1
|
Lavi ED, Gagnon Z. Measurement and analysis of ionic leakage profiles in refrigerated human red blood cells using dielectrophoresis and inductively coupled mass spectroscopy. Electrophoresis 2024; 45:1840-1850. [PMID: 38845539 DOI: 10.1002/elps.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 10/25/2024]
Abstract
Human red blood cells (RBCs) undergo ionic leakage through passive diffusion during refrigerated storage, affecting their quality and health. We investigated the dynamics of ionic leakage in human RBCs over a 20-day refrigerated storage period using extracellular ion quantification and dielectrophoresis (DEP). Four type O- human blood donors were examined to assess the relationship between extracellular ion concentrations (Na+, K+, Mg2+, Ca2+, and Fe2+), RBC cytoplasm conductivity, and membrane conductance. A consistent negative correlation between RBC cytoplasm conductivity and membrane conductance, termed the "ionic leakage profile" (ILP), was observed across the 20-day storage period. Specifically, we noted a gradual decline in DEP-measured RBC cytoplasm conductivity alongside an increase in membrane conductance. Further examination of the electrical origins of this ILP using inductively coupled plasma mass spectrometry revealed a relative decrease in extracellular Na+ concentration and an increase in K+ concentration over the storage period. Correlation of these extracellular ion concentrations with DEP-measured RBC electrical properties demonstrated a direct link between changes in the cytoplasmic and membrane domains and the leakage and transport of K+ and Na+ ions across the cell membrane. Our analysis suggests that the inverse correlation between RBC cytoplasm and membrane conductance is primarily driven by the passive diffusion of K+ from the cytoplasm and the concurrent diffusion of Na+ from the extracellular buffer into the membrane, resulting in a conductive reduction in the cytoplasmic domain and a subsequent increase in the membrane. The ILP's consistent negative trend across all donors suggests that it could serve as a metric for quantifying blood bank storage age, predicting the quality and health of refrigerated RBCs.
Collapse
Affiliation(s)
- Edwin D Lavi
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Zachary Gagnon
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Ku J, Asuri P. Stem cell-based approaches for developmental neurotoxicity testing. FRONTIERS IN TOXICOLOGY 2024; 6:1402630. [PMID: 39238878 PMCID: PMC11374538 DOI: 10.3389/ftox.2024.1402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Neurotoxicants are substances that can lead to adverse structural or functional effects on the nervous system. These can be chemical, biological, or physical agents that can cross the blood brain barrier to damage neurons or interfere with complex interactions between the nervous system and other organs. With concerns regarding social policy, public health, and medicine, there is a need to ensure rigorous testing for neurotoxicity. While the most common neurotoxicity tests involve using animal models, a shift towards stem cell-based platforms can potentially provide a more biologically accurate alternative in both clinical and pharmaceutical research. With this in mind, the objective of this article is to review both current technologies and recent advancements in evaluating neurotoxicants using stem cell-based approaches, with an emphasis on developmental neurotoxicants (DNTs) as these have the most potential to lead to irreversible critical damage on brain function. In the next section, attempts to develop novel predictive model approaches for the study of both neural cell fate and developmental neurotoxicity are discussed. Finally, this article concludes with a discussion of the future use of in silico methods within developmental neurotoxicity testing, and the role of regulatory bodies in promoting advancements within the space.
Collapse
Affiliation(s)
- Joy Ku
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
3
|
Zhang C, You Y, Xie Y, Han L, Sun D, Chen S. Salt gradient enhanced sensitivity in nanopores for intracellular calcium ion detection. Talanta 2024; 276:126261. [PMID: 38761659 DOI: 10.1016/j.talanta.2024.126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Intracellular calcium ion detection is of great significance for understanding the cell metabolism and signaling pathways. Most of the current ionic sensors either face the size issue or sensitivity limit for the intracellular solution with high background ion concentrations. In this paper, we proposed a calmodulin (CaM) functionalized nanopore for sensitive and selective Ca2+ detection inside living cells. A salt gradient was created when the nanopore sensor filled with a low concentration electrolyte was in contact with a high background concentration solution, which enhanced the surface charge-based detection sensitivity. The nanopore sensor showed a 10 × sensitivity enhancement by application of a 100-fold salt gradient, and a detection limit of sub nM. The sensor had a wide detection range from 1 nM to 1 mM, and allowed for quick calcium ion quantification in a few seconds. The sensor was demonstrated for intracellular Ca2+ detection in A549 cells in response to ionomycin.
Collapse
Affiliation(s)
- Changling Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yuru You
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yu Xie
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Lianhuan Han
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Rogers M, Obergrussberger A, Kondratskyi A, Fertig N. Using automated patch clamp electrophysiology platforms in ion channel drug discovery: an industry perspective. Expert Opin Drug Discov 2024; 19:523-535. [PMID: 38481119 DOI: 10.1080/17460441.2024.2329104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Automated patch clamp (APC) is now well established as a mature technology for ion channel drug discovery in academia, biotech and pharma companies, and in contract research organizations (CRO), for a variety of applications including channelopathy research, compound screening, target validation and cardiac safety testing. AREAS COVERED Ion channels are an important class of drugged and approved drug targets. The authors present a review of the current state of ion channel drug discovery along with new and exciting developments in ion channel research involving APC. This includes topics such as native and iPSC-derived cells in ion channel drug discovery, channelopathy research, organellar and biologics in ion channel drug discovery. EXPERT OPINION It is our belief that APC will continue to play a critical role in ion channel drug discovery, not only in 'classical' hit screening, target validation and cardiac safety testing, but extending these applications to include high throughput organellar recordings and optogenetics. In this way, with advancements in APC capabilities and applications, together with high resolution cryo-EM structures, ion channel drug discovery will be re-invigorated, leading to a growing list of ion channel ligands in clinical development.
