1
|
González-Portilla M, Montagud-Romero S, Rodríguez de Fonseca F, Rodríguez-Arias M. Oleoylethanolamide restores stress-induced prepulse inhibition deficits and modulates inflammatory signaling in a sex-dependent manner. Psychopharmacology (Berl) 2025; 242:913-928. [PMID: 37314479 PMCID: PMC12043760 DOI: 10.1007/s00213-023-06403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
RATIONALE Social stress contributes to the development of depressive and anxiety symptomatology and promotes pro-inflammatory signaling in the central nervous system. In this study, we explored the effects of a lipid messenger with anti-inflammatory properties - oleoylethanolamide (OEA) - on the behavioral deficits caused by social stress in both male and female mice. METHODS Adult mice were assigned to an experimental group according to the stress condition (control or stress) and treatment (vehicle or OEA, 10 mg/kg, i.p.). Male mice in the stress condition underwent a protocol consisting of four social defeat (SD) encounters. In the case of female mice, we employed a procedure of vicarious SD. After the stress protocol resumed, anxiety, depressive-like behavior, social interaction, and prepulse inhibition (PPI) were assessed. In addition, we characterized the stress-induced inflammatory profile by measuring IL-6 and CX3CL1 levels in the striatum and hippocampus. RESULTS Our results showed that both SD and VSD induced behavioral alterations. We found that OEA treatment restored PPI deficits in socially defeated mice. Also, OEA affected differently stress-induced anxiety and depressive-like behavior in male and female mice. Biochemical analyses showed that both male and female stressed mice showed increased levels of IL-6 in the striatum compared to control mice. Similarly, VSD female mice exhibited increased striatal CX3CL1 levels. These neuroinflammation-associated signals were not affected by OEA treatment. CONCLUSIONS In summary, our results confirm that SD and VSD induced behavioral deficits together with inflammatory signaling in the striatum and hippocampus. We observed that OEA treatment reverses stress-induced PPI alterations in male and female mice. These data suggest that OEA can exert a buffering effect on stress-related sensorimotor gating behavioral processing.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad Clínica de Neurología, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain.
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain.
| |
Collapse
|
2
|
Okuda Y, Li D, Maruyama Y, Sonobe H, Mano T, Tainaka K, Shinohara R, Furuyashiki T. The activation of the piriform cortex to lateral septum pathway during chronic social defeat stress is crucial for the induction of behavioral disturbance in mice. Neuropsychopharmacology 2025; 50:828-840. [PMID: 39638863 PMCID: PMC11914691 DOI: 10.1038/s41386-024-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Chronic stress induces neural dysfunctions and risks mental illnesses. Clinical and preclinical studies have established the roles of brain regions underlying emotional and cognitive functions in stress and depression. However, neural pathways to perceive sensory stimuli as stress to cause behavioral disturbance remain unknown. Using whole-brain imaging of Arc-dVenus neuronal response reporter mice and machine learning analysis, here we unbiasedly demonstrated different patterns of contribution of widely distributed brain regions to neural responses to acute and chronic social defeat stress (SDS). Among these brain regions, multiple sensory cortices, especially the piriform (olfactory) cortex, primarily contributed to classifying neural responses to chronic SDS. Indeed, SDS-induced activation of the piriform cortex was augmented with repetition of SDS, accompanied by impaired odor discrimination. Axonal tracing and chemogenetic manipulation showed that excitatory neurons in the piriform cortex directly project to the lateral septum and activate it in response to chronic SDS, thereby inducing behavioral disturbance. These results pave the way for identifying a spatially defined sequence of neural consequences of stress and the roles of sensory pathways in perceiving chronic stress in mental illness pathology.
Collapse
Affiliation(s)
- Yuki Okuda
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Dongrui Li
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yuzuki Maruyama
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hirokazu Sonobe
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoyuki Mano
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, 904-0412, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
3
|
Kamate M, Teranishi H, Umeda R, Shikano K, Kitaoka S, Hanada T, Hikida T, Kawano K, Hanada R. Dietary texture-driven masticatory activity and its impact on stress tolerance. J Oral Biosci 2025; 67:100628. [PMID: 39923995 DOI: 10.1016/j.job.2025.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES Although previous studies suggest that dietary texture-driven masticatory activity is correlated with stress tolerance, the underlying mechanisms, including neurotransmitter dynamics, remain unclear. This study investigated the effects of dietary texture-driven masticatory activity on stress tolerance in mice. METHODS Behavioral responses to stress were assessed using the repeated social defeat stress (R-SDS) and social interaction test (SIT) model. Neurotransmitter levels in stress-related brain regions were analyzed in mice fed a solid diet (promoting masticatory activity) or a powdered diet (decreasing masticatory activity). RESULTS Mice fed the powdered diet exhibited reduced stress tolerance compared with those fed the solid diet. Following the R-SDS, the powdered diet group displayed elevated gamma-aminobutyric acid (GABA) and norepinephrine levels in the prefrontal cortex. Before stress treatment, glutamic acid levels increased and those of choline decreased in the amygdala, whereas dopamine levels decreased in the powdered diet group after the R-SDS. In the locus coeruleus, mice on the powdered diet showed decreased glutamic acid and adenosine levels, alongside increased GABA levels. Serotonin levels decreased in the powdered diet group after the R-SDS, with no changes observed after the SIT. In the ventral hippocampus, GABA levels increased in the powdered diet group but decreased after the SIT. CONCLUSIONS This study demonstrates a correlation between masticatory activity and stress tolerance, evidenced by both behavioral and neurotransmitter changes. These findings suggest that reduced masticatory activity due to dietary texture contributes to decreased stress resilience.
