1
|
Yang L, Nie H, Du Y, Liu X, Cai B, Li J. Isoliquiritigenin Exhibits Anti-Inflammatory Responses in Acute Lung Injury by Covalently Binding to the Myeloid Differentiation Protein-2 Domain. Phytother Res 2025; 39:922-937. [PMID: 39697044 DOI: 10.1002/ptr.8411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Acute lung injury (ALI), a systemic inflammatory response with high morbidity, lacks effective pharmacological therapies. Myeloid differentiation protein-2 (MD2) has emerged as a promising therapeutic target for ALI. Herein, we aimed to evaluate the ability of isoliquiritigenin (ISL), a natural flavonoid found in licorice as a novel MD2 inhibitor, to inhibit lipopolysaccharide (LPS)-induced ALI. We established a mouse ALI model and a RAW 264.7 cell injury model through LPS administration. Then, lung injury was assessed through histopathological examination, and the effects of ISL were evaluated using immunofluorescence, western blotting, reverse transcription-quantitative polymerase chain reaction, flow cytometry, and enzyme-linked immunosorbent assays. In addition, the interaction between ISL and MD2 was investigated through co-immunoprecipitation and LPS displacement assays. Molecular docking and liquid chromatography/mass spectrometry analyses were employed to predict the ISL-binding domain of MD2. We found that ISL covalently bound to the Cysteine 133 residue of MD2, disrupting the formation of the LPS/MD2/toll-like receptor 4 complex, and ISL significantly suppressed proinflammatory cytokine production and reactive oxygen species generation in LPS-induced RAW264.7 cells. Moreover, ISL significantly alleviated lung injury in LPS-induced mice, reducing pulmonary microvascular permeability, inflammatory cell infiltration, and inflammatory cytokine expression. The underlying mechanism of ISL involved the inhibition of nuclear factor kappa B and the p38 mitogen-activated protein kinase pathway. Our findings supported that MD2 is the direct target of ISL in mediating its anti-inflammatory response in vivo and in vitro, and it holds potential as a therapeutic candidate for treating ALI and other inflammatory diseases.
Collapse
Affiliation(s)
- Liu Yang
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Haoran Nie
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Yan Du
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Xuyang Liu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bangrong Cai
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Shen X, Yang H, Yang Y, Zhu X, Sun Q. The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside. MedComm (Beijing) 2024; 5:e664. [PMID: 39049964 PMCID: PMC11266934 DOI: 10.1002/mco2.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders, including obesity, dyslipidemia, diabetes, nonalcoholic fatty liver disease, and metabolic syndrome, are characterized by insulin resistance, abnormalities in circulating cholesterol and lipid profiles, and hypertension. The most common pathophysiologies of metabolic disorders are glucose/lipid metabolism dysregulation, insulin resistance, inflammatory response, and oxidative stress. Although several agents have been approved for the treatment of metabolic disorders, there is still a strong demand for more efficacious drugs with less side effects. Natural products have been critical sources of drug research and discovery for decades. However, the usefulness of bioactive natural products is often limited by incomplete understanding of their direct cellular targets. In this review, we highlight the current understanding of the established and emerging molecular mechanisms of metabolic disorders. We further summarize the therapeutic effects and underlying mechanisms of natural products on metabolic disorders, with highlights on their direct cellular targets, which are mainly implicated in the regulation of glucose/lipid metabolism, insulin resistance, metabolic inflammation, and oxidative stress. Finally, this review also covers the clinical studies of natural products in metabolic disorders. These progresses are expected to facilitate the application of these natural products and their derivatives in the development of novel drugs against metabolic disorders.
Collapse
Affiliation(s)
- Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengdu University of Traditional Chinese MedicineChengduChina
| | - Hongling Yang
- Department of Nephrology and Institute of NephrologySichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney DiseasesChengduChina
| | - Yang Yang
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Qingxiang Sun
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| |
Collapse
|
3
|
Ge X, Xu T, Wang M, Gao L, Tang Y, Zhang N, Zheng R, Zeng W, Chen G, Zhang B, Dai Y, Zhang Y. Chalcone-derivative L6H21 attenuates the OVA-induced asthma by targeting MD2. Eur J Med Res 2024; 29:65. [PMID: 38245791 PMCID: PMC10799361 DOI: 10.1186/s40001-023-01630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Asthma represents a significant global challenge that affects individuals across all age groups and imposes substantial social and economic burden. Due to heterogeneity of the disease, not all patients obtain benefit with current treatments. The objective of this study was to explore the impact of MD2 on the progression of asthma using L6H21, a novel MD2 inhibitor, to identify potential targets and drug candidates for asthma treatment. To establish an asthma-related murine model and evaluate the effects of L6H21, ovalbumin (OVA) was used to sensitize and challenge mice. Pathological changes were examined with various staining techniques, such as H&E staining, glycogen staining, and Masson staining. Inflammatory cell infiltration and excessive cytokine secretion were evaluated by analyzing BALF cell count, RT-PCR, and ELISA. The TLR4/MD2 complex formation, as well as the activation of the MAPK and NF-кB pathways, was examined using western blot and co-IP. Treatment with L6H21 demonstrated alleviation of increased airway resistance, lung tissue injury, inflammatory cell infiltration and excessive cytokine secretion triggered by OVA. In addition, it also ameliorated mucus production and collagen deposition. In the L6H21 treatment group, inhibition of MAPK and NF-кB activation was observed, along with the disruption of TLR4/MD2 complex formation, in contrast to the model group. Thus, L6H21 effectively reduced the formation of the MD2 and TLR4 complex induced by OVA in a dose-dependent manner. This reduction resulted in the attenuation of MAPKs/NF-κB activation, enhanced suppression of inflammatory factor secretion, reduced excessive recruitment of inflammatory cells, and ultimately mitigated airway damage. MD2 emerges as a crucial target for asthma treatment, and L6H21, as an MD2 inhibitor, shows promise as a potential drug candidate for the treatment of asthma.
Collapse
Affiliation(s)
- Xiangting Ge
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China
| | - Tingting Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Meiyan Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lijiao Gao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yue Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ningjie Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Weimin Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China.
| | - Yuanrong Dai
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
4
|
Wang M, Zhang Q, Lou S, Jin L, Wu G, Wu W, Tang Q, Wang Y, Long X, Huang P, Luo W, Liang G. Inhibition of MD2 by natural product-drived JM-9 attenuates renal inflammation and diabetic nephropathy in mice. Biomed Pharmacother 2023; 168:115660. [PMID: 37806092 DOI: 10.1016/j.biopha.2023.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus-related microvascular lesions, which remains the leading cause of end-stage kidney disease. The genesis and development of DKD is closely related to inflammation. Myeloid differentiation 2 (MD2) mediates hyperlyciemia-induced renal inflammation and DKD development and is considered as a potential therapeutic target of DKD. Here, we identified a new small-molecule MD2 inhibitor, JM-9. In vitro, JM-9 suppressed high glucose (HG) and palmitic acid (PA)-induced inflammation in MPMs, accompanied by inhibition of MD2 activation and the downstream TLR4/MyD88-MAPKs/NFκB pro-inflammatory signaling pathway. Macrophage-derived factors increased the fibrotic and inflammatory responses in renal tubular epithelial cells, which were inhibited by treating macrophages with JM-9. Then, we investigated the therapeutic effects against DKD in streptozotocin-induced type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) mouse models. Treatment with JM-9 prevented renal inflammation, fibrosis, and dysfunction by targeting MD2 in both T1DM and T2DM models. Our results show that JM-9, a new small-molecule MD2 inhibitor, protects against DKD by targeting MD2 and inhibiting MD2-mediated inflammation. In summary, JM-9 is a potential therapeutic agent for DKD.
Collapse
Affiliation(s)
- Minxiu Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianhui Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuaijie Lou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohong Long
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ping Huang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Wu Luo
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
5
|
Yuan L, Wang Y, Chen Y, Chen X, Li S, Liu X. Shikonin inhibits immune checkpoint PD-L1 expression on macrophage in sepsis by modulating PKM2. Int Immunopharmacol 2023; 121:110401. [PMID: 37302371 DOI: 10.1016/j.intimp.2023.110401] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
Sepsis, a life-threatening condition whereby immune dysregulation develops, is one of the major causes of death worldwide. To date, there is still no clinically effective therapeutic method for sepsis. As a natural product from traditional Chinese medicine, Shikonin has been demonstrated to have pleiotropic medical effects, including anti-tumor, anti-inflammation, and relieving sepsis. PD-L1, as the receptor of PD-1, was also involved in exacerbating sepsis by inducing immunosuppression, but the relationship between them is still unclear. In this study, we aimed to evaluate the effect of Shikonin on modulating PD-L1 expression and its contact with PKM2. The results showed that Shikonin significantly decreased the levels of sepsis mice serum inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-1β (IL-1β) and maintain the percentage of T cells from the spleen and significantly reduce the apoptosis of splenocytes in LPS-induced sepsis mice. Our data also demonstrated that Shikonin significantly decreased PD-L1 expression on macrophages, not PD-1 expression on T cells in vivo and in vitro. Additionally, we revealed that Shikonin attenuated PD-L1 expression on macrophages and was associated with downregulating phosphorylation and nuclear import of PKM2, which could bind to the HRE-1 and HRE-4 sites of the PD-L1 promoter. As the present research was conducted in sepsis mice model and macrophage cell line, further study is required to evaluate Shikonin to regulate PD-L1 by targeting PKM2 in clinical samples.
Collapse
Affiliation(s)
- Lijia Yuan
- Department of Critical Care Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China; Department of Traditional Chinese Medicine, Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, 601 Huangpu Road, Guangzhou 510632, China
| | - Yong Wang
- Majory Biotechnology Company Limited, Shenzhen 518110, China
| | - Youlian Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Xiaoyin Chen
- Department of Traditional Chinese Medicine, Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, 601 Huangpu Road, Guangzhou 510632, China.
| | - Shun Li
- Majory Biotechnology Company Limited, Shenzhen 518110, China
| | - Xueyan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.
| |
Collapse
|
6
|
Yang J, Wang M, Xu Y, Liao J, Li X, Zhou Y, Dai J, Li X, Chen P, Chen G, Cho WJ, Chattipakorn N, Samorodov AV, Pavlov VN, Wang Y, Liang G, Tang Q. Discovery of 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives as novel anti-inflammatory agents for the treatment of acute lung injury and sepsis. Eur J Med Chem 2023; 249:115144. [PMID: 36708679 DOI: 10.1016/j.ejmech.2023.115144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Acute lung injury (ALI) and sepsis, characterized by systemic inflammatory response syndrome, remain the major causes of death in severe patients. Inhibiting the release of proinflammatory cytokines is considered to be a promising method for the treatment of inflammation-related diseases. In this study, a total of 28 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives were designed and synthesized and their anti-inflammatory activities in J774A.1 were evaluated. Among them, derivative 13a was found to significantly inhibit lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) on J774A.1, THP-1 and LX-2 cells, and inhibited the activation of the NF-κB pathway. Furthermore, administration of 13ain vivo significantly improved the symptoms in LPS-induced ALI mice, including alleviation of pathological changes in the lung tissue, reduction of pulmonary edema, and inhibition of macrophage infiltration. Moreover, the administration of 13ain vivo significantly promoted survival in LPS-induced sepsis mice. 13a demonstrated favorable pharmacokinetic properties with T1/2 value of 11.8 h and F value of 36.3%. Therefore, this study has identified a novel 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivative, 13a, which is an effective anti-inflammatory agent. The findings have laid a foundation for the further development of agents to treat ALI and sepsis.
