1
|
Liu L, Song FH, Gao SJ, Wu JY, Li DY, Zhang LQ, Zhou YQ, Liu DQ, Mei W. Peroxisome proliferator-activated receptor gamma: A promising therapeutic target for the treatment of chronic pain. Brain Res 2025; 1850:149366. [PMID: 39617285 DOI: 10.1016/j.brainres.2024.149366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Chronic pain represents an incapacitating medical condition that profoundly impacts the patients' quality of life. Managing chronic pain poses a significant challenge for healthcare professionals due to its multifaceted nature and the limited effectiveness of current treatment options. Therefore, novel therapeutic interventions are crucially required for the management of chronic pain. Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor, exerts regulatory effects on physiological processes such as glucose and lipid metabolism. Emerging studies demonstrate that PPARγ is a critical regulator of the expression of various genes, including those of anti-inflammatory cytokines and antioxidant enzymes. Substantial evidence indicates decreased expression of PPARγ in the sciatic nerve, dorsal root ganglia, and spinal cord dorsal horn in animal models of chronic pain. Furthermore, natural or synthetic PPARγ agonists had inhibitory effects on nociceptive hypersensitivity in various animal models of chronic pain. This review summarizes and discusses preclinical evidence demonstrating the therapeutic potential of PPARγ agonists in chronic pain management. The available evidence indicates that PPARγ activation reduces chronic pain by inhibiting neuroinflammation and oxidative stress as well as modulation of opioidergic system. Overall, the use of PPARγ agonists is a promising therapeutic approach for treating chronic pain; however, further research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Lin Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
2
|
Castro EM, Lotfipour S, Leslie FM. Neuroglia in substance use disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:347-369. [PMID: 40148055 DOI: 10.1016/b978-0-443-19102-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Substance use disorders (SUD) remain a major public health concern in which individuals are unable to control their use of substances despite significant harm and negative consequences. Drugs of abuse dysregulate major brain and behavioral functions. Glial cells, primarily microglia and astrocytes, play a crucial role in these drug-induced molecular and behavioral changes. This review explores preclinical and clinical studies of how neuroglia and their associated neuroinflammatory responses contribute to SUD and reward-related properties. We evaluate preclinical and clinical evidence for targeting neuroglia as therapeutic interventions. In addition, we evaluate the literature on the gut microbiome and its role in SUD. Clinical treatments are most effective for reducing drug cravings, and some have yielded promising results in other measures of drug use. N-Acetylcysteine, through modulation of cysteine-glutamate antiporter of glial cells, shows encouraging results across a variety of drug classes. Neuroglia and gut microbiome interactions are important factors to consider with regard to SUD and could lead to novel therapeutic avenues. Age- and sex-dependent properties of neuroglia, gut microbiome, and drug use behaviors are important areas in need of further investigation.
Collapse
Affiliation(s)
- Emily M Castro
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States; Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
3
|
Galaj E, Bi GH, Xi ZX. β-caryophyllene inhibits heroin self-administration, but does not alter opioid-induced antinociception in rodents. Neuropharmacology 2024; 252:109947. [PMID: 38631564 DOI: 10.1016/j.neuropharm.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
A growing body of research indicates that β-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
4
|
Dirik H, Taşkıran AŞ, Joha Z. Ferroptosis inhibitor ferrostatin-1 attenuates morphine tolerance development in male rats by inhibiting dorsal root ganglion neuronal ferroptosis. Korean J Pain 2024; 37:233-246. [PMID: 38946696 PMCID: PMC11220380 DOI: 10.3344/kjp.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024] Open
Abstract
Background Ferrostatin-1 and liproxstatin-1, both ferroptosis inhibitors, protect cells. Liproxstatin-1 decreases morphine tolerance. Yet, ferrostatin-1's effect on morphine tolerance remains unexplored. This study aimed to evaluate the influence of ferrostatin-1 on the advancement of morphine tolerance and understand the underlying mechanisms in male rats. Methods This experiment involved 36 adult male Wistar albino rats with an average weight ranging from 220 to 260 g. These rats were categorized into six groups: Control, single dose ferrostatin-1, single dose morphine, single dose ferrostatin-1 + morphine, morphine tolerance (twice daily for five days), and ferrostatin-1 + morphine tolerance (twice daily for five days). The antinociceptive action was evaluated using both the hot plate and tail-flick tests. After completing the analgesic tests, tissue samples were gathered from the dorsal root ganglia (DRG) for subsequent analysis. The levels of glutathione, glutathione peroxidase 4 (GPX4), and nuclear factor erythroid 2-related factor 2 (Nrf2), along with the measurements of total oxidant status (TOS) and total antioxidant status (TAS), were assessed in the tissues of the DRG. Results After tolerance development, the administration of ferrostatin-1 resulted in a significant decrease in morphine tolerance (P < 0.001). Additionally, ferrostatin-1 treatment led to elevated levels of glutathione, GPX4, Nrf2, and TOS (P < 0.001), while simultaneously causing a decrease in TAS levels (P < 0.001). Conclusions The study found that ferrostatin-1 can reduce morphine tolerance by suppressing ferroptosis and reducing oxidative stress in DRG neurons, suggesting it as a potential therapy for preventing morphine tolerance.
Collapse
Affiliation(s)
- Hasan Dirik
- Ankara City Hospital, Anesthesia and Intensive Care, Ankara, Turkey
| | - Ahmet Şevki Taşkıran
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ziad Joha
- Departments of Pharmacology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
5
|
Badshah I, Anwar M, Murtaza B, Khan MI. Molecular mechanisms of morphine tolerance and dependence; novel insights and future perspectives. Mol Cell Biochem 2024; 479:1457-1485. [PMID: 37470850 DOI: 10.1007/s11010-023-04810-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Drug addiction is a devastating condition that poses a serious burden on the society. The use of some drugs like morphine for their tremendous analgesic properties is also accompanied with developing tolerance, dependence and the withdrawal symptoms. These symptoms are frequently severe enough to reinforce the person in recovery to start over the use of drug again and hinder the clinical use of drugs like morphine for chronic pain. Research into opioid receptors and related molecular pathways has seen resurgence in the wake of the growing opioid epidemic. The current study provides a comprehensive scientific exploration of the molecular mechanisms and underlying signalling in morphine tolerance and dependence. It also critically evaluates current therapeutic approaches, shedding light on their efficacy and limitations, and future prospects.
Collapse
Affiliation(s)
- Ismail Badshah
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Maira Anwar
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Babar Murtaza
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan.
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
6
|
Acuña AM, Park C, Leyrer-Jackson JM, Olive MF. Promising immunomodulators for management of substance and alcohol use disorders. Expert Opin Pharmacother 2024; 25:867-884. [PMID: 38803314 PMCID: PMC11216154 DOI: 10.1080/14656566.2024.2360653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The neuroimmune system has emerged as a novel target for the treatment of substance use disorders (SUDs), with immunomodulation producing encouraging therapeutic benefits in both preclinical and clinical settings. AREAS COVERED In this review, we describe the mechanism of action and immune response to methamphetamine, opioids, cocaine, and alcohol. We then discuss off-label use of immunomodulators as adjunctive therapeutics in the treatment of neuropsychiatric disorders, demonstrating their potential efficacy in affective and behavioral disorders. We then discuss in detail the mechanism of action and recent findings regarding the use of ibudilast, minocycline, probenecid, dexmedetomidine, pioglitazone, and cannabidiol to treat (SUDs). These immunomodulators are currently being investigated in clinical trials described herein, specifically for their potential to decrease substance use, withdrawal severity, central and peripheral inflammation, comorbid neuropsychiatric disorder symptomology, as well as their ability to improve cognitive outcomes. EXPERT OPINION We argue that although mixed, findings from recent preclinical and clinical studies underscore the potential benefit of immunomodulation in the treatment of the behavioral, cognitive, and inflammatory processes that underlie compulsive substance use.
