1
|
Téllez Garcia JM, Steenvoorden T, Bemelman F, Hilhorst M, Tammaro A, Vogt L. Purinoreceptor P2X7 in Extracellular ATP-Mediated Inflammation through the Spectrum of Kidney Diseases and Kidney Transplantation. J Am Soc Nephrol 2025:00001751-990000000-00602. [PMID: 40152923 DOI: 10.1681/asn.0000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 03/30/2025] Open
Abstract
Extracellular purines not only play a critical role in maintaining a balanced inflammatory response but may also trigger disproportionate inflammation in various kidney pathologies. Extracellular ATP is the most well-characterized inflammatory purine, which serves as a potent extracellular danger-associated molecular pattern ( i.e ., danger-associated molecular pattern). It signals through the P2 purinoreceptors during both acute and chronic kidney damage. The purinoreceptor P2X7 (P2X7R) has been extensively studied in kidney disease because of its potent ability to enhance inflammation by activating the nucleotide-binding oligomerization domain, leucine rich repeat family pyrin domain containing 3 inflammasome in both immune and parenchymal tubular cells and potential role in immunometabolic reprogramming. We will explore how, following a primary insult to the kidney, disturbance of purinergic balance characterized by extracellular ATP-mediated P2X7R activation exacerbates AKI. Second, we will describe how persistent purinergic disbalance promotes a P2X7R-mediated protracted inflammatory reaction leading to the progression of CKD of different etiologies. Finally, we will also highlight the relevant and emerging role of P2X7R signaling in both antigen-presenting cells and adaptive immune cells to modulate cellular and humoral immune responses in kidney transplantation and hypertension. This review underscores that ATP-P2X7R axis is a key driver of pathologic purinergic signaling, representing a largely unexplored but highly promising clinical target against a wide spectrum of kidney diseases.
Collapse
Affiliation(s)
- Juan Miguel Téllez Garcia
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thei Steenvoorden
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Frederike Bemelman
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marc Hilhorst
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Li R, Guo L, Liang B, Sun W, Hai F. Review of mechanisms and frontier applications in IL-17A-induced hypertension. Open Med (Wars) 2025; 20:20251159. [PMID: 40028265 PMCID: PMC11868716 DOI: 10.1515/med-2025-1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Background The immune system is closely related to hypertension. Hypertension is an immune disorder to a certain extent, and inflammation is the basis of abnormally elevated blood pressure (BP). The accumulation of T cells and their cytokines can increase BP and end organ damage. T cells are activated by antigen-presenting cells of the innate immune system or by the influence of a high-sodium diet, the self-environment, or the gut microbiota. These cells produce inflammatory factors and cytokines, such as interleukin-17A (IL-17A) in T helper 17 cells, causing vascular inflammation, hypertension, and target organ damage. Methods In this article, we provide an insightful review of the research progress regarding the role of IL-17A in the pathogenesis of hypertension and its effects on different organs while emphasizing the role of IL-17A and its mediated functions in the kidneys, brain, intestines, and vascular system in the development and progression of hypertension. Results At the organ level, IL-17A is involved in the development and progression of hypertension in the kidneys, brain, intestines, and blood vessels, interacting with multiple signal pathway. Conclusions These findings have significant implications for developing future immunomodulatory therapies, which may lead to the development of potential treatments for hypertension.
Collapse
Affiliation(s)
- Ruiyuan Li
- Graduate School of Jinzhou Medical University,
Jinzhou, Liaoning, China
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Lipeng Guo
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, No. 40 Qianshan Road, Dalian, 116033, Liaoning, China
| | - Bin Liang
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Wei Sun
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Feng Hai
- Department of Critical Care Medicine, Dalian Third People’s Hospital of Jinzhou Medical University, Liaoning, China
| |
Collapse
|
3
|
Dousdampanis P, Aggeletopoulou I, Mouzaki A. The role of M1/M2 macrophage polarization in the pathogenesis of obesity-related kidney disease and related pathologies. Front Immunol 2025; 15:1534823. [PMID: 39867890 PMCID: PMC11758166 DOI: 10.3389/fimmu.2024.1534823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function. Among the immune cells of the innate and adaptive immune response involved in the pathogenesis of obesity-related diseases, macrophages play a crucial role in the inflammation associated with CKD. In obese individuals, macrophages enter a pro-inflammatory state known as M1 polarization, which contributes to chronic inflammation. This polarization promotes tissue damage, inflammation and fibrosis, leading to progressive loss of kidney function. In addition, macrophage-induced oxidative stress is a key feature of CKD as it also promotes cell damage and inflammation. Macrophages also contribute to insulin resistance in type 2 diabetes by releasing inflammatory molecules that impair glucose metabolism, complicating the management of diabetes in obese patients. Hypertension and atherosclerosis, which are often associated with obesity, also contribute to the progression of CKD via immune and inflammatory pathways. Macrophages influence blood pressure regulation and contribute to vascular inflammation, particularly via the renin-angiotensin system. In atherosclerosis, macrophages accumulate in arterial plaques, leading to chronic inflammation and plaque instability, which may increase the risk of CVD in CKD patients. This review focuses on the involvement of macrophages in CKD and highlights their role as a critical link between CKD and other pathologies. Targeting macrophage polarization and the ensuing macrophage-induced inflammation could be an effective therapeutic strategy for CKD and related diseases and improve outcomes for patients with obesity-related kidney disease.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
4
|
Wang Y, You YK, Guo J, Wang J, Shao B, Li H, Meng X, Lan HY, Chen H. C-reactive protein promotes diabetic kidney disease via Smad3-mediated NLRP3 inflammasome activation. Mol Ther 2025; 33:263-278. [PMID: 39539016 PMCID: PMC11764780 DOI: 10.1016/j.ymthe.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney diseases resulting in enormous socio-economic burden. Accumulated evidence has indicated that C-reactive protein (CRP) exacerbates DKD by enhancing renal inflammation and fibrosis through TGF-β/Smad3 signaling. NLRP3 inflammasome is the key sensor contributing to renal inflammation. However, whether CRP enhances inflammation in DKD via NLRP3 inflammasome-related pathway remains unknown. In this study, we demonstrate that CRP promotes DKD via Smad3-mediated NLRP3 inflammasome activation as mice overexpressing human CRP gene exhibits accelerated renal inflammation in diabetic kidneys, which is associated with the activation of Smad3 and NLRP3 inflammasomes. In contrast, blockade of CPR signaling with a neutralizing anti-CD32 antibody attenuates CRP-induced activation of Smad3 and NLRP3 in vitro. Importantly, genetic deletion or pharmacological inhibition of Smad3 also mitigates CRP-induced activation of NLRP3 in diabetic kidneys or in high glucose-treated cells. Mechanistically, we reveal that Smad3 binds to the NLRP3 gene promoter, which is enhanced by CRP. Taken together, we conclude that CRP induces renal inflammation in DKD via a Smad3-NLRP3 inflammasome-dependent mechanism. Thus, targeting CRP or Smad3-NLRP3 pathways may be a new therapeutic potential for DKD.
Collapse
Affiliation(s)
- Yifan Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong-Ke You
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jianbo Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianan Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Baoyi Shao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haidi Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hui-Yao Lan
- Department of Nephrology and Pathology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China; Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong, China.
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
5
|
Alberto RPJ, Benjamin GN, Elizabeth RMJ, Alberto CDL, Eliseo PDB. Understanding COVID-19-related Acute Renal Injury in Elderly Individuals: Preexisting Systemic Inflammation before COVID-19 (SIC). Endocr Metab Immune Disord Drug Targets 2025; 25:300-309. [PMID: 38919086 DOI: 10.2174/0118715303312433240611093855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
In this study, we examined preexisting systemic inflammation before COVID-19 (SIC), as assessed through C-reactive protein (CRP) levels, to gain insights into the origins of acute kidney injury (AKI) in adults with comorbidities affected by COVID-19. Although aging is not categorized as a disease, it is characterized by chronic inflammation, and older individuals typically exhibit higher circulating levels of inflammatory molecules, particularly CRP, compared to younger individuals. Conversely, elevated CRP concentrations in older adults have been linked with the development of comorbidities. Simultaneously, these comorbidities contribute to the production of inflammatory molecules, including CRP. Consequently, older adults with comorbidities have higher CRP concentrations than their counterparts without comorbidities or those with fewer comorbidities. Given that CRP levels are correlated with the development and severity of AKI in non-COVID-19 patients, we hypothesized that individuals with greater SIC are more likely to develop AKI during SARS-CoV-2 infection than those with less SIC.