Collapse
Affiliation(s)
- Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yulan Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, Zhejiang, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China.
| |
Collapse
|
7
|
Li Z, Chen A, Wan H, Gao X, Li C, Xiong L, Liang H. Immunohistochemical Localization of MD2, a Co-Receptor of TLR4, in the Adult Mouse Brain. ACS Chem Neurosci 2023; 14:400-417. [PMID: 36657737 PMCID: PMC9897217 DOI: 10.1021/acschemneuro.2c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Myeloid differentiation factor 2 (MD2) is a co-receptor of a classical proinflammatory protein TLR4 whose activation leads to neuroinflammation. It is widely accepted that TLR4 is expressed on the cell surface of microglia and astrocytes, and MD2 is expected to be expressed by these cells as well. However, our previous study showed that neurons from certain nuclei also expressed MD2. Whether MD2 is expressed by other brain nuclei is still unknown. It is the aim of the present study to map the distribution of MD2-positive cells in the adult mouse brain. Immunohistochemical staining against MD2 was completed to localize MD2-positive cells in the mouse brain by comparing the location of positive cells with the mouse brain atlas. MD2-positive cells were found in the majority of mouse brain nuclei with clusters of cells in the olfactory bulb, cortices, the red nucleus, and cranial nuclei. Subcortical nuclei had heterogeneous staining of MD2 with more prominent cells in the basolateral and the central amygdaloid nuclei. The ventral pallidum and the diagonal bands had positive cells with similar density and shape. Prominent cells were present in thalamic nuclei which were nearly homogeneous and in reticular formation of the brainstem where cells were dispersed with similar density. The hypothalamus had fewer outstanding cells compared with the thalamus. The red nucleus, the substantia nigra, and the ventral tegmental area in the pretectum had outstanding cells. Motor cranial nuclei also had outstanding MD2-positive cells, whereas raphe, sensory cranial, and deep cerebellar nuclei had MD2-positive cells with moderate density. The presence of MD2 in these nuclei may suggest the involvement of MD2 in their corresponding physiological functions.
Collapse
Affiliation(s)
- Zhen Li
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Aiwen Chen
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Hanxi Wan
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Xiaofei Gao
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Chunguang Li
- NICM
Health Research Institute, Western Sydney
University, Penrith, New South Wales 2751, Australia
| | - Lize Xiong
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Huazheng Liang
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| |
Collapse
|
8
|
Tang Y, Zhang W, Wu L, Bai B, Zheng B, Li M, Tang Y, Zhu X, Zhang Y, Wang Y, Zhang B. Piperlongumine mitigates LPS-induced inflammation and lung injury via targeting MD2/TLR4. Biochem Biophys Res Commun 2023; 642:118-127. [PMID: 36566563 DOI: 10.1016/j.bbrc.2022.11.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Acute lung injury (ALI) is a fatal acute inflammatory illness with restricted therapeutic choices clinically. Piperlongumine (PL) is recognized as an alkaloid separated from Piper longum L, which was suggested to exhibit multiple pharmacological activities (e.g., anti-inflammatory activity). However, the effects of PL on LPS-triggered ALI and its anti-inflammatory target remain unclear. This paper intended to assess the roles of PL in LPS-triggered ALI, as well as its underlying mechanism and target. METHODS In vivo, ALI was induced by intratracheal injection of LPS to evaluate protective effects of PL and assessed by the changes of histopathological. In vitro, the anti-inflammatory activity and mechanism of PL were investigated by ELISA, RT-qPCR, transcription factor enrichment analysis, Western blotting and Immunofluorescence assay. The binding affinity of PL to MD2 was analyzed using computer docking, surface plasmon resonance, ELISA and immunoprecipitation assay. RESULTS It was reported here that PL treatment alleviated LPS-induced pulmonary damage, inflammatory cells infiltration and inflammatory response in mice. In culture cells, PCR array showed that PL significantly inhibited LPS-induced inflammatory cytokines, chemokines, and type I IFNs genetic expression, along with the inhibition of TAK1 and TBK1 pathway. It is noteworthy that PL is capable of straightly binding to MD2 and inhibiting MD2/TLR4 complex formation and TLR4 dimerization. CONCLUSIONS As revealed from this study, PL directly binding to MD2 to block cytokines expression by inhibiting the activation of TAK1 and TBK1 pathway, which then exerted its pulmonary protective activity. Accordingly, PL may act as an underlying candidate for treating LPS-triggered ALI.
Collapse
Affiliation(s)
- Yelin Tang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Liqin Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bin Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mengying Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yue Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaona Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China.
| |
Collapse
|
9
|
Hajipour S, Vastegani SM, Sarkaki A, Basir Z, Navabi SP, Farbood Y, Khoshnam SE. Curcumin attenuates memory impairments and long-term potentiation deficits by damping hippocampal inflammatory cytokines in lipopolysaccharide-challenged rats. Metab Brain Dis 2023; 38:1379-1388. [PMID: 36701014 DOI: 10.1007/s11011-023-01169-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
Neuroinflammation is a key pathological event triggering neurodegenerative process, resulting in neurologic sequelae. Curcumin (cur) has recently received increasing attention due to its anti-inflammatory properties. Therefore, we investigated the protective effects of curcumin on lipopolysaccharide (LPS)-induced memory impairments, long-term potentiation (LTP) deficits, hippocampal inflammatory cytokines, and neuronal loss in male rats. Rats were randomly divided into four groups as follows: (1) Vehicle; (2) cur; (3) LPS; and (4) cur/LPS. Following curcumin pretreatment (50 mg/kg, per oral via gavage, 14 consecutive days), animals received a single dose of LPS (1 mg/kg, intraperitoneally) or saline. Twenty-four hours after LPS/or saline administration, passive avoidance test (PAT), hippocampal LTP, inflammatory cytokines (TNFα, IL-1β), and neuronal loss were assessed in hippocampal tissue of rats. Our results indicated that pretreatment with curcumin in LPS-challenged rats attenuates memory impairment in PAT, which was accompanied by significant increase in the field excitatory post-synaptic potential (fEPSP) slope and population spike (PS) amplitude. Hence, pretreatment with curcumin in LPS-treated rats decreased hippocampal concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β), as well as reduced neuronal loss in the hippocampal tissue. This study provide evidence that pretreatment with curcumin attenuates LPS-induced memory impairment and LTP deficiency, which may be partly related to the amelioration of inflammatory cytokines and neuronal loss in the hippocampal tissue.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Basir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Li W, Xu H, Shao J, Chen J, Lin Y, Zheng Z, Wang Y, Luo W, Liang G. Discovery of alantolactone as a naturally occurring NLRP3 inhibitor to alleviate NLRP3-driven inflammatory diseases in mice. Br J Pharmacol 2023; 180:1634-1647. [PMID: 36668704 DOI: 10.1111/bph.16036] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is activated in many inflammatory conditions. So far, no low MW compounds inhibiting NLRP3 have entered clinical use. Identification of naturally occurring NLRP3 inhibitors may be beneficial to the design and development of compounds targeting NLRP3. Alantolactone is a phytochemical from a traditional Chinese medicinal plant with anti-inflammatory activity, but its precise target remains unclear. EXPERIMENTAL APPROACH A bank of phytochemicals was screened for inhibitors of NLRP3-driven production of IL-1β in cultures of bone-marrow-derived macrophages from female C57BL/6 mice. Models of gouty arthritis and acute lung injury in male C57BL/6J mice were used to determine the in vivo effects of the most potent compound. KEY RESULTS Among the 150 compounds screened in vitro, alantolactone exhibited the highest inhibitory activity against LPS + ATP-induced production of IL-1β in macrophages, suppressing IL-1β secretion, caspase-1 activation and pyroptosis. Alantolactone directly bound to the NACHT domain of NLRP3 to inhibit activation and assembly of NLRP3 inflammasomes. Molecular simulation analysis suggested that Arg335 in NLRP3 was a critical residue for alantolactone binding, leading to suppression of NLRP3-NEK7 interaction. In vivo studies confirmed significant alleviation by alantolactone of two NLRP3-driven inflammatory conditions, acute lung injury and gouty arthritis. CONCLUSION AND IMPLICATIONS The phytochemical alantolactone inhibited activity of NLRP3 inflammasomes by directly targeting the NACHT domain of NLRP3. Alantolactone shows great potential in the treatment of NLRP3-driven diseases and could lead to the development of novel NLRP3 inhibitors.
Collapse
Affiliation(s)
- Weifeng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haowen Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingjing Shao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yimin Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Lee HH, Shin JS, Chung KS, Kim JM, Jung SH, Yoo HS, Hassan AHE, Lee JK, Inn KS, Lee S, Kim NJ, Lee KT. 3',4'-Dihydroxyflavone mitigates inflammatory responses by inhibiting LPS and TLR4/MD2 interaction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154553. [PMID: 36610153 DOI: 10.1016/j.phymed.2022.154553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND We previously reported the potential inhibitory activity of 3',4'-dihydroxyflavone (DHF) on nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated macrophages. PURPOSE We investigated the underlying molecular mechanisms of DHF in LPS-activated macrophages and evaluated its effect on LPS-induced septic shock in mice. METHODS To explore the anti-inflammatory effect of DHF, nitrite, PGE2, and cytokines were measured in vitro and in vivo experiments. In addition, to verify the molecular signaling pathway, quantitative real time-PCR, luciferase assay, nuclear extraction, electrophoretic mobility shift assay, immunocytochemistry, immunoprecipitation, molecular docking analysis, and myeloid differentiation 2 (MD2)-LPS binding assay were conducted. RESULTS DHF suppressed the LPS-induced expression of proinflammatory mediators through nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) inactivation pathways in RAW 264.7 macrophages. Importantly, molecular docking analysis and in vitro binding assays showed that DHF interacts with the hydrophobic pocket of MD2 and then interferes with the interaction between LPS and toll-like receptor 4 (TLR4). DHF inhibited LPS-induced oxidative stress by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2). Treatment of LPS-induced endotoxemia mice with DHF reduced the expression levels of pro-inflammatory mediators via the inactivation of NF-κB, AP-1, and signal transducer and activator of transcription 1 (STAT1) in the lung tissue, thus increasing the survival rate. CONCLUSION Taken together, our data first time revealed the underlying mechanism of the DHF-dependent anti-inflammatory effect by preventing LPS from binding to the TLR4/MD2 complex. Therefore, DHF may be a possible anti-inflammatory agent for the treatment of LPS-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02247, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02247, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02247, Republic of Korea
| | - Jae-Min Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02247, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Seang-Hwan Jung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02247, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Ahmed H E Hassan
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Sangmin Lee
- College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea.