Collapse
Affiliation(s)
- Mie Kamate
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan; Department of Advanced Medical Science, Faculty of Medicine, Oita University, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kenji Kawano
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan.
| |
Collapse
|
4
|
Jaschke NP, Wang A. Integrated control of leukocyte compartments as a feature of adaptive physiology. Immunity 2025; 58:279-294. [PMID: 39909034 DOI: 10.1016/j.immuni.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/10/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
As a highly diverse and mobile organ, the immune system is uniquely equipped to participate in tissue responses in a tunable manner, depending on the number, type, and nature of cells deployed to the respective organ. Most acute organismal stressors that threaten survival-predation, infection, poisoning, and others-induce pronounced redistribution of immune cells across tissue compartments. Here, we review the current understanding of leukocyte compartmentalization under homeostatic and noxious conditions. We argue that leukocyte shuttling between compartments is a function of local tissue demands, which are linked to the organ's contribution to adaptive physiology at steady state and upon challenge. We highlight the neuroendocrine signals that relay and organize this trafficking behavior and outline mechanisms underlying the functional diversification of leukocyte responses. In this context, we discuss important areas of future inquiry and the implications of this scientific space for clinical medicine in the era of targeted immunomodulation.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Andrew Wang
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Yu X, Ye L, Liang H, Li H, Gao S, Xu C, Yang T, Shi Y, Liu L, Huang R. The alterations in CD4 +Treg cells across various phases of major depression. J Affect Disord 2024; 362:485-492. [PMID: 39009318 DOI: 10.1016/j.jad.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Major depression (MD) is recurrent and devastating mental disease with a high worldwide prevalence. Mounting evidence suggests neuroinflammation triggers cellular immune dysregulation, characterized by increased proportions of circulating monocytes, and T helper 17 cells and proinflammatory cytokines, thereby increasing susceptibility to MD. However, there is ambiguity in the findings of clinical studies that investigate CD4+ T regulatory (Treg) cells in MD. METHODS The proportion of CD4+ Treg cell from blood mononuclear cells was examined using flow cytometry in healthy controls (HCs: n = 96) and patients with first (FEMD: n = 62) or recurrent (RMD: n = 41) disease episodes of MD at baseline (T0; hospital admission) and after a two-week antidepressant treatment (T14). All participants underwent comprehensive neuropsychological assessments. RESULTS The initial scores on emotional assessments in patients with MD significantly differed from those of HCs. Both FEMD and RMD patients exhibited a significant decrease in CD4+ Treg cell proportion at baseline compared to HCs. Treg cell proportion rose significantly from T0 to T14 in FEMD patients, who responded to antidepressant therapy, whereas no significant changes were observed in FEMD patients in non-response as well as RMD patients. The improvement of 24-item Hamilton Depression Scale was correlate with changes of Treg cell proportion from T0 to T14 in FEMD patients in response, and the change in Treg cell proportion over a 14-day period exhibited an AUC curve of 0.710. CONCLUSIONS A decrease in the proportion of CD4+ Treg cells points towards immune system abnormalities in patients with MD. Furthermore, our finding suggests that the immune activation state varies across different stages of depression.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, China
| | - Long Ye
- Department of Hematology, Affiliated Hospital of Jiangnan University, China
| | - Huijun Liang
- Wuxi School of Medicine, Jiangnan University, China
| | - Heng Li
- Wuxi School of Medicine, Jiangnan University, China
| | - Shulei Gao
- Wuxi School of Medicine, Jiangnan University, China
| | - Chenxue Xu
- Wuxi School of Medicine, Jiangnan University, China
| | | | - Yachen Shi
- Department of Neurology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, China.
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, China.
| |
Collapse
|
6
|
Goodman EJ, DiSabato DJ, Sheridan JF, Godbout JP. Novel microglial transcriptional signatures promote social and cognitive deficits following repeated social defeat. Commun Biol 2024; 7:1199. [PMID: 39341879 PMCID: PMC11438916 DOI: 10.1038/s42003-024-06898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Chronic stress is associated with anxiety and cognitive impairment. Repeated social defeat (RSD) in mice induces anxiety-like behavior driven by microglia and the recruitment of inflammatory monocytes to the brain. Nonetheless, it is unclear how microglia communicate with other cells to modulate the physiological and behavioral responses to stress. Using single-cell (sc)RNAseq, we identify novel, to the best of our knowledge, stress-associated microglia in the hippocampus defined by RNA profiles of cytokine/chemokine signaling, cellular stress, and phagocytosis. Microglia depletion with a CSF1R antagonist (PLX5622) attenuates the stress-associated profile of leukocytes, endothelia, and astrocytes. Furthermore, RSD-induced social withdrawal and cognitive impairment are microglia-dependent, but social avoidance is microglia-independent. Furthermore, single-nuclei (sn)RNAseq shows robust responses to RSD in hippocampal neurons that are both microglia-dependent and independent. Notably, stress-induced CREB, oxytocin, and glutamatergic signaling in neurons are microglia-dependent. Collectively, these stress-associated microglia influence transcriptional profiles in the hippocampus related to social and cognitive deficits.
Collapse
Affiliation(s)
- Ethan J Goodman
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Damon J DiSabato
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA.