Collapse
Affiliation(s)
- Amanda M. Acuña
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, Arizona, USA
| | - Connor Park
- Department of Biomedical Sciences, Creighton University School of Medicine – Phoenix, Phoenix, Arizona, USA
| | - Jonna M. Leyrer-Jackson
- Department of Biomedical Sciences, Creighton University School of Medicine – Phoenix, Phoenix, Arizona, USA
| | - M. Foster Olive
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Grodin EN. Neuroimmune modulators as novel pharmacotherapies for substance use disorders. Brain Behav Immun Health 2024; 36:100744. [PMID: 38435721 PMCID: PMC10906159 DOI: 10.1016/j.bbih.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
One promising avenue of research is the use of neuroimmune modulators to treat substance use disorders (SUDs). Neuroimmune modulators target the interactions between the nervous system and immune system, which have been found to play a crucial role in the development and maintenance of SUDs. Multiple classes of substances produce alterations to neuroimmune signaling and peripheral immune function, including alcohol, opioids, and psychostimulants Preclinical studies have shown that neuroimmune modulators can reduce drug-seeking behavior and prevent relapse in animal models of SUDs. Additionally, early-phase clinical trials have demonstrated the safety and feasibility of using neuroimmune modulators as a treatment for SUDs in humans. These therapeutics can be used as stand-alone treatments or as adjunctive. This review summarizes the current state of the field and provides future directions with a specific focus on personalized medicine.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Doyle MR, Martinez AR, Qiao R, Dirik S, Di Ottavio F, Pascasio G, Martin-Fardon R, Benner C, George O, Telese F, de Guglielmo G. Strain and sex-related behavioral variability of oxycodone dependence in rats. Neuropharmacology 2023; 237:109635. [PMID: 37327971 PMCID: PMC10353778 DOI: 10.1016/j.neuropharm.2023.109635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Over the past two decades, the escalating prescription of opioid medications for pain management has culminated in a widespread opioid epidemic, significantly impacting public health, social dynamics, and economic stability. The urgent need for improved treatments for opioid addiction necessitates a deeper understanding of its biological underpinnings, with genetic variations playing a crucial role in individual susceptibility to opioid use disorder (OUD) and influencing clinical practices. In this study, we leverage the genetic diversity of four rat strains (ACI/N, BN/NHsd, WKY/N, and F344/N) to examine the contribution of genetic factors to oxycodone metabolism and addiction-like behaviors. We used the extended access to intravenous oxycodone self-administration procedure (12 h/day, 0.15 mg/kg/injection) to comprehensively characterize oxycodone-related behaviors and pharmacokinetics. We measured escalation of oxycodone self-administration, motivation for drug consumption, tolerance to the analgesic effects of oxycodone, withdrawal-induced hyperalgesia, and oxycodone-induced respiratory depression. Additionally, we examined oxycodone-seeking behavior after four weeks of withdrawal by reintroducing the animals to environmental and cue stimuli previously associated with oxycodone self-administration. The findings revealed notable strain differences in several behavioral measures, including oxycodone metabolism. Intriguingly, BN/NHsd and WKY/N strains exhibited similar drug intake and escalation patterns but displayed significant disparities in oxycodone and oxymorphone metabolism. Minimal sex differences were observed within strains, primarily relating to oxycodone metabolism. In conclusion, this study identifies strain differences in the behavioral responses and pharmacokinetics associated with oxycodone self-administration in rats, providing a robust foundation for identifying genetic and molecular variants associated with various facets of the opioid addiction process.
Collapse
Affiliation(s)
- Michelle R Doyle
- Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, CA, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Angelica R Martinez
- Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ran Qiao
- Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Selen Dirik
- Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Francesca Di Ottavio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Glenn Pascasio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher Benner
- Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
10
|
Karádi DÁ, Galambos AR, Lakatos PP, Apenberg J, Abbood SK, Balogh M, Király K, Riba P, Essmat N, Szűcs E, Benyhe S, Varga ZV, Szökő É, Tábi T, Al-Khrasani M. Telmisartan Is a Promising Agent for Managing Neuropathic Pain and Delaying Opioid Analgesic Tolerance in Rats. Int J Mol Sci 2023; 24:7970. [PMID: 37175678 PMCID: PMC10178315 DOI: 10.3390/ijms24097970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the large arsenal of analgesic medications, neuropathic pain (NP) management is not solved yet. Angiotensin II receptor type 1 (AT1) has been identified as a potential target in NP therapy. Here, we investigate the antiallodynic effect of AT1 blockers telmisartan and losartan, and particularly their combination with morphine on rat mononeuropathic pain following acute or chronic oral administration. The impact of telmisartan on morphine analgesic tolerance was also assessed using the rat tail-flick assay. Morphine potency and efficacy in spinal cord samples of treated neuropathic animals were assessed by [35S]GTPγS-binding assay. Finally, the glutamate content of the cerebrospinal fluid (CSF) was measured by capillary electrophoresis. Oral telmisartan or losartan in higher doses showed an acute antiallodynic effect. In the chronic treatment study, the combination of subanalgesic doses of telmisartan and morphine ameliorated allodynia and resulted in a leftward shift in the dose-response curve of morphine in the [35S]GTPγS binding assay and increased CSF glutamate content. Telmisartan delayed morphine analgesic-tolerance development. Our study has identified a promising combination therapy composed of telmisartan and morphine for NP and opioid tolerance. Since telmisartan is an inhibitor of AT1 and activator of PPAR-γ, future studies are needed to analyze the effect of each component.
Collapse
Affiliation(s)
- David Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Péter P. Lakatos
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.L.); (É.S.); (T.T.)
| | - Joost Apenberg
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Sarah K. Abbood
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Edina Szűcs
- Biological Research Center, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary; (E.S.); (S.B.)
| | - Sándor Benyhe
- Biological Research Center, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary; (E.S.); (S.B.)
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.L.); (É.S.); (T.T.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.L.); (É.S.); (T.T.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| |
Collapse
|
11
|
Bashir A, Nabi M, Tabassum N, Afzal S, Ayoub M. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha). Front Pharmacol 2023; 14:1049334. [PMID: 37063285 PMCID: PMC10090468 DOI: 10.3389/fphar.2023.1049334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Withania somnifera (L.) Dunal belongs to the nightshade family Solanaceae and is commonly known as Ashwagandha. It is pharmacologically a significant medicinal plant of the Indian sub-continent, used in Ayurvedic and indigenous systems of medicine for more than 3,000 years. It is a rich reservoir of pharmaceutically bioactive constituents known as withanolides (a group of 300 naturally occurring C-28 steroidal lactones with an ergostane-based skeleton). Most of the biological activities of W. somnifera have been attributed to two key withanolides, namely, withaferin-A and withanolide-D. In addition, bioactive constituents such as withanosides, sitoindosides, steroidal lactones, and alkaloids are also present with a broad spectrum of therapeutic potential. Several research groups worldwide have discovered various molecular targets of W. somnifera, such as inhibiting the activation of nuclear factor kappa-B and promoting apoptosis of cancer cells. It also enhances dopaminergic D2 receptor activity (relief in Parkinson’s disease). The active principles such as sitoindosides VII-X and withaferin-A possess free radical properties. Withanolide-D increases the radio sensitivity of human cancer cells via inhibiting deoxyribonucleic acid (DNA) damage to non-homologous end-joining repair (NHEJ) pathways. Withanolide-V may serve as a potential inhibitor against the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to combat COVID. The molecular docking studies revealed that the withanolide-A inhibits acetyl-cholinesterase in the brain, which could be a potential drug to treat Alzheimer’s disease. Besides, withanolide-A reduces the expression of the N-methyl-D-aspartate (NMDA) receptor, which is responsible for memory loss in epileptic rats. This review demonstrates that W. somnifera is a rich source of withanolides and other bioactive constituents, which can be used as a safe drug for various chronic diseases due to the minimal side effects in various pre-clinical studies. These results are interesting and signify that more clinical trials should be conducted to prove the efficacy and other potential therapeutic effects in human settings.
