1
|
Ljaschenko D, Pauli M, Mrestani A, Dudel J, Heckmann M. Different Time Courses of Mono- and Bi-Liganded Bursts of Channel Openings of Adult nAChR Molecules Formed by the Reactions of Transmembrane Regions. Cells 2024; 13:2079. [PMID: 39768170 PMCID: PMC11674366 DOI: 10.3390/cells13242079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
We recorded transmembrane currents through single nicotinic acetylcholine receptors (nAChRs) in cell-attached patches at high temporal resolutions from cultured and transiently transfected HEK 293 cells. Receptor activation was elicited by acetylcholine (ACh) or epibatidine (Ebd) at concentrations ranging from 0.01 to 100 µM, binding to one (Rαδ or Rαε) or both extracellular ligand binding sites (Rαδ+αε). Agonist binding to Rαδ resulted in very short openings with mean durations of (τo1 < 5 µs), while the binding to Rαε produced short (τo2 = 37 µs) and intermediate openings (τo3 = 187 µs). Binding at both sites (Rαδ+αε) generated long openings (τo4 = 752 µs). All durations are noted in brackets since missed closures could shorten the results. Mono-liganded bursts were elicited at 0.01 µM ACh or Ebd, lasted less than a millisecond, displayed the typical current amplitude, and were interrupted by frequent microsecond-scale closures (µBs) that often did not reach the zero current. In contrast, bi-liganded bursts exhibited classical full amplitudes and long open states lasting up to several milliseconds, interspersed with rare µB closures of a similar duration to those observed in mono-liganded bursts.
Collapse
Affiliation(s)
- Dmitrij Ljaschenko
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany; (D.L.)
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Martin Pauli
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany; (D.L.)
| | - Achmed Mrestani
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Josef Dudel
- Institute for Neuroscience, Technical University Munich, Biedersteinerstr. 29, 80802 München, Germany
| | - Manfred Heckmann
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany; (D.L.)
| |
Collapse
|
2
|
Zhuang Y, Howard RJ, Lindahl E. Symmetry-adapted Markov state models of closing, opening, and desensitizing in α 7 nicotinic acetylcholine receptors. Nat Commun 2024; 15:9022. [PMID: 39424796 PMCID: PMC11489734 DOI: 10.1038/s41467-024-53170-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are homopentameric ligand-gated ion channels with critical roles in the nervous system. Recent studies have resolved and functionally annotated closed, open, and desensitized states of these receptors, providing insight into ion permeation and lipid binding. However, the process by which α7 nAChRs transition between states remains unclear. To understand gating and lipid modulation, we generated two ensembles of molecular dynamics simulations of apo α7 nAChRs, with or without cholesterol. Using symmetry-adapted Markov state modeling, we developed a five-state gating model. Free energies recapitulated functional behavior, with the closed state dominating in absence of agonist. Open-to-nonconducting transition rates corresponded to experimental open durations. Cholesterol relatively stabilized the desensitized state, and reduced open-desensitized barriers. These results establish plausible asymmetric transition pathways between states, define lipid modulation effects on the α7 nAChR conformational cycle, and provide an ensemble of structural models applicable to rational design of lipidic pharmaceuticals.
Collapse
Affiliation(s)
- Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Stockholm, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Stockholm, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Stockholm, Sweden.
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, Stockholm, Sweden.
| |
Collapse
|
3
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
4
|
Mukhtasimova N, Bouzat C, Sine SM. Novel interplay between agonist and calcium binding sites modulates drug potentiation of α7 acetylcholine receptor. Cell Mol Life Sci 2024; 81:332. [PMID: 39110172 PMCID: PMC11335256 DOI: 10.1007/s00018-024-05374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Drug modulation of the α7 acetylcholine receptor has emerged as a therapeutic strategy for neurological, neurodegenerative, and inflammatory disorders. α7 is a homo-pentamer containing topographically distinct sites for agonists, calcium, and drug modulators with each type of site present in five copies. However, functional relationships between agonist, calcium, and drug modulator sites remain poorly understood. To investigate these relationships, we manipulated the number of agonist binding sites, and monitored potentiation of ACh-elicited single-channel currents through α7 receptors by PNU-120596 (PNU) both in the presence and absence of calcium. When ACh is present alone, it elicits brief, sub-millisecond channel openings, however when ACh is present with PNU it elicits long clusters of potentiated openings. In receptors harboring five agonist binding sites, PNU potentiates regardless of the presence or absence of calcium, whereas in receptors harboring one agonist binding site, PNU potentiates in the presence but not the absence of calcium. By varying the numbers of agonist and calcium binding sites we show that PNU potentiation of α7 depends on a balance between agonist occupancy of the orthosteric sites and calcium occupancy of the allosteric sites. The findings suggest that in the local cellular environment, fluctuations in the concentrations of neurotransmitter and calcium may alter this balance and modulate the ability of PNU to potentiate α7.
Collapse
Affiliation(s)
- Nuriya Mukhtasimova
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
5
|
Tsuzuki A, Yamasaki M, Konno K, Miyazaki T, Takei N, Tomita S, Yuzaki M, Watanabe M. Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula-interpeduncular nucleus pathway in mice. Sci Rep 2024; 14:14193. [PMID: 38902419 PMCID: PMC11189931 DOI: 10.1038/s41598-024-65076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb)-interpeduncular nucleus (IPN) pathway play critical roles in nicotine-related behaviors. This pathway is particularly enriched in nAChR α3 and β4 subunits, both of which are genetically linked to nicotine dependence. However, the cellular and subcellular expression of endogenous α3β4-containing nAChRs remains largely unknown because specific antibodies and appropriate detection methods were unavailable. Here, we successfully uncovered the expression of endogenous nAChRs containing α3 and β4 subunits in the MHb-IPN pathway using novel specific antibodies and a fixative glyoxal that enables simultaneous detection of synaptic and extrasynaptic molecules. Immunofluorescence and immunoelectron microscopy revealed that both subunits were predominantly localized to the extrasynaptic cell surface of somatodendritic and axonal compartments of MHb neurons but not at their synaptic junctions. Immunolabeling for α3 and β4 subunits disappeared in α5β4-knockout brains, which we used as negative controls. The enriched and diffuse extrasynaptic expression along the MHb-IPN pathway suggests that α3β4-containing nAChRs may enhance the excitability of MHb neurons and neurotransmitter release from their presynaptic terminals in the IPN. The revealed distribution pattern provides a molecular and anatomical basis for understanding the functional role of α3β4-containing nAChRs in the crucial pathway of nicotine dependence.
Collapse
Grants
- 17KK0160 Ministry of Education, Culture, Sports, Science and Technology
- 21K06746 Ministry of Education, Culture, Sports, Science and Technology
- 22K06784 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Asuka Tsuzuki
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-8638, Japan
| | - Norio Takei
- Institute for Animal Experimentation, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
6
|
Burke SM, Avstrikova M, Noviello CM, Mukhtasimova N, Changeux JP, Thakur GA, Sine SM, Cecchini M, Hibbs RE. Structural mechanisms of α7 nicotinic receptor allosteric modulation and activation. Cell 2024; 187:1160-1176.e21. [PMID: 38382524 PMCID: PMC10950261 DOI: 10.1016/j.cell.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear. Here, we present high-resolution structures of α7-modulator complexes, revealing partially overlapping binding sites but varying conformational states. Structure-guided functional and computational tests suggest that differences in modulator activity arise from the stable rotation of a channel gating residue out of the pore. We extend the study using a time-resolved cryoelectron microscopy (cryo-EM) approach to reveal asymmetric state transitions for this homomeric channel and also find that a modulator with allosteric agonist activity exploits a distinct channel-gating mechanism. These results define mechanisms of α7 allosteric modulation and activation with implications across the pentameric receptor superfamily.