Collapse
Affiliation(s)
- Marc Rogers
- Albion Drug Discovery Services Ltd, Cambridge, UK
| | | | | | | |
Collapse
|
5
|
Ma K, Cheng Z, Jiang H, Lin Z, Liu C, Liu X, Lu L, Lu Y, Tao W, Wang S, Yang X, Yi Q, Zhang X, Zhang Y, Liu Y. Expert Consensus on Ion Channel Drugs for Chronic Pain Treatment in China. J Pain Res 2024; 17:953-963. [PMID: 38476873 PMCID: PMC10929561 DOI: 10.2147/jpr.s445171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Ion channel drugs have been increasing used for chronic pain management with progress in the development of selective calcium channel modulators. Although ion channel drugs have been proven safe and effective in clinical practice, uncertainty remains regarding its use to treat chronic pain. To standardize the clinical practice of ion channel drug for the treatment of chronic pain, the National Health Commission Capacity Building and Continuing Education Center for Pain Diagnosis and Treatment Special Ability Training Project established an expert group to form an expert consensus on the use of ion channel drugs for the treatment of chronic pain after repeated discussions on existing medical evidence combined with the well clinical experience of experts. The consensus provided information on the mechanism of action of ion channel drugs and their recommendations, caution use, contraindications, and precautions for their use in special populations to support doctors in their clinical decision-making.
Collapse
Affiliation(s)
- Ke Ma
- Department of Algology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhixiang Cheng
- Department of Algology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hao Jiang
- Department of Algology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Zhangya Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Chuansheng Liu
- Department of Algology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xianguo Liu
- Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Lijuan Lu
- Department of Pain Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yan Lu
- Department of Algology, Xijing Hospital, The Fourth Military Medical University, Xian, People’s Republic of China
| | - Wei Tao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, People’s Republic of China
| | - Suoliang Wang
- Department of Algology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiaoqiu Yang
- Department of Algology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qishan Yi
- Department of Algology, The Yibin First People’s Hospital Affiliated Chongqing Medical University, Yibin, People’s Republic of China
| | - Xiaomei Zhang
- Department of Algology, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Ying Zhang
- Department of Algology. Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, People’s Republic of China
| | - Yanqing Liu
- Department of Algology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Dallas ML, Bell D. Advances in ion channel high throughput screening: where are we in 2023? Expert Opin Drug Discov 2024; 19:331-337. [PMID: 38108110 DOI: 10.1080/17460441.2023.2294948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Automated Patch Clamp (APC) technology has become an integral element in ion channel research, drug discovery and development pipelines to overcome the use of the highly time-consuming manual patch clamp (MPC) procedures. This automated technology offers increased throughput and promises a new model in obtaining ion channel recordings, which has significant relevance to the development of novel therapies and safety profiling of candidate therapeutic compounds. AREAS COVERED This article reviews the recent innovations in APC technology, including platforms, and highlights how they have facilitated usage in both industry and academia. The review also provides an overview of the ion channel research endeavors and how APC platforms have contributed to the understanding of ion channel research, pharmacological tools and therapeutics. Furthermore, the authors provide their opinion on the challenges and goals for APC technology going forward to accelerate academic research and drug discovery across a host of therapeutic areas. EXPERT OPINION It is clear that APC technology has progressed drug discovery programs, specifically in the field of neuroscience and cardiovascular research. The challenge for the future is to keep pace with fundamental research and improve translation of the large datasets obtained.
Collapse
Affiliation(s)
- Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, UK
| | | |
Collapse
|
7
|
Buentello DC, Garcia-Corral M, Trujillo-de Santiago G, Alvarez MM. Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Rev Biomed Eng 2024; 17:243-263. [PMID: 36301779 DOI: 10.1109/rbme.2022.3217486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuron-on-chip (NoC) systems-microfluidic devices in which neurons are cultured-have become a promising alternative to replace or minimize the use of animal models and have greatly facilitated in vitro research. Here, we review and discuss current developments in neuron-on-chip platforms, with a particular emphasis on existing biological models, culturing techniques, biomaterials, and topologies. We also discuss how the architecture, flow, and gradients affect neuronal growth, differentiation, and development. Finally, we discuss some of the most recent applications of NoCs in fundamental research (i.e., studies on the effects of electrical, mechanical/topological, or chemical stimuli) and in disease modeling.
Collapse
|
8
|
Dong K, Liu WC, Su Y, Lyu Y, Huang H, Zheng N, Rogers JA, Nan K. Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices. BME FRONTIERS 2023; 4:0034. [PMID: 38435343 PMCID: PMC10907027 DOI: 10.34133/bmef.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Millimeter-scale animals such as Caenorhabditis elegans, Drosophila larvae, zebrafish, and bees serve as powerful model organisms in the fields of neurobiology and neuroethology. Various methods exist for recording large-scale electrophysiological signals from these animals. Existing approaches often lack, however, real-time, uninterrupted investigations due to their rigid constructs, geometric constraints, and mechanical mismatch in integration with soft organisms. The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability, offering unique capabilities for chronic, stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs. This review summarizes the most advanced technologies for electrophysiological studies, based on methods of 3-dimensional flexible bioelectronics. A concluding section addresses the challenges of these devices in achieving freestanding, robust, and multifunctional biointerfaces.
Collapse
Affiliation(s)
- Kairu Dong
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, 310027, China
| | - Wen-Che Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
| | - Yuyan Su
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
| | - Yidan Lyu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies,
Zhejiang University, Hangzhou 310027, China
- College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China
- State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou 310058, China
- CCAI by MOE and Zhejiang Provincial Government (ZJU), Hangzhou 310027, China
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics,
Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA
| | - Kewang Nan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
9
|
Rockley K, Roberts R, Jennings H, Jones K, Davis M, Levesque P, Morton M. An integrated approach for early in vitro seizure prediction utilizing hiPSC neurons and human ion channel assays. Toxicol Sci 2023; 196:126-140. [PMID: 37632788 DOI: 10.1093/toxsci/kfad087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Seizure liability remains a significant cause of attrition throughout drug development. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. We assessed the activity of 15 pro-seizurogenic compounds (7 CNS active therapies, 4 GABA receptor antagonists, and 4 other reported seizurogenic compounds) using automated electrophysiology against a panel of 14 ion channels (Nav1.1, Nav1.2, Nav1.6, Kv7.2/7.3, Kv7.3/7.5, Kv1.1, Kv4.2, KCa4.1, Kv2.1, Kv3.1, KCa1.1, GABA α1β2γ2, nicotinic α4β2, NMDA 1/2A). These were selected based on linkage to seizure in genetic/pharmacological studies. Fourteen compounds demonstrated at least one "hit" against the seizure panel and 11 compounds inhibited 2 or more ion channels. Next, we assessed the impact of the 15 compounds on electrical signaling using human-induced pluripotent stem cell neurons in microelectrode array (MEA). The CNS active therapies (amoxapine, bupropion, chlorpromazine, clozapine, diphenhydramine, paroxetine, quetiapine) all caused characteristic changes to electrical activity in key parameters indicative of seizure such as network burst frequency and duration. The GABA antagonist picrotoxin increased all parameters, but the antibiotics amoxicillin and enoxacin only showed minimal changes. Acetaminophen, included as a negative control, caused no changes in any of the parameters assessed. Overall, pro-seizurogenic compounds showed a distinct fingerprint in the ion channel/MEA panel. These studies highlight the potential utility of an integrated in vitro approach for early seizure prediction to provide mechanistic information and to support optimal drug design in early development, saving time and resources.
