungs of septic Lpar2-/- mice. In vitro, loss of Lpar2 resulted in increased permeability of MLMECs. Pharmacological activation of LPA2 by the agonist DBIBB led to significantly reduced inflammation, edema and hemorrhage, as well as increased expression of the vascular endothelial tight junction (TJ) protein zonula occludens-1 (ZO-1) and claudin-5, as well as the adheren junction (AJ) protein VE-cadherin. Moreover, DBIBB treatment was found to alleviate mortality by protecting against vascular endothelial permeability. Mechanistically, we demonstrated that vascular endothelial permeability was alleviated through LPA-LPA2 signaling via the PLC-PKC-FAK pathway. Conclusion These data provide a novel mechanism of endothelial barrier protection via PLC-PKC-FAK pathway and suggest that LPA2 may contribute to the therapeutic effects of septic ALI.
Collapse
Affiliation(s)
- Ruifeng Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shengqiang Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Diagnostic Laboratory Service, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Clinical Laboratory, Fuwai Yunnan Cardiovascular Hospital, Kunming, People’s Republic of China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Diagnostic Laboratory Service, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
34
|
Kayama H, Takeda K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur J Immunol 2023; 53:e2249866. [PMID: 37191284 DOI: 10.1002/eji.202249866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry-based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infection Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
35
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
36
|
Yaginuma S, Omi J, Uwamizu A, Aoki J. Emerging roles of lysophosphatidylserine as an immune modulator. Immunol Rev 2023; 317:20-29. [PMID: 37036835 DOI: 10.1111/imr.13204] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023]
Abstract
In addition to direct activation by pathogens and antigens, immune cell functions are further modulated by factors in their environment. Recent studies have revealed that lysophospholipids (LPL) derived from membrane glycerophospholipids are such environmental factors. They are produced by the action of various phospholipases and modulate immune responses positively or negatively via G-protein-coupled receptor-type receptors. These include lysophosphatidic acid, lysophosphatidylserine (LysoPS), and lysophosphatidylinositol. Here, we summarize what is known about the synthetic pathways, receptors, and immunomodulatory functions of these LPLs. Particular focus is given to LysoPS, which have recently been identified, and recent findings on their immunomodulatory actions are presented.
Collapse
Affiliation(s)
- Shun Yaginuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jumpei Omi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akiharu Uwamizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
37
|
Liu J, Wang C. Lysophosphatidic acid is associated with oocyte maturation by enhancing autophagy via PI3K-AKT-mTOR signaling pathway in granulosa cells. J Ovarian Res 2023; 16:137. [PMID: 37434211 DOI: 10.1186/s13048-023-01228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Folliculogenesis is a complex network of interacting cellular signals between somatic cells and oocytes. Many components in ovarian follicular fluid (FF) dynamically change during folliculogenesis and play a positive role in oocyte maturation. Previous studies have reported that lysophosphatidic acid (LPA) promotes cumulus cell expansion, oocyte nuclear maturation, and in vitro maturation of oocytes. RESULTS Initially, the expression of LPA was raised in matured FF significantly (P < 0.0001). Then, 10 μM LPA treated for 24 h in human granulosa cells (KGNs) aggravated cell proliferation, with increased autophagy, and reduced apoptosis. Meanwhile, we demonstrated that LPA mediated cell function through the PI3K-AKT-mTOR signaling pathway as PI3K inhibitor (LY294002) significantly prevented LPA-induced AKT, mTOR phosphorylation and autophagy activation. Such results were also verified by immunofluorescence staining and flow cytometry. In addition, an autophagy inhibitor 3 methyladenine (3MA) could also alleviate the effects of LPA, by activating apoptosis through PI3K-AKT-mTOR pathways. Finally, we found blockade with Ki16425 or knockdown LPAR1, alleviated LPA mediated autophagy activation in KGNs, suggesting that LPA enhances autophagy through activation of the LPAR1 and PI3K-AKT-mTOR signaling pathways. CONCLUSION This study demonstrates that increased LPA activated PI3K-Akt-mTOR pathway through LPAR1 in granulosa cells, suppressing apoptosis by enhancing autophagy, which might play a role in oocyte maturation in vivo.