Collapse
Affiliation(s)
- Sean M Burke
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariia Avstrikova
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67081 Strasbourg Cedex, France
| | - Colleen M Noviello
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Jean-Pierre Changeux
- Neuroscience Department, Institut Pasteur, Collège de France, 75015 Paris, France
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67081 Strasbourg Cedex, France.
| | - Ryan E Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Sinclair P, Kabbani N. Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 197:106975. [PMID: 38032294 DOI: 10.1016/j.phrs.2023.106975] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to a superfamily of cys-loop receptors characterized by the assembly of five subunits into a multi-protein channel complex. Ligand binding to nAChRs activates rapid allosteric transitions of the receptor leading to channel opening and ion flux in neuronal and non-neuronal cell. Thus, while ionotropic properties of nAChRs are well recognized, less is known about ligand-mediated intracellular metabotropic signaling responses. Studies in neural and non-neural cells confirm ionotropic and metabotropic channel responses following ligand binding. In this review we summarize evidence on the existence of ionotropic and metabotropic signaling responses by homopentameric α7 nAChRs in various cell types. We explore how coordinated calcium entry through the ion channel and calcium release from nearby stores gives rise to signaling important for the modulation of cytoskeletal motility and cell growth. Amino acid residues for intracellular protein binding within the α7 nAChR support engagement in metabotropic responses including signaling through heterotrimeric G proteins in neural and immune cells. Understanding the dual properties of ionotropic and metabotropic nAChR responses is essential in advancing drug development for the treatment of various human disease.
Collapse
Affiliation(s)
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, Fairfax, VA, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
8
|
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Caceres AI, Catterall WA, Conner AC, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein SAN, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman AP, Jabba SV, Jarvis M, Jensen AA, Jordt SE, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch JW, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sieghart W, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol 2023; 180 Suppl 2:S145-S222. [PMID: 38123150 PMCID: PMC11339754 DOI: 10.1111/bph.16178] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Alistair A Mathie
- School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - John A Peters
- Neurosci-ence Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Emma L Veale
- Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jane F Armstrong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elena Faccenda
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Simon D Harding
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Jamie A Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | | | | | | | - Martin Biel
- Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | - Paul Davies
- Tufts University School of Medicine, Boston, USA
| | | | - Markus Delling
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | - Chandy George
- Nanyang Technological University, Singapore, Singapore
| | | | | | | | - Kotdaji Ha
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Annette Nicke
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research/JW Goethe University, Bad Nauheim/Frankfurt, Germany
| | | | | | | | - Dejian Ren
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | - Jinbin Tian
- University of Texas at Houston, Houston, USA
| | | | | | | | | | | | | | | | | | | | - Lixia Yue
- University of Connecticut, Farmington, USA
| | | | - Michael Zhu
- University of Texas at Houston, Houston, USA
| |
Collapse
|
9
|
Zhou L, Dau V, Jensen AA. Discovery of a Novel Class of Benzimidazole-Based Nicotinic Acetylcholine Receptor Modulators: Positive and Negative Modulation Arising from Overlapping Allosteric Sites. J Med Chem 2023; 66:12586-12601. [PMID: 37650525 DOI: 10.1021/acs.jmedchem.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Here, we present the discovery of a novel class of benzimidazole-based allosteric modulators of nicotinic acetylcholine receptors (nAChRs). The modulators were developed based on a compound (1) exhibiting positive modulatory activity at α4β2 nAChR in a compound library screening by functional characterization of 100 analogues of 1 at nAChRs. Two distinct series of positive and negative allosteric modulators (PAMs and NAMs, respectively) comprising benzimidazole as a shared structural moiety emerged from this SAR study. The PAMs mediated weak modulation of α4β2 and α6β2β3, whereas the NAMs exhibited essentially equipotent inhibition of α4β2, α6β2β3, α6β4β3, and α3β4 nAChRs, with analogue 9j [2-(2,4-dichlorophenoxy)-1,3-dimethyl-1-H-benzo[d]imidazole-3-ium] displaying high-nanomolar and low-micromolar IC50 values at the β2- and β4-containing receptor subtypes, respectively. We propose that the PAMs and NAMs act through overlapping sites in the nAChR, and these findings thus underline the heterogenous modes of modulation that can arise from a shared allosteric site in the receptor.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Vidan Dau
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Hernando G, Turani O, Rodriguez Araujo N, Bouzat C. The diverse family of Cys-loop receptors in Caenorhabditis elegans: insights from electrophysiological studies. Biophys Rev 2023; 15:733-750. [PMID: 37681094 PMCID: PMC10480131 DOI: 10.1007/s12551-023-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Cys-loop receptors integrate a large family of pentameric ligand-gated ion channels that mediate fast ionotropic responses in vertebrates and invertebrates. Their vital role in converting neurotransmitter recognition into an electrical impulse makes these receptors essential for a great variety of physiological processes. In vertebrates, the Cys-loop receptor family includes the cation-selective channels, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors, and the anion-selective channels, GABAA and glycine receptors, whereas in invertebrates, the repertoire is significantly larger. The free-living nematode Caenorhabditis elegans has the largest known Cys-loop receptor family as well as unique receptors that are absent in vertebrates and constitute attractive targets for anthelmintic drugs. Given the large number and variety of Cys-loop receptor subunits and the multiple possible ways of subunit assembly, C. elegans offers a large diversity of receptors although only a limited number of them have been characterized to date. C. elegans has emerged as a powerful model for the study of the nervous system and human diseases as well as a model for antiparasitic drug discovery. This nematode has also shown promise in the pharmaceutical industry search for new therapeutic compounds. C. elegans is therefore a powerful model organism to explore the biology and pharmacology of Cys-loop receptors and their potential as targets for novel therapeutic interventions. In this review, we provide a comprehensive overview of what is known about the function of C. elegans Cys-loop receptors from an electrophysiological perspective.
Collapse
Affiliation(s)
- Guillermina Hernando
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Ornella Turani
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Noelia Rodriguez Araujo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
11
|
Oishi K, Nagamori M, Kashino Y, Sekiguchi H, Sasaki YC, Miyazawa A, Nishino Y. Ligand-Dependent Intramolecular Motion of Native Nicotinic Acetylcholine Receptors Determined in Living Myotube Cells via Diffracted X-ray Tracking. Int J Mol Sci 2023; 24:12069. [PMID: 37569445 PMCID: PMC10418694 DOI: 10.3390/ijms241512069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in signal transduction at the neuromuscular junction (NMJ). Movement of the nAChR extracellular domain following agonist binding induces conformational changes in the extracellular domain, which in turn affects the transmembrane domain and opens the ion channel. It is known that the surrounding environment, such as the presence of specific lipids and proteins, affects nAChR function. Diffracted X-ray tracking (DXT) facilitates measurement of the intermolecular motions of receptors on the cell membranes of living cells, including all the components involved in receptor function. In this study, the intramolecular motion of the extracellular domain of native nAChR proteins in living myotube cells was analyzed using DXT for the first time. We revealed that the motion of the extracellular domain in the presence of an agonist (e.g., carbamylcholine, CCh) was restricted by an antagonist (i.e., alpha-bungarotoxin, BGT).