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
7
|
Kigar SL, Lynall ME, DePuyt AE, Atkinson R, Sun VH, Samuels JD, Eassa NE, Poffenberger CN, Lehmann ML, Listwak SJ, Livak F, Elkahloun AG, Clatworthy MR, Bullmore ET, Herkenham M. Chronic social defeat stress induces meningeal neutrophilia via type I interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610447. [PMID: 39257811 PMCID: PMC11383661 DOI: 10.1101/2024.08.30.610447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Animal models of stress and stress-related disorders are also associated with blood neutrophilia. The mechanistic relevance of this to symptoms or behavior is unclear. We used cytometry, immunohistochemistry, whole tissue clearing, and single-cell sequencing to characterize the meningeal immune response to chronic social defeat (CSD) stress in mice. We find that chronic, but not acute, stress causes meningeal neutrophil accumulation, and CSD increases neutrophil trafficking in vascular channels emanating from skull bone marrow (BM). Transcriptional analysis suggested CSD increases type I interferon (IFN-I) signaling in meningeal neutrophils. Blocking this pathway via the IFN-I receptor (IFNAR) protected against the anhedonic and anxiogenic effects of CSD stress, potentially through reduced infiltration of IFNAR+ neutrophils into the meninges from skull BM. Our identification of IFN-I signaling as a putative mediator of meningeal neutrophil recruitment may facilitate development of new therapies for stress-related disorders.
Collapse
Affiliation(s)
- Stacey L. Kigar
- National Institute of Mental Health, Bethesda, MD, USA
- Department of Medicine, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Mary-Ellen Lynall
- Department of Psychiatry, University of Cambridge, UK
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | | | | | | | | | | | | | | | - Ferenc Livak
- Laboratory of Genome Integrity, Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - Abdel G. Elkahloun
- Microarrays and Single-Cell Genomics, National Human Genome Research Institute, Bethesda, MD, USA
| | - Menna R. Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, UK
| | | | | |
Collapse
|
8
|
Charoensaensuk V, Yeh WL, Huang BR, Hsu TC, Xie SY, Chen CW, Wang YW, Yang LY, Tsai CF, Lu DY. Repetitive Administration of Low-Dose Lipopolysaccharide Improves Repeated Social Defeat Stress-Induced Behavioral Abnormalities and Aberrant Immune Response. J Neuroimmune Pharmacol 2024; 19:38. [PMID: 39066908 DOI: 10.1007/s11481-024-10141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Repetitive exposure of innate immune cells to a subthreshold dosage of endotoxin components may modulate inflammatory responses. However, the regulatory mechanisms in the interactions between the central nervous system (CNS) and the immune system remain unclear. This study aimed to investigate the effects of lipopolysaccharide (LPS) preconditioning in repeated social defeat stress (RSDS)-induced abnormal immune responses and behavioral impairments. This study aimed to elucidate the mechanisms that underlie the protective effects of repeated administration of a subthreshold dose LPS on behavioral impairments using the RSDS paradigm. LPS preconditioning improved abnormal behaviors in RSDS-defeated mice, accompanied by decreased monoamine oxidases and increased glucocorticoid receptor expression in the hippocampus. In addition, pre-treated with LPS significantly decreased the recruited peripheral myeloid cells (CD11b+CD45hi), mainly circulating inflammatory monocytes (CD11b+CD45hiLy6ChiCCR2+) into the brain in response to RSDS challenge. Importantly, we found that LPS preconditioning exerts its protective properties by regulating lipocalin-2 (LCN2) expression in microglia, which subsequently induces expressions of chemokine CCL2 and pro-inflammatory cytokine. Subsequently, LPS-preconditioning lessened the resident microglia population (CD11b+CD45intCCL2+) in the brains of the RSDS-defeated mice. Moreover, RSDS-associated expressions of leukocytes (CD11b+CD45+CCR2+) and neutrophils (CD11b+CD45+Ly6G+) in the bone marrow, spleen, and blood were also attenuated by LPS-preconditioning. In particular, LPS preconditioning also promoted the expression of endogenous antioxidants and anti-inflammatory proteins in the hippocampus. Our results demonstrate that LPS preconditioning ameliorates lipocalin 2-associated microglial activation and aberrant immune response and promotes the expression of endogenous antioxidants and anti-inflammatory protein, thereby maintaining the homeostasis of pro-inflammation/anti-inflammation in both the brain and immune system, ultimately protecting the mice from RSDS-induced aberrant immune response and behavioral changes.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Che Hsu
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yu-Wen Wang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Aries M, Cook M, Hensley-McBain T. A Pilot Study to Investigate Peripheral Low-Level Chronic LPS Injection as a Model of Neutrophil Activation in the Periphery and Brain in Mice. Int J Mol Sci 2024; 25:5357. [PMID: 38791393 PMCID: PMC11120811 DOI: 10.3390/ijms25105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Lipopolysaccharide-induced (LPS) inflammation is used as model to understand the role of inflammation in brain diseases. However, no studies have assessed the ability of peripheral low-level chronic LPS to induce neutrophil activation in the periphery and brain. Subclinical levels of LPS were injected intraperitoneally into mice to investigate its impacts on neutrophil frequency and activation. Neutrophil activation, as measured by CD11b expression, was higher in LPS-injected mice compared to saline-injected mice after 4 weeks but not 8 weeks of injections. Neutrophil frequency and activation increased in the periphery 4-12 h and 4-8 h after the fourth and final injection, respectively. Increased levels of G-CSF, TNFa, IL-6, and CXCL2 were observed in the plasma along with increased neutrophil elastase, a marker of neutrophil extracellular traps, peaking 4 h following the final injection. Neutrophil activation was increased in the brain of LPS-injected mice when compared to saline-injected mice 4-8 h after the final injection. These results indicate that subclinical levels of peripheral LPS induces neutrophil activation in the periphery and brain. This model of chronic low-level systemic inflammation could be used to understand how neutrophils may act as mediators of the periphery-brain axis of inflammation with age and/or in mouse models of neurodegenerative or neuroinflammatory disease.