Collapse
Affiliation(s)
- Arsalan Bashir
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
- *Correspondence: Nahida Tabassum,
| | - Suhaib Afzal
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mehrose Ayoub
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
12
|
Zhao W, Shen F, Yao J, Su S, Zhao Z. Angiotensin II receptor type 1 blocker candesartan improves morphine tolerance by reducing morphine‑induced inflammatory response and cellular activation of BV2 cells via the PPARγ/AMPK signaling pathway. Mol Med Rep 2022; 26:318. [PMID: 36004465 PMCID: PMC9437959 DOI: 10.3892/mmr.2022.12834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/05/2022] Open
Abstract
Morphine is the most common drug of choice in clinical pain management; however, morphine tolerance presents a significant clinical challenge. The pathogenesis of morphine tolerance is known to be closely associated with angiotensin II receptor type 1 (AT1R) in microglia. As an AT1R antagonist, candesartan may serve an important role in regulating morphine tolerance. Therefore, the present study aimed to investigate the role of candesartan in morphine tolerance, and to explore the underlying mechanism. To meet this aim, BV2 microglial cells were treated with morphine or candesartan alone, or as a combination, and the expression levels of AT1R in BV2 cells were detected by reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting. The levels of the inflammatory cytokines tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6 were subsequently detected by ELISA and western blotting. In addition, immunofluorescence analysis, western blotting and RT‑qPCR were used to detect the expression levels of the BV2 cell activation marker, ionized calcium‑binding adaptor molecule 1 (IBA‑1). Western blotting was also used to detect the expression levels of peroxisome proliferator‑activated receptor‑γ/AMP‑activated protein kinase (PPARγ/AMPK) signaling pathway‑associated proteins. Finally, the cells were treated with the PPARγ antagonist GW9662 and the AMPK inhibitor compound C to further explore the mechanism underlying the effects of candesartan on improving morphine tolerance. The expression levels of AT1R were revealed to be significantly increased following morphine induction; however, candesartan treatment inhibited the expression levels of AT1R, the levels of inflammatory cytokines and the protein expression levels of IBA‑1 in morphine‑induced BV2 cells in a dose‑dependent manner. These processes may be associated with activation of the PPARγ/AMPK signaling pathway. Taken together, the present study revealed that treatment with candesartan reduced morphine‑induced inflammatory response and cellular activation of BV2 cells via PPARγ/AMPK signaling.
Collapse
Affiliation(s)
- Wenxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Feiyan Shen
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Jixiang Yao
- Department of Pain Management, Affiliated Hospital 5 of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu 225300, P.R. China
| | - Shanshan Su
- Department of Pain Management, Affiliated Hospital 5 of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu 225300, P.R. China
| | - Zhongmin Zhao
- Department of Pain Management, Affiliated Hospital 5 of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
13
|
Trindade da Silva CA, Clemente-Napimoga JT, Abdalla HB, Basting RT, Napimoga MH. Peroxisome proliferator-activated receptor-gamma (PPARγ) and its immunomodulation function: current understanding and future therapeutic implications. Expert Rev Clin Pharmacol 2022; 15:295-303. [PMID: 35481412 DOI: 10.1080/17512433.2022.2071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Pain is a multidimensional experience involving the biological, psychological, and social dimensions of each individual. Particularly, the biological aspects of pain conditions are a response of the neuroimmunology system and the control of painful conditions is a worldwide challenge for researchers. Although years of investigation on pain experience and treatment exist, the high prevalence of chronic pain is still a fact. AREAS COVERED : Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. It regulates several metabolic pathways, including lipid biosynthesis and glucose metabolism, when activated. However, PPARγ activation also has a critical immunomodulatory and neuroprotective effect. EXPERT OPINION : This review summarizes the evidence of synthetic or natural PPARγ ligands such as 15d-PGJ2, epoxyeicosatrienoic acids, thiazolidinediones, and specialized pro-resolving mediators, representing an interesting therapeutic tool for pain control.
Collapse
Affiliation(s)
- Carlos Antonio Trindade da Silva
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Henrique Ballassini Abdalla
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Rosanna Tarkany Basting
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| |
Collapse
|
14
|
Santos DFS, Donahue RR, Laird D, Oliveira M, Taylor B. The PPARγ agonist pioglitazone produces a female-predominant inhibition of hyperalgesia associated with surgical incision, peripheral nerve injury, and painful diabetic neuropathy. Neuropharmacology 2022; 205:108907. [PMID: 34856203 PMCID: PMC8992004 DOI: 10.1016/j.neuropharm.2021.108907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 12/21/2022]
Abstract
Pioglitazone, an agonist at peroxisome proliferator-activated receptor gamma, is FDA-approved for the treatment of insulin resistance in type 2 diabetes. Numerous studies in male rodents suggest that pioglitazone inhibits inflammatory and neuropathic pain, but few included female subjects. To address this gap, we compared the effects of pioglitazone in both sexes in the intraplantar methylglyoxal model (MG) model of chemical pain and painful diabetic neuropathy (PDN), the plantar incision model (PIM) of postoperative pain, the spared nerve injury (SNI) model of traumatic nerve injury, and the ZDF rat and db/db mouse models of PDN. We administered pioglitazone by one-time intrathecal or intraperitoneal injection or by adding it to chow for 6 weeks, followed by measurement of hypersensitivity to non-noxious mechanical, noxious mechanical, heat, and/or cold stimuli. In all mouse models, injection of pioglitazone decreased pain-like behaviors with greater potency and/or efficacy in females as compared to males: heat and mechanical hypersensitivity in the MG model (0.1-10 mg/kg); mechanical hypersensitivity in the PIM model (10 μg); mechanical and cold hypersensitivity in the SNI model (100 mg/kg); and heat hypersensitivity in the db/db model (100 mg/kg). Furthermore, co-administration of low doses of morphine (1 mg/kg) and pioglitazone (10 mg/kg) decreased SNI-induced mechanical and cold hypersensitivity in female but not male mice. In the ZDF rat, pioglitazone (100 mg/kg) decreased heat and mechanical hypersensitivity with no sex difference. In the db/db model, pioglitazone had no effect when given into chow for 6 weeks at 0.3, 3 or 30 mg/kg doses. We conclude that females exhibit greater anti-hyperalgesic responses to pioglitazone in mouse models of chemical-induced nociception, postsurgical pain, neuropathic pain, and PDN. These findings set the stage for clinical trials to determine whether pioglitazone has analgesic properties across a broad spectrum of chronic pain conditions, particularly in women.
