1
|
Wang N, Wang X, Lan B, Gao Y, Cai Y. DRP1, fission and apoptosis. Cell Death Discov 2025; 11:150. [PMID: 40195359 PMCID: PMC11977278 DOI: 10.1038/s41420-025-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Mitochondrial fission is a critical physiological process in eukaryotic cells, participating in various vital activities such as mitosis, mitochondria quality control, and mitophagy. Recent studies have revealed a tight connection between mitochondrial fission and the mitochondrial metabolism, as well as apoptosis, which involves multiple cellular events and interactions between organelles. As a pivotal molecule in the process of mitochondrial fission, the function of DRP1 is regulated at multiple levels, including transcription, post-translational modifications. This review follows the guidelines for Human Gene Nomenclature and will focus on DRP1, discussing its activity regulation, its role in mitochondrial fission, and the relationship between mitochondrial fission and apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Beiwu Lan
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yufei Gao
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Yuanyuan Cai
- The First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Kervella M, Bertile F, Bouillaud F, Criscuolo F. The cell origin of reactive oxygen species and its implication for evolutionary trade-offs. Open Biol 2025; 15:240312. [PMID: 40237040 PMCID: PMC12001088 DOI: 10.1098/rsob.240312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/08/2025] [Accepted: 02/09/2025] [Indexed: 04/17/2025] Open
Abstract
The allocation of resources in animals is shaped by adaptive trade-offs aimed at maximizing fitness. At the heart of these trade-offs, lies metabolism and the conversion of food resources into energy, a process mostly occurring in mitochondria. Yet, the conversion of nutrients to utilizable energy molecules (adenosine triphosphate) inevitably leads to the by-production of reactive oxygen species (ROS) that may cause damage to important biomolecules such as proteins or lipids. The 'ROS theory of ageing' has thus proposed that the relationship between lifespan and metabolic rate may be mediated by ROS production. However, the relationship is not as straightforward as it may seem: not only are mitochondrial ROS crucial for various cellular functions, but mitochondria are also actually equipped with antioxidant systems, and many extra-mitochondrial sources also produce ROS. In this review, we discuss how viewing the mitochondrion as a regulator of cellular oxidative homeostasis, not merely a ROS producer, may provide new insights into the role of oxidative stress in the reproduction-survival trade-off. We suggest several avenues to test how mitochondrial oxidative buffering capacity might complement current bioenergetic and evolutionary studies.
Collapse
|
3
|
Guo C, Zhang Y, Bai D, Zhen W, Ma P, Wang Z, Zhao X, Ma X, Xie X, Ito K, Zhang B, Yang Y, Li J, Ma Y. Aspirin Eugenol Ester Alleviates Energy Metabolism Disorders by Reducing Oxidative Damage and Inflammation in the Livers of Broilers Under High-Stocking-Density Stress. Int J Mol Sci 2025; 26:1877. [PMID: 40076504 PMCID: PMC11899955 DOI: 10.3390/ijms26051877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to evaluate the effects of aspirin eugenol ester (AEE) on growth performance, oxidative liver damage, inflammation, and liver metabolomics in broilers under high-stocking-density (HSD) stress. A total of 360 broilers were divided into four groups: normal density (ND, 14/m2), high density (HD, 22/m2), ND-AEE (ND + 0.01% AEE), and HD-AEE (HD + 0.01% AEE). HSD decreased total antioxidant capacity, increased malondialdehyde (MDA) levels, and elevated the expression of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) mRNA, which contributed to the reduced performance of broilers. Specifically, HSD caused abnormalities in linoleic acid metabolism, leading to elevated levels of Prostaglandin E2 (PGE2) and Leukotriene B4 (LTB4) synthesis, which aggravated inflammation, increased liver lipid levels, and impaired ATP production. AEE counteracted the decline in broiler production performance induced by HSD by enhancing total antioxidant capacity, reducing MDA levels, protecting the liver from oxidative damage, and maintaining mitochondrial oxidative phosphorylation. AEE positively regulated the linoleic acid metabolism by promoting the synthesis of γ-linolenic acid and phosphatidylcholine, which reduced the synthesis of COX-2 and mPGES-1. AEE alleviated the metabolic imbalance caused by HSD stress and enhanced the efficiency of mitochondrial fatty acid oxidation, which reduced excess lipid accumulation in the liver and promoted ATP production. In summary, this study provides strong support for the dietary addition of AEE to alleviate liver oxidative damage, inflammation, and energy metabolism disorders caused by HSD stress.