Collapse
Affiliation(s)
- Jia Liu
- Department of Otolaryngology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310051, People's Republic of China
| | - Chong Wang
- Reproductive Medicine Center, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Shangcheng District, No. 369 Kunpeng Road, Hangzhou, 310008, People's Republic of China.
| |
Collapse
|
38
|
Lin KH, Lee SC, Dacheux MA, Norman DD, Balogh A, Bavaria M, Lee H, Tigyi G. E2F7 drives autotaxin/Enpp2 transcription via chromosome looping: Repression by p53 in murine but not in human carcinomas. FASEB J 2023; 37:e23058. [PMID: 37358838 PMCID: PMC10364077 DOI: 10.1096/fj.202300838r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of the autotaxin (ATX, Enpp2)-lysophosphatidic acid (LPA) signaling in cancerous cells contributes to tumorigenesis and therapy resistance. We previously found that ATX activity was elevated in p53-KO mice compared to wild-type (WT) mice. Here, we report that ATX expression was upregulated in mouse embryonic fibroblasts from p53-KO and p53R172H mutant mice. ATX promoter analysis combined with yeast one-hybrid testing revealed that WT p53 directly inhibits ATX expression via E2F7. Knockdown of E2F7 reduced ATX expression and chromosome immunoprecipitation showed that E2F7 promotes Enpp2 transcription through cooperative binding to two E2F7 sites (promoter region -1393 bp and second intron 996 bp). Using chromosome conformation capture, we found that chromosome looping brings together the two E2F7 binding sites. We discovered a p53 binding site in the first intron of murine Enpp2, but not in human ENPP2. Binding of p53 disrupted the E2F7-mediated chromosomal looping and repressed Enpp2 transcription in murine cells. In contrast, we found no disruption of E2F7-mediated ENPP2 transcription via direct p53 binding in human carcinoma cells. In summary, E2F7 is a common transcription factor that upregulates ATX in human and mouse cells but is subject to steric interference by direct intronic p53 binding only in mice.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Sue Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Mélanie A Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Andrea Balogh
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Mitul Bavaria
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Hsinyu Lee
- Department of Life Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gabor Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
39
|
Fu X, Wang Y, Zhao F, Cui R, Xie W, Liu Q, Yang W. Shared biological mechanisms of depression and obesity: focus on adipokines and lipokines. Aging (Albany NY) 2023; 15:5917-5950. [PMID: 37387537 PMCID: PMC10333059 DOI: 10.18632/aging.204847] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Depression and obesity are both common disorders currently affecting public health, frequently occurring simultaneously within individuals, and the relationship between these disorders is bidirectional. The association between obesity and depression is highly co-morbid and tends to significantly exacerbate metabolic and related depressive symptoms. However, the neural mechanism under the mutual control of obesity and depression is largely inscrutable. This review focuses particularly on alterations in systems that may mechanistically explain the in vivo homeostatic regulation of the obesity and depression link, such as immune-inflammatory activation, gut microbiota, neuroplasticity, HPA axis dysregulation as well as neuroendocrine regulators of energy metabolism including adipocytokines and lipokines. In addition, the review summarizes potential and future treatments for obesity and depression and raises several questions that need to be answered in future research. This review will provide a comprehensive description and localization of the biological connection between obesity and depression to better understand the co-morbidity of obesity and depression.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yicun Wang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
40
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
41
|
Martínez-Morales JC, González-Ruiz KD, Romero-Ávila MT, Rincón-Heredia R, Reyes-Cruz G, García-Sáinz JA. Lysophosphatidic acid receptor LPA 1 trafficking and interaction with Rab proteins, as evidenced by Förster resonance energy transfer. Mol Cell Endocrinol 2023; 570:111930. [PMID: 37054840 DOI: 10.1016/j.mce.2023.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
LPA1 internalization to endosomes was studied employing Förster Resonance Energy Transfer (FRET) in cells coexpressing the mCherry-lysophosphatidic acid LPA1 receptors and distinct eGFP-tagged Rab proteins. Lysophosphatidic acid (LPA)-induced internalization was rapid and decreased afterward: phorbol myristate acetate (PMA) action was slower and sustained. LPA stimulated LPA1-Rab5 interaction rapidly but transiently, whereas PMA action was rapid but sustained. Expression of a Rab5 dominant-negative mutant blocked LPA1-Rab5 interaction and receptor internalization. LPA-induced LPA1-Rab9 interaction was only observed at 60 min, and LPA1-Rab7 interaction after 5 min with LPA and after 60 min with PMA. LPA triggered immediate but transient rapid recycling (i.e., LPA1-Rab4 interaction), whereas PMA action was slower but sustained. Agonist-induced slow recycling (LPA1-Rab11 interaction) increased at 15 min and remained at this level, whereas PMA action showed early and late peaks. Our results indicate that LPA1 receptor internalization varies with the stimuli.