Collapse
Affiliation(s)
- Michelle Aries
- McLaughlin Research Institute, Great Falls, MT 59405, USA; (M.A.)
| | - Makayla Cook
- McLaughlin Research Institute, Great Falls, MT 59405, USA; (M.A.)
| | - Tiffany Hensley-McBain
- McLaughlin Research Institute, Great Falls, MT 59405, USA; (M.A.)
- Department of Basic Sciences, Touro College of Osteopathic Medicine Montana, Great Falls, MT 59405, USA
| |
Collapse
|
10
|
Lauten TH, Natour T, Case AJ. Innate and adaptive immune system consequences of post-traumatic stress disorder. Auton Neurosci 2024; 252:103159. [PMID: 38428324 PMCID: PMC11494466 DOI: 10.1016/j.autneu.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
In the field of psychiatry, biological markers are rarely, if ever, used in the diagnosis of mental health disorders. Clinicians rely primarily on patient histories and behavioral symptoms to identify specific psychopathologies, which makes diagnosis highly subjective. Moreover, therapies for mental health disorders are aimed specifically at attenuating behavioral manifestations, which overlooks the pathophysiological indices of the disease. This is highly evident in posttraumatic stress disorder (PTSD) where inflammation and immune system perturbations are becoming increasingly described. Further, patients with PTSD possess significantly elevated risks of developing comorbid inflammatory diseases such as autoimmune and cardiovascular diseases, which are likely linked (though not fully proven) to the apparent dysregulation of the immune system after psychological trauma. To date, there is little to no evidence that demonstrates current PTSD therapies are able to reverse the increased risk for psychological trauma-induced inflammatory diseases, which suggests the behavioral and somatic consequences of PTSD may not be tightly coupled. This observation provides an opportunity to explore unique mechanisms outside of the brain that contribute to the long-term pathology of PTSD. Herein, we provide an overview of neuroimmune mechanisms, describe what is known regarding innate and adaptive immunity in PTSD, and suggest new directions that are needed to advance the understanding, diagnosis, and treatment of PTSD moving forward.
Collapse
Affiliation(s)
- Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
11
|
Horikawa I, Nagai H, Taniguchi M, Chen G, Shinohara M, Suzuki T, Ishii S, Katayama Y, Kitaoka S, Furuyashiki T. Chronic stress alters lipid mediator profiles associated with immune-related gene expressions and cell compositions in mouse bone marrow and spleen. J Pharmacol Sci 2024; 154:279-293. [PMID: 38485346 DOI: 10.1016/j.jphs.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Despite the importance of lipid mediators in stress and depression and their link to inflammation, the influence of stress on these mediators and their role in inflammation is not fully understood. This study used RNA-seq, LC-MS/MS, and flow cytometry analyses in a mouse model subjected to chronic social defeat stress to explore the effects of acute and chronic stress on lipid mediators, gene expression, and cell population in the bone marrow and spleen. In the bone marrow, chronic stress induced a sustained transition from lymphoid to myeloid cells, accompanied by corresponding changes in gene expression. This change was associated with decreased levels of 15-deoxy-d12,14-prostaglandin J2, a lipid mediator that inhibits inflammation. In the spleen, chronic stress also induced a lymphoid-to-myeloid transition, albeit transiently, alongside gene expression changes indicative of extramedullary hematopoiesis. These changes were linked to lower levels of 12-HEPE and resolvins, both critical for inhibiting and resolving inflammation. Our findings highlight the significant role of anti-inflammatory and pro-resolving lipid mediators in the immune responses induced by chronic stress in the bone marrow and spleen. This study paves the way for understanding how these lipid mediators contribute to the immune mechanisms of stress and depression.
Collapse
Affiliation(s)
- Io Horikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Masayuki Taniguchi
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Guowei Chen
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tomohide Suzuki
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shinichi Ishii
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yoshio Katayama
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
12
|
Hendry E, McCallister B, Elman DJ, Freeman R, Borsook D, Elman I. Validity of mental and physical stress models. Neurosci Biobehav Rev 2024; 158:105566. [PMID: 38307304 PMCID: PMC11082879 DOI: 10.1016/j.neubiorev.2024.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Different stress models are employed to enhance our understanding of the underlying mechanisms and explore potential interventions. However, the utility of these models remains a critical concern, as their validities may be limited by the complexity of stress processes. Literature review revealed that both mental and physical stress models possess reasonable construct and criterion validities, respectively reflected in psychometrically assessed stress ratings and in activation of the sympathoadrenal system and the hypothalamic-pituitary-adrenal axis. The findings are less robust, though, in the pharmacological perturbations' domain, including such agents as adenosine or dobutamine. Likewise, stress models' convergent- and discriminant validity vary depending on the stressors' nature. Stress models share similarities, but also have important differences regarding their validities. Specific traits defined by the nature of the stressor stimulus should be taken into consideration when selecting stress models. Doing so can personalize prevention and treatment of stress-related antecedents, its acute processing, and chronic sequelae. Further work is warranted to refine stress models' validity and customize them so they commensurate diverse populations and circumstances.