Collapse
Affiliation(s)
- Ruiz-Pacheco Juan Alberto
- Investigador por México-CONAHCYT, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, México
| | - Gomez-Navarro Benjamin
- Servicio de Nefrología y Trasplantes, Hospital Country 2000, Guadalajara, Jalisco, México
| | | | - Castillo-Díaz Luis Alberto
- Departamento de Medicina y Ciencias de la Salud, Facultad Interdiciplinaria de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, México
| | - Portilla-de Buen Eliseo
- División de Investigación Quirúrgica, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, México
| |
Collapse
|
6
|
Wang Y, Wu Y, Ren J, Wang Y, Perwaiz I, Su H, Li J, Qu P. Pharmacological inhibition of the NLRP3 inflammasome attenuates kidney apoptosis, fibrosis, and injury in Dahl salt-sensitive rats. Clin Exp Nephrol 2025; 29:113-122. [PMID: 39576390 PMCID: PMC11807026 DOI: 10.1007/s10157-024-02567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/12/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Salt-sensitive hypertension (SSH) is the most severe form of hypertension, and the presence of NLRP3 inflammasome plays a crucial role in its pathogenesis. Although MCC950 has shown therapeutic potential for hypertension and kidney injury, its mechanism of action remains unclear. METHODS Dahl salt-sensitive (SS) rats and their salt-tolerant aptamer control SS-13BN (BN) rats were randomly assigned to four groups: SS rats intraperitoneally administered physiological saline (SS + vehicle) or MCC950 (SS + MCC950), and BN rats intraperitoneally administered physiological saline (BN + vehicle) or MCC950 (BN + MCC950). All rats were given 2% saline for drinking and received intraperitoneal injections of physiological saline or MCC950 (5 mg/kg) every other day. Biomarkers such as serum creatinine, urinary protein, sodium retention, NLRP3 inflammasome, inflammation, apoptosis, fibrosis, sodium channels and histopathological changes in kidney injury were evaluated in blood, urine, and kidney tissues. RESULTS Compared with the SS + vehicle group, the SS + MCC950 group showed significantly lower blood pressure levels. Additionally, inhibition of NLRP3 inflammasome activation was observed along with reduced inflammation, apoptosis, fibrosis, and sodium retention in the kidneys. CONCLUSIONS The findings suggest that pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure in SS rats and alleviates related kidney injury by suppressing inflammation, apoptosis, fibrosis, and sodium retention.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Yuhang Wu
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Jiayu Ren
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Ying Wang
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Imran Perwaiz
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Hongtong Su
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Jing Li
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Peng Qu
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
7
|
Nagata D, Hishida E. Elucidating the complex interplay between chronic kidney disease and hypertension. Hypertens Res 2024; 47:3409-3422. [PMID: 39415028 DOI: 10.1038/s41440-024-01937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
Chronic kidney disease (CKD) and hypertension share a complex relationship, each exacerbating the progression of the other. CKD contributes to hypertension by decreasing renal function, leading to fluid retention and increased plasma volume, whereas hypertension exacerbates CKD by increasing glomerular pressure and causing renal damage. This review examines the intertwined nature of CKD and hypertension, exploring the factors driving hypertension in CKD and how hypertension accelerates CKD progression. It discusses the role of the renin-angiotensin system and inflammatory cytokines in this relationship, as well as the potential of blood pressure management to slow renal decline. While studies suggest that meticulous blood pressure control can help attenuate CKD progression, optimal management strategies remain unclear and require further investigation. This review also evaluates the evidence surrounding strict antihypertensive therapy in patients with CKD, considering both diabetic and non-diabetic cases. It recommends blood pressure targets based on CKD stage and presence of diabetes, emphasizing the importance of individualized treatment approaches. Renin-angiotensin system inhibitors are highlighted as a key pharmacological intervention due to their renal protective effects, particularly in patients with CKD with proteinuria. However, evidence regarding their efficacy in patients with CKD but without proteinuria is inconclusive. This review underscores the need for comprehensive approaches to effectively address the intertwined nature of CKD and hypertension and calls for further research to optimize clinical management strategies in this complex interplay.
Collapse
Affiliation(s)
- Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Departments of Internal Medicine, Division of Nephrology, Tochigi, Japan.
| | - Erika Hishida
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Departments of Internal Medicine, Division of Nephrology, Tochigi, Japan.
| |
Collapse
|
8
|
R Muralitharan R, Marques FZ, O'Donnell JA. Recent advancements in targeting the immune system to treat hypertension. Eur J Pharmacol 2024; 983:177008. [PMID: 39304109 DOI: 10.1016/j.ejphar.2024.177008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is the key leading risk factor for death globally, affecting ∼1.3 billion adults, particularly in low- and middle-income countries. Most people living with hypertension have uncontrolled high blood pressure, increasing their likelihood of cardiovascular events. Significant issues preventing blood pressure control include lack of diagnosis, treatment, and response to existing therapy. For example, monotherapy and combination therapy are often unable to lower blood pressure to target levels. New therapies are urgently required to tackle this issue, particularly those that target the mechanisms behind hypertension instead of treating its symptoms. Acting via an increase in systemic and tissue-specific inflammation, the immune system is a critical contributor to blood pressure regulation and is considered an early mechanism leading to hypertension development. Here, we review the immune system's role in hypertension, evaluate clinical trials that target inflammation, and discuss knowledge gaps in pre-clinical and clinical data. We examine the effects of anti-inflammatory drugs colchicine and methotrexate on hypertension and evaluate the blockade of pro-inflammatory cytokines IL-1β and TNF-α on blood pressure in clinical trials. Lastly, we highlight how we can move forward to target specific components of the immune system to lower blood pressure. This includes targeting isolevuglandins, which accumulate in dendritic cells to promote T cell activation and cytokine production in salt-induced hypertension. We discuss the potential of the dietary fibre-derived metabolites short-chain fatty acids, which have anti-inflammatory and blood pressure-lowering effects via the gut microbiome. This would limit adverse events, leading to improved medication adherence and better blood pressure control.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Fan X, Zhang W, Zheng R, Zhang Y, Lai X, Han J, Fang Z, Han B, Huang W, Ye B, Dai S. GSDMD Mediates Ang II-Induced Hypertensive Nephropathy by Regulating the GATA2/AQP4 Signaling Pathway. J Inflamm Res 2024; 17:8241-8259. [PMID: 39525316 PMCID: PMC11549917 DOI: 10.2147/jir.s488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Aim Hypertensive nephropathy is a common complication of hypertension. However, no effective measures are currently available to prevent the progression of renal insufficiency. Gasdermin D (GSDMD) is a crucial mediator of pyroptosis that induces an excessive inflammatory response. In the present study, we aimed to determine the effect of GSDMD on the pathogenesis of hypertensive nephropathy, which may provide new insights into the treatment of hypertensive nephropathy. Methods C57BL/6 (wild-type, WT) and Gsdmd knockout (Gsdmd-/-) mice were subcutaneously infused with angiotensin II (Ang II) via osmotic mini-pumps to establish a hypertensive renal injury model. Recombinant adeno-associated virus serotype 9 (AAV9) carrying GSDMD cDNA was used to overexpress GSDMD. Renal function biomarkers, histopathological changes, and inflammation and fibrosis indices were assessed. Transcriptome sequencing (RNA-seq) and cleavage under targets and mentation (CUT & Tag) experiments were performed to identify the downstream pathogenic mechanisms of GSDMD in hypertensive nephropathy. Results GSDMD was activated in the kidneys of mice induced by Ang II (P < 0.001). This activation was primarily observed in the renal tubular epithelial cells (P < 0.0001). GSDMD deficiency attenuated renal injury and fibrosis induced by Ang II (P < 0.0001), whereas Gsdmd overexpression promoted renal injury and fibrosis (P < 0.01). Mechanistically, GSDMD increased Ang II-induced GATA binding protein 2 (GATA2) transcription factor expression (P < 0.01). GATA2 also bound to the aquaporin 4 (Aqp4) promoter sequence and facilitated Aqp4 transcription (P < 0.001), leading to renal injury and fibrosis. Moreover, treatment with GI-Y1, an inhibitor of GSDMD, alleviated Ang II-induced renal injury and fibrosis (P < 0.01). Conclusion GSDMD plays an important role in the development of hypertensive nephropathy. Targeting GSDMD may be a therapeutic strategy for the treatment of hypertensive nephropathy.
Collapse
Affiliation(s)
- Xiaoxi Fan
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wenli Zhang
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ruihan Zheng
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Yucong Zhang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Xianhui Lai
- Department of Cardiology, Yuhuan County People’s Hospital of Zhejiang Province, Taizhou, People’s Republic of China
| | - Jibo Han
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Zimin Fang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Bingjiang Han
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Bozhi Ye
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Shanshan Dai
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Emergency and Disaster Medicine of Wenzhou, Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
10
|
Polizio AH, Marino L, Duk-Min K, Yura Y, Rolauer L, Cochran JD, Evans MA, Park E, Doviak H, Miura-Yura E, Good ME, Wolpe AG, Grandoch M, Isakson B, Walsh K. Experimental TET2 Clonal Hematopoiesis Predisposes to Renal Hypertension Through an Inflammasome-Mediated Mechanism. Circ Res 2024; 135:933-950. [PMID: 39234670 PMCID: PMC11519839 DOI: 10.1161/circresaha.124.324492] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Hypertension incidence increases with age and represents one of the most prevalent risk factors for cardiovascular disease. Clonal events in the hematopoietic system resulting from somatic mutations in driver genes are prevalent in elderly individuals who lack overt hematologic disorders. This condition is referred to as age-related clonal hematopoiesis (CH), and it is a newly recognized risk factor for cardiovascular disease. It is not known whether CH and hypertension in the elderly are causally related and, if so, what are the mechanistic features. METHODS A murine model of adoptive bone marrow transplantation was employed to examine the interplay between Tet2 (ten-eleven translocation methylcytosine dioxygenase 2) clonal hematopoiesis and hypertension. RESULTS In this model, a subpressor dose of Ang II (angiotensin II) resulted in elevated systolic and diastolic blood pressure as early as 1 day after challenge. These conditions led to the expansion of Tet2-deficient proinflammatory monocytes and bone marrow progenitor populations. Tet2 deficiency promoted renal CCL5 (C-C motif ligand 5) chemokine expression and macrophage infiltration into the kidney. Consistent with macrophage involvement, Tet2 deficiency in myeloid cells promoted hypertension when mice were treated with a subpressor dose of Ang II. The hematopoietic Tet2-/- condition led to sodium retention, renal inflammasome activation, and elevated levels of IL (interleukin)-1β and IL-18. Analysis of the sodium transporters indicated NCC (sodium-chloride symporter) and NKCC2 (Na+-K+-Cl- cotransporter 2) activation at residues Thr53 and Ser105, respectively. Administration of the NLRP3 (NLR family pyrin domain containing 3) inflammasome inhibitor MCC950 reversed the hypertensive state, sodium retention, and renal transporter activation. CONCLUSIONS Tet2-mediated CH sensitizes mice to a hypertensive stimulus. Mechanistically, the expansion of hematopoietic Tet2-deficient cells promotes hypertension due to elevated renal immune cell infiltration and activation of the NLRP3 inflammasome, with consequences on sodium retention. These data indicate that carriers of TET2 CH could be at elevated risk for the development of hypertension and that immune modulators could be useful in treating hypertension in this patient population.