Collapse
Affiliation(s)
| | - Karla D González-Ruiz
- Departamento de Biología Celular y Desarrollo, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados-Instituto Politécnico Nacional, Colonia San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | | |
Collapse
|
42
|
Martínez-Aguilar LM, Ibarra-Sánchez A, Guerrero-Morán DJ, Macías-Silva M, Muñoz-Bello JO, Padilla A, Lizano M, González-Espinosa C. Lysophosphatidylinositol Promotes Chemotaxis and Cytokine Synthesis in Mast Cells with Differential Participation of GPR55 and CB2 Receptors. Int J Mol Sci 2023; 24:ijms24076316. [PMID: 37047288 PMCID: PMC10094727 DOI: 10.3390/ijms24076316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent β-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1β mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Lizbeth Magnolia Martínez-Aguilar
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Daniel José Guerrero-Morán
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Jesús Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
| | - Alejandro Padilla
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universtiaria, Mexico City 04510, Mexico;
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
- Centro de Investigación sobre Envejecimiento (CIE), Cinvestav, Unidad Sede Sur. Calzada de los Tenorios No. 235 Col. Granjas Coapa, Tlalpan, Mexico City 14400, Mexico
- Correspondence: ; Tel.: +52-5554-832800
| |
Collapse
|
43
|
Doutt SW, Longo JF, Carroll SL. LPAR1 and aberrantly expressed LPAR3 differentially promote the migration and proliferation of malignant peripheral nerve sheath tumor cells. Glia 2023; 71:742-757. [PMID: 36416236 PMCID: PMC9868101 DOI: 10.1002/glia.24308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
Schwann cell-derived neoplasms known as malignant peripheral nerve sheath tumors (MPNSTs) are the most common malignancy and the leading cause of death in individuals with neurofibromatosis Type 1. Using genome-scale shRNA screens, we have previously found evidence suggesting that lysophosphatidic acid receptors (LPARs) are essential for MPNST proliferation and/or survival. Here, we examine the expression and mutational status of all six LPA receptors in MPNSTs, assess the role that individual LPA receptors play in MPNST physiology and examine their ability to activate key neurofibromin-regulated signaling cascades. We found that human Schwann cells express LPAR1 and LPAR6, while MPNST cells express predominantly LPAR1 and LPAR3. Whole exome sequencing of 16 MPNST cell lines showed no evidence of mutations in any LPAR genes or ENPP2, a gene encoding a major LPA biosynthetic enzyme. Oleoyl-LPA, an LPA variant with an unsaturated side chain, promoted MPNST cell proliferation and migration. LPAR1 knockdown ablated the promigratory effect of LPA, while LPAR3 knockdown decreased proliferation. Inhibition of R-Ras signaling with a doxycycline-inducible dominant negative (DN) R-Ras mutant, which inhibits both R-Ras and R-Ras2, blocked LPA's promigratory effect. In contrast, DN R-Ras did not affect migration induced by neuregulin-1β (NRG1β), suggesting that LPA and NRG1β promote MPNST migration via distinct pathways. LPA-induced migration was also inhibited by Y27632, an inhibitor of the ROCK1/2 kinases that mediate R-Ras effects in MPNSTs. Thus, LPAR1 and aberrantly expressed LPAR3 mediate distinct effects in MPNSTs. These receptors and the signaling pathways that they regulate are potentially useful therapeutic targets in MPNSTs.