Collapse
Affiliation(s)
- Koichiro Oishi
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| | - Mayu Nagamori
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| | - Yasuhiro Kashino
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Sayo 679-5198, Hyogo, Japan; (H.S.); (Y.C.S.)
| | - Yuji C. Sasaki
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Sayo 679-5198, Hyogo, Japan; (H.S.); (Y.C.S.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 6-2-3 Kashiwanoha, Kashiwa 277-0882, Chiba, Japan
| | - Atsuo Miyazawa
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| | - Yuri Nishino
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| |
Collapse
|
12
|
Shenkarev ZO, Chesnokov YM, Zaigraev MM, Chugunov AO, Kulbatskii DS, Kocharovskaya MV, Paramonov AS, Bychkov ML, Shulepko MA, Nolde DE, Kamyshinsky RA, Yablokov EO, Ivanov AS, Kirpichnikov MP, Lyukmanova EN. Membrane-mediated interaction of non-conventional snake three-finger toxins with nicotinic acetylcholine receptors. Commun Biol 2022; 5:1344. [PMID: 36477694 PMCID: PMC9729238 DOI: 10.1038/s42003-022-04308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acetylcholine receptor of α7 type (α7-nAChR) presented in the nervous and immune systems and epithelium is a promising therapeutic target for cognitive disfunctions and cancer treatment. Weak toxin from Naja kaouthia venom (WTX) is a non-conventional three-finger neurotoxin, targeting α7-nAChR with weak affinity. There are no data on interaction mode of non-conventional neurotoxins with nAChRs. Using α-bungarotoxin (classical three-finger neurotoxin with high affinity to α7-nAChR), we showed applicability of cryo-EM to study complexes of α7-nAChR extracellular ligand-binding domain (α7-ECD) with toxins. Using cryo-EM structure of the α7-ECD/WTX complex, together with NMR data on membrane active site in the WTX molecule and mutagenesis data, we reconstruct the structure of α7-nAChR/WTX complex in the membrane environment. WTX interacts at the entrance to the orthosteric site located at the receptor intersubunit interface and simultaneously forms the contacts with the membrane surface. WTX interaction mode with α7-nAChR significantly differs from α-bungarotoxin's one, which does not contact the membrane. Our study reveals the important role of the membrane for interaction of non-conventional neurotoxins with the nicotinic receptors.
Collapse
Affiliation(s)
- Zakhar O. Shenkarev
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia
| | - Yuri M. Chesnokov
- grid.18919.380000000406204151National Research Center “Kurchatov Institute”, Academic Kurchatov Sq. 1, Moscow, 123182 Russia ,grid.435159.f0000 0001 1941 7461Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninsky Prospect 59, Moscow, 119333 Russia
| | - Maxim M. Zaigraev
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia
| | - Anton O. Chugunov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia ,grid.410682.90000 0004 0578 2005National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow, 101000 Russia
| | - Dmitrii S. Kulbatskii
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Milita V. Kocharovskaya
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia
| | - Alexander S. Paramonov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Maxim L. Bychkov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Mikhail A. Shulepko
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Dmitry E. Nolde
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.410682.90000 0004 0578 2005National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow, 101000 Russia
| | - Roman A. Kamyshinsky
- grid.18919.380000000406204151National Research Center “Kurchatov Institute”, Academic Kurchatov Sq. 1, Moscow, 123182 Russia ,grid.435159.f0000 0001 1941 7461Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninsky Prospect 59, Moscow, 119333 Russia
| | - Evgeniy O. Yablokov
- grid.418846.70000 0000 8607 342XInstitute of Biomedical Chemistry, Pogodinskaya 10k8, Moscow, 119121 Russia
| | - Alexey S. Ivanov
- grid.418846.70000 0000 8607 342XInstitute of Biomedical Chemistry, Pogodinskaya 10k8, Moscow, 119121 Russia
| | - Mikhail P. Kirpichnikov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.14476.300000 0001 2342 9668Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234 Russia
| | - Ekaterina N. Lyukmanova
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia ,grid.14476.300000 0001 2342 9668Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234 Russia
| |
Collapse
|
13
|
Chrestia JF, Esandi MDC, Bouzat C. Cannabidiol as a modulator of α7 nicotinic receptors. Cell Mol Life Sci 2022; 79:564. [PMID: 36282426 PMCID: PMC11803050 DOI: 10.1007/s00018-022-04600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/03/2022]
Abstract
Cannabidiol (CBD), an important terpenoid compound from marijuana with no psychoactive effects, has become of great pharmaceutical interest for several health conditions. As CBD is a multitarget drug, there is a need to establish the molecular mechanisms by which CBD may exert therapeutic as well as adverse effects. The α7 nicotinic acetylcholine receptor (α7 nAChR) is a cation-permeable ACh-gated channel present in the nervous system and in non-neuronal cells. It is involved in different pathological conditions, including neurological and neurodegenerative disorders, inflammation, and cancer. By high-resolution single-channel recordings and confocal microscopy, we here reveal how CBD modulates α7 nAChR ionotropic and metabotropic functions. CBD leads to a profound concentration-dependent decrease of α7 nAChR single-channel activity with an IC50 in the sub-micromolar range. The inhibition of α7 nAChR activity, which takes place through a membrane pathway, is neither mediated by receptor phosphorylation nor overcome by positive allosteric modulators and is compatible with CBD stabilization of resting or desensitized α7 nAChR conformational states. CBD modulation is complex as it also leads to the later appearance of atypical, low-frequency α7 nAChR channel openings. At the cellular level, CBD inhibits the increase in intracellular calcium triggered by α7 nAChR activation, thus decreasing cell calcium responses. The modulation of α7 nAChR is of pharmacological relevance and should be considered in the evaluation of CBD potential therapeutic uses. Thus, our study provides novel molecular information of CBD multiple actions and targets, which is required to set the basis for prospective applications in human health.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - María Del Carmen Esandi
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
14
|
Membrane lipid organization and nicotinic acetylcholine receptor function: A two-way physiological relationship. Arch Biochem Biophys 2022; 730:109413. [DOI: 10.1016/j.abb.2022.109413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
15
|
Alanazi M, Arafa WA, Althobaiti IO, Altaleb HA, Bakr RB, Elkanzi NAA. Green Design, Synthesis, and Molecular Docking Study of Novel Quinoxaline Derivatives with Insecticidal Potential against Aphis craccivora. ACS OMEGA 2022; 7:27674-27689. [PMID: 35967065 PMCID: PMC9366785 DOI: 10.1021/acsomega.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
An efficient and environmentally friendly method was established for designing novel 3-amino-1,4-dihydroquinoxaline-2-carbonitrile (1) via the reaction of bromomalononitrile and benzene-1,2-diamine under microwave irradiation in an excellent yield (93%). This targeted amino derivative was utilized for the construction of a series of Schiff bases (8-13). A new series of thiazolidinone derivatives (15-20) were synthesized in high yields (89-96%) via treatment of thioglycolic acid with Schiff bases (8-13) under microwave irradiation in high yields (89-96%). Moreover, new pyrimidine derivatives (26-30 and 35-38) were prepared by treatment of compound 1 with arylidenes (21-25) and/or alkylidenemalononitriles (31-34) using piperidine as a basic catalyst under microwave conditions. Based on elemental analyses and spectral data, the structures of the new assembled compounds were determined. The newly synthesized quinoxaline derivatives were screened and studied as an insecticidal agent against Aphis craccivora. The obtained results indicate that compound 16 is the most toxicological agent against nymphs of cowpea aphids (Aphis craccivora) compared to the other synthesized pyrimidine and thiazolidinone derivatives. The molecular docking study of the new quinoxaline derivatives registered that compound 16 had the highest binding score (-10.54 kcal/mol) and the thiazolidinone moiety formed hydrogen bonds with Trp143.