Collapse
Affiliation(s)
- Ariel H. Polizio
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lucila Marino
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kyung Duk-Min
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yoshimitsu Yura
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Luca Rolauer
- Institute of Translational Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jesse D. Cochran
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Megan A. Evans
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Eunbee Park
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Heather Doviak
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Emiri Miura-Yura
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Miranda E. Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA, 02111, USA
| | | | - Maria Grandoch
- Institute of Translational Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Brant Isakson
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kenneth Walsh
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
11
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
12
|
Henedak NT, El-Abhar HS, Soubh AA, Abdallah DM. NLRP3 Inflammasome: A central player in renal pathologies and nephropathy. Life Sci 2024; 351:122813. [PMID: 38857655 DOI: 10.1016/j.lfs.2024.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The cytoplasmic oligomer NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated in most inflammatory and autoimmune diseases. Here, we highlight the significance of NLRP3 in diverse renal disorders, demonstrating its activation in macrophages and non-immune tubular epithelial and mesangial cells in response to various stimuli. This activation leads to the release of pro-inflammatory cytokines, contributing to the development of acute kidney injury (AKI), chronic renal injury, or fibrosis. In AKI, NLRP3 inflammasome activation and pyroptotic renal tubular cell death is driven by contrast and chemotherapeutic agents, sepsis, and rhabdomyolysis. Nevertheless, inflammasome is provoked in disorders such as crystal and diabetic nephropathy, obesity-related renal fibrosis, lupus nephritis, and hypertension-induced renal damage that induce chronic kidney injury and/or fibrosis. The mechanisms by which the inflammatory NLRP3/ Apoptosis-associated Speck-like protein containing a Caspase recruitment domain (ASC)/caspase-1/interleukin (IL)-1β & IL-18 pathway can turn on renal fibrosis is also comprehended. This review further outlines the involvement of dopamine and its associated G protein-coupled receptors (GPCRs), including D1-like (D1, D5) and D2-like (D2-D4) subtypes, in regulating this inflammation-linked renal dysfunction pathway. Hence, we identify D-related receptors as promising targets for renal disease management by inhibiting the functionality of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Nada T Henedak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Ayman A Soubh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
13
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
14
|
Baumann D, Van Helden D, Evans LC, Vulchanova L, Dayton A, Osborn JW. IL-1R Mediated Activation of Renal Sensory Nerves in DOCA-Salt Hypertension. Hypertension 2024; 81:1811-1821. [PMID: 38841853 PMCID: PMC11254549 DOI: 10.1161/hypertensionaha.123.22620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Clinical trials of renal denervation for the treatment of hypertension have shown a variety of off-target improvements in conditions associated with sympathetic overactivity. This may be due to the ablation of sympathoexcitatory afferent renal nerves, which are overactive under conditions of renal inflammation. Renal IL (interleukin)-1β is elevated in the deoxycorticosterone acetate-salt model of hypertension, and its activity may be responsible for the elevation in afferent renal nerve activity and arterial pressure. METHODS Continuous blood pressure recording of deoxycorticosterone acetate-salt mice with IL-1R (IL-1 receptor) knockout or antagonism was used individually and combined with afferent renal denervation (ARDN) to assess mechanistic overlap. Protein quantification and histological analysis of kidneys were performed to characterize renal inflammation. RESULTS ARDN attenuated deoxycorticosterone acetate-salt hypertension (-20±2-Δmm Hg mean arterial pressure [MAP] relative to control at study end) to a similar degree as total renal denervation (-21±2-Δmm Hg MAP), IL-1R knockout (-16±4-Δmm Hg MAP), or IL-1R antagonism (-20±3-Δmm Hg MAP). The combination of ARDN with knockout (-18±2-Δmm Hg MAP) or antagonism (-19±4-Δmm Hg MAP) did not attenuate hypertension any further than ARDN alone. IL-1R antagonism was found to have an acute depressor effect (-15±3-Δmm Hg MAP, day 10) in animals with intact renal nerves but not those with ARDN. CONCLUSIONS These findings suggest that IL-1R signaling is partially responsible for the elevated afferent renal nerve activity, which stimulates central sympathetic outflow to drive deoxycorticosterone acetate-salt hypertension.
Collapse
Affiliation(s)
- Daniel Baumann
- Graduate Program in Integrative Biology and Physiology (D.B.), University of Minnesota, Minneapolis
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| | - Dusty Van Helden
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| | - Louise C Evans
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| | - Lucy Vulchanova
- Department of Neuroscience (L.V.), University of Minnesota, Minneapolis
| | - Alex Dayton
- Division of Nephrology and Hypertension (A.D.), University of Minnesota, Minneapolis
| | - John W Osborn
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| |
Collapse
|
15
|
Pandey KN. Genetic and Epigenetic Mechanisms Regulating Blood Pressure and Kidney Dysfunction. Hypertension 2024; 81:1424-1437. [PMID: 38545780 PMCID: PMC11168895 DOI: 10.1161/hypertensionaha.124.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The pioneering work of Dr Lewis K. Dahl established a relationship between kidney, salt, and high blood pressure (BP), which led to the major genetic-based experimental model of hypertension. BP, a heritable quantitative trait affected by numerous biological and environmental stimuli, is a major cause of morbidity and mortality worldwide and is considered to be a primary modifiable factor in renal, cardiovascular, and cerebrovascular diseases. Genome-wide association studies have identified monogenic and polygenic variants affecting BP in humans. Single nucleotide polymorphisms identified in genome-wide association studies have quantified the heritability of BP and the effect of genetics on hypertensive phenotype. Changes in the transcriptional program of genes may represent consequential determinants of BP, so understanding the mechanisms of the disease process has become a priority in the field. At the molecular level, the onset of hypertension is associated with reprogramming of gene expression influenced by epigenomics. This review highlights the specific genetic variants, mutations, and epigenetic factors associated with high BP and how these mechanisms affect the regulation of hypertension and kidney dysfunction.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA
| |
Collapse
|
16
|
Dos Passos RR, Santos CV, Priviero F, Briones AM, Tostes RC, Webb RC, Bomfim GF. Immunomodulatory Activity of Cytokines in Hypertension: A Vascular Perspective. Hypertension 2024; 81:1411-1423. [PMID: 38686582 PMCID: PMC11168883 DOI: 10.1161/hypertensionaha.124.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cytokines play a crucial role in the structure and function of blood vessels in hypertension. Hypertension damages blood vessels by mechanisms linked to shear forces, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, oxidative stress, and a proinflammatory milieu that lead to the generation of neoantigens and damage-associated molecular patterns, ultimately triggering the release of numerous cytokines. Damage-associated molecular patterns are recognized by PRRs (pattern recognition receptors) and activate inflammatory mechanisms in endothelial cells, smooth muscle cells, perivascular nerves, and perivascular adipose tissue. Activated vascular cells also release cytokines and express factors that attract macrophages, dendritic cells, and lymphocytes to the blood vessels. Activated and differentiated T cells into Th1, Th17, and Th22 in secondary lymphoid organs migrate to the vessels, releasing specific cytokines that further contribute to vascular dysfunction and remodeling. This chronic inflammation alters the profile of endothelial and smooth muscle cells, making them dysfunctional. Here, we provide an overview of how cytokines contribute to hypertension by impacting the vasculature. Furthermore, we explore clinical perspectives about the modulation of cytokines as a potential therapeutic intervention to specifically target hypertension-linked vascular dysfunction.
Collapse
Affiliation(s)
- Rinaldo R Dos Passos
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
| | - Cintia V Santos
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (C.V.S., R.C.T.)
| | - Fernanda Priviero
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Biomedical Engineering, College of Engineering and Computing (F.P., R.C.W.), University of South Carolina, Columbia
| | - Ana M Briones
- Department of Pharmacology, Facultad de Medicina, Universidad Autónoma de Madrid, Spain (A.M.B.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.M.B.)
- CIBER Cardiovascular, Madrid, Spain (A.M.B.)
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (C.V.S., R.C.T.)
| | - R Clinton Webb
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Biomedical Engineering, College of Engineering and Computing (F.P., R.C.W.), University of South Carolina, Columbia
| | - Gisele F Bomfim
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- NUPADS - Health Education and Research Center, Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil (G.F.B.)
| |
Collapse
|
17
|
Rios FJ, de Ciuceis C, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Lopreiato M, Mavraganis G, Mengozzi A, Montezano AC, Stavropoulos K, Winklewski PJ, Wolf J, Costantino S, Doumas M, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Virdis A. Mechanisms of Vascular Inflammation and Potential Therapeutic Targets: A Position Paper From the ESH Working Group on Small Arteries. Hypertension 2024; 81:1218-1232. [PMID: 38511317 DOI: 10.1161/hypertensionaha.123.22483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - George Pavlidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
| | - Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Marcin Hellmann
- Cardiac Diagnostics (M.H.), Medical University of Gdansk, Poland
| | - Stefano Masi
- Institute of Cardiovascular Science, University College London, United Kingdom (S.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Mariarosaria Lopreiato
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa (A.M.)
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Konstantinos Stavropoulos
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Greece (K. Stavropoulos)
| | - Pawel J Winklewski
- Departments of Human Physiology (P.J.W.), Medical University of Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Sarah Costantino
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
| | - Michael Doumas
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - Ignatios Ikonomidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
- Department of Research and Education (F.P.), University Hospital Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
- Division of Medicine, Spedali Civili di Brescia, Italy (D.R.)
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim (K. Stellos), Heidelberg University, Germany
- Department of Cardiology, University Hospital Mannheim (K. Stellos), Heidelberg University, Germany
- German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site (K. Stellos)
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| |
Collapse
|
18
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Fularski P, Czarnik W, Dąbek B, Lisińska W, Radzioch E, Witkowska A, Młynarska E, Rysz J, Franczyk B. Broader Perspective on Atherosclerosis-Selected Risk Factors, Biomarkers, and Therapeutic Approach. Int J Mol Sci 2024; 25:5212. [PMID: 38791250 PMCID: PMC11121693 DOI: 10.3390/ijms25105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as cigarette smoking, low physical activity, and sleep deprivation. Another substantial group of risk factors comprises comorbidities. Amongst others, conditions such as hypertension, diabetes mellitus (DM), chronic kidney disease (CKD), or familial hypercholesterolemia (FH) are included here. Extremely significant in the context of halting progression is counteracting the mentioned risk factors, including through treatment of the underlying disease. What is more, in recent years, there has been increasing attention paid to perceiving atherosclerosis as an inflammation-related disease. Consequently, efforts are directed towards exploring new anti-inflammatory medications to limit ASCVD progression. Simultaneously, research is underway to identify biomarkers capable of providing insights into the ongoing process of atherosclerotic plaque formation. The aim of this study is to provide a broader perspective on ASCVD, particularly focusing on its characteristics, traditional and novel treatment methods, and biomarkers that can facilitate its early detection.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Alicja Witkowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
20
|
Zhao H, Kumar P, Sobreira TJP, Smith M, Novick S, Johansson A, Luchniak A, Zhang A, Woollard KJ, Larsson N, Kawatkar A. Integrated Proteomics Characterization of NLRP3 Inflammasome Inhibitor MCC950 in Monocytic Cell Line Confirms Direct MCC950 Engagement with Endogenous NLRP3. ACS Chem Biol 2024; 19:962-972. [PMID: 38509779 DOI: 10.1021/acschembio.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and selective small-molecule inhibitor of the NLRP3 pathway and has been validated in numerous species and disease models. Although the capacity of MCC950 to block NLRP3 signaling is well-established, it is still critical to identify the mechanism of action and molecular targets of MCC950 to inform and derisk drug development. Quantitative proteomics performed in disease-relevant systems provides a powerful method to study both direct and indirect pharmacological responses to small molecules to elucidate the mechanism of action and confirm target engagement. A comprehensive target deconvolution campaign requires the use of complementary chemical biology techniques. Here we applied two orthogonal chemical biology techniques: compressed Cellular Thermal Shift Assay (CETSA) and photoaffinity labeling chemoproteomics, performed under biologically relevant conditions with LPS-primed THP-1 cells, thereby deconvoluting, for the first time, the molecular targets of MCC950 using chemical biology techniques. In-cell chemoproteomics with inlysate CETSA confirmed the suspected mechanism as the disruption of inflammasome formation via NLRP3. Further cCETSA (c indicates compressed) in live cells mapped the stabilization of NLRP3 inflammasome pathway proteins, highlighting modulation of the targeted pathway. This is the first evidence of direct MCC950 engagement with endogenous NLRP3 in a human macrophage cellular system using discovery proteomics chemical biology techniques, providing critical information for inflammasome studies.