Collapse
Affiliation(s)
| | - Ruth Roberts
- ApconiX, Macclesfield SK10 4TG, UK
- Department of Biosciences, University of Birmingham, Edgbaston B15 1TT, UK
| | | | | | - Myrtle Davis
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | |
Collapse
|
10
|
Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N, Ghadieh HE, Veesler S, Bassim Y, Azar S, Harb F. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules 2023; 28:7176. [PMID: 37894653 PMCID: PMC10608922 DOI: 10.3390/molecules28207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic cells, membrane proteins play a crucial role. They fall into three categories: intrinsic proteins, extrinsic proteins, and proteins that are essential to the human genome (30% of which is devoted to encoding them). Hydrophobic interactions inside the membrane serve to stabilize integral proteins, which span the lipid bilayer. This review investigates a number of computational and experimental methods used to study membrane proteins. It encompasses a variety of technologies, including electrophoresis, X-ray crystallography, cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance spectroscopy (NMR), biophysical methods, computational methods, and artificial intelligence. The link between structure and function of membrane proteins has been better understood thanks to these approaches, which also hold great promise for future study in the field. The significance of fusing artificial intelligence with experimental data to improve our comprehension of membrane protein biology is also covered in this paper. This effort aims to shed light on the complexity of membrane protein biology by investigating a variety of experimental and computational methods. Overall, the goal of this review is to emphasize how crucial it is to understand the functions of membrane proteins in eukaryotic cells. It gives a general review of the numerous methods used to look into these crucial elements and highlights the demand for multidisciplinary approaches to advance our understanding.
Collapse
Affiliation(s)
- Imad Boulos
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Joy Jabbour
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Serena Khoury
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Nehme Mikhael
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Victoria Tishkova
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Nadine Candoni
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Stéphane Veesler
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Youssef Bassim
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Frédéric Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| |
Collapse
|
11
|
Chen Y, Yu X, Li W, Tang Y, Liu G. In silico prediction of hERG blockers using machine learning and deep learning approaches. J Appl Toxicol 2023; 43:1462-1475. [PMID: 37093028 DOI: 10.1002/jat.4477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
The human ether-à-go-go-related gene (hERG) is associated with drug cardiotoxicity. If the hERG channel is blocked, it will lead to prolonged QT interval and cause sudden death in severe cases. Therefore, it is important to evaluate the hERG-blocking property of compounds in early drug discovery. In this study, a dataset containing 4556 compounds with IC50 values determined by patch clamp techniques on mammalian lineage cells was collected, and hERG blockers and non-blockers were distinguished according to three single thresholds and two binary thresholds. Four machine learning (ML) algorithms combining four molecular fingerprints and molecular descriptors as well as graph convolutional neural networks (GCNs) were used to construct a series of binary classification models. The results showed that the best models varied for different thresholds. The ML models implemented by support vector machine and random forest performed well based on Morgan fingerprints and molecular descriptors, with AUCs ranging from 0.884 to 0.950. GCN showed superior prediction performance with AUCs above 0.952, which might be related to its direct extraction of molecular features from the original input. Meanwhile, the classification of binary threshold was better than that of single threshold, which could provide us with a more accurate prediction of hERG blockers. At last, the applicability domain for the model was defined, and seven structural alerts that might generate hERG blockage were identified by information gain and substructure frequency analysis. Our work would be beneficial for identifying hERG blockers in chemicals.
Collapse
Affiliation(s)
- Yuanting Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinxin Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
12
|
Ahmadi S, Benard-Valle M, Boddum K, Cardoso FC, King GF, Laustsen AH, Ljungars A. From squid giant axon to automated patch-clamp: electrophysiology in venom and antivenom research. Front Pharmacol 2023; 14:1249336. [PMID: 37693897 PMCID: PMC10484000 DOI: 10.3389/fphar.2023.1249336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Ion channels play a crucial role in diverse physiological processes, including neurotransmission and muscle contraction. Venomous creatures exploit the vital function of ion channels by producing toxins in their venoms that specifically target these ion channels to facilitate prey capture upon a bite or a sting. Envenoming can therefore lead to ion channel dysregulation, which for humans can result in severe medical complications that often necessitate interventions such as antivenom administration. Conversely, the discovery of highly potent and selective venom toxins with the capability of distinguishing between different isoforms and subtypes of ion channels has led to the development of beneficial therapeutics that are now in the clinic. This review encompasses the historical evolution of electrophysiology methodologies, highlighting their contributions to venom and antivenom research, including venom-based drug discovery and evaluation of antivenom efficacy. By discussing the applications and advancements in patch-clamp techniques, this review underscores the profound impact of electrophysiology in unravelling the intricate interplay between ion channels and venom toxins, ultimately leading to the development of drugs for envenoming and ion channel-related pathologies.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Melisa Benard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Fernanda C. Cardoso
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, University of Queensland, St Lucia, QLD, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, University of Queensland, St Lucia, QLD, Australia
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Bartz FM, Beirow K, Wurm K, Baecker D, Link A, Bednarski PJ. A graphite furnace-atomic absorption spectrometry-based rubidium efflux assay for screening activators of the K v 7.2/3 channel. Arch Pharm (Weinheim) 2023; 356:e2200585. [PMID: 36748851 DOI: 10.1002/ardp.202200585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
For the characterization of Kv 7.2/3 channel activators, several analytical methods are available that vary in effort and cost. In addition to the technically elaborate patch-clamp method, which serves as a reference method, there exist several medium to high-throughput screening methods including a rubidium efflux flame-atomic absorption spectrometry (F-AAS) assay and a commercial thallium uptake fluorescence-based assay. In this study, the general suitability of a graphite furnace atomic absorption spectrometry (GF-AAS)-based rubidium efflux assay as a screening method for Kv 7.2/3 channel activators was demonstrated. With flupirtine serving as a reference compound, 16 newly synthesizedcompounds and the known Kv 7.2/3 activator retigabine were first classified as either active or inactive by using the GF-AAS-based rubidium (Rb) efflux assay. Then, the results were compared with a thallium (Tl) uptake fluorescence-based fluorometric imaging plate reader (FLIPR) potassium assay. Overall, 16 of 17 compounds were classified by the GF-AAS-based assay in agreement with their channel-activating properties determined by the more expensive Tl uptake, fluorescence-based assay. Thus, the performance of the GF-AAS-based Rb assay for primary drug screening of Kv 7.2/3-activating compounds was clearly demonstrated, as documented by the calculated Z'-factor of the GF-AAS-based method. Moreover, method development included optimization of the coating of the microtiter plates and the washing procedure, which extended the range of this assay to poorly adherent cells such as the HEK293 cells used in this study.