Collapse
Affiliation(s)
- Mariam
Azzam Alanazi
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
| | - Wael A.A. Arafa
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum 63514, Egypt
| | - Ibrahim O. Althobaiti
- Department
of Chemistry, College of Science and Arts, Jouf University, Sakaka 42421, Saudi Arabia
| | - Hamud A. Altaleb
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Rania B. Bakr
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Nadia A. A. Elkanzi
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
- Chemistry
Department, Faculty of Science, Aswan University, P.O. Box 81528, Aswan 81528, Egypt
| |
Collapse
|
16
|
Chrestia JF, Bruzzone A, Esandi MDC, Bouzat C. Tyrosine phosphorylation differentially fine-tunes ionotropic and metabotropic responses of human α7 nicotinic acetylcholine receptor. Cell Mol Life Sci 2021; 78:5381-5395. [PMID: 34028590 PMCID: PMC8142877 DOI: 10.1007/s00018-021-03853-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
The α7 nicotinic acetylcholine receptor is involved in neurological, neurodegenerative, and inflammatory disorders. It operates both as a ligand-gated cationic channel and as a metabotropic receptor in neuronal and non-neuronal cells. As protein phosphorylation is an important cell function regulatory mechanism, deciphering how tyrosine phosphorylation modulates α7 dual ionotropic/metabotropic molecular function is required for understanding its integral role in physiological and pathological processes. α7 single-channel activity elicited by ACh appears as brief isolated openings and less often as episodes of few openings in quick succession. The reduction of phosphorylation by tyrosine kinase inhibition increases the duration and frequency of activation episodes, whereas the inhibition of phosphatases has the opposite effect. Removal of two tyrosine residues at the α7 intracellular domain recapitulates the effects mediated by tyrosine kinase inhibition. The tyrosine-free mutant receptor shows longer duration-activation episodes, reduced desensitization rate and significantly faster recovery from desensitization, indicating that phosphorylation decreases α7 channel activity by favoring the desensitized state. However, the mutant receptor is incapable of triggering ERK1/2 phosphorylation in response to the α7-agonist. Thus, while tyrosine phosphorylation is absolutely required for α7-triggered ERK pathway, it negatively modulates α7 ionotropic activity. Overall, phosphorylation/dephosphorylation events fine-tune the integrated cell response mediated by α7 activation, thus having a broad impact on α7 cholinergic signaling.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Argentina.
| |
Collapse
|
17
|
Terpinskaya TI, Osipov AV, Kryukova EV, Kudryavtsev DS, Kopylova NV, Yanchanka TL, Palukoshka AF, Gondarenko EA, Zhmak MN, Tsetlin VI, Utkin YN. α-Conotoxins and α-Cobratoxin Promote, while Lipoxygenase and Cyclooxygenase Inhibitors Suppress the Proliferation of Glioma C6 Cells. Mar Drugs 2021; 19:118. [PMID: 33669933 PMCID: PMC7956437 DOI: 10.3390/md19020118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, β2 and β4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.
Collapse
Affiliation(s)
- Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alexey V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Denis S. Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Nina V. Kopylova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Tatsiana L. Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alena F. Palukoshka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Elena A. Gondarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| |
Collapse
|
18
|
Asymmetric opening of the homopentameric 5-HT 3A serotonin receptor in lipid bilayers. Nat Commun 2021; 12:1074. [PMID: 33594077 PMCID: PMC7887223 DOI: 10.1038/s41467-021-21016-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) of the Cys-loop receptor family are key players in fast signal transduction throughout the nervous system. They have been shown to be modulated by the lipid environment, however the underlying mechanism is not well understood. We report three structures of the Cys-loop 5-HT3A serotonin receptor (5HT3R) reconstituted into saposin-based lipid bilayer discs: a symmetric and an asymmetric apo state, and an asymmetric agonist-bound state. In comparison to previously published 5HT3R conformations in detergent, the lipid bilayer stabilises the receptor in a more tightly packed, ‘coupled’ state, involving a cluster of highly conserved residues. In consequence, the agonist-bound receptor conformation adopts a wide-open pore capable of conducting sodium ions in unbiased molecular dynamics (MD) simulations. Taken together, we provide a structural basis for the modulation of 5HT3R by the membrane environment, and a model for asymmetric activation of the receptor. Pentameric ligand-gated ion channels (pLGICs) are key players in neurotransmission and have been shown to be modulated by the lipid environment, however the underlying mechanism is not well understood. Here, the authors report structures of the pLGIC 5-HT3A serotonin receptor reconstituted into lipid bilayer discs and reveal lipid–protein interactions as well as asymmetric activation of the homopentameric receptor.
Collapse
|
19
|
Implications of Oligomeric Amyloid-Beta (oAβ 42) Signaling through α7β2-Nicotinic Acetylcholine Receptors (nAChRs) on Basal Forebrain Cholinergic Neuronal Intrinsic Excitability and Cognitive Decline. J Neurosci 2020; 41:555-575. [PMID: 33239400 DOI: 10.1523/jneurosci.0876-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023] Open
Abstract
Neuronal and network-level hyperexcitability is commonly associated with increased levels of amyloid-β (Aβ) and contribute to cognitive deficits associated with Alzheimer's disease (AD). However, the mechanistic complexity underlying the selective loss of basal forebrain cholinergic neurons (BFCNs), a well-recognized characteristic of AD, remains poorly understood. In this study, we tested the hypothesis that the oligomeric form of amyloid-β (oAβ42), interacting with α7-containing nicotinic acetylcholine receptor (nAChR) subtypes, leads to subnucleus-specific alterations in BFCN excitability and impaired cognition. We used single-channel electrophysiology to show that oAβ42 activates both homomeric α7- and heteromeric α7β2-nAChR subtypes while preferentially enhancing α7β2-nAChR open-dwell times. Organotypic slice cultures were prepared from male and female ChAT-EGFP mice, and current-clamp recordings obtained from BFCNs chronically exposed to pathophysiologically relevant level of oAβ42 showed enhanced neuronal intrinsic excitability and action potential firing rates. These resulted from a reduction in action potential afterhyperpolarization and alterations in the maximal rates of voltage change during spike depolarization and repolarization. These effects were observed in BFCNs from the medial septum diagonal band and horizontal diagonal band, but not the nucleus basalis. Last, aged male and female APP/PS1 transgenic mice, genetically null for the β2 nAChR subunit gene, showed improved spatial reference memory compared with APP/PS1 aged-matched littermates. Combined, these data provide a molecular mechanism supporting a role for α7β2-nAChR in mediating the effects of oAβ42 on excitability of specific populations of cholinergic neurons and provide a framework for understanding the role of α7β2-nAChR in oAβ42-induced cognitive decline.