Collapse
Affiliation(s)
- Shannon Weber Doutt
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- The Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
44
|
Liang J, Inoue A, Ikuta T, Xia R, Wang N, Kawakami K, Xu Z, Qian Y, Zhu X, Zhang A, Guo C, Huang Z, He Y. Structural basis of lysophosphatidylserine receptor GPR174 ligand recognition and activation. Nat Commun 2023; 14:1012. [PMID: 36823105 PMCID: PMC9950150 DOI: 10.1038/s41467-023-36575-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Lysophosphatidylserine (LysoPS) is a lipid mediator that induces multiple cellular responses through binding to GPR174. Here, we present the cryo-electron microscopy (cryo-EM) structure of LysoPS-bound human GPR174 in complex with Gs protein. The structure reveals a ligand recognition mode, including the negatively charged head group of LysoPS forms extensive polar interactions with surrounding key residues of the ligand binding pocket, and the L-serine moiety buries deeply into a positive charged cavity in the pocket. In addition, the structure unveils a partially open pocket on transmembrane domain helix (TM) 4 and 5 for a lateral entry of ligand. Finally, the structure reveals a Gs engaging mode featured by a deep insertion of a helix 5 (αH5) and extensive polar interactions between receptor and αH5. Taken together, the information revealed by our structural study provides a framework for understanding LysoPS signaling and a rational basis for designing LysoPS receptor-targeting drugs.
Collapse
Affiliation(s)
- Jiale Liang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Miyagi, Japan.
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Miyagi, Japan
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Na Wang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Miyagi, Japan
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Xinyan Zhu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China.
| |
Collapse
|
45
|
Imeri F, Stepanovska Tanturovska B, Manaila R, Pavenstädt H, Pfeilschifter J, Huwiler A. Loss of S1P Lyase Expression in Human Podocytes Causes a Reduction in Nephrin Expression That Involves PKCδ Activation. Int J Mol Sci 2023; 24:3267. [PMID: 36834691 PMCID: PMC9965238 DOI: 10.3390/ijms24043267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) lyase (SPL, Sgpl1) is an ER-associated enzyme that irreversibly degrades the bioactive lipid, S1P, and thereby regulates multiple cellular functions attributed to S1P. Biallelic mutations in the human Sglp1 gene lead to a severe form of a particular steroid-resistant nephrotic syndrome, suggesting that the SPL is critically involved in maintaining the glomerular ultrafiltration barrier, which is mainly built by glomerular podocytes. In this study, we have investigated the molecular effects of SPL knockdown (kd) in human podocytes to better understand the mechanism underlying nephrotic syndrome in patients. A stable SPL-kd cell line of human podocytes was generated by the lentiviral shRNA transduction method and was characterized for reduced SPL mRNA and protein levels and increased S1P levels. This cell line was further studied for changes in those podocyte-specific proteins that are known to regulate the ultrafiltration barrier. We show here that SPL-kd leads to the downregulation of the nephrin protein and mRNA expression, as well as the Wilms tumor suppressor gene 1 (WT1), which is a key transcription factor regulating nephrin expression. Mechanistically, SPL-kd resulted in increased total cellular protein kinase C (PKC) activity, while the stable downregulation of PKCδ revealed increased nephrin expression. Furthermore, the pro-inflammatory cytokine, interleukin 6 (IL-6), also reduced WT1 and nephrin expression. In addition, IL-6 caused increased PKCδ Thr505 phosphorylation, suggesting enzyme activation. Altogether, these data demonstrate that nephrin is a critical factor downregulated by the loss of SPL, which may directly cause podocyte foot process effacement as observed in mice and humans, leading to albuminuria, a hallmark of nephrotic syndrome. Furthermore, our in vitro data suggest that PKCδ could represent a new possible pharmacological target for the treatment of a nephrotic syndrome induced by SPL mutations.