Collapse
Affiliation(s)
- Caifang Guo
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (C.G.); (Y.Z.); (W.Z.); (P.M.); (Z.W.); (X.Z.)
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (C.G.); (Y.Z.); (W.Z.); (P.M.); (Z.W.); (X.Z.)
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (C.G.); (Y.Z.); (W.Z.); (P.M.); (Z.W.); (X.Z.)
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (C.G.); (Y.Z.); (W.Z.); (P.M.); (Z.W.); (X.Z.)
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Penghui Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (C.G.); (Y.Z.); (W.Z.); (P.M.); (Z.W.); (X.Z.)
| | - Ziwei Wang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (C.G.); (Y.Z.); (W.Z.); (P.M.); (Z.W.); (X.Z.)
| | - Xiaodie Zhao
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (C.G.); (Y.Z.); (W.Z.); (P.M.); (Z.W.); (X.Z.)
| | - Xiqiang Ma
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Science & Technology Innovation Center for Completed Set Equipment, Longmen Laboratory, Luoyang 471023, China; (X.M.); (X.X.)
| | - Xiaolin Xie
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Science & Technology Innovation Center for Completed Set Equipment, Longmen Laboratory, Luoyang 471023, China; (X.M.); (X.X.)
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan;
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Yajun Yang
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Y.Y.); (J.L.)
| | - Jianyong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Y.Y.); (J.L.)
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (C.G.); (Y.Z.); (W.Z.); (P.M.); (Z.W.); (X.Z.)
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Science & Technology Innovation Center for Completed Set Equipment, Longmen Laboratory, Luoyang 471023, China; (X.M.); (X.X.)
| |
Collapse
|
4
|
Liu Y, Cao Y, Li H, Liu H, Chen T, Lin Q, Gong C, Yu F, Cai H, Jin L, Peng R. Mitochondrial homeostatic imbalance-mediated developmental toxicity to H 2S in embryonic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125588. [PMID: 39725203 DOI: 10.1016/j.envpol.2024.125588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Hydrogen sulfide (H2S) is a pervasive environmental and industrial pollutant that poses a substantial threat to human health. Even short-term exposure to H2S can result in severe respiratory and neurological damage. However, the underlying mechanisms of its biotoxicity remain unclear. Our study demonstrated that continuous exposure to 30 μM (1.02 ppm), whin environmentally H2S concentration range, results in notable developmental toxicity, including high mortality rates, morphological deformities, and behavioral abnormalities, in zebrafish larvae. Through transcriptomic analysis, examination of mitochondrial structure and function, and tissue and cellular staining, we found that H2S exposure disrupted mitochondrial dynamics, autophagy, and biogenesis, leading to an imbalance in mitochondrial homeostasis. This disruption induced oxidative stress and extensive apoptosis. Nitric oxide (NO) is a multifunctional signaling molecule known to target and regulate mitochondrial regeneration. In our study, we discovered that sodium nitroprusside (SNP), an NO donor, can activate the NO-sGC-cGMP signaling pathway. This activation improves the homeostatic regulation of mitochondrial dynamics, autophagy, and biogenesis, thereby enhancing mitochondrial function and effectively mitigating H2S-induced biotoxicity. Our research not only elucidates the biotoxicity mechanisms of H2S exposure but also provides valuable insights into potential therapeutic strategies that alleviate or eliminate its toxic effects.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Ting Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qizhuan Lin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Changyong Gong
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Fan Yu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Helei Cai
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Dai L, Wang J, Meng L, Zhang X, Xiao T, Deng M, Chen G, Xiong J, Ke W, Hong Z, Bu L, Zhang Z. The cholesterol 24-hydroxylase CYP46A1 promotes α-synuclein pathology in Parkinson's disease. PLoS Biol 2025; 23:e3002974. [PMID: 39964974 PMCID: PMC11835240 DOI: 10.1371/journal.pbio.3002974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/06/2024] [Indexed: 02/20/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies that are composed of aggregated α-synuclein (α-Syn). However, the factors that regulate α-Syn pathology and nigrostriatal dopaminergic degeneration remain poorly understood. Previous studies demonstrate cholesterol 24-hydroxylase (CYP46A1) increases the risk for PD. Moreover, 24-hydroxycholesterol (24-OHC), a brain-specific oxysterol that is catalyzed by CYP46A1, is elevated in the cerebrospinal fluid of PD patients. Herein, we show that the levels of CYP46A1 and 24-OHC are elevated in PD patients and increase with age in a mouse model. Overexpression of CYP46A1 intensifies α-Syn pathology, whereas genetic removal of CYP46A1 attenuates α-Syn neurotoxicity and nigrostriatal dopaminergic degeneration in the brain. Moreover, supplementation with exogenous 24-OHC exacerbates the mitochondrial dysfunction induced by α-Syn fibrils. Intracerebral injection of 24-OHC enhances the spread of α-Syn pathology and dopaminergic neurodegeneration via elevated X-box binding protein 1 (XBP1) and lymphocyte-activation gene 3 (LAG3) levels. Thus, elevated CYP46A1 and 24-OHC promote neurotoxicity and the spread of α-Syn via the XBP1-LAG3 axis. Strategies aimed at inhibiting the CYP46A1-24-OHC axis and LAG3 could hold promise as disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiannan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Deng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengyuan Hong