Collapse
|
20
|
Kulbatskii DS, Shulepko MA, Sluchanko NN, Yablokov EO, Kamyshinsky RA, Chesnokov YM, Kirpichnikov MP, Lyukmanova EN. Efficient screening of ligand-receptor complex formation using fluorescence labeling and size-exclusion chromatography. Biochem Biophys Res Commun 2020; 532:127-133. [PMID: 32828540 DOI: 10.1016/j.bbrc.2020.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 11/19/2022]
Abstract
Evidence of a complex formation is a crucial step in the structural studies of ligand-receptor interactions. Here we presented a simple and fast approach for qualitative screening of the complex formation between the chimeric extracellular domain of the nicotinic acetylcholine receptor (α7-ECD) and three-finger proteins. Complex formation of snake toxins α-Bgtx and WTX, as well as of recombinant analogs of human proteins Lynx1 and SLURP-1, with α7-ECD was confirmed using fluorescently labeled ligands and size-exclusion chromatography with simultaneous absorbance and fluorescence detection. WTX/α7-ECD complex formation also was confirmed by cryo-EM. The proposed approach could easily be adopted to study the interaction of other receptors with their ligands.
Collapse
Affiliation(s)
- D S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - M A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - N N Sluchanko
- A. N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect 33, Building 1, Moscow, 119071, Russia
| | - E O Yablokov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Pogodinskaya 10k8, Moscow, 119121, Russia
| | - R A Kamyshinsky
- National Research Center "Kurchatov Institute", Academic Kurchatov Sq. 1, Moscow, 123182, Russia; Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninskiy Prospect 59, Moscow, 119333, Russia
| | - Y M Chesnokov
- National Research Center "Kurchatov Institute", Academic Kurchatov Sq. 1, Moscow, 123182, Russia; Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninskiy Prospect 59, Moscow, 119333, Russia
| | - M P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie gory, 1k12, Moscow, 119192, Russia
| | - E N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie gory, 1k12, Moscow, 119192, Russia.
| |
Collapse
|
21
|
Rodriguez Araujo N, Fabiani C, Mazzarini Dimarco A, Bouzat C, Corradi J. Orthosteric and Allosteric Activation of Human 5-HT 3A Receptors. Biophys J 2020; 119:1670-1682. [PMID: 32946769 DOI: 10.1016/j.bpj.2020.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/18/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonin type 3 receptor (5-HT3) is a ligand-gated ion channel that converts the binding of the neurotransmitter serotonin (5-HT) into a transient cation current that mediates fast excitatory responses in peripheral and central nervous systems. Information regarding the activation and modulation of the human 5-HT3 type A receptor has been based only on macroscopic current measurements because of its low ion conductance. By constructing a high-conductance human 5-HT3A receptor, we here revealed mechanistic information regarding the orthosteric activation by 5-HT and by the partial agonist tryptamine, and the allosteric activation by the terpenoids, carvacrol, and thymol. Terpenoids potentiated macroscopic currents elicited by the orthosteric agonist and directly elicited currents with slow-rising phases and submaximal amplitudes. At the single-channel level, activation by orthosteric and allosteric agonists appeared as openings in quick succession (bursts) that showed no ligand concentration dependence. Bursts were grouped into long-duration clusters in the presence of 5-HT and even longer in the presence of terpenoids, whereas they remained isolated in the presence of tryptamine. Kinetic analysis revealed that allosteric and orthosteric activation mechanisms can be described by the same scheme that includes transitions of the agonist-bound receptor to closed intermediate states before opening (priming). Reduced priming explained the partial agonism of tryptamine; however, equilibrium constants for gating and priming were similar for 5-HT and terpenoid activation. Thus, our kinetic analysis revealed that terpenoids are efficacious agonists for 5-HT3A receptors. These findings not only extend our knowledge about the human 5-HT3A molecular function but also provide novel insights into the mechanisms of action of allosteric ligands, which are of increasing interest as therapeutic drugs in all the superfamily.
Collapse
Affiliation(s)
- Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Albano Mazzarini Dimarco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
22
|
Paramonov AS, Kocharovskaya MV, Tsarev AV, Kulbatskii DS, Loktyushov EV, Shulepko MA, Kirpichnikov MP, Lyukmanova EN, Shenkarev ZO. Structural Diversity and Dynamics of Human Three-Finger Proteins Acting on Nicotinic Acetylcholine Receptors. Int J Mol Sci 2020; 21:E7280. [PMID: 33019770 PMCID: PMC7582953 DOI: 10.3390/ijms21197280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Ly-6/uPAR or three-finger proteins (TFPs) contain a disulfide-stabilized β-structural core and three protruding loops (fingers). In mammals, TFPs have been found in epithelium and the nervous, endocrine, reproductive, and immune systems. Here, using heteronuclear NMR, we determined the three-dimensional (3D) structure and backbone dynamics of the epithelial secreted protein SLURP-1 and soluble domains of GPI-anchored TFPs from the brain (Lynx2, Lypd6, Lypd6b) acting on nicotinic acetylcholine receptors (nAChRs). Results were compared with the data about human TFPs Lynx1 and SLURP-2 and snake α-neurotoxins WTX and NTII. Two different topologies of the β-structure were revealed: one large antiparallel β-sheet in Lypd6 and Lypd6b, and two β-sheets in other proteins. α-Helical segments were found in the loops I/III of Lynx2, Lypd6, and Lypd6b. Differences in the surface distribution of charged and hydrophobic groups indicated significant differences in a mode of TFPs/nAChR interactions. TFPs showed significant conformational plasticity: the loops were highly mobile at picosecond-nanosecond timescale, while the β-structural regions demonstrated microsecond-millisecond motions. SLURP-1 had the largest plasticity and characterized by the unordered loops II/III and cis-trans isomerization of the Tyr39-Pro40 bond. In conclusion, plasticity could be an important feature of TFPs adapting their structures for optimal interaction with the different conformational states of nAChRs.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Antigens, Ly/chemistry
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Binding Sites
- Cloning, Molecular
- Elapid Venoms/chemistry
- Elapid Venoms/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Hydrophobic and Hydrophilic Interactions
- Models, Molecular
- Neuropeptides/chemistry
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Urokinase-Type Plasminogen Activator/chemistry
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Milita V. Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Andrey V. Tsarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Eugene V. Loktyushov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Mikhail A. Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
23
|
Maldifassi MC, Momboisse F, Guerra MJ, Vielma AH, Maripillán J, Báez-Matus X, Flores-Muñoz C, Cádiz B, Schmachtenberg O, Martínez AD, Cárdenas AM. The interplay between α7 nicotinic acetylcholine receptors, pannexin-1 channels and P2X7 receptors elicit exocytosis in chromaffin cells. J Neurochem 2020; 157:1789-1808. [PMID: 32931038 DOI: 10.1111/jnc.15186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/18/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Pannexin-1 (Panx1) forms plasma membrane channels that allow the exchange of small molecules between the intracellular and extracellular compartments, and are involved in diverse physiological and pathological responses in the nervous system. However, the signaling mechanisms that induce their opening still remain elusive. Here, we propose a new mechanism for Panx1 channel activation through a functional crosstalk with the highly Ca2+ permeable α7 nicotinic acetylcholine receptor (nAChR). Consistent with this hypothesis, we found that activation of α7 nAChRs induces Panx1-mediated dye uptake and ATP release in the neuroblastoma cell line SH-SY5Y-α7. Using membrane permeant Ca2+ chelators, total internal reflection fluorescence microscopy in SH-SY5Y-α7 cells expressing a membrane-tethered GCAMP3, and Src kinase inhibitors, we further demonstrated that Panx1 channel opening depends on Ca2+ signals localized in submembrane areas, as well as on Src kinases. In turn, Panx1 channels amplify cytosolic Ca2+ signals induced by the activation of α7 nAChRs, by a mechanism that seems to involve ATP release and P2X7 receptor activation, as hydrolysis of extracellular ATP with apyrase or blockage of P2X7 receptors with oxidized ATP significantly reduces the α7 nAChR-Ca2+ signal. The physiological relevance of this crosstalk was also demonstrated in neuroendocrine chromaffin cells, wherein Panx1 channels and P2X7 receptors contribute to the exocytotic release of catecholamines triggered by α7 nAChRs, as measured by amperometry. Together these findings point to a functional coupling between α7 nAChRs, Panx1 channels and P2X7 receptors with physiological relevance in neurosecretion.