Collapse
Affiliation(s)
- Heng Zhao
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | - Praveen Kumar
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | | | - Mackenzie Smith
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | - Steven Novick
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | - Anders Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43183 Mölndal, Sweden
| | - Anna Luchniak
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, 43183 Mölndal, Sweden
| | - Andrew Zhang
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, CB2 OAA Cambridge, U.K
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, 43183 Mölndal, Sweden
| | - Aarti Kawatkar
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| |
Collapse
|
21
|
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy. Front Immunol 2024; 15:1333170. [PMID: 38545112 PMCID: PMC10965702 DOI: 10.3389/fimmu.2024.1333170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Collapse
Affiliation(s)
- Xiao-Min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Bing-Nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-Peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-Zhen Yang
- Department of Rehabilitation Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Liu N, Gong Z, Li Y, Xu Y, Guo Y, Chen W, Sun X, Yin X, Liu W. CTRP3 inhibits myocardial fibrosis through the P2X7R-NLRP3 inflammasome pathway in SHR rats. J Hypertens 2024; 42:315-328. [PMID: 37850974 DOI: 10.1097/hjh.0000000000003591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND PURPOSE Reducing hypertensive myocardial fibrosis is the fundamental approach to preventing hypertensive ventricular remodelling. C1q/TNF-related protein-3 (CTRP3) is closely associated with hypertension. However, the role and mechanism of CTRP3 in hypertensive myocardial fibrosis are unclear. In this study, we aimed to explore the effect of CTRP3 on hypertensive myocardial fibrosis and the potential mechanism. METHODS AND RESULTS WKY and SHR rats were employed, blood pressure, body weight, heart weight, H/BW were measured, and fibrotic-related proteins, CTRP3 and Collagen I were tested in myocardium at 12 and 20 weeks by immunohistochemical staining and Western blotting, respectively. The results showed that compared with the WKY, SBP, DBP, mean arterial pressure and heart rate (HR) were all significantly increased in SHR at 12 and 20 weeks, while heart weight and H/BW were only increased at 20 weeks. Meanwhile, CTRP3 decreased, while Collagen I increased significantly in the SHR rat myocardium at 20 weeks, which compared to the WKY. Moreover, the expression of α-SMA increased from 12 weeks, Collagen I/III and MMP2/9 increased and TIMP-2 decreased until 20 weeks. In order to explore the function and mechanism of CTRP3 in hypertensive fibrosis, Angiotensin II (Ang II) was used to induce hypertension in primary neonatal rat cardiac fibroblasts in vitro . CTRP3 significantly inhibited the Ang II induced activation of fibrotic proteins, purinergic 2X7 receptor (P2X7R)-NLRP3 inflammasome pathway. The P2X7R agonist BzATP significantly exacerbated Ang II-induced NLRP3 inflammasome activation, which was decreased by the P2X7R antagonists A43079, CTRP3 and MCC950. CONCLUSION CTRP3 expression was decreased in the myocardium of SHR rats, and exogenous CTRP3 inhibited Ang II-induced fibrosis in cardiac fibroblasts by regulating the P2X7R-NLRP3 inflammasome pathway, suggesting that CTRP3 is a potential drug for alleviating myocardial fibrosis in hypertensive conditions.
Collapse
Affiliation(s)
- Na Liu
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Zhaowei Gong
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
| | - Yang Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yang Xu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yutong Guo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Wenjia Chen
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xue Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xinhua Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Wenxiu Liu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| |
Collapse
|
23
|
Liu Q, Luo Q, Zhong B, Tang K, Chen X, Yang S, Li X. Salidroside attenuates myocardial remodeling in DOCA-salt-induced mice by inhibiting the endothelin 1 and PI3K/AKT/NFκB signaling pathways. Eur J Pharmacol 2024; 962:176236. [PMID: 38048979 DOI: 10.1016/j.ejphar.2023.176236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Myocardial remodeling, which occurs in the final stage of cardiovascular diseases such as hypertension, can ultimately result in heart failure. However, the pathogenesis of myocardial remodeling remains incompletely understood, and there is currently a lack of safe and effective treatment options. Salidroside, which is extracted from the plant Rhodiola rosea, shows remarkable antioxidant and anti-inflammatory characteristics. The purpose of this investigation was to examine the cardioprotective effect of salidroside on myocardial remodeling, and clarify the associated mechanism. Salidroside effectively attenuated cardiac dysfunction, myocardial hypertrophy, myocardial fibrosis, and cardiac inflammation, as well as renal injury and renal fibrosis in an animal model of deoxycortone acetate (DOCA)-salt-induced myocardial remodeling. The cardioprotective effect of salidroside was mediated by inhibiting the endothelin 1 and PI3K/AKT/NFκB signaling pathways. Salidroside was shown to inhibit the expression of endothelin1 in the hearts of mice treated with DOCA-salt. Additionally, it could prevent cardiomyocyte hypertrophy induced by endothelin-1 stimulation. Furthermore, Salidroside could effectively inhibit the excessive activation of the PI3K/AKT/NFκB pathway, which was caused by DOCA-salt treatment in mouse hearts and endothelin 1 stimulation in cardiomyocytes. Our study suggests that salidroside can be used as a therapeutic agent for the treatment of myocardial remodeling.
Collapse
Affiliation(s)
- Qiao Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China; Department of Pharmaceutical, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Qingman Luo
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Bin Zhong
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Kecheng Tang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Xueling Chen
- Chongqing School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Shengqian Yang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
24
|
Wu Q, Meng W, Zhu B, Chen X, Fu J, Zhao C, Liu G, Luo X, Lv Y, Zhao W, Wang F, Hu S, Zhang S. VEGFC ameliorates salt-sensitive hypertension and hypertensive nephropathy by inhibiting NLRP3 inflammasome via activating VEGFR3-AMPK dependent autophagy pathway. Cell Mol Life Sci 2023; 80:327. [PMID: 37837447 PMCID: PMC11072217 DOI: 10.1007/s00018-023-04978-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
Salt-sensitivity hypertension (SSHTN) is an independent predictor for cardiovascular mortality. VEGFC has been reported to be a protective role in SSHTN and hypertensive kidney injury. However, the underlying mechanisms remain largely unclear. The current study aimed to explore the protective effects and mechanisms of VEGFC against SSHTN and hypertensive nephropathy. Here, we reported that VEGFC attenuated high blood pressure as well as protected against renal inflammation and fibrosis in SSHTN mice. Moreover, VEGFC suppressed the activation of renal NLRP3 inflammasome in SSHTN mice. In vitro, we found VEGFC inhibited NLRP3 inflammasome activation, meanwhile, upregulated autophagy in high-salt-induced macrophages, while these effects were reversed by an autophagy inhibitor 3MA. Furthermore, in vivo, 3MA pretreatment weakened the protective effects of VEGFC on SSHTN and hypertensive nephropathy. Mechanistically, VEGF receptor 3 (VEGFR3) kinase domain activated AMPK by promoting the phosphorylation at Thr183 via binding to AMPK, thus enhancing autophagy activity in the context of high-salt-induced macrophages. These findings indicated that VEGFC inhibited NLRP3 inflammasome activation by promoting VEGFR3-AMPK-dependent autophagy pathway in high-salt-induced macrophages, which provided a mechanistic basis for the therapeutic target in SSHTN and hypertensive kidney injury.
Collapse
Affiliation(s)
- Qiuwen Wu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China
| | - Wei Meng
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China
| | - Bin Zhu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China
| | - Xi Chen
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Jiaxin Fu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Chunyu Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Gang Liu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Ying Lv
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Wenqi Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Fan Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Sining Hu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China.
| | - Shuo Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
25
|
Gandhi T, Patel A, Gupta D, Pandya H, Chandel A. Repositioning Glibenclamide in cardiac fibrosis by targeting TGF-β1-pSmad2/3-NLRP3 cascade. Mol Cell Biochem 2023; 478:2281-2295. [PMID: 36745331 DOI: 10.1007/s11010-023-04659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023]
Abstract
The proposed objective of this study is to attenuate cardiac fibrosis by inhibiting NLRP3 inflammasome and related genes in uninephrectomized-DOCA fed rat model. Cardiac fibrosis was induced in male Sprague Dawley rats by uninephrectomy and by subsequent administration of deoxycorticosterone acetate (DOCA) every 4th day till 28 days along with 1% NaCl in drinking water. Further, the animals in treatment groups were treated with Glibenclamide (10, 20 and 40 mg/kg) for 28 days which was selected based on docking study. Interim analysis was carried out on the 14th day to assess the hemodynamic parameters. On the 28th day, anthropometric, hemodynamic, biochemical and oxidative stress parameters, gene expression (TGF-β1, pSmad 2/3, NLRP3, IL-1β and MMP-9), ex vivo Langendorff studies and Masson's trichrome staining of heart was carried out. Results were interpreted using ANOVA followed by post hoc Bonferroni test. Glibenclamide treatment significantly reduced the increase in blood pressure. Furthermore, the ECG patterns of the treatment groups displayed a lower frequency of the slow repolarizing events seen in the model animals. Moreover, Glibenclamide treatment demonstrated normal LV function as evidenced by a significant decrease in LVEDP. Besides, this intervention improved the anthropometric parameters and less collagen deposition in Masson's trichrome staining. The cascade of TGF-β1-pSmad2/3-NLRP3 was downregulated along with suppression of IL-1β. Our study repositioned anti-diabetic drug Glibenclamide to treat cardiac fibrosis by inhibiting the TGF-β1-pSmad2/3-NLRP3 cascade.