- PET-CT/MRI Center, Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihong Bu
- PET-CT/MRI Center, Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Hood WR. Mechanisms that Alter Capacity for Adenosine Triphosphate Production and Oxidative Phosphorylation: Insights from Avian Migration. Integr Comp Biol 2024; 64:1811-1825. [PMID: 38844402 DOI: 10.1093/icb/icae065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 12/21/2024] Open
Abstract
Avian migration is among the most energetically demanding feats observed in animals. Studies evaluating the physiological underpinnings of migration have repeatedly shown that migratory birds display numerous adaptations that ultimately supply the flight muscle mitochondria with abundant fuel and oxygen during long-distance flights. To make use of this high input, the organs and mitochondria of migrants are predicted to display several traits that maximize their capacity to produce adenosine triphosphate (ATP). This review aims to introduce readers to several mechanisms by which organs and mitochondria can alter their capacity for oxidative phosphorylation and ATP production. The role of organ size, mitochondrial volume, substrate, and oxygen delivery to the electron transport system are discussed. A central theme of this review is the role of changes in electron chain complex activity, mitochondrial morphology and dynamics, and supercomplexes in allowing avian migrants and other taxa to alter the performance of the electron transport system with predictable shifts in demand. It is my hope that this review will serve as a springboard for future studies exploring the mechanisms that alter bioenergetic capacity across animal species.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Hood WR. A Mitochondrial Perspective on the Demands of Reproduction. Integr Comp Biol 2024; 64:1611-1622. [PMID: 38772739 DOI: 10.1093/icb/icae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
The cost of supporting traits that increase mating opportunities and maximize the production of quality offspring is paid in energy. This currency of reproduction is enabled by bioenergetic adaptations that underlie the flexible changes in energy utilization that occur with reproduction. This review considers the traits that contribute to variation in the capacity of an organ to produce ATP. Further, it synthesizes findings from studies that have evaluated bioenergetic adaptations to the production of sexually selected traits and performance during reproduction and the role of change in mitochondrial respiratory performance in the tradeoff between reproduction and longevity. Cumulatively, these works provide evidence that in selecting for redder males, female finches will likely mate with a male with high mitochondrial respiratory performance and, potentially, a higher probability of mitonuclear compatibility. Females from diverse taxa allocate more to reproduction when the respiratory performance of mitochondria or density of the inner mitochondrial membrane in the liver or skeletal muscle is higher. Finally, reproduction does not appear to have persistent negative effects on mitochondrial respiratory performance, countering a role for mitochondria in the trade-off between reproduction and longevity. I close by noting that adaptations that improve mitochondrial respiratory performance appear vital for optimizing reproductive fitness.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 36849, USA
| |
Collapse
|
8
|
Mesquita PHC, Rhodes EM, Yap KN, Mueller BJ, Hill GE, Hood WR, Kavazis AN. Mitochondrial remodelling supports migration in white-crowned sparrows ( Zonotrichia leucophrys). Proc Biol Sci 2024; 291:20242409. [PMID: 39657813 PMCID: PMC11631445 DOI: 10.1098/rspb.2024.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
The migratory movements undertaken by birds are among the most energetically demanding behaviours observed in nature. Mitochondria are the source of aerobic energy production on which migration depends, but a key component of mitochondrial function, mitochondrial remodelling, has not been investigated in the context of bird migration. We measured markers of mitochondrial remodelling in the skeletal muscles of the Gambel's (migratory) and Nuttall's (non-migratory) white-crowned sparrows within and outside migratory periods. Gambel's were collected in (i) a non-migration period (baseline), (ii) preparation to depart for spring migration (pre-migration) and (iii) active autumn migration (mid-migration). Nuttall's were collected at timepoints corresponding to baseline and mid-migration in Gambel's. Across all sampling periods, we found that migratory birds had greater mitochondrial remodelling compared with non-migratory birds. Furthermore, birds from the migratory population also displayed flexibility, increasing several markers of mitochondrial remodelling (e.g. NRF1, OPA1 and Drp1) pre- and during migration. Further, the greater levels of mitochondrial remodelling and its upregulation during migration were specific to the pectoralis muscle used in flapping flight. Our study is the first to show that mitochondrial remodelling supports migration in Gambel's white-crowned sparrows, indicating a highly specific and efficient phenotype supporting the increased energetic demands of migration.