Collapse
Affiliation(s)
- Faik Imeri
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland
| | | | - Roxana Manaila
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland
| | - Hermann Pavenstädt
- Medizinische Klinik D, University Hospital Münster, D-48149 Münster, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland
| |
Collapse
|
46
|
Lysophosphatidic acid induces proliferation and osteogenic differentiation of human dental pulp stem cell through lysophosphatidic acid receptor 3/extracellular signal-regulated kinase signaling axis. J Dent Sci 2023. [DOI: 10.1016/j.jds.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
47
|
Mechanisms and clinical management of eosinophilic oesophagitis: an overview. Nat Rev Gastroenterol Hepatol 2023; 20:101-119. [PMID: 36253463 DOI: 10.1038/s41575-022-00691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 02/03/2023]
Abstract
Since the first description of eosinophilic oesophagitis (EoE) less than three decades ago, we have observed a striking increase in the number of patients diagnosed with EoE and the understanding of its clinical and immunopathogenic background. Nonetheless, a plethora of open questions await elucidation. In this Review, we discuss the current state of knowledge regarding the underlying mechanisms, particularly environmental factors and their interaction with genetic susceptibility. Subsequently, we discuss how to translate these factors into the diagnostic and therapeutic management of this chronic, immune-mediated disorder. Finally, we dissect the still long list of unmet needs, such as reasons for and handling refractory EoE and atypical clinical presentations. These open questions can guide us through future research steps and potentially foster reconsideration of the diagnostic guidelines of EoE.
Collapse
|
48
|
Salgado-Polo F, Borza R, Matsoukas MT, Marsais F, Jagerschmidt C, Waeckel L, Moolenaar WH, Ford P, Heckmann B, Perrakis A. Autotaxin facilitates selective LPA receptor signaling. Cell Chem Biol 2023; 30:69-84.e14. [PMID: 36640760 DOI: 10.1016/j.chembiol.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/27/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Autotaxin (ATX; ENPP2) produces the lipid mediator lysophosphatidic acid (LPA) that signals through disparate EDG (LPA1-3) and P2Y (LPA4-6) G protein-coupled receptors. ATX/LPA promotes several (patho)physiological processes, including in pulmonary fibrosis, thus serving as an attractive drug target. However, it remains unclear if clinical outcome depends on how different types of ATX inhibitors modulate the ATX/LPA signaling axis. Here, we show that the ATX "tunnel" is crucial for conferring key aspects of ATX/LPA signaling and dictates cellular responses independent of ATX catalytic activity, with a preference for activation of P2Y LPA receptors. The efficacy of the ATX/LPA signaling responses are abrogated more efficiently by tunnel-binding inhibitors, such as ziritaxestat (GLPG1690), compared with inhibitors that exclusively target the active site, as shown in primary lung fibroblasts and a murine model of radiation-induced pulmonary fibrosis. Our results uncover a receptor-selective signaling mechanism for ATX, implying clinical benefit for tunnel-targeting ATX inhibitors.
Collapse
Affiliation(s)
- Fernando Salgado-Polo
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Razvan Borza
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | | | - Florence Marsais
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Ludovic Waeckel
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Wouter H Moolenaar
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paul Ford
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Bertrand Heckmann
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
49
|
Pathogenesis and Treatment of Pruritus Associated with Chronic Kidney Disease and Cholestasis. Int J Mol Sci 2023; 24:ijms24021559. [PMID: 36675074 PMCID: PMC9864517 DOI: 10.3390/ijms24021559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Itching is an unpleasant sensation that provokes the desire to scratch. In general, itching is caused by dermatologic diseases, but it can also be caused by systemic diseases. Since itching hampers patients' quality of life, it is important to understand the appropriate treatment and pathophysiology of pruritus caused by systemic diseases to improve the quality of life. Mechanisms are being studied through animal or human studies, and various treatments are being tested through clinical trials. We report current trends of two major systemic diseases: chronic kidney disease and cholestatic liver disease. This review summarizes the causes and pathophysiology of systemic diseases with pruritus and appropriate treatments. This article will contribute to patients' quality of life. Further research will help understand the mechanisms and develop new strategies in the future.
Collapse
|
50
|
Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int J Mol Sci 2023; 24:ijms24021637. [PMID: 36675152 PMCID: PMC9863938 DOI: 10.3390/ijms24021637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
It is commonly believed that the inactivation of inflammation is mainly due to the decay or cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous decay of inducers is not observed. It is now known that lipid mediators originating from polyunsaturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular inflammation and resolution, and their biochemical activity. In addition, we highlight data from the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic properties of these same lipid mediators. It should be noted that despite promising data observed in both animal and in vitro studies, contradictory clinical results have been observed for omega-3 PUFAs. Many further studies will be required in order to clarify the observed conflicts, although lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis of lipid mediators of inflammation resolution.
Collapse
|