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02247, Republic of Korea.
| |
Collapse
|
12
|
Zhan H, Pu Q, Long X, Lu W, Wang G, Meng F, Liao Z, Lan X, Chen M. Oxybaphus himalaicus Mitigates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/MD2 Complex Formation. Antioxidants (Basel) 2022; 11:antiox11122307. [PMID: 36552516 PMCID: PMC9774781 DOI: 10.3390/antiox11122307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) is described as the abrupt decrease in kidney function always accompanied by inflammation. The roots of Oxybaphus himalaicus Edgew. have long been used in Tibetan folk medicine for the treatment of nephritis. Nevertheless, modern pharmacological studies, especially about the underlying mechanism of O. himalaicus medications, are still lacking. Here, in lipopolysaccharide (LPS)-induced RAW264.7 macrophages, the O. himalaicus extract (OE) showed significant anti-inflammatory activity with the dose dependently reducing the LPS-stimulated release of nitric oxide and the mRNA level and protein expression of inflammatory cytokines and reversed the activation of nuclear factor kappa B (NF-κB). Co-immunoprecipitation assay indicated that OE inhibited Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD2) complex formation and further suppressed both myeloid differentiation factor 88 (MyD88)-dependent and TIR-domain-containing adapter-inducing interferon-β (TRIF)-dependent cascades activation. In addition, OE could restrain NADPH oxidase 2 (NOX2) endocytosis by blocking TLR4/MD2 complex formation to prevent reactive oxygen species production. In LPS-induced AKI mice, OE treatment mitigated renal injury and inflammatory infiltration by inhibiting TLR4/MD2 complex formation. UPLC-MS/MS analysis tentatively identified 41 components in OE. Our results indicated that OE presented significant anti-inflammatory activity by inhibiting TLR4/MD2 complex formation, which alleviated LPS-induced AKI in mice.
Collapse
Affiliation(s)
- Honghong Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qingxiu Pu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoliang Long
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, TAAHC-SWU Medicinal Plant Joint R&D Centre, Southwest University, Chongqing 400715, China
| | - Wei Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Guowei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Fancheng Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, TAAHC-SWU Medicinal Plant Joint R&D Centre, Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant R&D Center, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
13
|
Abou Baker DH. Can natural products modulate cytokine storm in SARS-CoV2 patients? BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00749. [PMID: 35702395 PMCID: PMC9181898 DOI: 10.1016/j.btre.2022.e00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023]
Abstract
Currently, the number of cases and deaths of SARS-CoV2, especially among the chronic disease groups, due to aggressive SARS-CoV2 infection is increasing day by day. Various infections, particularly viral ones, cause a cytokine storm resulting in shortness of breath, bleeding, hypotension, and ultimately multi-organ failure due to over-expression of certain cytokines and necrosis factors. The most prominent clinical feature of SARS-CoV2 is the presence of elevated proinflammatory cytokines in the serum of patients with SARS-CoV2. Severe cases exhibit higher levels of cytokines, leading to a "cytokine storm" that further increases disease severity and causes acute respiratory distress syndrome, multiple organ failure, and death. Therefore, targeted cytokine production could be a potential therapeutic option for patients severely infected with SARS-CoV2. Given the current scenario, great scientific progress has been made in understanding the disease and its forms of treatment. Because of natural ingredients properties, they have the potential to be used as potential agents with the ability to modulate immune responses. Moreover, they can be used safely because they have no toxic effects, are biodegradable and biocompatible. However, these natural substances can continue to be used in the development of new therapies and vaccines. Finally, the aim and approach of this review article is to highlight current research on the possible use of natural products with promising potential as immune response activators. Moreover, consider the expected use of natural products when developing potential therapies and vaccines.
Collapse
Affiliation(s)
- Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, National Research Centre, Pharmaceutical and Drug Industries Institute, Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
14
|
Gao L, Xiao C, Cheng T, Wang Z, Xia W. Cellular Imaging Analysis Algorithm-Based Assessment and Prediction of Disease in Patients with Acute Lung Injury. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3193671. [PMID: 36051925 PMCID: PMC9424040 DOI: 10.1155/2022/3193671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
This paper uses cellular imaging analysis algorithms to assess and predict the condition of patients with acute lung injury. Given the unique optical properties of UCNPs, this paper designs a ratiometric upconversion fluorescent nanoprobe for the determination of nitric oxide (NO) content in living cells and tissues. To address the image degradation phenomenon of optical sections, this paper uses a blind deconvolution method to abate the degradation effect caused by the scattered focus surface, thus completing the image recovery. After that, grayscale and binarization are performed using the weighted average method and the Otsu method. In this paper, we propose a migration learning-based Resnet-50 network for the triple classification of unlabeled leukocytes based on the characteristics of cell images acquired by a miniaturized label-free microfluidic cell imaging detection device. The migration learning can rapidly optimize the network parameters, the short connection structure of Resnet-50 is more suitable for feature extraction of unlabeled leukocytes than the InceptionV3 model without a short connection structure, and the accuracy of the Resnet-50 network can reach 94% in the test set. In this paper, we propose two tracking algorithms based on the dynamic Gaussian mixture model and mathematical morphology-based algorithms suitable for cells of different shapes for cell tracking in microscopic images, neuronal cell labeling in fluorescent images, and cell segmentation in mice. These methods have the advantages of low cost, speed, reproducibility, and objectivity, and we hope that their elicitation will be useful for relevant cell biology research.
Collapse
Affiliation(s)
- Liang Gao
- Department of Urology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Chengwang Xiao
- The Third Department of Internal Medicine, Wannian Hospital of Traditional Chinese Medicine, Shangrao 335500, China
| | - Taoyi Cheng
- Department of Critical Medicine, Wannian Hospital of Traditional Chinese Medicine, Shangrao 335500, China
| | - Zhaohan Wang
- Department of Gastroenterology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Wenhan Xia
- Department of Critical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| |
Collapse
|
15
|
SU LJ, REN YC, CHEN Z, MA HF, ZHENG F, LI F, ZHANG YY, GONG SS, KOU JP. Ginsenoside Rb1 improves brain, lung, and intestinal barrier damage in middle cerebral artery occlusion/reperfusion (MCAO/R) micevia the PPARγ signaling pathway. Chin J Nat Med 2022; 20:561-571. [DOI: 10.1016/s1875-5364(22)60204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 11/28/2022]
|
16
|
FAK mediates LPS-induced inflammatory lung injury through interacting TAK1 and activating TAK1-NFκB pathway. Cell Death Dis 2022; 13:589. [PMID: 35803916 PMCID: PMC9270420 DOI: 10.1038/s41419-022-05046-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Acute lung injury (ALI), characterized by inflammatory damage, is a major clinical challenge. Developing specific treatment options for ALI requires the identification of novel targetable signaling pathways. Recent studies reported that endotoxin lipopolysaccharide (LPS) induced a TLR4-dependent activation of focal adhesion kinase (FAK) in colorectal adenocarcinoma cells, suggesting that FAK may be involved in LPS-induced inflammatory responses. Here, we investigated the involvement and mechanism of FAK in mediating LPS-induced inflammation and ALI. We show that LPS phosphorylates FAK in macrophages. Either FAK inhibitor, site-directly mutation, or siRNA knockdown of FAK significantly suppresses LPS-induced inflammatory cytokine production in macrophages. FAK inhibition also blocked LPS-induced activation of MAPKs and NFκB. Mechanistically, we demonstrate that activated FAK directly interacts with transforming growth factor-β-activated kinase-1 (TAK1), an upstream kinase of MAPKs and NFκB, and then phosphorylates TAK1 at Ser412. In a mouse model of LPS-induced ALI, pharmacological inhibition of FAK suppressed FAK/TAK activation and inflammatory response in lung tissues. These activities resulted in the preservation of lung tissues in LPS-challenged mice and increased survival during LPS-induced septic shock. Collectively, our results illustrate a novel FAK-TAK1-NFκB signaling axis in LPS-induced inflammation and ALI, and support FAK as a potential target for the treatment of ALI.
Collapse
|
17
|
Li QQ, Chae HS, Kang OH, Kwon DY. Synergistic Antibacterial Activity with Conventional Antibiotics and Mechanism of Action of Shikonin against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23147551. [PMID: 35886892 PMCID: PMC9322759 DOI: 10.3390/ijms23147551] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a troublesome pathogen that poses a global threat to public health. Shikonin (SKN) isolated from Lithospermum erythrorhizon (L. erythrorhizon) possesses a variety of biological activities. This study aims to explore the effect of the combined application of SKN and traditional antibiotics on the vitality of MRSA and the inherent antibacterial mechanism of SKN. The synergies between SKN and antibiotics against MRSA and its clinical strain have been demonstrated by the checkerboard assay and the time-kill assay. The effect of SKN on disrupting the integrity and permeability of bacterial cell membranes was verified by a nucleotide and protein leakage assay and a bacteriolysis assay. As determined by crystal violet staining, SKN inhibited the biofilm formation of clinical MRSA strains. The results of Western blot and qRT-PCR showed that SKN could inhibit the expression of proteins and genes related to drug resistance and S. aureus exotoxins. SKN inhibited the ability of RAW264.7 cells to release the pro-inflammatory cytokines TNF-α and IL-6, as measured by ELISA. Our findings suggest that SKN has the potential to be developed as a promising alternative for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
| | - Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA;
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K.)