Collapse
Affiliation(s)
- D. F. S. Santos
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.,School of Applied Sciences, State University of Campinas-UNICAMP, Limeira, SP, Brazil
| | - R. R. Donahue
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - D.E. Laird
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - M.C. Oliveira
- School of Applied Sciences, State University of Campinas-UNICAMP, Limeira, SP, Brazil
| | - B.K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Lin M, Deng K, Li Y, Wan J. Morphine enhances LPS-induced macrophage apoptosis through a PPARγ-dependent mechanism. Exp Ther Med 2021; 22:714. [PMID: 34007323 PMCID: PMC8120503 DOI: 10.3892/etm.2021.10146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Morphine has been widely used for the treatment of pain and extensive studies have revealed a regulatory role for morphine in cell apoptosis. However, the molecular mechanisms underlying morphine-mediated apoptosis remain to be fully elucidated. The present study aimed to investigate the effects of morphine on lipopolysaccharide (LPS)-induced bone marrow-derived macrophage (BMDM) apoptosis and to determine the role of the peroxisome proliferator-activated receptor (PPAR)γ signaling pathway in this process. BMDMs were isolated from BALB/c mice and stimulated with LPS. Hoechst 33342 staining and flow cytometric analysis were performed to evaluate the effects of morphine on LPS-induced apoptosis of BMDMs. Caspase activity assays were used to determine the involvement of the apoptosis pathway. The expression levels of caspase-3, caspase-8, caspase-9 and PPARγ were analyzed using western blotting. Finally, GW9662, a specific PPARγ antagonist, was used to determine whether the regulatory effects of morphine on LPS-induced BMDM apoptosis were PPARγ-dependent. The results of the present study revealed that morphine increased the apoptosis of LPS-stimulated BMDMs. Morphine upregulated the expression levels and activity of caspase-3 in LPS-stimulated BMDMs, but downregulated the expression levels and activity of caspase-8. Morphine treatment also upregulated LPS-induced PPARγ expression levels in BMDMs. Finally, the stimulatory effects of morphine on LPS-induced apoptosis and caspase-3/9 activation were markedly reduced by GW9662. In conclusion, the findings of the present study indicated that morphine significantly promoted LPS-induced BMDM apoptosis and caspase-3/9 activation. These results suggested that the intrinsic pathway of apoptosis may be involved in the proapoptotic effects of morphine on LPS-stimulated BMDMs, which may be dependent, at least partially, on PPARγ activation.
Collapse
Affiliation(s)
- Mingying Lin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Keqiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ya Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
16
|
Santos DFS, Melo-Aquino B, Jorge CO, Clemente-Napimoga JT, Taylor BK, Oliveira-Fusaro MCG. Prostaglandin 15d-PGJ2 targets PPARγ and opioid receptors to prevent muscle hyperalgesia in rats. Neuroreport 2021; 32:238-243. [PMID: 33470759 PMCID: PMC8099021 DOI: 10.1097/wnr.0000000000001575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pharmacological agents directed to either opioid receptors or peroxisome proliferator-activated receptor gamma (PPARγ) at peripheral tissues reduce behavioral signs of persistent pain. Both receptors are expressed in muscle tissue, but the contribution of PPARγ activation to muscle pain and its modulation by opioid receptors remains unknown. To address this question, we first tested whether the endogenous PPARγ ligand 15d-PGJ2 would decrease mechanical hyperalgesia induced by carrageenan administration into the gastrocnemius muscle of rats. Next, we used receptor antagonists to determine whether the antihyperalgesic effect of 15-deoxyΔ-12,14-prostaglandin J2 (15d-PGJ2) was PPARγ- or opioid receptor-dependent. Three hours after carrageenan, muscle hyperalgesia was quantified with the Randall-Selitto test. 15d-PGJ2 prevented carrageenan-induced muscle hyperalgesia in a dose-dependent manner. The antihyperalgesic effect of 15d-PGJ2 was dose-dependently inhibited by either the PPARγ antagonist, 2-chloro-5-nitro-N-phenylbenzamide, or by the opioid receptor antagonist, naloxone. We conclude that 15d-PGJ2 targets PPARγ and opioid receptors to prevent muscle hyperalgesia. We suggest that local PPARγ receptors are important pharmacological targets for inflammatory muscle pain.
Collapse
Affiliation(s)
- Diogo F S Santos
- Health, School of Applied Sciences, State University of Campinas-UNICAMP, Limeira, São Paulo, Brazil
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bruna Melo-Aquino
- Health, School of Applied Sciences, State University of Campinas-UNICAMP, Limeira, São Paulo, Brazil
| | - Carolina O Jorge
- Health, School of Applied Sciences, State University of Campinas-UNICAMP, Limeira, São Paulo, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain, Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo, Brazil
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria C G Oliveira-Fusaro
- Health, School of Applied Sciences, State University of Campinas-UNICAMP, Limeira, São Paulo, Brazil
| |
Collapse
|
17
|
Hermes DJ, Jacobs IR, Key MC, League AF, Yadav-Samudrala BJ, Xu C, McLane VD, Nass SR, Jiang W, Meeker RB, Ignatowska-Jankowska BM, Lichtman AH, Li Z, Wu Z, Yuan H, Knapp PE, Hauser KF, Fitting S. Escalating morphine dosing in HIV-1 Tat transgenic mice with sustained Tat exposure reveals an allostatic shift in neuroinflammatory regulation accompanied by increased neuroprotective non-endocannabinoid lipid signaling molecules and amino acids. J Neuroinflammation 2020; 17:345. [PMID: 33208151 PMCID: PMC7672881 DOI: 10.1186/s12974-020-01971-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type-1 (HIV-1) and opiates cause long-term inflammatory insult to the central nervous system (CNS) and worsen disease progression and HIV-1-related neuropathology. The combination of these proinflammatory factors reflects a devastating problem as opioids have high abuse liability and continue to be prescribed for certain patients experiencing HIV-1-related pain. METHODS Here, we examined the impact of chronic (3-month) HIV-1 transactivator of transcription (Tat) exposure to short-term (8-day), escalating morphine in HIV-1 Tat transgenic mice that express the HIV-1 Tat protein in a GFAP promoter-regulated, doxycycline (DOX)-inducible manner. In addition to assessing morphine-induced tolerance in nociceptive responses organized at spinal (i.e., tail-flick) and supraspinal (i.e., hot-plate) levels, we evaluated neuroinflammation via positron emission tomography (PET) imaging using the [18F]-PBR111 ligand, immunohistochemistry, and cytokine analyses. Further, we examined endocannabinoid (eCB) levels, related non-eCB lipids, and amino acids via mass spectrometry. RESULTS: Tat-expressing [Tat(+)] transgenic mice displayed antinociceptive tolerance in the tail withdrawal and hot-plate assays compared to control mice lacking Tat [Tat(-)]. This tolerance was accompanied by morphine-dependent increases in Iba-1 ± 3-nitrotryosine immunoreactive microglia, and alterations in pro- and anti-inflammatory cytokines, and chemokines in the spinal cord and striatum, while increases in neuroinflammation were absent by PET imaging of [18F]-PBR111 uptake. Tat and morphine exposure differentially affected eCB levels, non-eCB lipids, and specific amino acids in a region-dependent manner. In the striatum, non-eCB lipids were significantly increased by short-term, escalating morphine exposure, including peroxisome proliferator activator receptor alpha (PPAR-α) ligands N-oleoyl ethanolamide (OEA) and N-palmitoyl ethanolamide (PEA), as well as the amino acids phenylalanine and proline. In the spinal cord, Tat exposure increased amino acids leucine and valine, while morphine decreased levels of tyrosine and valine but did not affect eCBs or non-eCB lipids. CONCLUSION Overall results demonstrate that 3 months of Tat exposure increased morphine tolerance and potentially innate immune tolerance evidenced by reductions in specific cytokines (e.g., IL-1α, IL-12p40) and microglial reactivity. In contrast, short-term, escalating morphine exposure acted as a secondary stressor revealing an allostatic shift in CNS baseline inflammatory responsiveness from sustained Tat exposure.