Collapse
Affiliation(s)
- Frieda-Marie Bartz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Kristin Beirow
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Konrad Wurm
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Strand N, J M, Tieppo Francio V, M M, Turkiewicz M, El Helou A, M M, S C, N S, J P, C W. Advances in Pain Medicine: a Review of New Technologies. Curr Pain Headache Rep 2022; 26:605-616. [PMID: 35904729 PMCID: PMC9334973 DOI: 10.1007/s11916-022-01062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This narrative review highlights the interventional musculoskeletal techniques that have evolved in recent years. RECENT FINDINGS The recent progress in pain medicine technologies presented here represents the ideal treatment of the pain patient which is to provide personalized care. Advances in pain physiology research and pain management technologies support each other concurrently. As new technologies give rise to new perspectives and understanding of pain, new research inspires the development of new technologies.
Collapse
Affiliation(s)
- Natalie Strand
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA.
- NorthShore University HealthSystem, Evanston, IL, USA.
- University of Chicago Medicine, Chicago, IL, USA.
| | - Maloney J
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Vinicius Tieppo Francio
- Department of Rehabilitation Medicine, The University of Kansas Medical Center (KUMC), 3901 Rainbow Blvd. MS1046, Kansas City, KS, 66160, USA
| | - Murphy M
- Department of Rehabilitation Medicine, The University of Kansas Medical Center (KUMC), 3901 Rainbow Blvd. MS1046, Kansas City, KS, 66160, USA
| | | | - Antonios El Helou
- Department of Neurosurgery, The Moncton Hospital, Moncton, NB, Canada
| | - Maita M
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Covington S
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Singh N
- OrthoAlabama Spine and Sports, Birmingham, AL, USA
| | - Peck J
- Performing Arts Medicine Department, Shenandoah University, Winchester, VA, USA
| | - Wie C
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
15
|
Rosholm KR, Badone B, Karatsiompani S, Nagy D, Seibertz F, Voigt N, Bell DC. Adventures and Advances in Time Travel With Induced Pluripotent Stem Cells and Automated Patch Clamp. Front Mol Neurosci 2022; 15:898717. [PMID: 35813069 PMCID: PMC9258620 DOI: 10.3389/fnmol.2022.898717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023] Open
Abstract
In the Hollywood blockbuster “The Curious Case of Benjamin Button” a fantastical fable unfolds of a man’s life that travels through time reversing the aging process; as the tale progresses, the frail old man becomes a vigorous, vivacious young man, then man becomes boy and boy becomes baby. The reality of cellular time travel, however, is far more wondrous: we now have the ability to both reverse and then forward time on mature cells. Four proteins were found to rewind the molecular clock of adult cells back to their embryonic, “blank canvas” pluripotent stem cell state, allowing these pluripotent stem cells to then be differentiated to fast forward their molecular clocks to the desired adult specialist cell types. These four proteins – the “Yamanaka factors” – form critical elements of this cellular time travel, which deservedly won Shinya Yamanaka the Nobel Prize for his lab’s work discovering them. Human induced pluripotent stem cells (hiPSCs) hold much promise in our understanding of physiology and medicine. They encapsulate the signaling pathways of the desired cell types, such as cardiomyocytes or neurons, and thus act as model cells for defining the critical ion channel activity in healthy and disease states. Since hiPSCs can be derived from any patient, highly specific, personalized (or stratified) physiology, and/or pathophysiology can be defined, leading to exciting developments in personalized medicines and interventions. As such, hiPSC married with high throughput automated patch clamp (APC) ion channel recording platforms provide a foundation for significant physiological, medical and drug discovery advances. This review aims to summarize the current state of affairs of hiPSC and APC: the background and recent advances made; and the pros, cons and challenges of these technologies. Whilst the authors have yet to finalize a fully functional time traveling machine, they will endeavor to provide plausible future projections on where hiPSC and APC are likely to carry us. One future projection the authors are confident in making is the increasing necessity and adoption of these technologies in the discovery of the next blockbuster, this time a life-enhancing ion channel drug, not a fantastical movie.