Collapse
Affiliation(s)
- Tejal Gandhi
- Department of Pharmacology, Anand Pharmacy College, Anand, Gujarat, India.
| | - Anjali Patel
- Department of Pharmacology, Anand Pharmacy College, Anand, Gujarat, India
| | - Dayashankar Gupta
- Department of Pharmacology, Anand Pharmacy College, Anand, Gujarat, India
| | - Harsh Pandya
- Department of Pharmacology, Anand Pharmacy College, Anand, Gujarat, India
| | - Atulsingh Chandel
- Department of Pharmacology, Anand Pharmacy College, Anand, Gujarat, India
| |
Collapse
|
26
|
Lee TW, Bae E, Kim JH, Jung MH, Park DJ. Psoralen Alleviates Renal Fibrosis by Attenuating Inflammasome-Dependent NLRP3 Activation and Epithelial-Mesenchymal Transition in a Mouse Unilateral Ureteral Obstruction Model. Int J Mol Sci 2023; 24:13171. [PMID: 37685978 PMCID: PMC10487722 DOI: 10.3390/ijms241713171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The role of psoralen (PS), a major active component extracted from Psoralea corylifolia L. seed, in renal fibrosis is still unclear. Thus, the objective of this study was to evaluate the effects of PS on the development and progression of renal fibrosis induced by unilateral ureteral obstruction (UUO) in a mouse model. Mice were divided into four groups: PS (20 mg/kg, i.g., n = 5), PS + sham (n = 5), UUO (n = 10), and PS + UUO (n = 10). PS was intragastrically administered 24 h before UUO and continued afterwards for 7 days. All mice were killed 7 days post UUO. Severe tubular atrophy, tubular injury, and tubulointerstitial fibrosis (TIF) were significantly developed in UUO mice. A higher expression of transforming growth factor-β1 (TGF-β1) was accompanied by elevated levels of α-smooth muscle actin (α-SMA) and phosphorylated Smad2/3 (pSmad2/3) at 7 days post UUO. However, PS treatment reduced tubular injury, interstitial fibrosis, and the expression levels of TGF-β1, α-SMA, and pSmad2/3. Furthermore, the levels of macrophages (represented by F4/80 positive cells) and the inflammasome, reflected by inflammasome markers such as nucleotide-binding and oligomerization domain-like receptors protein 3 (NLRP3) and cleaved caspase1 (cCASP-1), were significantly decreased by PS treatment. These results suggest that PS merits further exploration as a therapeutic agent in the management of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Tae Won Lee
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51353, Republic of Korea; (T.W.L.); (E.B.)
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51353, Republic of Korea; (T.W.L.); (E.B.)
- Department of Internal Medicine, Gyeongsang National University College of Medicine, Jinju 52828, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.H.K.); (M.H.J.)
| | - Jin Hyun Kim
- Institute of Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.H.K.); (M.H.J.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52828, Republic of Korea
| | - Myeong Hee Jung
- Institute of Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.H.K.); (M.H.J.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52828, Republic of Korea
| | - Dong Jun Park
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51353, Republic of Korea; (T.W.L.); (E.B.)
- Department of Internal Medicine, Gyeongsang National University College of Medicine, Jinju 52828, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.H.K.); (M.H.J.)
| |
Collapse
|
27
|
Rayego-Mateos S, Marquez-Exposito L, Basantes P, Tejedor-Santamaria L, Sanz AB, Nguyen TQ, Goldschmeding R, Ortiz A, Ruiz-Ortega M. CCN2 Activates RIPK3, NLRP3 Inflammasome, and NRF2/Oxidative Pathways Linked to Kidney Inflammation. Antioxidants (Basel) 2023; 12:1541. [PMID: 37627536 PMCID: PMC10451214 DOI: 10.3390/antiox12081541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation is a key characteristic of both acute and chronic kidney diseases. Preclinical data suggest the involvement of the NLRP3/Inflammasome, receptor-interacting protein kinase-3 (RIPK3), and NRF2/oxidative pathways in the regulation of kidney inflammation. Cellular communication network factor 2 (CCN2, also called CTGF in the past) is an established fibrotic biomarker and a well-known mediator of kidney damage. CCN2 was shown to be involved in kidney damage through the regulation of proinflammatory and profibrotic responses. However, to date, the potential role of the NLRP3/RIPK3/NRF2 pathways in CCN2 actions has not been evaluated. In experimental acute kidney injury induced with folic acid in mice, CCN2 deficiency diminished renal inflammatory cell infiltration (monocytes/macrophages and T lymphocytes) as well as the upregulation of proinflammatory genes and the activation of NLRP3/Inflammasome-related components and specific cytokine products, such as IL-1β. Moreover, the NRF2/oxidative pathway was deregulated. Systemic administration of CCN2 to C57BL/6 mice induced kidney immune cell infiltration and activated the NLRP3 pathway. RIPK3 deficiency diminished the CCN2-induced renal upregulation of proinflammatory mediators and prevented NLRP3 modulation. These data suggest that CCN2 plays a fundamental role in sterile inflammation and acute kidney injury by modulating the RIKP3/NLRP3/NRF2 inflammatory pathways.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Pamela Basantes
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Ana B. Sanz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.B.S.); (A.O.)
| | - Tri Q. Nguyen
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 Utrecht, The Netherlands; (T.Q.N.); (R.G.)
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 Utrecht, The Netherlands; (T.Q.N.); (R.G.)
| | - Alberto Ortiz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.B.S.); (A.O.)
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| |
Collapse
|
28
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
29
|
Pitzer Mutchler A, Huynh L, Patel R, Lam T, Bain D, Jamison S, Kirabo A, Ray EC. The role of dietary magnesium deficiency in inflammatory hypertension. Front Physiol 2023; 14:1167904. [PMID: 37293263 PMCID: PMC10244581 DOI: 10.3389/fphys.2023.1167904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Nearly 30% of adults consume less than the estimated average daily requirement of magnesium (Mg2+), and commonly used medications, such as diuretics, promote Mg2+ deficiency. Higher serum Mg2+ levels, increased dietary Mg2+ in-take, and Mg2+ supplementation are each associated with lower blood pressure, suggesting that Mg2+-deficiency contributes to the pathogenesis of hypertension. Antigen-presenting cells, such as monocytes and dendritic cells, are well-known to be involved in the pathogenesis of hypertension. In these cells, processes implicated as necessary for increased blood pressure include activation of the NLRP3 inflammasome, IL-1β production, and oxidative modification of fatty acids such as arachidonic acid, forming isolevuglandins (IsoLGs). We hypothesized that increased blood pressure in response to dietary Mg2+-depletion leads to increased NLRP3, IL-1β, and IsoLG production in antigen presenting cells. We found that a Mg2+-depleted diet (0.01% Mg2+ diet) increased blood pressure in mice compared to mice fed a 0.08% Mg2+ diet. Mg2+-depleted mice did not exhibit an increase in total body fluid, as measured by quantitative magnetic resonance. Plasma IL-1β concentrations were increased (0.13 ± 0.02 pg/mL vs. 0.04 ± 0.02 pg/mL). Using flow cytometry, we observed increased NLRP3 and IL-1β expression in antigen-presenting cells from spleen, kidney, and aorta. We also observed increased IsoLG production in antigen-presenting cells from these organs. Primary culture of CD11c+ dendritic cells confirmed that low extracellular Mg2+ exerts a direct effect on these cells, stimulating IL-1β and IL-18 production. The present findings show that NLRP3 inflammasome activation and IsoLG-adduct formation are stimulated when dietary Mg2+ is depleted. Interventions and increased dietary Mg2+ consumption may prove beneficial in decreasing the prevalence of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Ashley Pitzer Mutchler
- Vanderbilt University Department of Medicine, Division of Clinical Pharmacology, Nashville, TN, United States
| | - Linh Huynh
- University of Pittsburgh Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, United States
| | - Ritam Patel
- University of Pittsburgh Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, United States
| | - Tracey Lam
- University of Pittsburgh Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, United States
| | - Daniel Bain
- University of Pittsburgh Department of Geology, Pittsburgh, PA, United States
| | - Sydney Jamison
- Meharry Medical College Nashville, Nashville, TN, United States
| | - Annet Kirabo
- Vanderbilt University Department of Medicine, Division of Clinical Pharmacology, Nashville, TN, United States
| | - Evan C. Ray
- University of Pittsburgh Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Ahmad T, Ertuglu LA, Masenga SK, Kleyman TR, Kirabo A. The epithelial sodium channel in inflammation and blood pressure modulation. Front Cardiovasc Med 2023; 10:1130148. [PMID: 37123470 PMCID: PMC10132033 DOI: 10.3389/fcvm.2023.1130148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
A major regulator of blood pressure and volume homeostasis in the kidney is the epithelial sodium channel (ENaC). ENaC is composed of alpha(α)/beta(β)/gamma(γ) or delta(δ)/beta(β)/gamma(γ) subunits. The δ subunit is functional in the guinea pig, but not in routinely used experimental rodent models including rat or mouse, and thus remains the least understood of the four subunits. While the δ subunit is poorly expressed in the human kidney, we recently found that its gene variants are associated with blood pressure and kidney function. The δ subunit is expressed in the human vasculature where it may influence vascular function. Moreover, we recently found that the δ subunit is also expressed human antigen presenting cells (APCs). Our studies indicate that extracellular Na+ enters APCs via ENaC leading to inflammation and salt-induced hypertension. In this review, we highlight recent findings on the role of extra-renal ENaC in inflammation, vascular dysfunction, and blood pressure modulation. Targeting extra-renal ENaC may provide new drug therapies for salt-induced hypertension.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lale A. Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
31
|
Association between NLRP3 rs10754558 and CARD8 rs2043211 Variants and Susceptibility to Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24044184. [PMID: 36835594 PMCID: PMC9963401 DOI: 10.3390/ijms24044184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Nod-like receptor protein 3 (NLRP3) is a multi-protein complex belonging to the innate immune system, whose activation by danger stimuli promotes inflammatory cell death. Evidence supports the crucial role of NLRP3 inflammasome activation in the transition of acute kidney injury to Chronic Kidney Disease (CKD), by promoting both inflammation and fibrotic processes. Variants of NLRP3 pathway-related genes, such as NLRP3 itself and CARD8, have been associated with susceptibility to different autoimmune and inflammatory diseases. In this study, we investigated for the first time the association of functional variants of NLRP3 pathway-related genes (NLRP3-rs10754558, CARD8-rs2043211), with a susceptibility to CKD. A cohort of kidney transplant recipients, dialysis and CKD stage 3-5 patients (303 cases) and a cohort of elderly controls (85 subjects) were genotyped for the variants of interest and compared by using logistic regression analyses. Our analysis showed a significantly higher G allele frequency of the NLRP3 variant (67.3%) and T allele of the CARD8 variant (70.8%) among cases, compared with the control sample (35.9 and 31.2%, respectively). Logistic regressions showed significant associations (p < 0.001) between NLRP3 and CARD8 variants and cases. Our results suggest that the NLRP3 rs10754558 and CARD8 rs2043211 variants could be associated with a susceptibility to CKD.