Collapse
Affiliation(s)
- Erin Hendry
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brady McCallister
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA
| | - Dan J Elman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Department of Anesthesiology, Harvard Medical School, Boston, MA, USA.
| | - Igor Elman
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
13
|
Bekhbat M, Drake J, Reed EC, Lauten TH, Natour T, Vladimirov VI, Case AJ. Repeated social defeat stress leads to immunometabolic shifts in innate immune cells of the spleen. Brain Behav Immun Health 2023; 34:100690. [PMID: 37791319 PMCID: PMC10543777 DOI: 10.1016/j.bbih.2023.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
Psychosocial stress has been shown to prime peripheral innate immune cells, which take on hyper-inflammatory phenotypes and are implicated in depressive-like behavior in mouse models. However, the impact of stress on cellular metabolic states that are thought to fuel inflammatory phenotypes in immune cells are unknown. Using single cell RNA-sequencing, we investigated mRNA enrichment of immunometabolic pathways in innate immune cells of the spleen in mice subjected to repeated social defeat stress (RSDS) or no stress (NS). RSDS mice displayed a significant increase in the number of splenic macrophages and granulocytes (p < 0.05) compared to NS littermates. RSDS-upregulated genes in macrophages, monocytes, and granulocytes significantly enriched immunometabolic pathways thought to play a role in myeloid-driven inflammation (glycolysis, HIF-1 signaling, MTORC1 signaling) as well as pathways related to oxidative phosphorylation (OXPHOS) and oxidative stress (p < 0.05 and FDR<0.1). These results suggest that the metabolic enhancement reflected by upregulation of glycolytic and OXPHOS pathways may be important for cellular proliferation of splenic macrophages and granulocytes following repeated stress exposure. A better understanding of these intracellular metabolic mechanisms may ultimately help develop novel strategies to reverse the impact of stress and associated peripheral immune changes on the brain and behavior.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - John Drake
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, 77807, USA
| | - Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, 77807, USA
- Department of Medical Physiology, Texas A&M University, Bryan, TX, 77807, USA
| | - Tatlock H. Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, 77807, USA
- Department of Medical Physiology, Texas A&M University, Bryan, TX, 77807, USA
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, 77807, USA
- Department of Medical Physiology, Texas A&M University, Bryan, TX, 77807, USA
| | - Vladimir I. Vladimirov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, 77807, USA
- Department of Psychiatry, University of Arizona, Phoenix, AZ, 85004, USA
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, 77807, USA
- Department of Medical Physiology, Texas A&M University, Bryan, TX, 77807, USA
| |
Collapse
|
14
|
González Ibáñez F, Halvorson T, Sharma K, McKee CG, Carrier M, Picard K, Vernoux N, Bisht K, Deslauriers J, Lalowski M, Tremblay MÈ. Ketogenic diet changes microglial morphology and the hippocampal lipidomic profile differently in stress susceptible versus resistant male mice upon repeated social defeat. Brain Behav Immun 2023; 114:383-406. [PMID: 37689276 DOI: 10.1016/j.bbi.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaushik Sharma
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Department of Chemistry, Purdue University, West Lafayette, Indiana, United States
| | - Chloe Grace McKee
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Nathalie Vernoux
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Kanchan Bisht
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Department of Chemistry, Purdue University, West Lafayette, Indiana, United States
| | | | - Maciej Lalowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland; Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Finland
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, British Columbia, Canada.
| |
Collapse
|
15
|
Shindo R, Tanifuji T, Okazaki S, Otsuka I, Shirai T, Mouri K, Horai T, Hishimoto A. Accelerated epigenetic aging and decreased natural killer cells based on DNA methylation in patients with untreated major depressive disorder. NPJ AGING 2023; 9:19. [PMID: 37673891 PMCID: PMC10482893 DOI: 10.1038/s41514-023-00117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/29/2023] [Indexed: 09/08/2023]
Abstract
Major depressive disorder (MDD) is known to cause significant disability. Genome-wide DNA methylation (DNAm) profiles can be used to estimate biological aging and as epigenetic clocks. However, information on epigenetic clocks reported in MDD patients is inconsistent. Since antidepressants are likely confounders, we evaluated biological aging using various DNAm-based predictors in patients with MDD who had never received depression medication. A publicly available dataset consisting of whole blood samples from untreated MDD patients (n = 40) and controls (n = 40) was used. We analyzed five epigenetic clocks (HorvathAge, HannumAge, SkinBloodAge, PhenoAge, and GrimAge), DNAm-based telomere length (DNAmTL), and DNAm-based age-related plasma proteins (GrimAge components), as well as DNAm-based white blood cell composition. The results indicate that patients with untreated MDD were significantly associated with epigenetic aging acceleration in HannumAge and GrimAge. Furthermore, a decrease in natural killer cells, based on DNAm, was observed in patients with untreated MDD.
Collapse
Affiliation(s)
- Ryota Shindo
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiyuki Shirai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
16
|
González Ibáñez F, Halvorson T, Sharma K, McKee C, Carrier M, Picard K, Vernoux N, Bisht K, Deslauriers J, Lalowski M, Tremblay MÈ. Ketogenic diet alters microglial morphology and changes the hippocampal lipidomic profile distinctively in stress susceptible versus resistant male mice upon repeated social defeat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555135. [PMID: 37693370 PMCID: PMC10491121 DOI: 10.1101/2023.08.28.555135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kaushik Sharma
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Katherine Picard
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Nathalie Vernoux
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Kanchan Bisht
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | | | - Maciej Lalowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Finland
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, BC, Canada
| |
Collapse
|
17
|
Samuels JD, Lotstein ML, Lehmann ML, Elkahloun AG, Banerjee S, Herkenham M. Chronic social defeat alters brain vascular-associated cell gene expression patterns leading to vascular dysfunction and immune system activation. J Neuroinflammation 2023; 20:154. [PMID: 37380974 DOI: 10.1186/s12974-023-02827-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
Brain vascular integrity is critical for brain health, and its disruption is implicated in many brain pathologies, including psychiatric disorders. Brain-vascular barriers are a complex cellular landscape composed of endothelial, glial, mural, and immune cells. Yet currently, little is known about these brain vascular-associated cells (BVACs) in health and disease. Previously, we demonstrated that 14 days of chronic social defeat (CSD), a mouse paradigm that produces anxiety and depressive-like behaviors, causes cerebrovascular damage in the form of scattered microbleeds. Here, we developed a technique to isolate barrier-related cells from the mouse brain and subjected the isolated cells to single-cell RNA sequencing. Using this isolation technique, we found an enrichment in BVAC populations, including distinct subsets of endothelial and microglial cells. In CSD compared to non-stress, home-cage control, differential gene expression patterns disclosed biological pathways involving vascular dysfunction, vascular healing, and immune system activation. Overall, our work demonstrates a unique technique to study BVAC populations from fresh brain tissue and suggests that neurovascular dysfunction is a key driver of psychosocial stress-induced brain pathology.