Collapse
Affiliation(s)
- María C Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | - María J Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Universidad de Valparaíso, Chile
| | - Bárbara Cádiz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias Biológicas, Universidad de Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
24
|
Foo CS, Jobichen C, Hassan-Puttaswamy V, Dekan Z, Tae HS, Bertrand D, Adams DJ, Alewood PF, Sivaraman J, Nirthanan S, Kini RM. Fulditoxin, representing a new class of dimeric snake toxins, defines novel pharmacology at nicotinic ACh receptors. Br J Pharmacol 2020; 177:1822-1840. [PMID: 31877243 DOI: 10.1111/bph.14954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Animal toxins have contributed significantly to our understanding of the neurobiology of receptors and ion channels. We studied the venom of the coral snake Micrurus fulvius fulvius and identified and characterized the structure and pharmacology of a new homodimeric neurotoxin, fulditoxin, that exhibited novel pharmacology at nicotinic ACh receptors (nAChRs). EXPERIMENTAL APPROACH Fulditoxin was isolated by chromatography, chemically synthesized, its structure determined by X-ray crystallography, and its pharmacological actions on nAChRs characterized by organ bath assays and two-electrode voltage clamp electrophysiology. KEY RESULTS Fulditoxin's distinct 1.95-Å quaternary structure revealed two short-chain three-finger α-neurotoxins (α-3FNTxs) non-covalently bound by hydrophobic interactions and an ability to bind metal and form tetrameric complexes, not reported previously for three-finger proteins. Although fulditoxin lacked all conserved amino acids canonically important for inhibiting nAChRs, it produced postsynaptic neuromuscular blockade of chick muscle at nanomolar concentrations, comparable to the prototypical α-bungarotoxin. This neuromuscular blockade was completely reversible, which is unusual for snake α-3FNTxs. Fulditoxin, therefore, interacts with nAChRs by utilizing a different pharmacophore. Unlike short-chain α-3FNTxs that bind only to muscle nAChRs, fulditoxin utilizes dimerization to expand its pharmacological targets to include human neuronal α4β2, α7, and α3β2 nAChRs which it blocked with IC50 values of 1.8, 7, and 12 μM respectively. CONCLUSIONS AND IMPLICATIONS Based on its distinct quaternary structure and unusual pharmacology, we named this new class of dimeric Micrurus neurotoxins represented by fulditoxin as Σ-neurotoxins, which offers greater insight into understanding the interactions between nAChRs and peptide antagonists.
Collapse
Affiliation(s)
- Chun Shin Foo
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Varuna Hassan-Puttaswamy
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zoltan Dekan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia
| | - R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Chung S, Baumlin N, Dennis JS, Moore R, Salathe SF, Whitney PL, Sabater J, Abraham WM, Kim MD, Salathe M. Electronic Cigarette Vapor with Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors. Am J Respir Crit Care Med 2019; 200:1134-1145. [PMID: 31170808 PMCID: PMC6888648 DOI: 10.1164/rccm.201811-2087oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Electronic cigarette (e-cig) use has been widely adopted under the perception of safety. However, possibly adverse effects of e-cig vapor in never-smokers are not well understood.Objectives: To test the effects of nicotine-containing e-cig vapors on airway mucociliary function in differentiated human bronchial epithelial cells isolated from never-smokers and in the airways of a novel, ovine large animal model.Methods: Mucociliary parameters were measured in human bronchial epithelial cells and in sheep. Systemic nicotine delivery to sheep was quantified using plasma cotinine levels, measured by ELISA.Measurements and Main Results:In vitro, exposure to e-cig vapor reduced airway surface liquid hydration and increased mucus viscosity of human bronchial epithelial cells in a nicotine-dependent manner. Acute nicotine exposure increased intracellular calcium levels, an effect primarily dependent on TRPA1 (transient receptor potential ankyrin 1). TRPA1 inhibition with A967079 restored nicotine-mediated impairment of mucociliary parameters including mucus transport in vitro. Sheep tracheal mucus velocity, an in vivo measure of mucociliary clearance, was also reduced by e-cig vapor. Nebulized e-cig liquid containing nicotine also reduced tracheal mucus velocity in a dose-dependent manner and elevated plasma cotinine levels. Importantly, nebulized A967079 reversed the effects of e-cig liquid on sheep tracheal mucus velocity.Conclusions: Our findings show that inhalation of e-cig vapor causes airway mucociliary dysfunction in vitro and in vivo. Furthermore, they suggest that the main nicotine effect on mucociliary function is mediated by TRPA1 and not nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Samuel Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Nathalie Baumlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - John S. Dennis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Robert Moore
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Sebastian F. Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Phillip L. Whitney
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| | - William M. Abraham
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| | - Michael D. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| |
Collapse
|
26
|
Kulbatskii DS, Bychkov ML, Lyukmanova EN. Human Nicotinic Acetylcholine Receptors: Part I—Structure, Function, and Role in Neuromuscular Transmission and CNS Functioning. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Lasala M, Fabiani C, Corradi J, Antollini S, Bouzat C. Molecular Modulation of Human α7 Nicotinic Receptor by Amyloid-β Peptides. Front Cell Neurosci 2019; 13:37. [PMID: 30800059 PMCID: PMC6376857 DOI: 10.3389/fncel.2019.00037] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Amyloid β peptide (Aβ) is a key player in the development of Alzheimer's disease (AD). It is the primary component of senile plaques in AD patients and is also found in soluble forms. Cholinergic activity mediated by α7 nicotinic receptors has been shown to be affected by Aβ soluble forms. To shed light into the molecular mechanism of this effect, we explored the direct actions of oligomeric Aβ1-40 and Aβ1-42 on human α7 by fluorescence spectroscopy and single-channel recordings. Fluorescence measurements using the conformational sensitive probe crystal violet (CrV) revealed that in the presence of Aβ α7 undergoes concentration-dependent conformational changes. Exposure of α7 to 100 pM Aβ changes CrV KD towards that of the desensitized state. However, α7 is still reactive to high carbamylcholine (Carb) concentrations. These observations are compatible with the induction of active/desensitized states as well as of a novel conformational state in the presence of both Aβ and Carb. At 100 nM Aβ, α7 adopts a resting-state-like structure which does not respond to Carb, suggesting stabilization of α7 in a blocked state. In real time, we found that Aβ is capable of eliciting α7 channel activity either in the absence or presence of the positive allosteric modulator (PAM) PNU-120596. Activation by Aβ is favored at picomolar or low nanomolar concentrations and is not detected at micromolar concentrations. At high Aβ concentrations, the mean duration of activation episodes elicited by ACh in the presence of PNU-120596 is significantly reduced, an effect compatible with slow open-channel block. We conclude that Aβ directly affects α7 function by acting as an agonist and a negative modulator. Whereas the capability of low concentrations of Aβ to activate α7 could be beneficial, the reduced α7 activity in the presence of higher Aβ concentrations or its long exposure may contribute to the cholinergic signaling deficit and may be involved in the initiation and development of AD.