Collapse
|
32
|
Li Y, Zheng G, Salimova E, Broughton BRS, Ricardo SD, de Veer M, Samuel CS. Simultaneous late-gadolinium enhancement and T1 mapping of fibrosis and a novel cell-based combination therapy in hypertensive mice. Biomed Pharmacother 2023; 158:114069. [PMID: 36502754 DOI: 10.1016/j.biopha.2022.114069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is a hallmark of chronic hypertension and disrupts the viability of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) post-transplantation. This study thus, determined whether the anti-fibrotic drug, serelaxin (RLX), could enhance the therapeutic effects of BM-MSCs or BM-MSC-derived exosomes (BM-MSC-EXO) in hypertensive mice. Left ventricular (LV) fibrosis in particular was assessed using conventional histological staining and non-invasive cardiac magnetic resonance imaging (CMRI). CMRI was employed using a novel magnetisation prepared 2 rapid acquisition gradient echo (MP2RAGE) sequence to simultaneously perform late gadolinium enhancement imaging and T1 mapping. Adult male C57BL/6 mice were uninephrectomised, received deoxycorticosterone acetate and saline to drink (1 K/DOCA/salt) for 21 days, whilst control mice were given normal drinking water for the same time-period. On day 14 post-injury, subgroups of 1 K/DOCA/salt-hypertensive mice were treated with RLX alone or in combination with BM-MSCs or BM-MSC-EXO; or the mineralocorticoid receptor antagonist, spironolactone. At day 21 post-injury, LV and kidney histopathology was assessed, whilst LV fibrosis and function were additionally analysed by CMRI and echocardiography. 1 K/DOCA/salt-hypertensive mice developed kidney tubular injury, inflammation, fibrosis, and more moderate LV hypertrophy, fibrosis and diastolic dysfunction. RLX and BM-MSCs combined provided optimal protection against these pathologies and significantly reduced picrosirius red-stained organ fibrosis and MP2RAGE analysis of LV fibrosis. A significant correlation between MP2RAGE analysis and histologically-stained interstitial LV fibrosis was detected. It was concluded that the MP2RAGE sequence enhanced the non-invasive CMRI detection of LV fibrosis. Furthermore, combining RLX and BM-MSCs may represent a promising treatment option for hypertensive cardiorenal syndrome.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
33
|
Nyamweya B, Rukshala D, Fernando N, de Silva R, Premawansa S, Handunnetti S. Cardioprotective Effects of Vitex negundo: A Review of Bioactive Extracts and Compounds. J Evid Based Integr Med 2023; 28:2515690X231176622. [PMID: 37279951 DOI: 10.1177/2515690x231176622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
There has been accumulating interest in the application of medicinal plants as alternative medicine to treat various diseases and/or to develop modern medicines. Vitex negundo is one of such medicinal plants that has been of interest to many researchers and has been of use in traditional medicine. V. negundo is found in Sri Lanka, Madagascar, Malaysia, India, China, The Philippines and East Africa. Therapeutic properties of V. negundo have previously been reviewed. Different parts, preparations and bioactive components of V. negundo possess potential protective and therapeutic effects against cardiovascular disease and related conditions as demonstrated in previous studies. We review the present state of scientific knowledge on the potential use of V. negundo and some of its bioactive components in protecting against cardiovascular diseases and related pathologies. Previous studies in animal and non-animal experimental models, although limited in number and vary in design, seem to support the cardioprotective effect of V. negundo and some of its active components. However, there is need for further preclinical and clinical studies to validate the use of V. negundo and its active constituents in protection and treatment of cardiovascular diseases. Additionally, since only a few V. negundo compounds have been evaluated, specific cardioprotective effects or mechanisms and possible side effects of other V. negundo compounds need to be extensively evaluated.
Collapse
Affiliation(s)
- Boniface Nyamweya
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Dilani Rukshala
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Narmada Fernando
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Rajiva de Silva
- Department of Immunology, Medical Research Institute, Colombo 08, Sri Lanka
| | - Sunil Premawansa
- Departments of Zoology and Environment Sciences, University of Colombo, Colombo 03, Sri Lanka
| | - Shiroma Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| |
Collapse
|
34
|
Patil P, Doshi G. Deciphering the Role of Pyroptosis Impact on Cardiovascular Diseases. Curr Drug Targets 2023; 24:1166-1183. [PMID: 38164730 DOI: 10.2174/0113894501267496231102114410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/03/2024]
Abstract
Pyroptosis has become a noteworthy area of focus in recent years due to its association with inflammatory diseases. Pyroptosis is a type of programmed cell death accompanied by an inflammatory response, and the discovery of the gasdermin family has expanded the study of pyroptosis. The primary characteristics of pyroptosis include cell expansion, membrane penetration, and the ejection of cell contents. In healthy physiology, pyroptosis is an essential part of the host's defence against pathogen infection. Excessive Pyroptosis, however, can lead to unchecked and persistent inflammatory responses, including the emergence of inflammatory diseases. More precisely, gasdermin family members have a role in the creation of membrane holes during pyroptosis, which leads to cell lysis. It is also related to how pro-inflammatory intracellular substances, including IL-1, IL-18, and High mobility group box 1 (HMGB1), are used. Two different signalling pathways, one of which is regulated by caspase-1 and the other by caspase-4/5/11, are the primary causes of pyroptosis. Cardiovascular diseases are often associated with cell death and acute or chronic inflammation, making this area of research particularly relevant. In this review, we first systematically summarize recent findings related to Pyroptosis, exploring its characteristics and the signalling pathway mechanisms, as well as various treatment strategies based on its modulation that has emerged from the studies. Some of these strategies are currently undergoing clinical trials. Additionally, the article elaborates on the scientific evidence indicating the role of Pyroptosis in various cardiovascular diseases. As a whole, this should shed insight into future paths and present innovative ideas for employing Pyroptosis as a strong disease-fighting weapon.
Collapse
Affiliation(s)
- Poonam Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
35
|
Ertuglu LA, Mutchler AP, Yu J, Kirabo A. Inflammation and oxidative stress in salt sensitive hypertension; The role of the NLRP3 inflammasome. Front Physiol 2022; 13:1096296. [PMID: 36620210 PMCID: PMC9814168 DOI: 10.3389/fphys.2022.1096296] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Salt-sensitivity of blood pressure is an independent risk factor for cardiovascular disease and affects approximately half of the hypertensive population. While the precise mechanisms of salt-sensitivity remain unclear, recent findings on body sodium homeostasis and salt-induced immune cell activation provide new insights into the relationship between high salt intake, inflammation, and hypertension. The immune system, specifically antigen-presenting cells (APCs) and T cells, are directly implicated in salt-induced renal and vascular injury and hypertension. Emerging evidence suggests that oxidative stress and activation of the NLRP3 inflammasome drive high sodium-mediated activation of APCs and T cells and contribute to the development of renal and vascular inflammation and hypertension. In this review, we summarize the recent insights into our understanding of the mechanisms of salt-sensitive hypertension and discuss the role of inflammasome activation as a potential therapeutic target.
Collapse
Affiliation(s)
- Lale A. Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United Staes,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| | - Ashley Pitzer Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Justin Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| |
Collapse
|
36
|
Wang S, Wang H, Feng C, Li C, Li Z, He J, Tu C. The regulatory role and therapeutic application of pyroptosis in musculoskeletal diseases. Cell Death Discov 2022; 8:492. [PMID: 36522335 PMCID: PMC9755533 DOI: 10.1038/s41420-022-01282-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Pyroptosis is a controlled form of inflammatory cell death characterized by inflammasome activation, pore formation, and cell lysis. According to different caspases, pyroptosis can be divided into canonical, non-canonical, and other pathways. The role of pyroptosis in disease development has been paid more attention in recent years. The trigger factors of pyroptosis are often related to oxidative stress and proinflammatory substances, which coincide with the pathological mechanism of some diseases. Pyroptosis directly leads to cell lysis and death, and the release of cytosolic components and proinflammatory cytokines affects cell activity and amplifies the inflammatory response. All the above are involved in a series of basic pathological processes, such as matrix degradation, fibrosis, and angiogenesis. Since these pathological changes are also common in musculoskeletal diseases (MSDs), emerging studies have focused on the correlations between pyroptosis and MSDs in recent years. In this review, we first summarized the molecular mechanism of pyroptosis and extensively discussed the differences and crosstalk between pyroptosis, apoptosis, and necrosis. Next, we elaborated on the role of pyroptosis in some MSDs, including osteoarthritis, rheumatoid arthritis, osteoporosis, gout arthritis, ankylosing spondylitis, intervertebral disc degeneration, and several muscle disorders. The regulation of pyroptosis could offer potential therapeutic targets in MSDs treatment. Herein, the existing drugs and therapeutic strategies that directly or indirectly target pyroptosis pathway components have been discussed in order to shed light on the novel treatment for MSDs.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Sobrano Fais R, Menezes da Costa R, Carvalho Mendes A, Mestriner F, Comerma‐Steffensen SG, Tostes RC, Simonsen U, Silva Carneiro F. NLRP3 activation contributes to endothelin-1-induced erectile dysfunction. J Cell Mol Med 2022; 27:1-14. [PMID: 36515571 PMCID: PMC9806301 DOI: 10.1111/jcmm.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB ) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3-/- and caspase-/- mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1β levels in a concentration-dependent manner (100 nM-10 μM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA - and ETB -mediated activation of NLRP3 in mouse CC via Ca2+ -dependent ROS generation.