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K.)
| |
Collapse
|
18
|
Flavokawain B alleviates LPS-induced acute lung injury via targeting myeloid differentiation factor 2. Acta Pharmacol Sin 2022; 43:1758-1768. [PMID: 34737421 PMCID: PMC9253132 DOI: 10.1038/s41401-021-00792-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI) is a sudden onset systemic inflammatory response. ALI causes severe morbidity and death and currently no effective pharmacological therapies exist. Natural products represent an excellent resource for discovering new drugs. Screening anti-inflammatory compounds from the natural product bank may offer viable candidates for molecular-based therapies for ALI. In this study, 165 natural compounds were screened for anti-inflammatory activity in lipopolysaccharide (LPS)-challenged macrophages. Among the screened compounds, flavokawain B (FKB) significantly reduced LPS-induced pro-inflammatory IL-6 secretion in macrophages. FKB also reduced the formation of LPS/TLR4/MD2 complex by competitively binding to MD2, suppressing downstream MAPK and NF-κB signaling activation. Finally, FKB treatment of mice reduced LPS-induced lung injury, systemic and local inflammatory cytokine production, and macrophage infiltration in lungs. These protective activities manifested as increased survival in the ALI model, and reduced mortality upon bacterial infection. In summary, we demonstrate that the natural product FKB protects against LPS-induced lung injury and sepsis by interacting with MD2 and inhibiting inflammatory responses. FKB may potentially serve as a therapeutic option for the treatment of ALI.
Collapse
|
19
|
Macrophage-targeted shikonin-loaded nanogels for modulation of inflammasome activation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102548. [PMID: 35301158 DOI: 10.1016/j.nano.2022.102548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
This study reports the formulation and delivery of hyaluronic acid-Zein (HA-Zein) nanogels loaded with Shikonin (SK) to selectively attenuate macrophage inflammasome. The self-assembled nanogels, produced by nanoprecipitation, exhibited high encapsulation efficiency, and were selectively internalized by human THP-1-derived macrophages without eliciting cytotoxic responses. Cell treatment with HA-Zein-SK nanogels before stimulation with LPS and Nigericin significantly suppressed caspase-1 activation and IL-1β production, indicating inflammasome inhibition. Importantly, HA-Zein-SK nanogels bioinstructed inflammasome activated macrophages towards an anti-inflammatory CD163highHLA-DRlow phenotype and led to a marked reduction in the release of pro-inflammatory mediators (TNF-α, IL-6 and IP-10). Extracellular metabolic profiling additionally revealed SK-mediated downregulation of cellular glycolytic activity, which was corroborated by a significant decrease of glycolytic genes transcription. All in all, our findings demonstrate the potential of bioactive SK-containing, self-assembled nanogels to modulate exacerbated responses in innate immune cells and, prospectively, in human tissues where NRLP3 inflammasome is abnormally activated upon injury or disease.
Collapse
|
20
|
Myeloid-Specific Pyruvate-Kinase-Type-M2-Deficient Mice Are Resistant to Acute Lung Injury. Biomedicines 2022; 10:biomedicines10051193. [PMID: 35625931 PMCID: PMC9138865 DOI: 10.3390/biomedicines10051193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Infiltration of polymorphonuclear neutrophils (PMNs) plays a central role in acute lung injury (ALI). The mechanisms governing PMN inflammatory responses, however, remain incompletely understood. Based on our recent study showing a non-metabolic role of pyruvate kinase type M2 (PKM2) in controlling PMN degranulation of secondary and tertiary granules and consequent chemotaxis, here we tested a hypothesis that Pkm2-deficient mice may resist ALI due to impaired PMN inflammatory responses. We found that PMN aerobic glycolysis controlled the degranulation of secondary and tertiary granules induced by fMLP and PMA. Compared to WT PMNs, Pkm2-deficient (Pkm2-/-) PMNs displayed significantly less capacity for fMLP- or PMA-induced degranulation of secondary and tertiary granules, ROS production, and transfilter migration. In line with this, myeloid-specific Pkm2-/- mice exhibited impaired zymosan-induced PMN infiltration in the peritoneal cavity. Employing an LPS-induced ALI mouse model, LPS-treated Pkm2-/- mice displayed significantly less infiltration of inflammatory PMNs in the alveolar space and a strong resistance to LPS-induced ALI. Our results thus reveal that PKM2 is required for PMN inflammatory responses and deletion of PKM2 in PMN leads to an impaired PMN function but protection against LPS-induced ALI.
Collapse
|
21
|
VIP alleviates sepsis-induced cognitive dysfunction as the TLR-4/NF-κB signaling pathway is inhibited in the hippocampus of rats. J Mol Histol 2022; 53:369-377. [PMID: 35239068 DOI: 10.1007/s10735-022-10068-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 01/17/2023]
Abstract
Cognitive dysfunction caused by sepsis-associated encephalopathy (SAE) is still poorly understood. It is reported that vasoactive intestinal peptide (VIP) exerts its anti-inflammatory effects in multiple diseases, while its biological function in SAE remains unclear. We aimed to figure out whether VIP has influence on sepsis-induced neuroinflammation and cognitive dysfunction. To induce sepsis, rats were subjected to cecal ligation and puncture (CLP) operation. Morris water maze test and fear conditioning test were conducted to reveal cognitive dysfunctions. TUNEL assay was performed to evaluate apoptosis. We found out that the expression of VIP was downregulated in the hippocampus of septic rats. VIP was verified to attenuate sepsis-induced memory impairment following CLP. Additionally, we examined apoptosis and inflammation in rats' hippocampus. It is worth noting that VIP inhibited the apoptosis in the hippocampus and reduced the productions of proinflammatory cytokines TNF-α, IL-6 and IL-1β. Furthermore, our data confirmed that VIP was involved in regulating the TLR-4/NF-κB signaling. In conclusion, VIP inhibited neuroinflammation and cognitive impairment in hippocampus of septic rats through the TLR-4/NF-κB signaling pathway.
Collapse
|
22
|
Wang A, Fang S, Zhong L, Lu M, Zhou H, Huang W, Li L, Gao W, Yin Z. Shikonin, a promising therapeutic drug for osteoarthritis that acts via autophagy activation. Int Immunopharmacol 2022; 106:108563. [PMID: 35176588 DOI: 10.1016/j.intimp.2022.108563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/05/2022]
Abstract
Osteoarthritis (OA) is a chronic joint degenerative disease characterised by narrowed articular space, formation of surrounding osteophytes, and subchondral bone sclerosis. OA is caused by cartilage degeneration, which is closely correlated with the disequilibrium of anabolism and catabolism in chondrocytes. Previous studies have revealed that autophagy plays a significant role in maintaining the balance of anabolic and catabolic activities. Thus, targeting autophagy may be a promising therapeutic strategy for OA. Shikonin, a traditional Chinese herbal medicine isolated from flavonoid glucuronide, has drawn focus for its role in activating autophagy. In this study, the mRNA and protein level of a disintegrin and metalloproteinase with thrombospondin motifs-5 and matrix metalloproteinases-1 decreased with shikonin treatment, in the IL-1β-induced OA cell model. On the contrary, IL-1β-induced downregulation of Aggrecan and Collagen II was ameliorated following shikonin treatment. In addition, the upregulation of autophagy-related marker genes Beclin-1 and LC3II/LC3I in chondrocytes indicated that autophagy could be activated upon shikonin treatment. Moreover, shikonin's promotion of anabolism in chondrocytes through autophagy activation corresponded with the results from the examination using chloroquine, an autophagy inhibitor. OA mouse cartilage tissues were stained with safranin O and fast green dyes. Results were analysed using the Osteoarthritis Research Society International (OARSI) score, and suggested that mice cartilage degeneration was alleviated after shikonin treatment. Altogether, we identified that shikonin might be a novel promising drug for OA treatment.
Collapse
Affiliation(s)
- Anquan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #218 Ji Xi Road, Hefei 230032, Anhui, China
| | - Sheng Fang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #218 Ji Xi Road, Hefei 230032, Anhui, China
| | - Lin Zhong
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #218 Ji Xi Road, Hefei 230032, Anhui, China
| | - Ming Lu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #218 Ji Xi Road, Hefei 230032, Anhui, China
| | - Hongxiang Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #218 Ji Xi Road, Hefei 230032, Anhui, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, #17 Lu Jiang Road, Hefei 230001, Anhui, China
| | - Lei Li
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #218 Ji Xi Road, Hefei 230032, Anhui, China
| | - Weilu Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #218 Ji Xi Road, Hefei 230032, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #218 Ji Xi Road, Hefei 230032, Anhui, China.
| |
Collapse
|
23
|
Zhang YL, Zhang WX, Yan JQ, Tang YL, Jia WJ, Xu ZW, Xu MJ, Chattipakorn N, Wang Y, Feng JP, Liu ZG, Liang G. Chalcone derivatives ameliorate lipopolysaccharide-induced acute lung injury and inflammation by targeting MD2. Acta Pharmacol Sin 2022; 43:76-85. [PMID: 34480112 PMCID: PMC8724327 DOI: 10.1038/s41401-021-00764-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are known as the common causes of respiratory failure in critically ill patients. Myeloid differentiation 2 (MD2), a co-receptor of toll like receptor 4 (TLR4), plays an important role in LPS-induced ALI in mice. Since MD2 inhibition by pharmacological inhibitors or gene knockout significantly attenuates ALI in animal models, MD2 has become an attractive target for the treatment of ALI. In this study we identified two chalcone-derived compounds, 7w and 7x, as new MD2 inhibitors, and investigated the therapeutic effects of 7x and 7w in LPS-induced ALI mouse model. In molecular docking analysis we found that 7w and 7x, formed pi-pi stacking interactions with Phe151 residue of the MD2 protein. The direct binding was confirmed by surface plasmon resonance analysis (with KD value of 96.2 and 31.2 μM, respectively) and by bis-ANS displacement assay. 7w and 7x (2.5, 10 μM) also dose-dependently inhibited the interaction between lipopolysaccharide (LPS) and rhMD2 and LPS-MD2-TLR4 complex formation. In mouse peritoneal macrophages, 7w and 7x (1.25-10 μM) dose-dependently inhibited LPS-induced inflammatory responses, MAPKs (JNK, ERK and P38) phosphorylation as well as NF-κB activation. Finally, oral administration of 7w or 7x (10 mg ·kg-1 per day, for 7 days prior LPS challenge) in ALI mouse model significantly alleviated LPS-induced lung injury, pulmonary edema, lung permeability, inflammatory cells infiltration, inflammatory cytokines expression and MD2/TLR4 complex formation. In summary, we identify 7w and 7x as new MD2 inhibitors to inhibit inflammatory response both in vitro and in vivo, proving the therapeutic potential of 7w and 7x for ALI and inflammatory diseases.