Collapse
Affiliation(s)
- Matías Lasala
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Silvia Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
28
|
Turani O, Hernando G, Corradi J, Bouzat C. Activation of Caenorhabditis elegans Levamisole-Sensitive and Mammalian Nicotinic Receptors by the Antiparasitic Bephenium. Mol Pharmacol 2018; 94:1270-1279. [PMID: 30190363 DOI: 10.1124/mol.118.113357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in neuromuscular transmission. In nematodes, muscle nAChRs are targets of antiparasitic drugs. Bephenium is an anthelmintic compound whose molecular action in the free-living nematode Caenorhabditis elegans, which is a model for anthelmintic drug discovery, is poorly known. We explored the effect of bephenium on C. elegans locomotion and applied single-channel recordings to identify its molecular target, mechanism of action, and selectivity between mammalian and C. elegans nAChRs. As in parasites, bephenium paralyzes C. elegans A mutant strain lacking the muscle levamisole-sensitive nAChR (L-AChR) shows full resistance to bephenium, indicating that this receptor is the target site. Bephenium activates L-AChR channels from larvae muscle cells in the micromolar range. Channel activity is similar to that elicited by levamisole, appearing mainly as isolated brief openings. Our analysis revealed that bephenium is an agonist of L-AChR and an open-channel blocker at higher concentrations. It also activates mammalian muscle nAChRs. Opening events are significantly briefer than those elicited by ACh and do not appear in activation episodes at a range of concentrations, indicating that it is a very weak agonist of mammalian nAChRs. Recordings in the presence of ACh showed that bephenium acts as a voltage-dependent channel blocker and a low-affinity agonist. Molecular docking into homology-modeled binding-site interfaces represent the binding mode of bephenium that explains its partial agonism. Given the great diversity of helminth nAChRs and the overlap of their pharmacological profiles, unraveling the basis of drug receptor-selectivity will be required for rational design of anthelmintic drugs.
Collapse
Affiliation(s)
- Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
29
|
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Curr Neuropharmacol 2018; 16:338-349. [PMID: 28901280 PMCID: PMC6018187 DOI: 10.2174/1570159x15666170912110450] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 02/08/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) belong to a super-family of Cys-loop ligand-gated ion chan-nels that respond to endogenous acetylcholine (ACh) or other cholinergic ligands. These receptors are also the targets of drugs such as nicotine (the main addictive agent delivered by cigarette smoke) and are involved in a variety of physiological and pathophysiological processes. Numerous studies have shown that the expression and/or function of nAChRs is com-promised in many neurological and psychiatric diseases. Furthermore, recent studies have shown that neuronal nAChRs are found in a large number of non-neuronal cell types in-cluding endothelial cells, glia, immune cells, lung epithelia and cancer cells where they regulate cell differentiation, prolifera-tion and inflammatory responses. The aim of this review is to describe the most recent findings concerning the structure and function of native nAChRs inside and outside the nervous system.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Susanna Pucci
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| |
Collapse
|
30
|
Pan Z, Zhao M, Peng Y, Wang J. Functional divergence analysis of vertebrate neuronal nicotinic acetylcholine receptor subunits. J Biomol Struct Dyn 2018; 37:2938-2948. [PMID: 30044167 DOI: 10.1080/07391102.2018.1500945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentamers formed by subunits from a large multigene family and are highly variable in kinetic, electrophysiological and pharmacological properties. Due to the essential roles of nAChRs in many physiological procedures and diversity in function, identifying the function-related sites specific to each subunit is not only necessary to understand the properties of the receptors but also useful to design potential therapeutic compounds that target these macromolecules for treating a series of central neuronal disorders. By conducting a detailed function divergence analysis on nine neuronal nAChR subunits from representative vertebrate species, we revealed the existence of significant functional variation between most subunit pairs. Specifically, 44 unique residues were identified for the α7 subunit, while another 22 residues that were likely responsible for the specific features of other subunits were detected. By mapping these sites onto the 3 D structure of the human α7 subunit, a structure-function relationship profile was revealed. Our results suggested that the functional divergence related sites clustered in the ligand binding domain, the β2-β3 linker close to the N-terminal α-helix, the intracellular linkers between transmembrane domains, and the "transition zone" may have experienced altered evolutionary rates. The former two regions may be potential binding sites for the α7* subtype-specific allosteric modulators, while the latter region is likely to be subtype-specific allosteric modulations of the heteropentameric descendants such as the α4β2* nAChRs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhenhua Pan
- a School of Biomedical Engineering , Tianjin Medical University , Tianjin , China.,b Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment , Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital , Tianjin , China
| | - Mengwen Zhao
- a School of Biomedical Engineering , Tianjin Medical University , Tianjin , China
| | - Yonglin Peng
- a School of Biomedical Engineering , Tianjin Medical University , Tianjin , China
| | - Ju Wang
- a School of Biomedical Engineering , Tianjin Medical University , Tianjin , China
| |
Collapse
|
31
|
Wang S, Breskovska I, Gandhy S, Punga AR, Guptill JT, Kaminski HJ. Advances in autoimmune myasthenia gravis management. Expert Rev Neurother 2018; 18:573-588. [PMID: 29932785 PMCID: PMC6289049 DOI: 10.1080/14737175.2018.1491310] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an autoimmune neuromuscular disorder with no cure and conventional treatments limited by significant adverse effects and variable benefit. In the last decade, therapeutic development has expanded based on improved understanding of autoimmunity and financial incentives for drug development in rare disease. Clinical subtypes exist based on age, gender, thymic pathology, autoantibody profile, and other poorly defined factors, such as genetics, complicate development of specific therapies. Areas covered: Clinical presentation and pathology vary considerably among patients with some having weakness limited to the ocular muscles and others having profound generalized weakness leading to respiratory insufficiency. MG is an antibody-mediated disorder dependent on autoreactive B cells which require T-cell support. Treatments focus on elimination of circulating autoantibodies or inhibition of effector mechanisms by a broad spectrum of approaches from plasmapheresis to B-cell elimination to complement inhibition. Expert commentary: Standard therapies and those under development are disease modifying and not curative. As a rare disease, clinical trials are challenged in patient recruitment. The great interest in development of treatments specific for MG is welcome, but decisions will need to be made to focus on those that offer significant benefits to patients.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Neurology, George Washington University, Washington DC 20008
| | - Iva Breskovska
- Department of Neurology, George Washington University, Washington DC 20008
| | - Shreya Gandhy
- Department of Neurology, George Washington University, Washington DC 20008
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Jeffery T. Guptill
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington DC 20008
| |
Collapse
|
32
|
Nielsen BE, Minguez T, Bermudez I, Bouzat C. Molecular function of the novel α7β2 nicotinic receptor. Cell Mol Life Sci 2018; 75:2457-2471. [PMID: 29313059 PMCID: PMC11105712 DOI: 10.1007/s00018-017-2741-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023]
Abstract
The α7 nicotinic receptor is a promising drug target for neurological and inflammatory disorders. Although it is the homomeric member of the family, a novel α7β2 heteromeric receptor has been discovered. To decipher the functional contribution of the β2 subunit, we generated heteromeric receptors with fixed stoichiometry by two different approaches comprising concatenated and unlinked subunits. Receptors containing up to three β2 subunits are functional. As the number of β2 subunits increases in the pentameric arrangement, the durations of channel openings and activation episodes increase progressively probably due to decreased desensitization. The prolonged activation episodes conform the kinetic signature of α7β2 and may have an impact on neuronal excitability. For activation of α7β2 receptors, an α7/α7 binding-site interface is required, thus indicating that the three β2 subunits are located consecutively in the pentameric arrangement. α7-positive allosteric modulators (PAMs) are emerging as novel therapeutic drugs. The presence of β2 in the pentamer affects neither type II PAM potentiation nor activation by an allosteric agonist whereas it impairs type I PAM potentiation. This first single-channel study provides fundamental basis required to decipher the role and function of the novel α7β2 receptor and opens doors to develop selective therapeutic drugs.