Collapse
Affiliation(s)
- Douglas J Hermes
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Ian R Jacobs
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Megan C Key
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Alexis F League
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | | | - Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Virginia D McLane
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zibo Li
- Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhanhong Wu
- Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Yuan
- Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Further evidence for the involvement of the PPARγ system on alcohol intake and sensitivity in rodents. Psychopharmacology (Berl) 2020; 237:2983-2992. [PMID: 32676772 DOI: 10.1007/s00213-020-05586-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Peroxisome Proliferator Activator receptors (PPARs) are intracellular receptors that function as transcription factors, which regulate specific metabolic and inflammatory processes. PPARs are broadly distributed in the body and are also expressed in the central nervous system, especially in areas involved in addiction-related behavioral responses. Recent studies support a role of PPARs in alcoholism and pioglitazone: a PPARγ agonist used for treatment of type 2 diabetes showed efficacy in reducing alcohol drinking, stress-induced relapse, and alcohol withdrawal syndrome in rats. OBJECTIVES AND METHODS In the current work, we tested the pharmacological effects of pioglitazone on binge-like alcohol consumption using an intermittent two-bottle choice paradigm in Wistar rats and on the "drinking in the dark" (DID) model in mice with selective deletion of PPARγ in neurons. RESULTS Our data show that repeated administration of pioglitazone (10, 30 mg/kg) reduces high voluntary alcohol consumption in Wistar rats. Pre-treatment with the selective PPARγ antagonist GW9662 (5 mg/kg) completely prevented the effect of pioglitazone, demonstrating that its action is specifically mediated by activation of PPARγ. In line with this result, repeated administration of pioglitazone (30 mg/kg) attenuated binge alcohol consumption in PPARγ(+/+) mice. Whereas in PPARγ(-/-) mice, which exhibit reduced alcohol consumption, pioglitazone had no effect. Of note, PPARγ(-/-) mice exhibited lower patterns of alcohol drinking without showing difference in sucrose (control) intake. Interestingly, PPARγ(-/-) mice displayed a higher sensitivity to the sedative and ataxic effect of alcohol compared with their wild-type counterpart. CONCLUSIONS Collectively, these data suggest that PPARγ agonists, and specifically pioglitazone, could be potential therapeutics for the treatment of binge alcohol drinking.
Collapse
|
19
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
20
|
Matheson J, Le Foll B. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor (PPAR) Agonists in Substance Use Disorders: A Synthesis of Preclinical and Human Evidence. Cells 2020; 9:cells9051196. [PMID: 32408505 PMCID: PMC7291117 DOI: 10.3390/cells9051196] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Targeting peroxisome proliferator-activated receptors (PPARs) has received increasing interest as a potential strategy to treat substance use disorders due to the localization of PPARs in addiction-related brain regions and the ability of PPAR ligands to modulate dopamine neurotransmission. Robust evidence from animal models suggests that agonists at both the PPAR-α and PPAR-γ isoforms can reduce both positive and negative reinforcing properties of ethanol, nicotine, opioids, and possibly psychostimulants. A reduction in the voluntary consumption of ethanol following treatment with PPAR agonists seems to be the most consistent finding. However, the human evidence is limited in scope and has so far been less promising. There have been no published human trials of PPAR agonists for treatment of alcohol use disorder, despite the compelling preclinical evidence. Two trials of PPAR-α agonists as potential smoking cessation drugs found no effect on nicotine-related outcomes. The PPAR-γ agonist pioglitazone showed some promise in reducing heroin, nicotine, and cocaine craving in two human laboratory studies and one pilot trial, yet other outcomes were unaffected. Potential explanations for the discordance between the animal and human evidence, such as the potency and selectivity of PPAR ligands and sex-related variability in PPAR physiology, are discussed.
Collapse
Affiliation(s)
- Justin Matheson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 3H7, Canada;
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
- Correspondence: ; Tel.: +1-416-535-8501 (ext. 34727)
| | - Bernard Le Foll
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 3H7, Canada;
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Family and Community Medicine, University of Toronto, 500 University Avenue, 5th Floor, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
21
|
Fotio Y, Palese F, Guaman Tipan P, Ahmed F, Piomelli D. Inhibition of fatty acid amide hydrolase in the CNS prevents and reverses morphine tolerance in male and female mice. Br J Pharmacol 2020; 177:3024-3035. [PMID: 32077093 DOI: 10.1111/bph.15031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Fatty acid amide hydrolase (FAAH) is an intracellular serine amidase that terminates the signalling of various lipid messengers involved in pain regulation, including anandamide and palmitoylethanolamide. Here, we investigated the effects of pharmacological or genetic FAAH removal on tolerance to the anti-nociceptive effects of morphine. EXPERIMENTAL APPROACH We induced tolerance in male and female mice by administering twice-daily morphine for 7 days while monitoring nociceptive thresholds by the tail immersion test. The globally active FAAH inhibitor URB597 (1 and 3 mg·kg-1 , i.p.) or the peripherally restricted FAAH inhibitor URB937 (3 mg·kg-1 , i.p.) were administered daily 30 min prior to morphine, alone or in combination with the cannabinoid CB1 receptor antagonist AM251 (3 mg·kg-1 , i.p.), the CB2 receptor antagonist AM630 (3 mg·kg-1 , i.p.), or the PPAR-α antagonist GW6471 (4 mg·kg-1 , i.p.). Spinal levels of FAAH-regulated lipids were quantified by LC/MS-MS. Gene transcription was assessed by RT-qPCR. KEY RESULTS URB597 prevented and reversed morphine tolerance in both male and female mice. This effect was mimicked by genetic FAAH deletion, but not by URB937. Treatment with AM630 suppressed, whereas treatment with AM251 or GW6471, attenuated the effects of URB597. Anandamide mobilization was enhanced in the spinal cord of morphine-tolerant mice. mRNA levels of the anandamide-producing enzyme N-acyl-phosphatidylethanolamine PLD (NAPE-PLD) and the palmitoylethanolamide receptor PPAR-α, but not those for CB2 , CB1 receptors or FAAH, were elevated in spinal cord CONCLUSION AND IMPLICATIONS: FAAH-regulated lipid signalling in the CNS modulated opiate tolerance, suggesting FAAH as a potential target for opiate-sparing medications.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Francesca Palese
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Pablo Guaman Tipan
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| |
Collapse
|
22
|
Chen X, Zhang B, Liu T, Feng M, Zhang Y, Zhang C, Yao W, Wan L. Liproxstatin-1 Attenuates Morphine Tolerance through Inhibiting Spinal Ferroptosis-like Cell Death. ACS Chem Neurosci 2019; 10:4824-4833. [PMID: 31682397 DOI: 10.1021/acschemneuro.9b00539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Morphine tolerance is a classic, challenging clinical issue. However, the mechanism underlying this phenomenon remains poorly understood. Recently, studies have shown that ferroptosis correlates with drug resistance. Therefore, this study investigated whether spinal cord ferroptosis contributes to morphine tolerance. C57BL/6 mice were continuously subcutaneously injected with morphine, with or without the ferroptosis inhibitor liproxstatin-1. We found that chronic morphine exposure led to morphine antinociception tolerance, accompanied by loss of spinal cord neurons, increase in the levels of iron, malondialdehyde, and reactive oxygen species, and decreases in the levels of superoxide dismutase. Additionally, inflammatory response and mitochondrial shrinkage, processes that are involved in ferroptosis, were observed. Simultaneously, we found that 10 mg/kg of liproxstatin-1 could alleviate iron overload by balancing transferrin receptor protein 1/ferroportin expression and attenuate morphine tolerance by increasing glutathione peroxidase 4 levels, while reducing the levels of malondialdehyde and reactive oxygen species. It also downregulated the expression of extracellularly regulated protein kinases that had been induced by chronic morphine exposure. Our results indicate that spinal cord ferroptosis contributes to morphine tolerance, while liproxstatin-1 attenuates the development of morphine tolerance. These findings suggest that ferroptosis may be a potential therapeutic target for morphine tolerance.