Collapse
Affiliation(s)
- Ya-li Zhang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.440761.00000 0000 9030 0162Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005 China ,grid.506977.a0000 0004 1757 7957School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399 China
| | - Wen-xin Zhang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.268099.c0000 0001 0348 3990Zhuji Biomedicine Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, 311800 China
| | - Jue-qian Yan
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Ye-lin Tang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Wen-jing Jia
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.268099.c0000 0001 0348 3990Zhuji Biomedicine Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, 311800 China
| | - Zheng-wei Xu
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Ming-jiang Xu
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Nipon Chattipakorn
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Yi Wang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jian-peng Feng
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Zhi-guo Liu
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.268099.c0000 0001 0348 3990Zhuji Biomedicine Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, 311800 China
| | - Guang Liang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.506977.a0000 0004 1757 7957School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399 China ,grid.410726.60000 0004 1797 8419Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| |
Collapse
|
24
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
25
|
Wu W, Wang S, Zhang H, Guo W, Lu H, Xu H, Zhan R, Fidan O, Sun L. Biosynthesis of Novel Naphthoquinone Derivatives in the Commonly-used Chassis Cells Saccharomyces cerevisiae and Escherichia coli. APPL BIOCHEM MICRO+ 2021. [PMCID: PMC8700708 DOI: 10.1134/s0003683821100124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Naphthoquinones harboring 1,4-naphthoquinone pharmacophore are considered as privileged structures in medicinal chemistry. In pharmaceutical industry and fundamental research, polyketide naphthoquinones were widely produced by heterologous expression of polyketide synthases in microbial chassis cells, such as Saccharomyces cerevisiae and Escherichia coli. Nevertheless, these cell factories still remain, to a great degree, black boxes that often exceed engineers’ expectations. In this work, the biotransformation of juglone or 1,4-naphthoquinone was conducted to generate novel derivatives and it was revealed that these two naphthoquinones can indeed be modified by the chassis cells. Seventeen derivatives, including 6 novel compounds, were isolated and their structural characterizations indicated the attachment of certain metabolites of chassis cells to naphthoquinones. Some of these biosynthesized derivatives were reported as potent antimicrobial agents with reduced cytotoxic activities. Additionally, molecular docking as simple and quick in silico approach was performed to screen the biosynthesized compounds for their potential antiviral activity. It was found that compound 11 and 17 showed the most promising binding affinities against Nsp9 of SARS-CoV-2, demonstrating their potential antiviral activities. Overall, this work provides a new approach to generate novel molecules in the commonly used chassis cells, which would expand the chemical diversity for the drug development pipeline. It also reveals a novel insight into the potential of the catalytic power of the most widely used chassis cells.
Collapse
Affiliation(s)
- W. Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| | - S. Wang
- Suzhou Institute of Drug Control, 215000 Suzhou, P. R. China
| | - H. Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| | - W. Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 510405 Guangzhou, P. R. China
| | - H. Lu
- Suzhou Institute of Drug Control, 215000 Suzhou, P. R. China
| | - H. Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| | - R. Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| | - O. Fidan
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gül University, 38080 Kayseri, Turkey
| | - L. Sun
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| |
Collapse
|
26
|
Jia W, Ding W, Chen X, Xu Z, Tang Y, Wang M, Zheng B, Zhang Y, Wei T, Zhu Z. Selenium-Containing Compound Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Regulating the MAPK/AP-1 Pathway. Inflammation 2021; 44:2518-2530. [PMID: 34487287 DOI: 10.1007/s10753-021-01521-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
Abstract-Acute lung injury (ALI) is characterized by a series of inflammatory reactions and serves as the main cause of mortality in intensive care unit patients. Although great progress has been made in understanding the pathophysiology of ALI, there are no effective treatments in clinic. Recently, we have synthesized a selenium-containing compound, which possesses obvious anti-inflammatory activity. The aim of the present study is to evaluate the protective effects of the selenium-containing compound 34# in LPS-induced ALI in mice as well as its underlying mechanism. Compound 34# was found to inhibit LPS-induced macrophage inflammatory cytokine release. These effects were observed to be produced via suppression of the MAPK/AP-1 pathway. Compound 34# was also noted to attenuate the LPS-induced lung inflammation in mice with ALI. The corresponding results suggested that compound 34# possesses remarkable protective effects on LPS-induced ALI. Furthermore, the MAPK/AP-1 pathway may prove to be the underlying mechanism. Accordingly, compound 34# may serve as a potential candidate for the prevention of ALI.
Collapse
Affiliation(s)
- Wenjing Jia
- Medicine and Health Care Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Wenting Ding
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xinmiao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Zhengwei Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yelin Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Meihong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bin Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yali Zhang
- Medicine and Health Care Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Tao Wei
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Zaisheng Zhu
- Medicine and Health Care Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
27
|
Yang L, Luo W, Zhang Q, Hong S, Wang Y, Samorodov AV, Chattipakorn N, Pavlov VN, Liang G. Cardamonin inhibits LPS-induced inflammatory responses and prevents acute lung injury by targeting myeloid differentiation factor 2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153785. [PMID: 34638032 DOI: 10.1016/j.phymed.2021.153785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a systemic inflammatory process, which has no pharmacological therapy in clinic. Accumulating evidence has demonstrated that natural compounds from herbs have potent anti-inflammatory efficacy in several disease models, which could be the potential candidates for the treatment of ALI. HYPOTHESIS/PURPOSE Anti-inflammatory screening from natural product bank may provide new anti-inflammatory compounds for therapeutic target discovery and ALI treatment. METHODS 165 natural compounds were screened for their anti-inflammatory activity in LPS-stimulated macrophages. PCR array, SPR and ELISA were used to determine the potential target of the most active compound, Cardamonin (CAR). The pharmacological effect of CAR was further evaluated in both LPS-stimulated macrophages and ALI mice model. RESULTS Out of the screened 165 compounds, CAR significantly inhibited LPS-induced inflammatory cytokine secretion in macrophages. We further showed that CAR significantly inhibited NF-κB and JNK signaling activation, and thereby inflammatory cytokine production via directly interacting with MD2 in vitro. In vivo, our data show that CAR treatment inhibited LPS-induced lung damage, systemic inflammatory cytokine production, and reduced macrophage infiltration in the lungs, accompanied with reduced TLR4/MD2 complex in lung tissues, Treatment with CAR also dose-dependently increased survival in the septic mice induced by DH5α bacterial infection. CONCLUSION We demonstrate that a natural product, CAR, attenuates LPS-induced lung injury and sepsis by inhibiting inflammation via interacting with MD2, leading to the inactivation of the TLR4/MD2-MyD88-MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Libin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiuyan Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shanshan Hong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
28
|
Wang Y, Xie L, Zhu M, Guo Y, Tu Y, Zhou Y, Zeng J, Zhu L, Du S, Wang Z, Zhang Y, Liu X, Song E. Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages. Exp Eye Res 2021; 213:108823. [PMID: 34752817 DOI: 10.1016/j.exer.2021.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Choroidal neovascularization (CNV), a feature of neovasular age-related macular degeneration (AMD), acts as a leading cause of vision loss in the elderly. Shikonin (SHI), a natural bioactive compound extracted from Chinese herb radix arnebiae, exerts anti-inflammatory and anti-angiogenic roles and also acts as a potential pyruvate kinase M2 (PKM2) inhibitor in macrophages. The major immune cells macrophages infiltrate the CNV lesions, where the production of pro-angiognic cytokines from macrophage facilitates the development of CNV. PKM2 contributes to the neovascular diseases. In this study, we found that SHI oral gavage alleviated the leakage, area and volume of mouse laser-induced CNV lesion and inhibited macrophage infiltration without ocular cytotoxicity. Moreover, SHI inhibited the secretion of pro-angiogenic cytokine, including basic fibroblast growth factor (FGF2), insulin-like growth factor-1 (IGF1), chemokine (C-C motif) ligand 2 (CCL2), placental growth factor and vascular endothelial growth factor (VEGF), from primary human macrophages by down-regulating PKM2/STAT3/CD163 pathway, indicating a novel potential therapy strategy for CNV.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Guo
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhenzhen Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuting Zhang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China.
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
29
|
Wang J, Chen Z, Feng X, Yin L. Shikonin ameliorates injury and inflammatory response of LPS-stimulated WI-38 cells via modulating the miR-489-3p/MAP2K1 axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:1775-1784. [PMID: 34089293 DOI: 10.1002/tox.23298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Pneumonia is an inflammatory disease induced by infection with different pathogens. Currently, multiple preclinical studies have revealed that shikonin, a natural naphthoquinone, can mitigate lipopolysaccharide (LPS)-induced inflammation, but its underlying mechanism in pneumonia remains unknown. This research was designed to explore the function and regulatory mechanism of shikonin in LPS-induced cell injury and inflammation in WI-38 cells. In-vitro model of pneumonia was constructed by treating WI-38 cells with LPS. Expression of miR-489-3p and MAP2K1 was tested by RT-qPCR and (or) Western blot analysis. Cell viability was examined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay. The productions of pro-inflammatory cytokines were determined by enzyme-linked immunosorbent assays. Cell apoptosis was detected by Western blot and flow cytometry analysis. In the current study, LPS induced WI-38 cell damage by inhibiting cell viability and promoting cell apoptosis and inflammation. Shikonin ameliorated LPS-induced cell injury and elevated miR-489-3p expression. LPS-induced inflammatory injury was further mitigated by upregulation of miR-489-3p. In addition, MAP2K1, the target of miR-489-3p, was upregulated by LPS. Furthermore, upregulation of MAP2K1 reversed the influence of shikonin and miR-489-3p mimics on LPS-induced cell injury and inflammation. This study revealed that shikonin protected WI-38 cells against LPS-induced cell injury and inflammatory response by regulating the miR-489-3p/MAP2K1 axis, thus affecting the progression of pneumonia.
Collapse
Affiliation(s)
- Jinchun Wang
- Department of Pharmacy, Jiangsu Health vocational college, Nanjing 211800, Jiangsu, China
| | - Zhujing Chen
- Department of Outpatient, Jurong People's Hospital, Zhenjiang 212400, Jiangsu, China
| | - Xiaojing Feng
- Department of Comprehensive ICU, Luoyang Central Hospital, Luoyang 471009, Henan, China
| | - Lu Yin
- Department of Comprehensive ICU, Luoyang Central Hospital, Luoyang 471009, Henan, China
| |
Collapse
|
30
|
A novel indazole derivative, compound Cyy-272, attenuates LPS-induced acute lung injury by inhibiting JNK phosphorylation. Toxicol Appl Pharmacol 2021; 428:115648. [PMID: 34280409 DOI: 10.1016/j.taap.2021.115648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022]
Abstract
Acute lung injury (ALI) is a diffuse lung dysfunction disease characterized by high prevalence and high mortality. Thus far, no effective pharmacological treatment has been made for ALI in clinics. Inflammation is critical to the development of ALI. Therefore, anti-inflammation may be a potential therapy strategy for ALI. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties, such as anti-cancer and anti-inflammation. In the current study, we investigated the biological effects of Cyy-272, a newly synthesized indazole compound, on LPS-induced ALI both in vivo and in vitro. Results show that Cyy-272 can inhibit the release of inflammatory cytokines in LPS-stimulated macrophage and alleviate LPS induced ALI. Further experiment revealed that Cyy-272 exhibit anti-inflammation activity by inhibiting JNK phosphorylation. Overall, our studies show that an indazole derivative, Cyy-272, is effective in suppressing LPS-induced JNK activation and inflammatory signaling.