Collapse
Affiliation(s)
- Joshua D Samuels
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Neuroscience Graduate Program, Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, 409 Lane Road, MR-4 6154, Charlottesville, VA, 22908, USA.
| | - Madison L Lotstein
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael L Lehmann
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Subhadra Banerjee
- Flow Cytometry Core, Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
18
|
Kawashima Y, Nagai H, Konno R, Ishikawa M, Nakajima D, Sato H, Nakamura R, Furuyashiki T, Ohara O. Single-Shot 10K Proteome Approach: Over 10,000 Protein Identifications by Data-Independent Acquisition-Based Single-Shot Proteomics with Ion Mobility Spectrometry. J Proteome Res 2022; 21:1418-1427. [PMID: 35522919 PMCID: PMC9171847 DOI: 10.1021/acs.jproteome.2c00023] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The evolution of
mass spectrometry (MS) and analytical techniques
has led to the demand for proteome analysis with high proteome coverage
in single-shot measurements. Focus has been placed on data-independent
acquisition (DIA)-MS and ion mobility spectrometry as techniques for
deep proteome analysis. We aimed to expand the proteome coverage by
single-shot measurements using optimizing high-field asymmetric waveform
ion mobility spectrometry parameters in DIA-MS. With our established
proteome analysis system, more than 10,000 protein groups were identified
from HEK293 cell digests within 120 min of MS measurement time. Additionally,
we applied our approach to the analysis of host proteins in mouse
feces and detected as many as 892 host protein groups (771 upregulated/121
downregulated proteins) in a mouse model of repeated social defeat
stress (R-SDS) used in studying depression. Interestingly, 285 proteins
elevated by R-SDS were related to mental disorders. The fecal host
protein profiling by deep proteome analysis may help us understand
mental illness pathologies noninvasively. Thus, our approach will
be helpful for an in-depth comparison of protein expression levels
for biological and medical research because it enables the analysis
of highly proteome coverage in a single-shot measurement.
Collapse
Affiliation(s)
- Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe 650-0017, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hironori Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ren Nakamura
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe 650-0017, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
19
|
Long-Term Effects of Repeated Social Defeat Stress on Brain Activity during Social Interaction in BALB/c Mice. eNeuro 2022; 9:ENEURO.0068-22.2022. [PMID: 35437264 PMCID: PMC9070729 DOI: 10.1523/eneuro.0068-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Understanding the long-term effects of stress on brain function is crucial for understanding the mechanisms of depression. The BALB/c mouse strain has high susceptibility to stress and is thus an effective model for depression. The long-term effects of repeated social defeat stress (SDS) on BALB/c mice, however, are not clear. Here, we investigated the effects of repeated SDS in male BALB/c mice over the subsequent two weeks. Some defeated mice immediately exhibited social avoidance, whereas anxiety-like behavior was only evident at later periods. Furthermore, defeated mice segregated into two groups based on the level of social avoidance, namely, avoidant and nonavoidant mice. The characteristic of avoidance or nonavoidance in each individual was not fixed over the two weeks. In addition, we developed a semi-automated method for analyzing c-Fos expression in the mouse brain to investigate the effect of repeated SDS on brain activity more than two weeks after the end of the stress exposure. Following social interaction, c-Fos expression was reduced in several brain regions in the defeated mice compared with control mice. The correlation of c-Fos expression among these brain areas, with exception of the medial prefrontal cortex (mPFC) and central amygdala (CeA), was increased in defeated mice, suggesting increased synchrony. Notably, c-Fos expression in the lateral habenula (LHb) was different between mice that exhibited social avoidance from immediately after the repeated SDS and those that exhibited social avoidance only at later periods. These observations provide insight into the long-term effects of social stress on behavior and brain activity.