Collapse
Affiliation(s)
- Xuhui Chen
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Bo Zhang
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Tongtong Liu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Miaomiao Feng
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Yue Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Chuanhan Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Wenlong Yao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Li Wan
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| |
Collapse
|
23
|
Fisher C, Johnson K, Okerman T, Jurgenson T, Nickell A, Salo E, Moore M, Doucette A, Bjork J, Klein AH. Morphine Efficacy, Tolerance, and Hypersensitivity Are Altered After Modulation of SUR1 Subtype K ATP Channel Activity in Mice. Front Neurosci 2019; 13:1122. [PMID: 31695594 PMCID: PMC6817471 DOI: 10.3389/fnins.2019.01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 01/26/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels are found in the nervous system and are downstream targets of opioid receptors. KATP channel activity can effect morphine efficacy and may beneficial for relieving chronic pain in the peripheral and central nervous system. Unfortunately, the KATP channels exists as a heterooctomers, and the exact subtypes responsible for the contribution to chronic pain and opioid signaling in either dorsal root ganglia (DRG) or the spinal cord are yet unknown. Chronic opioid exposure (15 mg/kg morphine, s.c., twice daily) over 5 days produces significant downregulation of Kir6.2 and SUR1 in the spinal cord and DRG of mice. In vitro studies also conclude potassium flux after KATP channel agonist stimulation is decreased in neuroblastoma cells treated with morphine for several days. Mice lacking the KATP channel SUR1 subunit have reduced opioid efficacy in mechanical paw withdrawal behavioral responses compared to wild-type and heterozygous littermates (5 and 15 mg/kg, s.c., morphine). Using either short hairpin RNA (shRNA) or SUR1 cre-lox strategies, downregulation of SUR1 subtype KATP channels in the spinal cord and DRG of mice potentiated the development of morphine tolerance and withdrawal. Opioid tolerance was attenuated with intraplantar injection of SUR1 agonists, such as diazoxide and NN-414 (100 μM, 10 μL) compared to vehicle treated animals. These studies are an important first step in determining the role of KATP channel subunits in antinociception, opioid signaling, and the development of opioid tolerance, and shed light on the potential translational ability of KATP channel targeting pharmaceuticals and their possible future clinical utilization. These data suggest that increasing neuronal KATP channel activity in the peripheral nervous system may be a viable option to alleviate opioid tolerance and withdrawal.
Collapse
Affiliation(s)
- Cole Fisher
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Kayla Johnson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Travis Okerman
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Taylor Jurgenson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Austin Nickell
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Erin Salo
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Madelyn Moore
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Alexis Doucette
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - James Bjork
- Department of Biomedical Sciences, Medical School Duluth, Duluth, MN, United States
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| |
Collapse
|
24
|
Evidence of a PPARγ-mediated mechanism in the ability of Withania somnifera to attenuate tolerance to the antinociceptive effects of morphine. Pharmacol Res 2018; 139:422-430. [PMID: 30503841 DOI: 10.1016/j.phrs.2018.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Notwithstanding the experimental evidence indicating Withania somnifera Dunal roots extract (WSE) ability to prolong morphine-elicited analgesia, the mechanisms underlying this effect are largely unknown. With the aim of evaluating a PPARγ-mediated mechanism in such WSE effects, we verified the ability of the PPARγ antagonist GW-9662 to modulate WSE actions. Further, we evaluated the influence of GW-9662 upon WSE / morphine interaction in SH-SY5Y cells since we previously reported that WSE hampers the morphine-induced μ-opioid receptor (MOP) receptor down-regulation. Nociceptive thresholds / tolerance development were assessed in different groups of rats receiving vehicles (control), morphine (10 mg/kg; i.p.), WSE (100 mg/kg, i.p.) and PPARγ antagonist GW-9662 (1 mg/kg; s.c.) in acute and chronic schedules of administration. Moreover, the effects of GW-9662 (5 and 10 μM) applied alone and in combination with morphine (10 μM) and/or WSE (0.25 and 1.00 mg/mL) on the MOP gene expression were investigated in cell cultures. Data analysis revealed a functional effect of the PPARγ antagonist in attenuating the ability of WSE to prolong morphine analgesic effect and to reduce tolerance development after repeated administration. In addition, molecular experiments demonstrated that the blockade of PPARγ by GW-9662 promotes MOP mRNA down-regulation and counteracts the ability of 1.00 mg/mL of WSE to keep an adequate MOP receptor availability. In conclusion, our results support the involvement of a PPARγ-mediated mechanism in the WSE effects on morphine-mediated nociception and the likely usefulness of WSE in lengthening the analgesic efficacy of opioids in chronic therapy.
Collapse
|
25
|
Jones JD, Bisaga A, Metz VE, Manubay JM, Mogali S, Ciccocioppo R, Madera G, Doernberg M, Comer SD. The PPARγ Agonist Pioglitazone Fails to Alter the Abuse Potential of Heroin, But Does Reduce Heroin Craving and Anxiety. J Psychoactive Drugs 2018; 50:390-401. [PMID: 30204554 DOI: 10.1080/02791072.2018.1508789] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Possibly through its effects on glia, the peroxisome proliferator-activated gamma receptor (PPARγ) agonist pioglitazone (PIO) has been shown to alter the effects of heroin in preclinical models. Until now, these results have not been assessed in humans. Heroin-dependent participants were randomized to either active (45 mg, n = 14) or placebo (0 mg, n = 16) PIO maintenance for the duration of the three-week study. After stabilization on buprenorphine (8 mg), participants began a two-week testing period. On the first to fourth test days, participants could self-administer drug or money by making verbal choices for either option. On the fifth day, active heroin and money were administered and participants could work to receive heroin or money using a progressive ratio choice procedure. Test days 6-10 were identical to test days 1-5 with the exception that, during one of the test weeks, placebo was available on the first four days, and during the other week heroin was available. PIO failed to alter the reinforcing or positive subjective effects of heroin, but it did reduce heroin craving and overall anxiety. Although we were unable to replicate the robust effects found in preclinical models, these data provide an indication of drug effects that deserves further exploration.
