1
|
Tian S, Gleeson JG. Prefrontal cortex modulation of stress by primary cilia. Neuron 2025; 113:1126-1128. [PMID: 40245842 DOI: 10.1016/j.neuron.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025]
Abstract
In this issue of Neuron, Yang et al.1 reveal that primary cilia in mouse prefrontal cortex excitatory neurons regulate stress responses via cAMP/PKA signaling. Stress induces ciliary elongation, enhancing corticosterone-mediated neuronal inhibition. Cilia loss reduces stress sensitivity, highlighting their role in stress adaptation, with potential therapeutic relevance.
Collapse
Affiliation(s)
- Shixiong Tian
- Laboratory for Pediatric Brain Disease, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, CA 92037, USA.
| |
Collapse
|
2
|
Yoshida S, Yoshida K. Regulatory mechanisms governing GLI proteins in hedgehog signaling. Anat Sci Int 2025; 100:143-154. [PMID: 39576500 DOI: 10.1007/s12565-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 02/16/2025]
Abstract
The Hedgehog (Hh) signaling pathway is critical for regulating cell growth, survival, fate determination, and the overall patterning of both vertebrate and invertebrate body plans. Aberrations in Hh signaling are associated with congenital abnormalities and tumorigenesis. In vertebrates, Hh signaling depends uniquely on primary cilia, microtubule-based organelles that extend from the cell surface. Over the last 2 decades, studies have demonstrated that key molecules regulating Hh signaling dynamically accumulate in primary cilia via intraflagellar transport systems. Moreover, through the primary cilia, extracellular signals are converted to stabilize GLI2 and GLI3 that are transcription factors that play a central role in regulating Hh signaling at the post-translational modification level. Recent in vivo and anatomical studies have uncovered crucial molecules that facilitate the conversion of extracellular signals into the intracellular stabilization of GLI2/GLI3 via primary cilia, emphasizing their essential roles in tissue development and tumorigenesis. This review explores the regulatory mechanisms of GLI2/GLI3 with a focus on mammalian tissue development.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan.
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
3
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Smith NJ, May LT, Grimsey NL. Highlights and hot topics in GPCR research from 'Down Under'. Br J Pharmacol 2024; 181:2091-2094. [PMID: 38798136 DOI: 10.1111/bph.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
LINKED ARTICLES This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Nicola J Smith
- Orphan Receptor Laboratory, School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| | - Lauren T May
- Cardiac GPCR Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
5
|
Hoppe N, Harrison S, Hwang SH, Chen Z, Karelina M, Deshpande I, Suomivuori CM, Palicharla VR, Berry SP, Tschaikner P, Regele D, Covey DF, Stefan E, Marks DS, Reiter JF, Dror RO, Evers AS, Mukhopadhyay S, Manglik A. GPR161 structure uncovers the redundant role of sterol-regulated ciliary cAMP signaling in the Hedgehog pathway. Nat Struct Mol Biol 2024; 31:667-677. [PMID: 38326651 PMCID: PMC11221913 DOI: 10.1038/s41594-024-01223-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
The orphan G protein-coupled receptor (GPCR) GPR161 plays a central role in development by suppressing Hedgehog signaling. The fundamental basis of how GPR161 is activated remains unclear. Here, we determined a cryogenic-electron microscopy structure of active human GPR161 bound to heterotrimeric Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, a sterol that binds adjacent to transmembrane helices 6 and 7 stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress Gs-mediated signaling. These mutants retain the ability to suppress GLI2 transcription factor accumulation in primary cilia, a key function of ciliary GPR161. By contrast, a protein kinase A-binding site in the GPR161 C terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the role of GPR161 function in other signaling pathways.
Collapse
Affiliation(s)
- Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Simone Harrison
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ziwei Chen
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
| | - Masha Karelina
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vivek R Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel P Berry
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Philipp Tschaikner
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Dominik Regele
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Douglas F Covey
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Eduard Stefan
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Debora S Marks
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ron O Dror
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
de Medina P, Ayadi S, Diallo K, Buñay J, Pucheu L, Soulès R, Record M, Brillouet S, Vija L, Courbon F, Silvente-Poirot S, Poirot M. The Cholesterol-5,6-Epoxide Hydrolase: A Metabolic Checkpoint in Several Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:149-161. [PMID: 38036879 DOI: 10.1007/978-3-031-43883-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol-5,6-epoxides (5,6-ECs) are oxysterols (OS) that have been linked to several pathologies including cancers and neurodegenerative diseases. 5,6-ECs can be produced from cholesterol by several mechanisms including reactive oxygen species, lipoperoxidation, and cytochrome P450 enzymes. 5,6-ECs exist as two different diastereoisomers: 5,6α-EC and 5,6β-EC with different metabolic fates. They can be produced as a mixture or as single products of epoxidation. The epoxide ring of 5,6α-EC and 5,6β-EC is very stable and 5,6-ECs are prone to hydration by the cholesterol-5,6-epoxide hydrolase (ChEH) to give cholestane-3β,5α,6β-triol, which can be further oxidized into oncosterone. 5,6α-EC is prone to chemical and enzymatic conjugation reactions leading to bioactive compounds such as dendrogenins, highlighting the existence of a new metabolic branch on the cholesterol pathway centered on 5,6α-EC. We will summarize in this chapter current knowledge on this pathway which is controlled by the ChEH.
Collapse
Affiliation(s)
- Philippe de Medina
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Silia Ayadi
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Khadijetou Diallo
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Julio Buñay
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Laly Pucheu
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Regis Soulès
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Michel Record
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Severine Brillouet
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
- Department of Radiopharmacy, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Lavinia Vija
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
- Department of Medical Imaging, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Frederic Courbon
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
- Department of Medical Imaging, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France.
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France.
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France.
| |
Collapse
|