Collapse
Affiliation(s)
- Beatriz E Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (UNS-CONICET), 8000, Bahía Blanca, Argentina
| | - Teresa Minguez
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Isabel Bermudez
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (UNS-CONICET), 8000, Bahía Blanca, Argentina.
| |
Collapse
|
33
|
Wonnacott S, Bermudez I, Millar NS, Tzartos SJ. Nicotinic acetylcholine receptors. Br J Pharmacol 2018; 175:1785-1788. [PMID: 29878346 PMCID: PMC5979630 DOI: 10.1111/bph.14209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This themed section of the British Journal of Pharmacology is the product of a conference that focussed on nicotinic ACh receptors (nAChRs) that was held on the Greek island of Crete from 7 to 11 May 2017. 'Nicotinic acetylcholine receptors 2017' was the fourth in a series of triennial international meetings that have provided a regular forum for scientists working on all aspects of nAChRs to meet and to discuss new developments. In addition to many of the regular participants, each meeting has also attracted a new group of scientists working in a fast-moving area of research. This themed section comprises both review articles and original research papers on nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc/.
Collapse
Affiliation(s)
- Sue Wonnacott
- Department of Biology & BiochemistryUniversity of BathBathUK
| | - Isabel Bermudez
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Neil S Millar
- Department of Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUK
| | | |
Collapse
|
34
|
Lasala M, Corradi J, Bruzzone A, Esandi MDC, Bouzat C. A human-specific, truncated α7 nicotinic receptor subunit assembles with full-length α7 and forms functional receptors with different stoichiometries. J Biol Chem 2018; 293:10707-10717. [PMID: 29784875 DOI: 10.1074/jbc.ra117.001698] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/15/2018] [Indexed: 11/06/2022] Open
Abstract
The cholinergic α7 nicotinic receptor gene, CHRNA7, encodes a subunit that forms the homopentameric α7 receptor, involved in learning and memory. In humans, exons 5-10 in CHRNA7 are duplicated and fused to the FAM7A genetic element, giving rise to the hybrid gene CHRFAM7A Its product, dupα7, is a truncated subunit lacking part of the N-terminal extracellular ligand-binding domain and is associated with neurological disorders, including schizophrenia, and immunomodulation. We combined dupα7 expression on mammalian cells with patch clamp recordings to understand its functional role. Transfected cells expressed dupα7 protein, but they exhibited neither surface binding of the α7 antagonist α-bungarotoxin nor responses to acetylcholine (ACh) or to an allosteric agonist that binds to the conserved transmembrane region. To determine whether dupα7 assembles with α7, we generated receptors comprising α7 and dupα7 subunits, one of which was tagged with conductance substitutions that report subunit stoichiometry and monitored ACh-elicited channel openings in the presence of a positive allosteric α7 modulator. We found that α7 and dupα7 subunits co-assemble into functional heteromeric receptors, which require at least two α7 subunits for channel opening, and that dupα7's presence in the pentameric arrangement does not affect the duration of the potentiated events compared with that of α7. Using an α7 subunit mutant, we found that activation of (α7)2(dupα7)3 receptors occurs through ACh binding at the α7/α7 interfacial binding site. Our study contributes to the understanding of the modulation of α7 function by the human specific, duplicated subunit, associated with human disorders.
Collapse
Affiliation(s)
- Matías Lasala
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | - Jeremías Corradi
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | - Ariana Bruzzone
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | - María Del Carmen Esandi
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | - Cecilia Bouzat
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| |
Collapse
|
35
|
Pless SA, Sivilotti LG. A tale of ligands big and small: an update on how pentameric ligand-gated ion channels interact with agonists and proteins. CURRENT OPINION IN PHYSIOLOGY 2018; 2:19-26. [PMID: 31231710 DOI: 10.1016/j.cophys.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs, also known as Cys-loop receptors) are a large family of ion channels expressed in all Bilateria and in several groups of bacteria and archaea. They are activated by small-molecule neurotransmitters to mediate fast transmission at many central and peripheral nervous system synapses and are the target of several drugs and insecticides. Here we review recent advances in the field, focussing on new insights on the structure of the agonist-binding site and on newly discovered protein-protein interactions involving pLGICs.
Collapse
Affiliation(s)
- Stephan A Pless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, United Kingdom
| |
Collapse
|
36
|
Bouzat C, Lasala M, Nielsen BE, Corradi J, Esandi MDC. Molecular function of α7 nicotinic receptors as drug targets. J Physiol 2017; 596:1847-1861. [PMID: 29131336 DOI: 10.1113/jp275101] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in many physiological and pathological processes. In vertebrates, there are seventeen different nAChR subunits that combine to yield a variety of receptors with different pharmacology, function, and localization. The homomeric α7 receptor is one of the most abundant nAChRs in the nervous system and it is also present in non-neuronal cells. It plays important roles in cognition, memory, pain, neuroprotection, and inflammation. Its diverse physiological actions and associated disorders have made of α7 an attractive novel target for drug modulation. Potentiation of the α7 receptor has emerged as a novel therapeutic strategy for several neurological diseases, such as Alzheimer's and Parkinson's diseases, and inflammatory disorders. In contrast, increased α7 activity has been associated with cancer cell proliferation. The presence of different drug target sites offers a great potential for α7 modulation in different pathological contexts. In particular, compounds that target allosteric sites offer significant advantages over orthosteric agonists due to higher selectivity and a broader spectrum of degrees and mechanisms of modulation. Heterologous expression of α7, together with chaperone proteins, combined with patch clamp recordings have provided important advances in our knowledge of the molecular basis of α7 responses and their potential modulation for pathological processes. This review gives a synthetic view of α7 and its molecular function, focusing on how its unique activation and desensitization features can be modified by pharmacological agents. This fundamental information offers insights into therapeutic strategies.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Matías Lasala
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Beatriz Elizabeth Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| |
Collapse
|
37
|
Plomp JJ, Huijbers MGM, Verschuuren JJGM. Neuromuscular synapse electrophysiology in myasthenia gravis animal models. Ann N Y Acad Sci 2017; 1412:146-153. [PMID: 29068559 DOI: 10.1111/nyas.13507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022]
Abstract
The neuromuscular junction (NMJ) forms the synaptic connection between a motor neuron and a skeletal muscle fiber. In order to achieve a sustained muscle contraction, this synapse has to reliably transmit motor neuronal action potentials onto the muscle fiber. To guarantee successful transmission even during intense activation of the NMJ, a safety factor of neuromuscular transmission exists. In the neuromuscular disorder myasthenia gravis (MG), autoantibodies are directed against acetylcholine receptors or, in the rarer variants, against other postsynaptic NMJ proteins. This causes loss of functional acetylcholine receptors, which compromises the safety factor of neuromuscular transmission, leading to the typical fatigable muscle weakness of MG. With intracellular microelectrode measurement of (miniature) endplate potentials at NMJs in ex vivo nerve-muscle preparations from MG animal models, these functional synaptic defects have been determined in much detail. Here, we describe the electrophysiological events at the normal NMJ and the pathoelectrophysiology at NMJs of animal models for MG.
Collapse
Affiliation(s)
- Jaap J Plomp
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maartje G M Huijbers
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | |
Collapse
|