Collapse
Affiliation(s)
- Jermaine D Jones
- a Division on Substance Use Disorders , New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | - Adam Bisaga
- a Division on Substance Use Disorders , New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | - Verena E Metz
- a Division on Substance Use Disorders , New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | - Jeanne M Manubay
- a Division on Substance Use Disorders , New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | - Shanthi Mogali
- a Division on Substance Use Disorders , New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | - Roberto Ciccocioppo
- b Department of Experimental Medicine and Public Health, School of Pharmacy, Pharmacology Unit , University of Camerino , Macerata , Italy
| | - Gabriela Madera
- a Division on Substance Use Disorders , New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | - Molly Doernberg
- a Division on Substance Use Disorders , New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | - Sandra D Comer
- a Division on Substance Use Disorders , New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University , New York , NY , USA
| |
Collapse
|
26
|
Okine BN, Gaspar JC, Finn DP. PPARs and pain. Br J Pharmacol 2018; 176:1421-1442. [PMID: 29679493 DOI: 10.1111/bph.14339] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic pain is a common cause of disability worldwide and remains a global health and socio-economic challenge. Current analgesics are either ineffective in a significant proportion of patients with chronic pain or associated with significant adverse side effects. The PPARs, a family of nuclear hormone transcription factors, have emerged as important modulators of pain in preclinical studies and therefore a potential therapeutic target for the treatment of pain. Modulation of nociceptive processing by PPARs is likely to involve both transcription-dependent and transcription-independent mechanisms. This review presents a comprehensive overview of preclinical studies investigating the contribution of PPAR signalling to nociceptive processing in animal models of inflammatory and neuropathic pain. We examine current evidence from anatomical, molecular and pharmacological studies demonstrating a role for PPARs in pain control. We also discuss the limited evidence available from relevant clinical studies and identify areas that warrant further research. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Bright N Okine
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Jessica C Gaspar
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
27
|
Di Cesare Mannelli L, Micheli L, Lucarini E, Ghelardini C. Ultramicronized N-Palmitoylethanolamine Supplementation for Long-Lasting, Low-Dosed Morphine Antinociception. Front Pharmacol 2018; 9:473. [PMID: 29910726 PMCID: PMC5992817 DOI: 10.3389/fphar.2018.00473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 02/02/2023] Open
Abstract
The facilitation of opioid medication is eliciting a nemetic problem since increasing overdose deaths involve prescription of opioid pain relievers. Chronic painful diseases require higher doses of opioids, progressively with the development of tolerance to the antinociceptive effect. Novel strategies for the maintenance of low dosed opioid effectiveness are necessary to relieve pain and decrease abuse, overdose, and side effects. N-Palmitoylethanolamine (PEA) is an endogenous compound able to preserve the homeostasis of the nervous system and to delay the development of morphine tolerance. In the present study, a preemptive and continuative treatment with ultramicronized PEA (30 mg/kg, daily, per os) enhanced the acute antinociceptive efficacy of morphine (10 mg/kg subcutaneously) in rats and prolonged the responsiveness to the natural opioid. Moreover, PEA-treated animals had a more rapid recovery from tolerance. Four opioid free days were enough to regain sensitivity to morphine whereas control animals needed 31 days for full recovery of tolerance. Characteristically, PEA acquired per se antinociceptive properties in tolerant animals, suggesting the possibility of an integrated morphine/PEA treatment protocol. To maintain a significant analgesia, morphine dose had to be increased from 5 up to 100 mg/kg over 17 days of daily treatment. The same pain threshold increase was achieved in animals using preemptive PEA (30 mg/kg, daily) joined to a combinatorial acute treatment with morphine (5–20 mg/kg s.c.) and PEA (30–120 mg/kg, p.o.). Representatively, on day 17, the magnitude of analgesia induced by 100 mg/kg morphine was obtained by combining 13 mg/kg of morphine with 120 mg/kg of PEA. PEA strengthens the efficacy and potency of morphine analgesia, allowing prolonged and effective pain relief with low doses. PEA is suggested in association with morphine for chronic pain therapies distinguished by low risk of side effects.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Miller WR, Fox RG, Stutz SJ, Lane SD, Denner L, Cunningham KA, Dineley KT. PPARγ agonism attenuates cocaine cue reactivity. Addict Biol 2018; 23:55-68. [PMID: 27862692 DOI: 10.1111/adb.12471] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/03/2016] [Accepted: 10/09/2016] [Indexed: 01/15/2023]
Abstract
Cocaine use disorder is a chronic relapsing condition characterized by compulsive drug seeking and taking even after prolonged abstinence periods. Subsequent exposure to drug-associated cues can promote intense craving and lead to relapse in abstinent humans and rodent models. The responsiveness to these cocaine-related cues, or 'cue reactivity', can trigger relapse and cocaine-seeking behaviors; cue reactivity is measurable in cocaine-dependent humans as well as rodent models. Cue reactivity is thought to be predictive of cocaine craving and relapse. Here we report that PPARγ agonism during abstinence from cocaine self-administration reduced previously active lever pressing in Sprague Dawley rats during cue-reactivity tests, while administration of the PPARγ antagonist, GW9662, reversed this effect. PPARγ agonism also normalized nuclear ERK activity in the medial prefrontal cortex and hippocampus which was reversed with GW9662. Our results support the utility of PPARγ agonism as a relapse prevention strategy to maintain abstinence in the presence of cocaine-associated cues.
Collapse
Affiliation(s)
- William R Miller
- Department of Neurology; Galveston TX USA
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
| | - Robert G Fox
- Center for Addiction Research; Galveston TX USA
- Department of Pharmacology and Toxicology; Galveston TX USA
| | - Sonja J Stutz
- Center for Addiction Research; Galveston TX USA
- Department of Pharmacology and Toxicology; Galveston TX USA
| | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences; University of Texas Health Science Center at Houston; Houston TX USA
| | - Larry Denner
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
- Division of Endocrinology; Internal Medicine University of Texas Medical Branch; Galveston TX USA
| | - Kathryn A Cunningham
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
- Department of Pharmacology and Toxicology; Galveston TX USA
| | - Kelly T Dineley
- Department of Neurology; Galveston TX USA
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
| |
Collapse
|
29
|
Jadidi M, Khatami MS, Mohammad-pour F, Bandavi A, Rashidy-pour A, Vafaei AA, Taherian AA, Miladi-Gorji H. Effects of extremely low frequency magnetic field on the development of tolerance to the analgesic effect of morphine in rats. Bioelectromagnetics 2017; 38:618-625. [DOI: 10.1002/bem.22089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 09/05/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Majid Jadidi
- Research Center of Physiology and Department of Medical Physics; School of Medicine; Semnan University of Medical Sciences; Semnan Iran
| | - Mahfouzeh Sadat Khatami
- Research Center and Department of Physiology; School of Medicine; Semnan University of Medical Sciences; Semnan Iran
| | - Fatemeh Mohammad-pour
- Research Center and Department of Physiology; School of Medicine; Semnan University of Medical Sciences; Semnan Iran
| | - Afsaneh Bandavi
- Research Center and Department of Physiology; School of Medicine; Semnan University of Medical Sciences; Semnan Iran
| | - Ali Rashidy-pour
- Research Center and Department of Physiology; School of Medicine; Semnan University of Medical Sciences; Semnan Iran
| | - Abbas Ali Vafaei
- Research Center and Department of Physiology; School of Medicine; Semnan University of Medical Sciences; Semnan Iran
| | - Abbas Ali Taherian
- Research Center and Department of Physiology; School of Medicine; Semnan University of Medical Sciences; Semnan Iran
| | - Hossein Miladi-Gorji
- Research Center and Department of Physiology; School of Medicine; Semnan University of Medical Sciences; Semnan Iran
| |
Collapse
|
30
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
31
|
Pioglitazone attenuates the opioid withdrawal and vulnerability to relapse to heroin seeking in rodents. Psychopharmacology (Berl) 2017; 234:223-234. [PMID: 27714428 DOI: 10.1007/s00213-016-4452-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 01/10/2023]
Abstract
RATIONALE Relapse to opioids is often driven by the avoidance of the aversive states of opioid withdrawal. We recently demonstrated that activation of peroxisome proliferator-activated receptor gamma (PPARγ) by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. However, the role of PPARγ in withdrawal and other forms of relapse to heroin is unknown. OBJECTIVES To further address this issue, we investigated the role of PPARγ on the development and expression of morphine withdrawal in mice and the effect of pioglitazone on several forms of heroin relapse in rats. METHODS We induced physical dependence to morphine in mice by injecting morphine twice daily for 6 days. Withdrawal syndrome was precipitated on day 6 with an injection of naloxone. In addition, different groups of rats were trained to self-administer heroin and, after the extinction, the relapse was elicited by cues, priming, or stress. The effect of different doses of pioglitazone was tested on these different paradigms. RESULTS Data show that chronic and acute administration of pioglitazone attenuates morphine withdrawal symptoms, and these effects are mediated by activation of PPARγ receptors. Activation of PPARγ by pioglitazone also abolishes yohimbine-induced reinstatement of heroin seeking and reduces heroin-induced reinstatement, while it does not affect cue-induced relapse. CONCLUSIONS These findings provide new insights on the role of PPARγ on opioid dependence and suggest that pioglitazone may be useful for the treatment of opioid withdrawal in opioid-addicted individuals.