Collapse
Affiliation(s)
- Rafael Sobrano Fais
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil,Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | | | - Allan Carvalho Mendes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Fabíola Mestriner
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | | | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular PharmacologyAarhus UniversityAarhusDenmark
| | - Fernando Silva Carneiro
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| |
Collapse
|
38
|
Cong L, Bai Y, Guo Z. The crosstalk among autophagy, apoptosis, and pyroptosis in cardiovascular disease. Front Cardiovasc Med 2022; 9:997469. [PMID: 36386383 PMCID: PMC9650365 DOI: 10.3389/fcvm.2022.997469] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/10/2022] [Indexed: 08/02/2023] Open
Abstract
In recent years, the mechanism of cell death has become a hotspot in research on the pathogenesis and treatment of cardiovascular disease (CVD). Different cell death modes, including autophagy, apoptosis, and pyroptosis, are mosaic with each other and collaboratively regulate the process of CVD. This review summarizes the interaction and crosstalk of key pathways or proteins which play a critical role in the entire process of CVD and explores the specific mechanisms. Furthermore, this paper assesses the interrelationships among these three cell deaths and reviews how they regulate the pathogenesis of CVD. By understanding how these three cell death modes go together we can learn about the pathogenesis of CVD, which will enable us to identify new targets for preventing, controlling, and treating CVD. It will not only reduce mortality but also improve the quality of life.
Collapse
Affiliation(s)
- Lin Cong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Navaneethabalakrishnan S, Smith HL, Arenaz CM, Goodlett BL, McDermott JG, Mitchell BM. Update on Immune Mechanisms in Hypertension. Am J Hypertens 2022; 35:842-851. [PMID: 35704473 PMCID: PMC9527774 DOI: 10.1093/ajh/hpac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023] Open
Abstract
The contribution of immune cells in the initiation and maintenance of hypertension is undeniable. Several studies have established the association between hypertension, inflammation, and immune cells from the innate and adaptive immune systems. Here, we provide an update to our 2017 American Journal of Hypertension review on the overview of the cellular immune responses involved in hypertension. Further, we discuss the activation of immune cells and their contribution to the pathogenesis of hypertension in different in vivo models. We also highlight existing gaps in the field of hypertension that need attention. The main goal of this review is to provide a knowledge base for translational research to develop therapeutic strategies that can improve cardiovascular health in humans.
Collapse
Affiliation(s)
| | - Hannah L Smith
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Cristina M Arenaz
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Bethany L Goodlett
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Justin G McDermott
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| |
Collapse
|
40
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
41
|
Habimana O, Modupe Salami O, Peng J, Yi GH. Therapeutic Implications of Targeting Pyroptosis in Cardiac-related Etiology of Heart Failure. Biochem Pharmacol 2022; 204:115235. [PMID: 36044938 DOI: 10.1016/j.bcp.2022.115235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Heart failure remains a considerable clinical and public health problem, it is the dominant cause of death from cardiovascular diseases, besides, cardiovascular diseases are one of the leading causes of death worldwide. The survival of patients with heart failure continues to be low with 45-60% reported deaths within five years. Apoptosis, necrosis, autophagy, and pyroptosis mediate cardiac cell death. Acute cell death is the hallmark pathogenesis of heart failure and other cardiac pathologies. Inhibition of pyroptosis, autophagy, apoptosis, or necrosis reduces cardiac damage and improves cardiac function in cardiovascular diseases. Pyroptosis is a form of inflammatory deliberate cell death that is characterized by the activation of inflammasomes such as NOD-like receptors (NLR), absent in melanoma 2 (AIM2), interferon-inducible protein 16 (IFI-16), and their downstream effector cytokines: Interleukin IL-1β and IL-18 leading to cell death. Recent studies have shown that pyroptosis is also the dominant cell death process in cardiomyocytes, cardiac fibroblasts, endothelial cells, and immune cells. It plays a crucial role in the pathogenesis of cardiac diseases that contribute to heart failure. This review intends to summarize the therapeutic implications targeting pyroptosis in the main cardiac pathologies preceding heart failure.
Collapse
Affiliation(s)
- Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | | | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
42
|
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081938. [PMID: 36009488 PMCID: PMC9405799 DOI: 10.3390/biomedicines10081938] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are disorders associated with the heart and circulatory system. Atherosclerosis is its major underlying cause. CVDs are chronic and can remain hidden for a long time. Moreover, CVDs are the leading cause of global morbidity and mortality, thus creating a major public health concern. This review summarizes the available information on the pathophysiological implications of CVDs, focusing on coronary artery disease along with atherosclerosis as its major cause and arterial hypertension. We discuss the endothelium dysfunction, inflammatory factors, and oxidation associated with atherosclerosis. Mechanisms such as dysfunction of the endothelium and inflammation, which have been identified as critical pathways for development of coronary artery disease, have become easier to diagnose in recent years. Relatively recently, evidence has been found indicating that interactions of the molecular and cellular elements such as matrix metalloproteinases, elements of the immune system, and oxidative stress are involved in the pathophysiology of arterial hypertension. Many studies have revealed several important inflammatory and genetic risk factors associated with CVDs. However, further investigation is crucial to improve our knowledge of CVDs progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
|
43
|
Pitzer A, Elijovich F, Laffer CL, Ertuglu LA, Sahinoz M, Saleem M, Krishnan J, Dola T, Aden LA, Sheng Q, Raddatz MA, Wanjalla C, Pakala S, Davies SS, Patrick DM, Kon V, Ikizler TA, Kleyman T, Kirabo A. DC ENaC-Dependent Inflammasome Activation Contributes to Salt-Sensitive Hypertension. Circ Res 2022; 131:328-344. [PMID: 35862128 PMCID: PMC9357159 DOI: 10.1161/circresaha.122.320818] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Salt sensitivity of blood pressure is an independent predictor of cardiovascular morbidity and mortality. The exact mechanism by which salt intake increases blood pressure and cardiovascular risk is unknown. We previously found that sodium entry into antigen-presenting cells (APCs) via the amiloride-sensitive epithelial sodium channel EnaC (epithelial sodium channel) leads to the formation of IsoLGs (isolevuglandins) and release of proinflammatory cytokines to activate T cells and modulate salt-sensitive hypertension. In the current study, we hypothesized that ENaC-dependent entry of sodium into APCs activates the NLRP3 (NOD [nucleotide-binding and oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome via IsoLG formation leading to salt-sensitive hypertension. METHODS We performed RNA sequencing on human monocytes treated with elevated sodium in vitro and Cellular Indexing of Transcriptomes and Epitopes by Sequencing analysis of peripheral blood mononuclear cells from participants rigorously phenotyped for salt sensitivity of blood pressure using an established inpatient protocol. To determine mechanisms, we analyzed inflammasome activation in mouse models of deoxycorticosterone acetate salt-induced hypertension as well as salt-sensitive mice with ENaC inhibition or expression, IsoLG scavenging, and adoptive transfer of wild-type dendritic cells into NLRP3 deficient mice. RESULTS We found that high levels of salt exposure upregulates the NLRP3 inflammasome, pyroptotic and apoptotic caspases, and IL (interleukin)-1β transcription in human monocytes. Cellular Indexing of Transcriptomes and Epitopes by Sequencing revealed that components of the NLRP3 inflammasome and activation marker IL-1β dynamically vary with changes in salt loading/depletion. Mechanistically, we found that sodium-induced activation of the NLRP3 inflammasome is ENaC and IsoLG dependent. NLRP3 deficient mice develop a blunted hypertensive response to elevated sodium, and this is restored by the adoptive transfer of NLRP3 replete APCs. CONCLUSIONS These findings reveal a mechanistic link between ENaC, inflammation, and salt-sensitive hypertension involving NLRP3 inflammasome activation in APCs. APC activation via the NLRP3 inflammasome can serve as a potential diagnostic biomarker for salt sensitivity of blood pressure.
Collapse
Affiliation(s)
- Ashley Pitzer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Fernando Elijovich
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Cheryl L. Laffer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Lale A. Ertuglu
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melis Sahinoz
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Jaya Krishnan
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Thanvi Dola
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Luul A Aden
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A. Raddatz
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Celestine Wanjalla
- Department of Internal Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center Nashville, TN, USA
| | - Suman Pakala
- Department of Internal Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center Nashville, TN, USA
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - David M Patrick
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - T. Alp Ikizler
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| |
Collapse
|
44
|
Jia Q, Zhang X, Hao G, Zhao Y, Lowe S, Han L, Qin J. Tongluo Yishen Decoction Ameliorates Renal Fibrosis via NLRP3-Mediated Pyroptosis In Vivo and In Vitro. Front Pharmacol 2022; 13:936853. [PMID: 35873572 PMCID: PMC9298980 DOI: 10.3389/fphar.2022.936853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: In this study, we investigated the mechanism of Tongluo Yishen (TLYS) decoction in more detail, from the perspective of pyroptosis in the unilateral ureteral ligation (UUO) model and the hypoxia-induced renal tubular epithelial (NRK-52E) cell. Method: The UUO model was used, and after 14 days of TLYS intervention, rats were tested for blood creatinine and urea nitrogen, HE staining was used to observe the pathological changes in the kidney, Masson staining was used to assess the degree of interstitial fibrosis, western blot was used to detect the changes of α-smooth muscle actin (α-SMA) protein expression level, immunohistochemistry and western blot detected the changes in protein expression levels of NOD-like receptor protein 3 inflammasome (NLRP3), gasdermin D (GSDMD), cysteinyl aspartate specific proteinase (caspase-1), interleukin 18 (IL-18) and interleukin 1β (I L-1β). A hypoxia model was created using NRK-52E cell, and after different concentrations of TLYS decoction intervention, the changes in the expression levels of pyroptosis were used with immunofluorescence and western blot methods. Results: TLYS decoction improved renal function, delayed the advancement of renal interstitial fibrosis, and inhibited pyroptosis in UUO rats. Furthermore, we observed that TLYS can mitigate hypoxia-induced NRK-52E cell damage via the suppression of the NLRP3-mediated pyroptosis. Conclusion: TLYS decoction exert renoprotective effects by inhibiting NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Qi Jia
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Zhao
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Scott Lowe
- Kansas City University of Medicine and Biosciences, College of Osteopathic Medicine, Kansas City, MO, United States
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianguo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
NLRP3 inflammasome contributes to endothelial dysfunction in angiotensin II-induced hypertension in mice. Microvasc Res 2022; 143:104384. [PMID: 35618036 DOI: 10.1016/j.mvr.2022.104384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
AIMS Inflammation is a key feature of endothelial dysfunction induced by angiotensin (Ang) II. The purpose of this study was to explore the role of Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome in endothelial dysfunction in Ang II-induced hypertension. MATERIALS AND METHODS We analyzed blood pressure and vascular function of wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice, treated with Ang II. In vitro, we mainly tested the endothelial nitric oxide synthase (eNOS) phosphorylation expression of human umbilical vein endothelial cells (HUVECs). KEY FINDINGS Here we showed that 14-day Ang II infusion into mice resulted in the elevation of blood pressure, NLRP3 expression, serum interleukin (IL)-1β level, and the decline of endothelium-dependent relaxation function, p-eNOS-Ser1177 expression in aortas. Nlrp3 deficiency reduced Ang II-induced blood pressure elevation and endothelial dysfunction. In vitro, NLRP3 was involved in the effect of Ang II on reducing p-eNOS-Ser1177 expression. Moreover, the direct effect of IL-1β on vascular endothelial injury could be observed in both vivo and vitro. SIGNIFICANCE Our result demonstrates that the NLRP3 inflammasome is critically involved in the detrimental effects of Ang II on vascular endothelium in hypertension via the activation of IL-1β, placing NLRP3 as a potential target for therapeutic interventions in conditions with endothelial dysfunction in hypertension.