Collapse
Affiliation(s)
- Kadla R. Rosholm
- Sophion Bioscience A/S, Ballerup, Denmark
- *Correspondence: Kadla R. Rosholm,
| | | | | | - David Nagy
- Sophion Bioscience Inc., Woburn, MA, United States
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
16
|
Fallah HP, Ahuja E, Lin H, Qi J, He Q, Gao S, An H, Zhang J, Xie Y, Liang D. A Review on the Role of TRP Channels and Their Potential as Drug Targets_An Insight Into the TRP Channel Drug Discovery Methodologies. Front Pharmacol 2022; 13:914499. [PMID: 35685622 PMCID: PMC9170958 DOI: 10.3389/fphar.2022.914499] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Transient receptor potential (TRP) proteins are a large group of ion channels that control many physiological functions in our body. These channels are considered potential therapeutic drug targets for various diseases such as neurological disorders, cancers, cardiovascular disease, and many more. The Nobel Prize in Physiology/Medicine in the year 2021 was awarded to two scientists for the discovery of TRP and PIEZO ion channels. Improving our knowledge of technologies for their study is essential. In the present study, we reviewed the role of TRP channel types in the control of normal physiological functions as well as disease conditions. Also, we discussed the current and novel technologies that can be used to study these channels successfully. As such, Flux assays for detecting ionic flux through ion channels are among the core and widely used tools for screening drug compounds. Technologies based on these assays are available in fully automated high throughput set-ups and help detect changes in radiolabeled or non-radiolabeled ionic flux. Aurora's Ion Channel Reader (ICR), which works based on label-free technology of flux assay, offers sensitive, accurate, and reproducible measurements to perform drug ranking matching with patch-clamp (gold standard) data. The non-radiolabeled trace-based flux assay coupled with the ICR detects changes in various ion types, including potassium, calcium, sodium, and chloride channels, by using appropriate tracer ions. This technology is now considered one of the very successful approaches for analyzing ion channel activity in modern drug discovery. It could be a successful approach for studying various ion channels and transporters, including the different members of the TRP family of ion channels.
Collapse
Affiliation(s)
| | - Ekta Ahuja
- Aurora Biomed Inc., Vancouver, BC, Canada
| | | | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qian He
- Aurora Discovery Inc., Foshan, China
| | - Shan Gao
- Aurora Discovery Inc., Foshan, China
| | | | | | | | - Dong Liang
- Aurora Biomed Inc., Vancouver, BC, Canada
- Aurora Discovery Inc., Foshan, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Mathie A, Veale EL, Golluscio A, Holden RG, Walsh Y. Pharmacological Approaches to Studying Potassium Channels. Handb Exp Pharmacol 2021; 267:83-111. [PMID: 34195873 DOI: 10.1007/164_2021_502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we consider the pharmacology of potassium channels from the perspective of these channels as therapeutic targets. Firstly, we describe the three main families of potassium channels in humans and disease states where they are implicated. Secondly, we describe the existing therapeutic agents which act on potassium channels and outline why these channels represent an under-exploited therapeutic target with potential for future drug development. Thirdly, we consider the evidence desired in order to embark on a drug discovery programme targeting a particular potassium channel. We have chosen two "case studies": activators of the two-pore domain potassium (K2P) channel TREK-2 (K2P10.1), for the treatment of pain and inhibitors of the voltage-gated potassium channel KV1.3, for use in autoimmune diseases such as multiple sclerosis. We describe the evidence base to suggest why these are viable therapeutic targets. Finally, we detail the main technical approaches available to characterise the pharmacology of potassium channels and identify novel regulatory compounds. We draw particular attention to the Comprehensive in vitro Proarrhythmia Assay initiative (CiPA, https://cipaproject.org ) project for cardiac safety, as an example of what might be both desirable and possible in the future, for ion channel regulator discovery projects.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Kent, Kent, UK. .,Medway School of Pharmacy, University of Greenwich, London, UK. .,School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, UK.
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Alessia Golluscio
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Robyn G Holden
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Yvonne Walsh
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| |
Collapse
|
18
|
Manz KM, Siemann JK, McMahon DG, Grueter BA. Patch-clamp and multi-electrode array electrophysiological analysis in acute mouse brain slices. STAR Protoc 2021; 2:100442. [PMID: 33899023 PMCID: PMC8056272 DOI: 10.1016/j.xpro.2021.100442] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Patch-clamp and multi-electrode array electrophysiology techniques are used to measure dynamic functional properties of neurons. Whole-cell and cell-attached patch-clamp recordings in brain slices can be performed in voltage-clamp and current-clamp configuration to reveal cell-type-specific synaptic and cellular parameters governing neurotransmission. Multi-electrode array electrophysiology can provide spike activity recordings from multiple neurons, enabling larger sample sizes, and long-term recordings. We provide our guide to preparing acute rodent brain slices with example experiments and analyses intended for novice and expert electrophysiologists. For complete details on the use and execution of this protocol, please refer to Manz et al. (2020b).
Collapse
Affiliation(s)
- Kevin M. Manz
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin K. Siemann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 3732, USA
| | - Douglas G. McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 3732, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brad A. Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Anesthesiology Research Division, Vanderbilt University School of Medicine, 2213 Garland Avenue, P435H MRB IV, Nashville, TN 37232-0413, USA
| |
Collapse
|
19
|
64 PI/PDMS hybrid cantilever arrays with an integrated strain sensor for a high-throughput drug toxicity screening application. Biosens Bioelectron 2021; 190:113380. [PMID: 34111727 DOI: 10.1016/j.bios.2021.113380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/12/2023]
Abstract
Herein, we propose a novel biosensing platform involving an array of 64 hybrid cantilevers and integrated strain sensors to measure the real-time contractility of the drug-treated cardiomyocytes (CMs). The strain sensor is integrated on the polyimide (PI) cantilever. To improve the strain sensor reliability and construct the engineered cardiac tissue, the nanogroove-patterned polydimethylsiloxane (PDMS) encapsulation layer is bonded on the PI cantilever. The preliminary sensing characteristics demonstrate the superior structural integrity, robustness, enhanced sensitivity, and repeatability of the proposed devices. The long-term durability and biocompatibility of the PI/PDMS hybrid cantilever is verified by evaluating the cell viability and contractility. We also validate the proposed biosensing platform for cardiotoxicity measurement by applying it to two specific cardiovascular drugs: quinidine and verapamil. In response to quinidine and verapamil, the engineered CMs exhibited negative inotropic and chronotropic effects. The fabricated cantilever device successfully detected the quinidine-induced adverse effects in CMs such as early after depolarization (EADs) and Torsade de points (TdP) in real-time. The array of hybrid cantilevers with integrated strain sensors has the potential to satisfy the need for innovative analytic platforms owing to its high throughput and simplified data analysis.