Collapse
|
20
|
Inflammation in the brain and periphery found in animal models of depression and its behavioral relevance. J Pharmacol Sci 2022; 148:262-266. [DOI: 10.1016/j.jphs.2021.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
|
21
|
Effects of Importin α1/KPNA1 deletion and adolescent social isolation stress on psychiatric disorder-associated behaviors in mice. PLoS One 2021; 16:e0258364. [PMID: 34767585 PMCID: PMC8589199 DOI: 10.1371/journal.pone.0258364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/25/2021] [Indexed: 01/12/2023] Open
Abstract
Importin α1/KPNA1 is a member of the Importin α family widely present in the mammalian brain and has been characterized as a regulator of neuronal differentiation, synaptic functionality, and anxiety-like behavior. In humans, a de novo mutation of the KPNA1 (human Importin α5) gene has been linked with schizophrenia; however, the precise roles of KPNA1 in disorder-related behaviors are still unknown. Moreover, as recent studies have highlighted the importance of gene-environment interactions in the development of psychiatric disorders, we investigated the effects of Kpna1 deletion and social isolation stress, a paradigm that models social stress factors found in human patients, on psychiatric disorder-related behaviors in mice. Through assessment in a behavioral battery, we found that Kpna1 knockout resulted in the following behavioral phenotype: (1) decreased anxiety-like behavior in an elevated plus maze test, (2) short term memory deficits in novel object recognition test (3) impaired sensorimotor gating in a prepulse inhibition test. Importantly, exposure to social isolation stress resulted in additional behavioral abnormalities where isolated Kpna1 knockout mice exhibited: (1) impaired aversive learning and/or memory in the inhibitory avoidance test, as well as (2) increased depression-like behavior in the forced swim test. Furthermore, we investigated whether mice showed alterations in plasma levels of stress-associated signal molecules (corticosterone, cytokines, hormones, receptors), and found that Kpna1 knockout significantly altered levels of corticosterone and LIX (CXCL5). Moreover, significant decreases in the level of prolactin were found in all groups except for group-housed wild type mice. Our findings demonstrate that Kpna1 deletion can trigger widespread behavioral abnormalities associated with psychiatric disorders, some of which were further exacerbated by exposure to adolescent social isolation. The use of Kpna1 knockout mice as a model for psychiatric disorders may show promise for further investigation of gene-environment interactions involved in the pathogenesis of psychiatric disorders.
Collapse
|
22
|
Ishikawa Y, Furuyashiki T. The impact of stress on immune systems and its relevance to mental illness. Neurosci Res 2021; 175:16-24. [PMID: 34606943 DOI: 10.1016/j.neures.2021.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
Stress due to adverse and demanding conditions alters immune functions. How innate and adaptive immune systems respond to stress and affect neural processes remains unclear. Rodent studies have demonstrated crucial roles of stress-induced immune responses for depressive- and anxiety-like behaviors. In the periphery, stress evokes the mobilization of neutrophils and monocytes to the circulation via sympathetic nerves and glucocorticoids. These myeloid cells are thought to promote depressive- and anxiety-like behaviors by infiltrating the brain's perivascular space, releasing cytokines, and affecting vascular endothelial functions. In the brain, stress activates microglia via innate immune receptors TLR2/4. The activated microglia in the medial prefrontal cortex secrete cytokines and alter neuronal morphology and activity in their vicinity. In subcortical brain areas, prostaglandin (PG) E2 released from the activated microglia attenuates the dopaminergic projection to the medial prefrontal cortex via PGE receptor EP1. These multiple actions of microglia promote depressive-like behavior in concert. These rodent findings may be translatable to depression that clinical studies have associated with brain and peripheral inflammations. Understanding causal relationships between immune and neural alterations under stress might be exploitable to develop inflammation-targeting therapeutics for mental illness.
Collapse
Affiliation(s)
- Yuka Ishikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan; Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
23
|
Zhu W, Ding Z, Zhang Z, Wu X, Liu X, Zhang Y, Li S, Zhou L, Tian G, Qin J. Enhancement of Oxytocin in the Medial Prefrontal Cortex Reverses Behavioral Deficits Induced by Repeated Ketamine Administration in Mice. Front Neurosci 2021; 15:723064. [PMID: 34566567 PMCID: PMC8462509 DOI: 10.3389/fnins.2021.723064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Ketamine is a popular recreational substance of abuse that induces persistent behavioral deficits. Although disrupted oxytocinergic systems have been considered to modulate vulnerability to developing drugs of abuse, the involvement of central oxytocin in behavioral abnormalities caused by chronic ketamine has remained largely unknown. Herein, we aimed to investigate the potential role of oxytocin in the medial prefrontal cortex (mPFC) in social avoidance and cognitive impairment resulting from repeated ketamine administration in mice. We found that ketamine injection (5 mg/kg, i.p.) for 10 days followed by a 6-day withdrawal period induced behavioral disturbances in social interaction and cognitive performance, as well as reduced oxytocin levels both at the periphery and in the mPFC. Repeated ketamine exposure also inhibited mPFC neuronal activity as measured by a decrease in c-fos-positive cells. Furthermore, direct microinjection of oxytocin into the mPFC reversed the social avoidance and cognitive impairment following chronic ketamine exposure. In addition, oxytocin administration normalized ketamine-induced inflammatory cytokines including TNF-α, IL-6, and IL-1β levels. Moreover, the activation of immune markers such as neutrophils and monocytes, by ketamine was restored in oxytocin-treated mice. Finally, the reversal effects of oxytocin on behavioral performance were blocked by pre-infusion of the oxytocin receptor antagonist atosiban into the mPFC. These results demonstrate that enhancing oxytocin signaling in the mPFC is a potential pathway to reverse social avoidance and cognitive impairment caused by ketamine, partly through inhibition of inflammatory stimulation.