Collapse
|
46
|
Bal NB, Bostanci A, Sadi G, Dönmez MO, Uludag MO, Demirel-Yilmaz E. Resveratrol and regular exercise may attenuate hypertension-induced cardiac dysfunction through modulation of cellular stress responses. Life Sci 2022; 296:120424. [PMID: 35196531 DOI: 10.1016/j.lfs.2022.120424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 01/26/2023]
Abstract
AIMS Hypertension is one of the major causes of cardiac damage. In this study, the effects of resveratrol supplementation and regular exercise on hypertension-induced cellular stress responses of myocardium were compared. MAIN METHODS Hypertension was induced in male Wistar rats by deoxycorticosterone-acetate + salt administration for 12 weeks. Resveratrol and regular exercise were applied for the last six weeks. In addition to biochemical and molecular examinations, isoprenaline, phenylephrine and, acetylcholine-mediated contractions and sinus rate were recorded in the isolated cardiac tissues. KEY FINDINGS Resveratrol and regular exercise reduced systolic blood pressure in hypertensive rats. The altered adrenergic and cholinergic responses of the right atrium and left papillary muscles in hypertension were separately improved by resveratrol and regular exercise. Resveratrol and regular exercise decreased plasma and cardiac total antioxidant capacity and, augmented the expression of antioxidant genes in hypertensive rats. While regular exercise restored the increase in p-PERK expression associated with endoplasmic reticulum stress and decrease in mitophagic marker PINK1 expression, resveratrol only ameliorated PINK1 expression in hypertensive rats. Resveratrol and exercise training suppressed hypertension-induced NLRP3 inflammasome activation by reversing the increase in NLRP3, p-NF-κB expression and the mature-IL-1β/pro-IL-1β and cleaved-caspase-1/pro-caspase-1 ratio. Resveratrol and exercise enhanced mRNA expression of caspase-3, bax, and bcl-2 involved in the apoptotic pathway, but attenuated phosphorylation of stress-related mitogenic proteins p38 and JNK induced by hypertension. SIGNIFICANCE Our study demonstrated the protective effect of resveratrol and exercise on hypertension-induced cardiac dysfunction by modulating cellular stress responses including oxidative stress, ER stress, mitophagy, NLRP3 inflammasome-mediated inflammation, and mitogenic activation.
Collapse
Affiliation(s)
- Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Aykut Bostanci
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman 70100, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman 70100, Turkey
| | - Muhammet Oguzhan Dönmez
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Mecit Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
47
|
Thomas JM, Huuskes BM, Sobey CG, Drummond GR, Vinh A. The IL-18/IL-18R1 signalling axis: Diagnostic and therapeutic potential in hypertension and chronic kidney disease. Pharmacol Ther 2022; 239:108191. [PMID: 35461924 DOI: 10.1016/j.pharmthera.2022.108191] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is inherently an inflammatory condition, which ultimately results in the development of end stage renal disease or cardiovascular events. Low-grade inflammatory diseases such as hypertension and diabetes are leading causes of CKD. Declines in renal function correlate with elevated circulating pro-inflammatory cytokines in patients with these conditions. The inflammasome is an important inflammatory signalling platform that has been associated with low-grade chronic inflammatory diseases. Notably, activation and assembly of the inflammasome causes the auto cleavage of pro-caspase-1 into its active form, which then processes the pro-inflammatory cytokines pro-interleukin (IL)-1β and pro-IL-18 into their active forms. Currently, the nod-like receptor protein 3 (NLRP3) inflammasome has been implicated in the development of CKD in pre-clinical and clinical settings, and the ablation or inhibition of inflammasome components have been shown to be reno-protective in models of CKD. While clinical trials have demonstrated that neutralisation of IL-1β signalling by the drug anakinra lowers inflammation markers in haemodialysis patients, ongoing preclinical studies are showing that this ability to attenuate disease is limited in progressive models of kidney disease. These results suggest a potential predominant role for IL-18 in the development of CKD. This review will discuss the role of the inflammasome and its pro-inflammatory product IL-18 in the development of renal fibrosis and inflammation that contribute to the pathophysiology of CKD. Furthermore, we will examine the potential of the IL-18 signalling axis as an anti-inflammatory target in CKD and its usefulness as diagnostic biomarker to predict acute kidney injury.
Collapse
Affiliation(s)
- Jordyn M Thomas
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Brooke M Huuskes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia.
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
48
|
Failer T, Amponsah-Offeh M, Neuwirth A, Kourtzelis I, Subramanian P, Mirtschink P, Peitzsch M, Matschke K, Tugtekin SM, Kajikawa T, Li X, Steglich A, Gembardt F, Wegner AC, Hugo C, Hajishengallis G, Chavakis T, Deussen A, Todorov V, Kopaliani I. Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation. J Clin Invest 2022; 132:126155. [PMID: 35133978 PMCID: PMC8920341 DOI: 10.1172/jci126155] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
The causative role of inflammation in hypertension-related cardiovascular diseases is evident and calls for development of specific immunomodulatory therapies. We tested the therapeutic efficacy and mechanisms of action of developmental endothelial locus-1 (DEL-1), an endogenous antiinflammatory factor, in angiotensin II– (ANGII–) and deoxycorticosterone acetate–salt–induced (DOCA-salt–induced) cardiovascular organ damage and hypertension. By using mice with endothelial overexpression of DEL-1 (EC-Del1 mice) and performing preventive and interventional studies by injecting recombinant DEL-1 in mice, we showed that DEL-1 improved endothelial function and abrogated aortic adventitial fibrosis, medial thickening, and loss of elastin. DEL-1 also protected the mice from cardiac concentric hypertrophy and interstitial and perivascular coronary fibrosis and improved left ventricular function and myocardial coronary perfusion. DEL-1 prevented aortic stiffness and abolished the progression of hypertension. Mechanistically, DEL-1 acted by inhibiting αvβ3 integrin–dependent activation of pro-MMP2 in mice and in human isolated aorta. Moreover, DEL-1 stabilized αvβ3 integrin–dependent CD25+FoxP3+ Treg numbers and IL-10 levels, which were associated with decreased recruitment of inflammatory cells and reduced production of proinflammatory cytokines in cardiovascular organs. The demonstrated effects and immune-modulating mechanisms of DEL-1 in abrogation of cardiovascular remodeling and progression of hypertension identify DEL-1 as a potential therapeutic factor.
Collapse
Affiliation(s)
- Theresa Failer
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | | | - Aleš Neuwirth
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Kourtzelis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Pallavi Subramanian
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sems M Tugtekin
- Department of Cardiac Surgery, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, United States of America
| | - Xiaofei Li
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, United States of America
| | - Anne Steglich
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Florian Gembardt
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Annika C Wegner
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, United States of America
| | | | - Andreas Deussen
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Vladimir Todorov
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Irakli Kopaliani
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
49
|
Aranda-Rivera AK, Srivastava A, Cruz-Gregorio A, Pedraza-Chaverri J, Mulay SR, Scholze A. Involvement of Inflammasome Components in Kidney Disease. Antioxidants (Basel) 2022; 11:246. [PMID: 35204131 PMCID: PMC8868482 DOI: 10.3390/antiox11020246] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammasomes are multiprotein complexes with an important role in the innate immune response. Canonical activation of inflammasomes results in caspase-1 activation and maturation of cytokines interleukin-1β and -18. These cytokines can elicit their effects through receptor activation, both locally within a certain tissue and systemically. Animal models of kidney diseases have shown inflammasome involvement in inflammation, pyroptosis and fibrosis. In particular, the inflammasome component nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) and related canonical mechanisms have been investigated. However, it has become increasingly clear that other inflammasome components are also of importance in kidney disease. Moreover, it is becoming obvious that the range of molecular interaction partners of inflammasome components in kidney diseases is wide. This review provides insights into these current areas of research, with special emphasis on the interaction of inflammasome components and redox signalling, endoplasmic reticulum stress, and mitochondrial function. We present our findings separately for acute kidney injury and chronic kidney disease. As we strictly divided the results into preclinical and clinical data, this review enables comparison of results from those complementary research specialities. However, it also reveals that knowledge gaps exist, especially in clinical acute kidney injury inflammasome research. Furthermore, patient comorbidities and treatments seem important drivers of inflammasome component alterations in human kidney disease.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Shrikant R. Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
50
|
Pinar AA, S Samuel CS. Immune Mechanisms and Related Targets for the Treatment of Fibrosis in Various Organs. Curr Mol Med 2022; 22:240-249. [PMID: 35034593 DOI: 10.2174/1566524022666220114122839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation and fibrosis are two inter-related disease pathologies with several overlapping components. Three specific cell types, macrophages, T helper cells and myofibroblasts, each play important roles in regulating both processes. Following tissue injury, an inflammatory stimulus is often necessary to initiate tissue repair, where cytokines released from infiltrating and resident immune and inflammatory cells stimulate the proliferation and activation of extracellular matrix-producing myofibroblasts. However, persistent tissue injury drives an inappropriate pro-fibrotic response. Additionally, activated myofibroblasts can take on the role of traditional antigen-presenting cells, secrete pro-inflammatory cytokines, and recruit inflammatory cells to fibrotic foci, amplifying the fibrotic response in a vicious cycle. Moreover, inflammatory cells have been shown to play contradictory roles in the initiation, amplification and resolution of fibrotic disease processes. The central role of the inflammasome molecular platform in contributing to fibrosis is only beginning to be fully appreciated. In this review, we discuss the immune mechanisms that can lead to fibrosis, the inflammasomes that have been implicated in the fibrotic process in the context of the immune response to injury, and also discuss current and emerging therapies that target inflammasome-induced collagen deposition to treat organ fibrosis.
Collapse
Affiliation(s)
- Anita A Pinar
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|