Collapse
|
31
|
Restorative effects of Rg3-enriched Korean red ginseng and Persicaria tinctoria extract on oxazolone-induced ulcerative colitis in mice. J Ginseng Res 2021; 46:628-635. [PMID: 36090686 PMCID: PMC9459072 DOI: 10.1016/j.jgr.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/01/2022] Open
Abstract
Background Ulcerative colitis (UC) is the large intestine disease that results in chronic inflammation and ulcers in the colon. Rg3-enriched Korean Red Ginseng extract (Rg3-RGE) is known for its pharmacological activities. Persicaria tinctoria (PT) is also used in the treatment of various inflammatory diseases. The aim of this study is to investigate the attenuating effects of Rg3-RGE with PT on oxazolone (OXA)-induced UC in mice. Methods A total of six groups of mice including control group, OXA (as model group, 1.5%) group, sulfasalazine (75 mg/kg) group, Rg3-RGE (20 mg/kg) group, PT (300 mg/kg) group, and Rg3-RGE (10 mg/kg) with PT (150 mg/kg) group. Data on the colon length, body weight, disease activity index (DAI), histological changes, nitric oxide (NO) assay, Real-time PCR of inflammatory factors, ELISA of inflammatory factors, Western blot, and flow cytometry analysis were obtained. Results Overall, the combination treatment of Rg3-RGE and PT significantly improved the colon length and body weight and decreased the DAI in mice compared with the treatment with OXA. Additionally, the histological injury was also reduced by the combination treatment. Moreover, the NO production level and inflammatory mediators and cytokines were significantly downregulated in the Rg3-RGE with the PT group compared with the model group. Also, NLR family pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) were suppressed in the combination treatment group compared with the OXA group. Furthermore, the number of immune cell subtypes of CD4+ T-helper cells, CD19+ B-cells, and CD4+ and CD25+ regulatory T-cells (Tregs) was improved in the Rg3-RGE with the PT group compared with the OXA group. Conclusion Overall, the mixture of Rg3-RGE and PT is an effective therapeutic treatment for UC.
Collapse
|
32
|
Herbal Active Ingredients: Potential for the Prevention and Treatment of Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5543185. [PMID: 34258266 PMCID: PMC8245226 DOI: 10.1155/2021/5543185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.
Collapse
|
33
|
Yao P, Zhang Z, Cao J. Isorhapontigenin alleviates lipopolysaccharide-induced acute lung injury via modulating Nrf2 signaling. Respir Physiol Neurobiol 2021; 289:103667. [PMID: 33798789 DOI: 10.1016/j.resp.2021.103667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is involved in mitigating various oxidative stress- and inflammation-induced diseases, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Isorhapontigenin (ISO), from the Chinese herb Gnetum cleistostachyum, exhibits antioxidant and anti-inflammatory properties. In this study, we explored the protective effects of ISO in ALI and its underlying molecular mechanisms. ISO significantly mitigated ALI by reducing the lung wet/dry weight ratio, protein concentration in the bronchoalveolar lavage fluid (BALF), and the levels of myeloperoxidase and malondialdehyde. ISO also improved the superoxide dismutase and glutathione activity in vivo. Moreover, ISO effectively ameliorated the changes in IL-1β, IL-6, and TNF-α concentrations in BALF, prevented IκB degradation, and inhibited the phosphorylation of NF-κB p65 subunit in lung tissues; furthermore, it enhanced the nuclear translocation of Nrf2 and inhibited IL-1β, IL-6, TNF-α, iNOS, COX-2, and ROS production in lipopolysaccharide-treated RAW264.7 cells. The protective effects of ISO in ALI were significantly reversed in ML385-treated RAW264.7 cells and the mouse model, indicating its role in Nrf2-activation. In conclusion, ISO effectively ameliorated lipopolysaccharide-induced ALI by reducing inflammation and oxidative stress, primarily through activation of Nrf2 signaling.
Collapse
Affiliation(s)
- Peiyu Yao
- Department of Respiratory and Critical Care, Tianjin Medical University General Hospital, Tianjin, 300052, China; Department of Emergency, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Zhuo Zhang
- Department of Emergency, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Jie Cao
- Department of Respiratory and Critical Care, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
34
|
Xin Y, Zou L, Lang S. 4-Octyl itaconate (4-OI) attenuates lipopolysaccharide-induced acute lung injury by suppressing PI3K/Akt/NF-κB signaling pathways in mice. Exp Ther Med 2021; 21:141. [PMID: 33456508 PMCID: PMC7791918 DOI: 10.3892/etm.2020.9573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
The progression of acute lung injury (ALI) is attributable to inflammation and oxidative stress. The cell-permeable itaconate analog 4-octyl itaconate (4-OI) provides protection against inflammatory responses and oxidative stress. However, whether 4-OI can protect against ALI remains poorly understood. The aim of this study was to explore the protective effects of 4-OI against LPS-induced ALI and the underlying mechanisms using hematoxylin and eosin (H&E) to observe lung morphology, ELISA and reverse transcription-quantitative PCR to measure the levels of IL-1β, TNF-α and IL-6 and western blotting to examine the levels of PI3K, Akt and NF-κB. The present study demonstrates that intraperitoneal administration of 4-OI (25 mg/kg) 2 h before lipopolysaccharide (LPS; 5 mg/kg) intratracheal injection significantly alleviated the lung tissue injury induced by LPS, reducing the production of proinflammatory cytokines and reactive oxygen species (ROS) in vivo. Furthermore, 4-OI and the antioxidant N-acetyl-L-cysteine markedly suppressed PI3K and Akt phosphorylation in LPS-treated RAW264.7 macrophage cells in vitro. Further study demonstrated that a pharmacological inhibitor of the phosphoinositide 3-kinase (PI3K)-Akt pathway, LY294002, inhibited the expression of NF-κB p65 in the nuclear fraction and decreased the production of inflammatory cytokines. Collectively, the experimental results of the present study provide evidence that 4-OI significantly decreased LPS-induced lung inflammation by suppressing ROS-mediated PI3K/Akt/NF-κB signaling pathways. These results suggest that 4-OI could be a valuable therapeutic drug in the treatment of ALI.
Collapse
Affiliation(s)
- Yan Xin
- Department of Anesthesiology, Changchun Maternity Hospital, Changchun, Jilin 130042, P.R. China
| | - Lili Zou
- Department of Anesthesiology, General Hospital of Ning Xia Medical University, Yin Chuan, Ningxia 750004, P.R. China
| | - Shuhui Lang
- Department of Anesthesiology, General Hospital of Ning Xia Medical University, Yin Chuan, Ningxia 750004, P.R. China
| |
Collapse
|
35
|
Amaral-Machado L, Oliveira WN, Rodrigues VM, Albuquerque NA, Alencar ÉN, Egito EST. Could natural products modulate early inflammatory responses, preventing acute respiratory distress syndrome in COVID-19-confirmed patients? Biomed Pharmacother 2021; 134:111143. [PMID: 33360048 PMCID: PMC7832252 DOI: 10.1016/j.biopha.2020.111143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ARDS (Acute Respiratory Distress Syndrome) is a severe respiratory syndrome that was recently associated as the main death cause in the COVID-19 pandemic outbreak. Hence, in order to prevent ARDS, the pulmonary function maintenance has been the target of several pharmacological approaches. However, there is a lack of reports regarding the use of effective pharmaceutical active natural products (PANPs) for early treatment and prevention of COVID-19-related ARDS. Therefore, the aim of this work was to conduct a systematic review regarding the PANPs that could be further studied as alternatives to prevent ARDS. Consequently, this work can pave the way to spread the use of PANPs on the prevention of ARDS in COVID-19-confirmed or -suspected patients. METHODS The search strategy included scientific studies published in English from 2015 to 2020 that promoted the elucidation of anti-inflammatory pathways targeting ARDS by in vitro and/or in vivo experiments using PANPs. Then, 74 studies regarding PANPs, able to maintain or improve the pulmonary function, were reported. CONCLUSIONS The PANPs may present different pulmonary anti-inflammatory pathways, wherein (i) reduction/attenuation of pro-inflammatory cytokines, (ii) increase of the anti-inflammatory mediators' levels, (iii) pulmonary edema inhibition and (iv) attenuation of lung injury were the most observed biological effects of such products in in vitro experiments or in clinical studies. Finally, this work highlighted the PANPs with promising potential to be used on respiratory syndromes, allowing their possible use as alternative treatment at the prevention of ARDS in COVID-19-infected or -suspected patients.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | | | | | | | - Éverton N Alencar
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | - Eryvaldo S T Egito
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil; Graduate Program in Health Sciences, UFRN, 59012-570, Natal, RN, Brazil.