Collapse
|
20
|
Nakashima K, Nakao K, Matsui H. Discovery of Novel HCN4 Blockers with Unique Blocking Kinetics and Binding Properties. SLAS DISCOVERY 2021; 26:896-908. [PMID: 34041946 PMCID: PMC8293762 DOI: 10.1177/24725552211013824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channel underlies the pacemaker currents, called “If,” in sinoatrial nodes (SANs), which regulate heart rhythm. Some HCN4 blockers such as ivabradine have been extensively studied for treating various heart diseases. Studies have shown that these blockers have diverse state dependencies and binding sites, suggesting the existence of potential chemical and functional diversity among HCN4 blockers. Here we report approaches for the identification of novel HCN4 blockers through a random screening campaign among 16,000 small-molecule compounds using an automated patch-clamp system. These molecules exhibited various blockade profiles, and their blocking kinetics and associating amino acids were determined by electrophysiological studies and site-directed mutagenesis analysis, respectively. The profiles of these blockers were distinct from those of the previously reported HCN channel blockers ivabradine and ZD7288. Notably, the mutagenesis analysis showed that blockers with potencies that were increased when the channel was open involved a C478 residue, located at the pore cavity region near the cellular surface of the plasma membrane, while those with potencies that were decreased when the channel was open involved residues Y506 and I510, located at the intracellular region of the pore gate. Thus, this study reported for the first time the discovery of novel HCN4 blockers by screening, and their profiling analysis using an automated patch-clamp system provided chemical tools that will be useful to obtain unique molecular insights into the drug-binding modes of HCN4 and may contribute to the expansion of therapeutic options in the future.
Collapse
Affiliation(s)
- Kosuke Nakashima
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kenji Nakao
- Biomolecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.,Seedsupply Inc., Fujisawa, Kanagawa, Japan
| | - Hideki Matsui
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
21
|
Abstract
Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.
Collapse
|
22
|
Bell DC, Fermini B. Use of automated patch clamp in cardiac safety assessment: past, present and future perspectives. J Pharmacol Toxicol Methods 2021; 110:107072. [PMID: 33962018 DOI: 10.1016/j.vascn.2021.107072] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022]
Abstract
There is no doubt that automated patch clamp (APC) technology has revolutionized research in biomedical science. High throughput ion channel screening is now an integral part of the development and safety profiling of the majority of new chemical entities currently developed to address unmet medical needs. The increased throughput it provides has significantly improved the ability to overcome the time-consuming, low throughput bottlenecks resulting from the more conventional manual patch clamp method, considered the 'gold standard', for studying ion channel function and pharmacology. While systems offering the luxury of automation have only been commercially available for two decades, the road leading to this new technology is long and rich in seminal, hands-on, studies dating back as far as the 18th century. So where does this technology currently stand, and what will it look like in the future? In the current article, we review the scientific history leading to the development of APC systems, examine key drivers in the rapid development of this technology (such as failed ion channel programmes and the issue of drug-induced hERG inhibition and QT interval prolongation), highlight key capabilities and finally provide some perspective on the current and future impact of the technology on cardiac safety assessment and biomedical science.
Collapse
|
23
|
Gao J, Liao C, Liu S, Xia T, Jiang G. Nanotechnology: new opportunities for the development of patch-clamps. J Nanobiotechnology 2021; 19:97. [PMID: 33794903 PMCID: PMC8017657 DOI: 10.1186/s12951-021-00841-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
The patch-clamp technique is one of the best approaches to investigate neural excitability. Impressive improvements towards the automation of the patch-clamp technique have been made, but obvious limitations and hurdles still exist, such as parallelization, volume displacement in vivo, and long-term recording. Nanotechnologies have provided opportunities to overcome these hurdles by applying electrical devices on the nanoscale. Electrodes based on nanowires, nanotubes, and nanoscale field-effect transistors (FETs) are confirmed to be robust and less invasive tools for intracellular electrophysiological recording. Research on the interface between the nanoelectrode and cell membrane aims to reduce the seal conductance and further improve the recording quality. Many novel recording approaches advance the parallelization, and precision with reduced invasiveness, thus improving the overall intracellular recording system. The combination of nanotechnology and the present intracellular recording framework is a revolutionary and promising orientation, potentially becoming the next generation electrophysiological recording technique and replacing the conventional patch-clamp technique. Here, this paper reviews the recent advances in intracellular electrophysiological recording techniques using nanotechnology, focusing on the design of noninvasive and greatly parallelized recording systems based on nanoelectronics.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
25
|
Rosholm KR, Boddum K, Lindquist A. Perforated Whole-Cell Recordings in Automated Patch Clamp Electrophysiology. Methods Mol Biol 2021; 2188:93-108. [PMID: 33119848 DOI: 10.1007/978-1-0716-0818-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The automated patch clamp (APC) technology is used for increasing the data throughput of electrophysiological measurements, especially in safety pharmacology and drug discovery. Typically, electrical access to the cells are obtained using standard whole-cell formation by rupturing the membrane, thereby causing a rapid washout of cytosolic components. In contrast the perforated whole-cell configuration provides electrical access to the cell interior while limiting intracellular wash-out. This method allows for recordings of ion channels that are gated by intracellular modulators (e.g., ATP, cyclic nucleotides, or Ca2+), prevents channel current "run down," and maintains a physiological membrane potential for action potential recordings. Here we present some practical approaches to the use of perforated patch clamp for APC recordings. Our findings from these high-throughput, data-rich measurements (e.g., defining optimized concentrations and practical recommendations for four different perforating agents) can be more broadly applied to perforated patch clamp experiments in general (automated and manual), improving success rates, experimental conditions, and applications.