Collapse
|
32
|
Genetic Deletion of Neuronal PPARγ Enhances the Emotional Response to Acute Stress and Exacerbates Anxiety: An Effect Reversed by Rescue of Amygdala PPARγ Function. J Neurosci 2016; 36:12611-12623. [PMID: 27810934 DOI: 10.1523/jneurosci.4127-15.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 10/18/2016] [Accepted: 10/29/2016] [Indexed: 01/01/2023] Open
Abstract
PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone and is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes. Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety, but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγNestinCre), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (WT), but not in PPARγNestinCre knock-out (KO) mice. Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala (AMY) and the hippocampus (HIPP) of PPARγNestinCre KO mice compared with WT mice. No differences were found between WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that, in both regions, PPARγ colocalizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response and that the AMY is a key substrate for the anxiolytic effect of PPARγ. SIGNIFICANCE STATEMENT Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) is a classical target for antidiabetic therapies with thiazolidinedione compounds. PPARγ agonists such as rosiglitazone and pioglitazone are in clinical use for the treatment of insulin resistance. PPARγ has recently attracted attention for its involvement in the regulation of CNS immune response and functions. Here, we demonstrate that neuronal PPARγ activation prevented the negative emotional effects of stress and exerted anxiolytic actions without influencing hypothalamic-pituitary-adrenal axis function. Conversely, pharmacological blockade or genetic deletion of PPARγ enhanced anxiogenic responses and increased vulnerability to stress. These effects appear to be controlled by PPARγ neuronal-mediated mechanisms in the amygdala.
Collapse
|
33
|
Zlebnik NE, Cheer JF. Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation? Annu Rev Neurosci 2016; 39:1-17. [PMID: 27023732 DOI: 10.1146/annurev-neuro-070815-014038] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy.
Collapse
Affiliation(s)
- Natalie E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201; .,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
34
|
Jones JD, Sullivan MA, Manubay JM, Mogali S, Metz VE, Ciccocioppo R, Comer SD. The effects of pioglitazone, a PPARγ receptor agonist, on the abuse liability of oxycodone among nondependent opioid users. Physiol Behav 2015; 159:33-9. [PMID: 26455893 DOI: 10.1016/j.physbeh.2015.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
AIMS Activation of PPARγ by pioglitazone (PIO) has shown some efficacy in attenuating addictive-like responses in laboratory animals. The ability of PIO to alter the effects of opioids in humans has not been characterized in a controlled laboratory setting. The proposed investigation sought to examine the effects of PIO on the subjective, analgesic, physiological and cognitive effects of oxycodone (OXY). METHODS During this investigation, nondependent prescription opioid abusers (N=17 completers) were maintained for 2-3weeks on ascending daily doses of PIO (0mg, 15mg, 45mg) prior to completing a laboratory session assessing the aforementioned effects of OXY [using a within-session cumulative dosing procedure (0, 10, and 20mg, cumulative dose=30mg)]. RESULTS OXY produced typical mu opioid agonist effects: miosis, decreased pain perception, and decreased respiratory rate. OXY also produced dose-dependent increases in positive subjective responses. Yet, ratings such as: drug "liking," "high," and "good drug effect," were not significantly altered as a function of PIO maintenance dose. DISCUSSION These data suggest that PIO may not be useful for reducing the abuse liability of OXY. These data were obtained with a sample of nondependent opioid users and therefore may not be applicable to dependent populations or to other opioids. Although PIO failed to alter the abuse liability of OXY, the interaction between glia and opioid receptors is not well understood so the possibility remains that medications that interact with glia in other ways may show more promise.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA.
| | - Maria A Sullivan
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - Jeanne M Manubay
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - Shanthi Mogali
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - Verena E Metz
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, Macerata 62032, Italy
| | - Sandra D Comer
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| |
Collapse
|
35
|
Xu H, Xu T, Ma X, Jiang W. Involvement of neuronal TGF-β activated kinase 1 in the development of tolerance to morphine-induced antinociception in rat spinal cord. Br J Pharmacol 2015; 172:2892-904. [PMID: 25625840 DOI: 10.1111/bph.13094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Tolerance induced by morphine and other opiates remains a major unresolved problem in the clinical management of pain. There is now good evidence for the importance of MAPKs in morphine-induced antinociceptive tolerance. A member of the MAPK kinase kinase family, TGF-β activated kinase 1 (TAK1) is the common upstream kinase of MAPKs. Here, we have assessed the involvement of TAK1 in the development of tolerance to morphine-induced analgesia. EXPERIMENTAL APPROACH The effects of an antagonist of TAK1 on morphine tolerance were investigated in vivo using the Randall-Selitto test, and the mechanism was investigated using Western blot and immunohistochemistry. The expression of TAK1 after chronic morphine exposure was also evaluated in vitro by immunohistochemistry. KEY RESULTS Chronic intrathecal morphine exposure up-regulated protein levels and phosphorylation of spinal TAK1. TAK1 immunoreactivity was co-localized with the neuronal marker NeuN. Intrathecal administration of 5Z-7-oxozeaenol (OZ), a selective TAK1 inhibitor, attenuated the loss of morphine analgesic potency and morphine-induced TAK1 up-regulation. Furthermore, OZ decreased the up-regulated expression of spinal p38 and JNK after repeated morphine exposure. In vitro studies demonstrated that sustained morphine treatment induced TAK1 up-regulation, which was reversed by co-administration of OZ. A bolus injection of OZ showed some reversal of established morphine antinociceptive tolerance. CONCLUSIONS AND IMPLICATIONS TAK1 played a pivotal role in the development of morphine-induced antinociceptive tolerance. Modulation of TAK1 activation by the selective inhibitor OZ in the lumbar spinal cord may prove to be an attractive adjuvant therapy to attenuate such tolerance.
Collapse
Affiliation(s)
- Hao Xu
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| |
Collapse
|