| |
Collapse
|
36
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
37
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
38
|
Guo T, Jiang ZB, Tong ZY, Zhou Y, Chai XP, Xiao XZ. Shikonin Ameliorates LPS-Induced Cardiac Dysfunction by SIRT1-Dependent Inhibition of NLRP3 Inflammasome. Front Physiol 2020; 11:570441. [PMID: 33178042 PMCID: PMC7596688 DOI: 10.3389/fphys.2020.570441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Shikonin (SHI) is an anti-inflammatory agent extracted from natural herbs. It is still unknown whether SHI ameliorates lipopolysaccharide (LPS)-induced cardiac dysfunction. This study aims to explore the protective effects of SHI on LPS-induced myocardial injury and its mechanism. The LPS-induced cardiac dysfunction mouse model was employed to investigate the protective effects of SHI. In the present study, we found that SHI treatment improved the survival rate and cardiac function and remarkably ameliorated the release of inflammatory cytokines and macrophage infiltration in heart tissue of LPS-treated mice. SHI also reduced lactate dehydrogenase (LDH) and cardiac troponin (cTn) release, cell inflammation, and apoptosis in LPS plus adenosine triphosphate (ATP)-treated H9c2 cells. In addition, SHI significantly upregulated silent information regulator 1 (SIRT1) expression and suppressed the upregulation of NOD-like receptor protein 3 (NLRP3), cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Meanwhile, we got the same results in LPS plus ATP-treated H9c2 cells in vitro. Further, SIRT1 inhibitor or siRNA partially blocked SHI-mediated upregulation of SIRT1 expression and downregulation of NLRP3, cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Therefore, we conclude that SHI ameliorates LPS-induced cardiac dysfunction by inhibiting SIRT1-dependent activation of NLRP3 inflammasomes and might be a promising therapeutic strategy for the treatment of LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Tao Guo
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China.,Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhong-Biao Jiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Yi Tong
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Zhou
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xiang-Ping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xian-Zhong Xiao
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
39
|
Zhong J, Wang Z, Xie Q, Li T, Chen K, Zhu T, Tang Q, Shen C, Zhu J. Shikonin ameliorates D-galactose-induced oxidative stress and cognitive impairment in mice via the MAPK and nuclear factor-κB signaling pathway. Int Immunopharmacol 2020; 83:106491. [DOI: 10.1016/j.intimp.2020.106491] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
|
40
|
Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun HS, Lu JJ, Chen X. Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. Pharmacol Ther 2020; 214:107593. [PMID: 32492512 DOI: 10.1016/j.pharmthera.2020.107593] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Cell death plays a critical role in organism development and the pathogenesis of diseases. Necrosis is considered a non-programmed cell death in an extreme environment. Recent advances have provided solid evidence that necrosis could be programmed and quite a few types of programmed necrosis, such as necroptosis, ferroptosis, pyroptosis, paraptosis, mitochondrial permeability transition-driven necrosis, and oncosis, have been identified. The specific biomarkers, detailed signaling, and precise pathophysiological importance of programmed necrosis are yet to be clarified, but these forms of necrosis provide novel strategies for the treatment of various diseases, including cancer. Natural compounds are a unique source of lead compounds for the discovery of anti-cancer drugs. Natural compounds can induce both apoptosis and programmed necrosis. In this review, we summarized the recent progress of programmed necrosis and introduced their natural inducers. Noptosis, which is a novel type of programmed necrosis that is strictly dependent on NAD(P)H: quinone oxidoreductase 1-derived oxidative stress was proposed. Furthermore, the anti-cancer strategies that take advantage of programmed necrosis and the main concerns from the scientific community in this regard were discussed.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qingwen Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lida Du
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
41
|
Yan L, Liang J, Zhou Y, Huang J, Zhang T, Wang X, Yin H. Switch Off "Parallel Circuit": Insight of New Strategy of Simultaneously Suppressing Canonical and Noncanonical Inflammation Activation in Endotoxemic Mice. ACTA ACUST UNITED AC 2020; 4:e2000037. [PMID: 32419296 DOI: 10.1002/adbi.202000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022]
Abstract
Sepsis is a life-threatening inflammatory disease with a high mortality rate and huge implicative costs. Lipopolysaccharide (LPS) from gram-negative bacteria activates toll-like receptor 4 (TLR4) and may trigger septic shock. However, potent TLR4 inhibitors TAK-242 and Eritoran have been terminated in phase III clinical trials because of inadequate efficacy. Inspired by the recently discovered intracellular, noncanonical LPS receptors, it is considered that TLR4-mediated canonical and caspase-mediated noncanonical inflammation can be seen as a "parallel circuit" to induce sepsis and endotoxemia. Logically, it is proposed that the dual inhibition of caspase-4/5/11 and TLR4 can be a potential novel strategy to develop new therapeutics for sepsis. To verify the strategy, two potential compounds are found: Luteolin and Diacerein with substantial antiinflammatory activity in vitro and in vivo. The results show that the survival rate of endotoxemic mice treated by these compounds is increased remarkably. LPS-induced organ damage is also prevented. Moreover, these compounds result in physical and mental recovery for endotoxemic mice. Notably, Luteolin exhibits better antiinflammatory activity than TAK-242 at comparable TLR4-inhibitory levels. These findings indicate that simultaneous inhibition of TLR4 and caspase-4/5/11 can be an anticipative strategy defeating sepsis and endotoxemia, which can be translated into significant medical and economic benefits.
Collapse
Affiliation(s)
- Lei Yan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| | - Jiaqi Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| | - Yi Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| | - Jian Huang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hang Yin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| |
Collapse
|
42
|
Yuan M, Peng LY, Wei Q, Li JH, Song K, Chen S, Huang JN, Yu JL, An Q, Yi PF, Shen HQ, Fu BD. Schizandrin attenuates lung lesions induced by Avian pathogenic Escherichia coli in chickens. Microb Pathog 2020; 142:104059. [PMID: 32058027 DOI: 10.1016/j.micpath.2020.104059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) can cause serious pathological changes and inflammation in chickens. Schizandrin has anti-inflammatory activity and can prevent damage to various tissues and organs. The purpose of this study was to investigate the protective effect of schizandrin on APEC-induced lung lesions in chickens and explore the potential mechanism of schizandrin protection. The schizandrin (50, 100, and 200 mg/kg) was intragastrically administered for 3 days. APEC was administered using intraperitoneal (i.p.) injection to induce lung lesions. Then, chickens were sacrificed by CO2 inhalation 24 h later and the lung tissues were collected for examining histopathological changes, wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, malondialdehyde (MDA), levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 and activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Our findings showed that schizandrin markedly inhibited pathological changes, pulmonary edema, MPO activity and MDA content. Moreover, schizandrin markedly reduced the levels of TNF-α, IL-1β, IL-6 and IL-8 in lung tissue. Importantly, the mechanism responsible for these effects was attributed to the inhibitory effect of schizandrin on NF-κB and MAPK signaling activation. In conclusion, our findings reveal that schizandrin displays anti-oxidant and anti-inflammatory activity against APEC-induced lung lesions in chickens, paving the way for rational use of schizandrin as a protective agent against lung-related inflammatory disease.
Collapse
Affiliation(s)
- Meng Yuan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Qian Wei
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, 130062, China
| | - Jing-He Li
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Shuang Chen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Jiang-Ni Huang
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Jia-Lin Yu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Qiang An
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| |
Collapse
|
43
|
Zhang Y, Liu H, Jia W, Qi J, Zhang W, Zhang W, Liang G, Zhang Y, Chen H. Myeloid Differentiation Protein 2 Mediates Angiotensin II-Induced Liver Inflammation and Fibrosis in Mice. Molecules 2019; 25:molecules25010025. [PMID: 31861702 PMCID: PMC6983196 DOI: 10.3390/molecules25010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Angiotensin II (Ang II) participates in the pathogenesis of liver injury. Our previous publications reported that myeloid differentiation protein 2 (MD2) mediates Ang II-induced cardiac and kidney inflammation by directly binding to Ang II. Thus, we hypothesize that MD2 is critical to Ang II-induced liver injury. Subcutaneous injections of Ang II for 8 weeks were adopted to build the liver injury model. With a specific MD2 inhibitor L6H21 and MD2 knockout mice, we reported that MD2 inhibition and knockout significantly mitigate liver inflammation and fibrosis in mice injected with Ang II. To be more specific, the functional and pathological damages induced by Ang II were mitigated by L6H21 or MD2 knockout. MD2 knockout or L6H21 administration inhibited the Ang II-induced upregulation of fibrosis markers, inflammatory cytokines, and adhesion molecules in gene or protein levels. The activation of NF-κB and Extracellular signal-regulated kinases (ERK) induced by Ang II was also reversed by L6H21 treatment or MD2 deficiency. Note that the co-immunoprecipitation study showed that L6H21 downregulated the ANG II-induced toll-like receptor 4 (TLR4)/MD2 complex in liver tissues while having no effects on MD2 expression. Our results reported the critical role of MD2 in the progress of liver injury and suggested that MD2 is a potential therapeutic target for liver injury.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Y.Z.); (G.L.)
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (W.J.); (J.Q.); (W.Z.); (W.Z.); (Y.Z.)
| | - Hui Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (W.J.); (J.Q.); (W.Z.); (W.Z.); (Y.Z.)
| | - Wenjing Jia
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (W.J.); (J.Q.); (W.Z.); (W.Z.); (Y.Z.)
| | - Jiayu Qi
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (W.J.); (J.Q.); (W.Z.); (W.Z.); (Y.Z.)
| | - Wentao Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (W.J.); (J.Q.); (W.Z.); (W.Z.); (Y.Z.)
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (W.J.); (J.Q.); (W.Z.); (W.Z.); (Y.Z.)
| | - Guang Liang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Y.Z.); (G.L.)
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (W.J.); (J.Q.); (W.Z.); (W.Z.); (Y.Z.)
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (W.J.); (J.Q.); (W.Z.); (W.Z.); (Y.Z.)
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (W.J.); (J.Q.); (W.Z.); (W.Z.); (Y.Z.)
- Correspondence:
| |
Collapse
|
44
|
Xiao Z, Xu F, Zhu X, Bai B, Guo L, Liang G, Shan X, Zhang Y, Zhao Y, Zhang B. Inhibition Of JNK Phosphorylation By Curcumin Analog C66 Protects LPS-Induced Acute Lung Injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4161-4171. [PMID: 31849448 PMCID: PMC6911336 DOI: 10.2147/dddt.s215712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/22/2019] [Indexed: 01/11/2023]
Abstract
Background Acute lung injury (ALI) is characterized by high prevalence and high mortality. Thus far, no effective pharmacological treatment has been made for ALI in clinics. Inflammation is critical to the development of ALI. Curcumin analog C66, having reported as an inhibitor of c-Jun N-terminal kinase (JNK), exhibits anti-inflammatory property both in vitro and in vivo. However, whether C66 is capable of reducing lipopolysaccharide (LPS)-induced ALI through the inhibition of inflammation by targeting JNK remains unknown. Methods Intratracheal injection of LPS was employed to build a mouse ALI model. H&E staining, wet/dry ratio, immunofluorescence staining, inflammatory cell detection, and inflammatory gene expression were used to evaluate lung injury and lung inflammation. In vitro, LPS was used to induce the expression of inflammatory cytokines both in protein and gene levels. Results The results of our studies showed that the pretreatment with C66 and JNK inhibitor SP600125 was capable of attenuating the LPS-induced ALI by detecting pulmonary edema, pathological changes, total protein concentration, and inflammatory cell number in bronchoalveolar lavage fluid (BALF). Besides, C66 and SP600125 also suppressed LPS-induced inflammatory cytokine expression in BALF, serum, and lung tissue. In vitro, LPS-induced production of TNF-α and IL-6 and gene expression of TNF-α, IL-6, IL-1β, and COX-2 could be inhibited by the pretreatment with C66 and SP600125. It was found that C66 and SP600125 could inhibit LPS-induced phosphorylation of JNK both in vitro and in vivo. Conclusion In brief, our results suggested that C66 protects LPS-induced ALI through the inhibition of inflammation by targeting the JNK pathway. These findings further confirmed the pivotal role of JNK in ALI and implied that C66 is likely to serve as a potential therapeutic agent for ALI.