Collapse
Affiliation(s)
| | - Kim Boddum
- Sophion Bioscience A/S, Ballerup, Denmark
| | | |
Collapse
|
26
|
Abstract
Genetic mutations have long been implicated in epilepsy, particularly in genes that encode ion channels and neurotransmitter receptors. Among some of those identified are voltage-gated sodium, potassium and calcium channels, and ligand-gated gamma-aminobutyric acid (GABA), neuronal nicotinic acetylcholine (CHRN), and glutamate receptors, making them key therapeutic targets. In this chapter we discuss the use of automated electrophysiological technologies to examine the impact of gene defects in two potassium channels associated with different epilepsy syndromes. The hKCNC1 gene encodes the voltage-gated potassium channel hKV3.1, and mutations in this gene cause progressive myoclonus epilepsy (PME) and ataxia due to a potassium channel mutation (MEAK). The hKCNT1 gene encodes the weakly voltage-dependent sodium-activated potassium channel hKCNT1, and mutations in this gene cause a wide spectrum of seizure disorders, including severe autosomal dominant sleep-related hypermotor epilepsy (ADSHE) and epilepsy of infancy with migrating focal seizures (EIMFS), both conditions associated with drug-resistance. Importantly, both of these potassium channels play vital roles in regulating neuronal excitability. Since its discovery in the late nineteen seventies, the patch-clamp technique has been regarded as the bench-mark technology for exploring ion channel characteristics. In more recent times, innovations in automated patch-clamp technologies, of which there are many, are enabling the study of ion channels with much greater productivity that manual systems are capable of. Here we describe aspects of Nanion NPC-16 Patchliner, examining the effects of temperature on stably and transiently transfected mammalian cells, the latter of which for most automated systems on the market is quite challenging. Remarkable breakthroughs in the development of other automated electrophysiological technologies, such as multielectrode arrays that support extracellular signal recordings, provide additional features to examine network activity in the area of ion channel research, particularly epilepsy. Both of these automated technologies enable the acquisition of consistent, robust, and reproducible data. Numerous systems have been developed with very similar capabilities, however, not all the systems on the market are adapted to work with primary cells, particularly neurons that can be problematic. This chapter also showcases methods that demonstrate the versatility of Nanion NPC-16 Patchliner and the Multi Channel Systems (MCS) multielectrode array (MEA) assay for acutely dissociated murine primary cortical neurons, enabling the study of potassium channel mutations implicated in severe refractory epilepsies.
Collapse
|
27
|
Bell DC, Dallas ML. Advancing Ion Channel Research with Automated Patch Clamp (APC) Electrophysiology Platforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:21-32. [DOI: 10.1007/978-981-16-4254-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Microelectrode Arrays: A Valuable Tool to Analyze Stem Cell-Derived Cardiomyocytes. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Abstract
Inherited cardiac arrhythmias contribute substantially to sudden cardiac death in the young. The underlying pathophysiology remains incompletely understood because of the lack of representative study models and the labour-intensive nature of electrophysiological patch clamp experiments. Whereas patch clamp is still considered the gold standard for investigating electrical properties in a cell, optical mapping of voltage and calcium transients has paved the way for high-throughput studies. Moreover, the development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has enabled the study of patient specific cell lines capturing the full genomic background. Nevertheless, hiPSC-CMs do not fully address the complex interactions between various cell types in the heart. Studies using in vivo models, are therefore necessary. Given the analogies between the human and zebrafish cardiovascular system, zebrafish has emerged as a cost-efficient model for arrhythmogenic diseases. In this review, we describe how hiPSC-CM and zebrafish are employed as models to study primary electrical disorders. We provide an overview of the contemporary electrophysiological phenotyping tools and discuss in more depth the different strategies available for optical mapping. We consider the current advantages and disadvantages of both hiPSC-CM and zebrafish as a model and optical mapping as phenotyping tool and propose strategies for further improvement. Overall, the combination of experimental readouts at cellular (hiPSC-CM) and whole organ (zebrafish) level can raise our understanding of the complexity of inherited cardiac arrhythmia disorders to the next level.
Collapse
|
30
|
Gao J, Zhang H, Xiong P, Yan X, Liao C, Jiang G. Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Ion channel discovery – partnering to access specialized expertise. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Abstract
P2X receptors are a structurally and functionally distinctive family of ligand-gated ion channels that play important roles in mediating extracellular adenosine 5'-triphosphate (ATP) signaling in diverse physiological and pathophysiological processes. For several decades, the "manual" patch-clamp technique was regarded as the gold standard assay for investigating ion channel properties. More recently, breakthroughs in the development of automated patch-clamp technologies are enabling the study of ion channels, with much greater throughput capacities. These automated platforms, of which there are many, generate consistent, reliable, high-fidelity data. This chapter demonstrates the versatility of one of these technologies for ligand-gated ion channels, with a particular emphasis on protocols that address some of the issues of receptor desensitization that are commonly associated with P2X receptor-mediated currents.