Collapse
Affiliation(s)
- Weili Zhu
- National Institute on Drug Dependence, Peking University & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence, Peking University & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zhihui Zhang
- Department of Stomatology, Peking University Third Hospital, Beijing, China
| | - Xiao Wu
- National Institute on Drug Dependence, Peking University & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Xiaoya Liu
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ya Zhang
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Suxia Li
- National Institute on Drug Dependence, Peking University & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Liping Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
| | - Geng Tian
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
| |
Collapse
|
24
|
Galkina SI, Golenkina EA, Fedorova NV, Ksenofontov AL, Serebryakova MV, Arifulin EA, Stadnichuk VI, Baratova LA, Sud'ina GF. Inhibition of Neutrophil Secretion Upon Adhesion as a Basis for the Anti-Inflammatory Effect of the Tricyclic Antidepressant Imipramine. Front Pharmacol 2021; 12:709719. [PMID: 34421605 PMCID: PMC8375473 DOI: 10.3389/fphar.2021.709719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies demonstrate the involvement of inflammatory processes in the development of depression and the anti-inflammatory effects of antidepressants. Infiltration and adhesion of neutrophils to nerve tissues and their aggressive secretion are considered as possible causes of inflammatory processes in depression. We studied the effect of the antidepressant imipramine on the adhesion and accompanied secretion of neutrophils under control conditions and in the presence of lipopolysaccharides (LPS). As a model of integrin-dependent neutrophil infiltration into tissues, we used integrin-dependent adhesion of neutrophils to the fibronectin-coated substrate. Imipramine inhibited neutrophil adhesion and concomitant secretion of proteins, including matrix metalloproteinase 9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL), which modify the extracellular matrix and basement membranes required for cell migration. Imipramine also significantly and selectively blocked the release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, an enzyme that affects the organization of the extracellular matrix by modifying collagen lysine residues. In contrast, imipramine enhanced the release of ROS by neutrophils during adhesion to fibronectin and stimulated apoptosis. The anti-inflammatory effect of imipramine may be associated with the suppression of neutrophil infiltration and their adhesion to nerve tissues by inhibiting the secretion of neutrophils, which provides these processes.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Evgenii A Arifulin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
25
|
Kosuge A, Kunisawa K, Arai S, Sugawara Y, Shinohara K, Iida T, Wulaer B, Kawai T, Fujigaki H, Yamamoto Y, Saito K, Nabeshima T, Mouri A. Heat-sterilized Bifidobacterium breve prevents depression-like behavior and interleukin-1β expression in mice exposed to chronic social defeat stress. Brain Behav Immun 2021; 96:200-211. [PMID: 34062230 DOI: 10.1016/j.bbi.2021.05.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a common and serious psychiatric disease that involves brain inflammation. Bifidobacterium breve is commonly used as a probiotic and was shown to improve colitis and allergic diseases by suppressing the inflammatory response. Heat-sterilized B. breve has beneficial effects on inflammation. We hypothesize, therefore, that this probiotic might reduce depression symptoms. We tested this is a mouse model of social defeat stress. C57BL/6J mice exposed to chronic social defeat stress (CSDS) for five consecutive days developed a mild depression-like behavior characterized by a social interaction impairment. CSDS also altered the gut microbiota composition, such as increased abundance of Bacilli, Bacteroidia, Mollicutes, and Verrucomicrobiae classes and decreased Erysipelotrichi class. The prophylactic effect of heat-sterilized B. breve as a functional food ingredient was evaluated on the depression-like behavior in mice. The supplementation started two weeks before and lasted two weeks after the last exposure to CSDS. Two weeks after CSDS, the mice showed deficits in social interaction and increased levels of inflammatory cytokines, including interleukin-1β (IL-1β) in the prefrontal cortex (PFC) and hippocampus (HIP). Heat-sterilized B. breve supplementation significantly prevented social interaction impairment, suppressed IL-1β increase in the PFC and HIP, and modulated the alteration of the gut microbiota composition induced by CSDS. These findings suggest that heat-sterilized B. breve prevents depression-like behavior and IL-1β expression induced by CSDS through modulation of the gut microbiota composition in mice. Therefore, heat-sterilized B. breve used as an ingredient of functional food might prevent MDD.
Collapse
Affiliation(s)
- Aika Kosuge
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Satoshi Arai
- Morinaga Milk Industry Co., Ltd., R&D Division, Food Ingredients & Technology Institute, Kanagawa, Japan
| | - Yumika Sugawara
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Katsuki Shinohara
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Tsubasa Iida
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Bolati Wulaer
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Tomoki Kawai
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Hidetsugu Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan.
| |
Collapse
|
26
|
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Sanyo-Onoda City University (Tokyo University of Science, Yamaguchi), Sanyo-Onoda, Yamaguchi, Japan
| |
Collapse
|
27
|
Leite Dantas R, Freff J, Ambrée O, Beins EC, Forstner AJ, Dannlowski U, Baune BT, Scheu S, Alferink J. Dendritic Cells: Neglected Modulators of Peripheral Immune Responses and Neuroinflammation in Mood Disorders? Cells 2021; 10:941. [PMID: 33921690 PMCID: PMC8072712 DOI: 10.3390/cells10040941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Affective disorders (AD) including major depressive disorder (MDD) and bipolar disorder (BD) are common mood disorders associated with increased disability and poor health outcomes. Altered immune responses characterized by increased serum levels of pro-inflammatory cytokines and neuroinflammation are common findings in patients with AD and in corresponding animal models. Dendritic cells (DCs) represent a heterogeneous population of myeloid cells that orchestrate innate and adaptive immune responses and self-tolerance. Upon sensing exogenous and endogenous danger signals, mature DCs secrete proinflammatory factors, acquire migratory and antigen presenting capacities and thus contribute to neuroinflammation in trauma, autoimmunity, and neurodegenerative diseases. However, little is known about the involvement of DCs in the pathogenesis of AD. In this review, we summarize the current knowledge on DCs in peripheral immune responses and neuroinflammation in MDD and BD. In addition, we consider the impact of DCs on neuroinflammation and behavior in animal models of AD. Finally, we will discuss therapeutic perspectives targeting DCs and their effector molecules in mood disorders.
Collapse
Affiliation(s)
- Rafael Leite Dantas
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Jana Freff
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Oliver Ambrée
- Department of Behavioural Biology, University of Osnabrück, 49076 Osnabrück, Germany;
- Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Eva C. Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
| | - Andreas J. Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, 52428 Jülich, Germany
| | - Udo Dannlowski
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
| | - Bernhard T. Baune
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| | - Judith Alferink
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|