Collapse
Affiliation(s)
- Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Fengli Xu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Xiaona Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China
| | - Bin Bai
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China
| | - Lu Guo
- Department of Pharmacy, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, People's Republic of China
| | - Guang Liang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China
| | - Xiaoou Shan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
45
|
Xu T, Ge X, Lu C, Dai W, Chen H, Xiao Z, Wu L, Liang G, Ying S, Zhang Y, Dai Y. Baicalein attenuates OVA-induced allergic airway inflammation through the inhibition of the NF-κB signaling pathway. Aging (Albany NY) 2019; 11:9310-9327. [PMID: 31692453 PMCID: PMC6874438 DOI: 10.18632/aging.102371] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/12/2019] [Indexed: 01/02/2023]
Abstract
Asthma is a type of chronic lung inflammation with restrictions in effective therapy. NF-κB pathway activation has been suggested to play an important role in the pathogenesis of asthma. Baicalein, one of the major active flavonoids found in Scutellaria baicalensis, exhibits potent anti-inflammatory properties by inhibiting NF-κB activity. Herein, we report that Baicalein significantly reduces OVA-induced airway hyperresponsiveness (AHR), airway inflammation, serum IgE levels, mucus production, and collagen deposition around the airway. Additionally, western blot analysis and immunofluorescence assay showed that Baicalein attenuates the activation of NF-κB, which was mainly reflected by IκBα phosphorylation and degradation, p65 nuclear translocation and downstream iNOS expression. Furthermore, in human epithelial cells, Baicalein blocked TNF-α-induced NF-κB activation. Our study provides evidence that Baicalein administration alleviates the pathological changes in asthma through inactivating the NF-κB/iNOS pathway. Baicalein might be a promising potential therapy agent for patients with allergic asthma in the future.
Collapse
Affiliation(s)
- Tingting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangting Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Dai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liqin Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Songmin Ying
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanrong Dai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Chen H, Zhang Y, Zhang W, Liu H, Sun C, Zhang B, Bai B, Wu D, Xiao Z, Lum H, Zhou J, Chen R, Liang G. Inhibition of myeloid differentiation factor 2 by baicalein protects against acute lung injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152997. [PMID: 31254764 DOI: 10.1016/j.phymed.2019.152997] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND ALI/ARDS is characterized by severe hypoxemic respiratory failure attributed to inflammatory tissue injury. There are no treatment modalities able to prevent/reverse the dire pathological sequelae in these patients. Evidence links the inflammatory lung injury to uncontrolled activation of the immune signaling complex, TLR4-MD2 (Toll-like receptor-myeloid differentiation factor 2). Baicalein, a natural flavonoid, is reported to have robust anti-inflammatory properties, but its inhibition mechanism remains unclear. HYPOTHESIS/PURPOSE This study investigated the protective mechanisms of baicalein on ALI/ARDS. METHODS We used two experimental mouse models of LPS-induced ALI, pulmonary infection model (intratracheal LPS), and systemic infection model (intravenous LPS). Blood, BALF, lung and liver tissues were analyzed using routine methods. In vitro studies using peritoneal mouse macrophages or recombinant proteins were designed to elucidate inhibition mechanisms of baicalein. RESULTS Our critical new findings revealed that Baicalein was an MD2 inhibitor, directly bound to MD2, effectively suppressing TLR4-MD2 activation and the subsequent MAPK and NF-κB signaling. The inhibited MD2 prevented development of inflammatory tissue injury and improved survival. The importance of MD2 in the inflammatory injury in ALI was corroborated by data obtained from MD2-/- mice, which did not develop the characteristic LPS-induced lung tissue damage. Thus, the findings indicated that MD2 was critical for development of ALI, functioning as an early upstream signal driving the progression of inflammatory injury. CONCLUSION Baicalein, as a direct and selective MD2 inhibitor, inhibited the early upstream TLR4-MD2 signaling and is a promising therapeutic agent for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325800, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hui Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chuchu Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China
| | - Hazel Lum
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianmin Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325800, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China.
| |
Collapse
|
47
|
Lin Y, Zhang M, Lu Q, Xie J, Wu J, Chen C. A novel chalcone derivative exerts anti-inflammatory and anti-oxidant effects after acute lung injury. Aging (Albany NY) 2019; 11:7805-7816. [PMID: 31553308 PMCID: PMC6781971 DOI: 10.18632/aging.102288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
We explored the effects of compound 33, a synthetic chalcone derivative with antioxidant activity, on lipopolysaccharide (LPS)-induced acute lung injury (ALI). Compound 33, dexamethasone or vehicle was administered intragastrically to mice 6 h before intratracheal instillation of LPS. After 24 h, the effects of compound 33 on alveolar structural damage were evaluated by assessing lung morphology and the wet/dry weight ratio. Protein and proinflammatory cytokine levels and superoxide dismutase activity were also examined in the cell free supernatant of bronchoalveolar lavage fluid. Additionally, we investigated the anti-inflammatory and antioxidant activity of compound 33 in vitro and its effects on the MAPK/NF-κB and Nrf2/HO-1 pathways. Pretreatment with compound 33 prevented LPS-induced structural damage, tissue edema, protein exudation, and overproduction of proinflammatory mediators. The effects of compound 33 were similar to or greater in magnitude than those of the positive control, dexamethasone. Moreover, compound 33 exerted anti-inflammatory and antioxidant effects in vitro by inhibiting the MAPK/NF-κB pathway and activating the Nrf2/HO-1 pathway. Compound 33 may therefore be a promising candidate treatment for ALI.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| | - Man Zhang
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang 325000, China
| | - Qingdi Lu
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| | - Jingwen Xie
- Department of Pharmacy, Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| | - Jianzhang Wu
- Department of Pharmacy, Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| | - Chengshui Chen
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| |
Collapse
|
48
|
Guo C, He J, Song X, Tan L, Wang M, Jiang P, Li Y, Cao Z, Peng C. Pharmacological properties and derivatives of shikonin-A review in recent years. Pharmacol Res 2019; 149:104463. [PMID: 31553936 DOI: 10.1016/j.phrs.2019.104463] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/26/2019] [Accepted: 09/20/2019] [Indexed: 01/09/2023]
Abstract
Shikonin is the major bioactive component extracted from the roots of Lithospermum erythrorhizon which is also known as "Zicao" in Traditional Chinese Medicine (TCM). Recent studies have shown that shikonin demonstrates various bioactivities related to the treatment of cancer, inflammation, and wound healing. This review aimed to provide an updated summary of recent studies on shikonin. Firstly, many studies have demonstrated that shikonin exerts strong anticancer effects on various types of cancer by inhibiting cell proliferation and migration, inducing apoptosis, autophagy, and necroptosis. Shikonin also triggers Reactive Oxygen Species (ROS) generation, suppressing exosome release, and activate anti-tumor immunity in multiple molecular mechanisms. Examples of these effects include modulating the PI3K/AKT/mTOR and MAPKs signaling; inhibiting the activation of TrxR1, PKM2, RIP1/3, Src, and FAK; and regulating the expression of ERP57, MMPs, ATF2, C-MYC, miR-128, and GRP78 (Bip). Next, the anti-inflammatory and wound-healing properties of shikonin were also reviewed. Furthermore, several studies focusing on shikonin derivatives were reviewed, and these showed that, with modification to the naphthazarin ring or side chain, some shikonin derivatives display stronger anticancer activity and lower toxicity than shikonin itself. Our findings suggest that shikonin and its derivatives could serve as potential novel drug for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Chuanjie Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junlin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xiaominting Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Lu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Miao Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Peidu Jiang
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yuzhi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China.
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
49
|
Alagan A, Jantan I, Kumolosasi E, Ogawa S, Abdullah MA, Azmi N. Protective Effects of Phyllanthus amarus Against Lipopolysaccharide-Induced Neuroinflammation and Cognitive Impairment in Rats. Front Pharmacol 2019; 10:632. [PMID: 31231221 PMCID: PMC6558432 DOI: 10.3389/fphar.2019.00632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Phyllanthus amarus (PA) is widely studied for its hepatoprotective properties but has recently received increasing attention due to its diverse anti-inflammatory effects. However, the effects of PA in modulating immune responses in the central nervous system leading to protection against functional changes remain unexplored. Therefore, we sought to examine the protective effects of 80% v/v ethanol extract of PA on lipopolysaccharide (LPS)-induced non-spatial memory impairment and neuroinflammation. Methods: Selected major phytoconstituents of PA extract were identified and quantified using high-performance liquid chromatography. Subchronic neurotoxicity was performed in male Wistar rats given daily oral administration of 100, 200, and 400 mg/kg of the PA extract. Their neurobehavioral activities (functional observation battery and locomotor activity) were scored, and the extracted brains were examined for neuropathological changes. Rats were treated orally with vehicle (5% Tween 20), PA extract (100, 200, and 400 mg/kg), or ibuprofen (IBF; 40 mg/kg) for 14 and 28 days before being subjected to novel object discrimination test. All groups were challenged with LPS (1 mg/kg) given intraperitoneally a day prior to the behavioral tests except for the negative control group. At the end of the behavioral tests, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, nitric oxide (NO), inducible nitric oxide synthase (iNOS), CD11b/c integrin expression, and synaptophysin immunoreactivity were determined in the brain tissues. Results: Gallic acid, ellagic acid, corilagin, geraniin, niranthin, phyllanthin, hypophyllanthin, phyltetralin, and isonirtetralin were identified in the PA extract. Subchronic administration of PA extract (100, 200, and 400 mg/kg) showed no abnormalities in neurobehavior and brain histology. PA extract administered at 200 and 400 mg/kg for 14 and 28 days effectively protected the rodents from LPS-induced memory impairment. Similar doses significantly (p < 0.05) decreased the release of proteins like TNF-α, IL-1β, and iNOS in the brain tissue. NO levels, CD11b/c integrin expression, and synaptophysin immunoreactivity were also reduced as compared with those in the LPS-challenged group. Conclusion: Pre-treatment with PA extract for 14 and 28 days was comparable with pre-treatment with IBF in prevention of memory impairment and alleviation of neuroinflammatory responses induced by LPS. Further studies are essential to identify the bioactive phytochemicals and the precise underlying mechanisms.
Collapse
Affiliation(s)
- Akilandeshwari Alagan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- School of Pharmacy-SRI, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology,Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norazrina Azmi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Ye J, Guan M, Lu Y, Zhang D, Li C, Li Y, Zhou C. Protective effects of hesperetin on lipopolysaccharide-induced acute lung injury by targeting MD2. Eur J Pharmacol 2019; 852:151-158. [DOI: 10.1016/j.ejphar.2019.02.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|