Collapse
|
33
|
Qian B, Park SH, Yu W. Screening Assay Protocols Targeting the Nav1.7 Channel Using Qube High‐Throughput Automated Patch‐Clamp System. ACTA ACUST UNITED AC 2020; 89:e74. [DOI: 10.1002/cpph.74] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Binbin Qian
- Sophion Bioscience A/S, Baltorpvej Ballerup Denmark
| | | | - Weifeng Yu
- Sophion Bioscience A/S, Baltorpvej Ballerup Denmark
| |
Collapse
|
34
|
Niu Q, Xing F, Gu HW, Bai L, Zhang J, Yuan JJ, Mao YY, Li ZS, Zhang W, Xu JT. Upregulation of Myeloid Zinc Finger 1 in Dorsal Root Ganglion via Regulating Matrix Metalloproteinase-2/9 and Voltage-gated Potassium 1.2 Expression Contributes to Complete Freund’s Adjuvant-induced Inflammatory Pain. Neuroscience 2020; 432:174-187. [DOI: 10.1016/j.neuroscience.2020.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
|
35
|
Kramer J, Himmel HM, Lindqvist A, Stoelzle-Feix S, Chaudhary KW, Li D, Bohme GA, Bridgland-Taylor M, Hebeisen S, Fan J, Renganathan M, Imredy J, Humphries ESA, Brinkwirth N, Strassmaier T, Ohtsuki A, Danker T, Vanoye C, Polonchuk L, Fermini B, Pierson JB, Gintant G. Cross-site and cross-platform variability of automated patch clamp assessments of drug effects on human cardiac currents in recombinant cells. Sci Rep 2020; 10:5627. [PMID: 32221320 PMCID: PMC7101356 DOI: 10.1038/s41598-020-62344-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCav1.2 [L-Type ICa], peak hNav1.5, [Peak INa], late hNav1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNav1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNav1.5 blocking drugs. hERG and hNav1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingzhou Li
- Drug Safety Research & Development, Pfizer, Groton, CT, USA
| | - Georg Andrees Bohme
- Integrated Drug Discovery, High Content Biology Unit, Sanofi R&D, Vitry-Sur-Seine, France
| | | | | | - Jingsong Fan
- Discovery Toxicology, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | | | | | | | | | | | | | - Timm Danker
- Natural and Medical Science Institute at the University of Tübingen, Reutlingen, Germany
| | - Carlos Vanoye
- Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Liudmila Polonchuk
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | | |
Collapse
|
36
|
Liu C, Li T, Chen J. Role of High‐Throughput Electrophysiology in Drug Discovery. ACTA ACUST UNITED AC 2019; 87:e69. [DOI: 10.1002/cpph.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chang Liu
- Department of Biochemical and Cellular PharmacologyGenentech Early Research and Development, Genentech South San Francisco California
| | - Tianbo Li
- Department of Biochemical and Cellular PharmacologyGenentech Early Research and Development, Genentech South San Francisco California
| | - Jun Chen
- Department of Biochemical and Cellular PharmacologyGenentech Early Research and Development, Genentech South San Francisco California
| |
Collapse
|
37
|
Kussauer S, David R, Lemcke H. hiPSCs Derived Cardiac Cells for Drug and Toxicity Screening and Disease Modeling: What Micro- Electrode-Array Analyses Can Tell Us. Cells 2019; 8:E1331. [PMID: 31661896 PMCID: PMC6912416 DOI: 10.3390/cells8111331] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) have been intensively used in drug development and disease modeling. Since iPSC-cardiomyocyte (CM) was first generated, their characterization has become a major focus of research. Multi-/micro-electrode array (MEA) systems provide a non-invasive user-friendly platform for detailed electrophysiological analysis of iPSC cardiomyocytes including drug testing to identify potential targets and the assessment of proarrhythmic risk. Here, we provide a systematical overview about the physiological and technical background of micro-electrode array measurements of iPSC-CM. We introduce the similarities and differences between action- and field potential and the advantages and drawbacks of MEA technology. In addition, we present current studies focusing on proarrhythmic side effects of novel and established compounds combining MEA systems and iPSC-CM. MEA technology will help to open a new gateway for novel therapies in cardiovascular diseases while reducing animal experiments at the same time.
Collapse
Affiliation(s)
- Sophie Kussauer
- Department Cardiac Surgery, Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Robert David
- Department Cardiac Surgery, Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Heiko Lemcke
- Department Cardiac Surgery, Medical Center, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
38
|
Stevens EB, Stephens GJ. Recent advances in targeting ion channels to treat chronic pain. Br J Pharmacol 2018; 175:2133-2137. [PMID: 29878335 PMCID: PMC5980455 DOI: 10.1111/bph.14215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
|
39
|
Obergrussberger A, Goetze TA, Brinkwirth N, Becker N, Friis S, Rapedius M, Haarmann C, Rinke-Weiß I, Stölzle-Feix S, Brüggemann A, George M, Fertig N. An update on the advancing high-throughput screening techniques for patch clamp-based ion channel screens: implications for drug discovery. Expert Opin Drug Discov 2018; 13:269-277. [DOI: 10.1080/17460441.2018.1428555] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Annecchino LA, Schultz SR. Progress in automating patch clamp cellular physiology. Brain Neurosci Adv 2018; 2:2398212818776561. [PMID: 32166142 PMCID: PMC7058203 DOI: 10.1177/2398212818776561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 12/30/2022] Open
Abstract
Patch clamp electrophysiology has transformed research in the life sciences over the last few decades. Since their inception, automatic patch clamp platforms have evolved considerably, demonstrating the capability to address both voltage- and ligand-gated channels, and showing the potential to play a pivotal role in drug discovery and biomedical research. Unfortunately, the cell suspension assays to which early systems were limited cannot recreate biologically relevant cellular environments, or capture higher order aspects of synaptic physiology and network dynamics. In vivo patch clamp electrophysiology has the potential to yield more biologically complex information and be especially useful in reverse engineering the molecular and cellular mechanisms of single-cell and network neuronal computation, while capturing important aspects of human disease mechanisms and possible therapeutic strategies. Unfortunately, it is a difficult procedure with a steep learning curve, which has restricted dissemination of the technique. Luckily, in vivo patch clamp electrophysiology seems particularly amenable to robotic automation. In this review, we document the development of automated patch clamp technology, from early systems based on multi-well plates through to automated planar-array platforms, and modern robotic platforms capable of performing two-photon targeted whole-cell electrophysiological recordings in vivo.
Collapse
Affiliation(s)
- Luca A. Annecchino
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
41
|
Bell DC, Dallas ML. Using automated patch clamp electrophysiology platforms in pain-related ion channel research: insights from industry and academia. Br J Pharmacol 2017. [PMID: 28622411 DOI: 10.1111/bph.13916] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Automated patch clamp (APC) technology was first developed at the turn of the millennium. The increased throughput it afforded promised a new paradigm in ion channel recordings, offering the potential to overcome the time-consuming, low-throughput bottleneck, arising from manual patch clamp investigations. This has relevance to the fast-paced development of novel therapies for chronic pain. This review highlights the advances in technology, using select examples that have facilitated APC usage in both industry and academia. It covers both first generation and the latest developments in second-generation platforms. In addition, it also provides an overview of the pain research field and how APC platforms have furthered our understanding of ion channel research and the development of pharmacological tools and therapeutics. APC platforms have much to offer to the ion channel research community, and this review highlights areas of best practice for both academia and industry. The impact of APC platforms and the prospects of ion channel research and improved therapeutics for chronic pain will be evaluated. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
| | - Mark L Dallas
- School of Pharmacy, University of Reading, Reading, UK
| |
Collapse
|