Collapse
Affiliation(s)
- Paulo H. C. Mesquita
- School of Kinesiology, Auburn University, Auburn, AL36849, USA
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Emma M. Rhodes
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim7491, Norway
| | | | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
| | - Wendy R. Hood
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
| | | |
Collapse
|
9
|
Žagar A, Dajčman U, Megía-Palma R, Simčič T, Barroso FM, Baškiera S, Carretero MA. Analysis of subcellular energy metabolism in five Lacertidae lizards across varied environmental conditions. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111729. [PMID: 39181180 DOI: 10.1016/j.cbpa.2024.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Aerobic respiration is the main energy source for most eukaryotes, and efficient mitochondrial energy transfer greatly influences organismal fitness. To survive environmental changes, cells have evolved to adjust their biochemistry. Thus, measuring energy metabolism at the subcellular level can enhance our understanding of individual performance, population dynamics, and species distribution ranges. We investigated three important metabolic traits at the subcellular level in five lacertid lizard species sampled from different elevations, from sea level up to 2000 m. We examined hemoglobin concentration, two markers of oxidative stress (catalase activity and carbonyl concentration) and maximum rate of metabolic respiration at the subcellular level (potential metabolic activity at the electron transport system). The traits were analysed in laboratory acclimated adult male lizards to investigate the adaptive metabolic responses to the variable environmental conditions at the local sampling sites. Potential metabolic activity at the cellular level was measured at four temperatures - 28 °C, 30 °C, 32 °C and 34 °C - covering the range of preferred body temperatures of the species studied. Hemoglobin content, carbonyl concentration and potential metabolic activity did not differ significantly among species. Interspecific differences were found in the catalase activity, Potential metabolic activity increased with temperature in parallel in all five species. The highest response of the metabolic rate with temperature (Q10) and Arrhenius activation energy (Ea) was recorded in the high-mountain species Iberolacerta monticola.
Collapse
Affiliation(s)
- Anamarija Žagar
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia; CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Urban Dajčman
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana, Slovenia
| | - Rodrigo Megía-Palma
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, School of Pharmacy, E-28805, Alcalá de Henares, Madrid, Spain
| | - Tatjana Simčič
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Frederico M Barroso
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Senka Baškiera
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Wang J, Xie F, He Q, Gu R, Zhang S, Su X, Pan X, Zhang T, Karrar E, Li J, Wu W, Chen C. Hybrid nanovesicles derived from grapes and tomatoes with synergistic antioxidative activity. Biomater Sci 2024; 12:5631-5643. [PMID: 39377178 DOI: 10.1039/d4bm00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Edible plants, rich in antioxidant compounds, offer defense against oxidative stress-induced cellular damage. However, the antioxidative benefits of edible plant-derived molecules are limited due to their instability, poor solubility, and low bioavailability. Plant-derived nanovesicles (PDNVs) have emerged as the next-generation nanotherapeutics and delivery platforms; yet, challenges including low purity, significant heterogeneity, insufficient enrichment of bioactive component and compromised therapeutic efficacy limit their application. In this study, a solvent-assisted vesicle hybridization technique was developed to engineer hybrid plant-derived nanovesicles (PDNVs), exemplified by grape and tomato-derived nanovesicles (GT-HNVs), which outperform their natural counterparts. The GT-HNVs demonstrated superior stability, enhanced radical-scavenging capabilities, and greater cellular uptake efficiency. Notably, GT-HNVs significantly reduced reactive oxygen species (ROS) levels and improved antioxidative enzyme activities in L-02 cells. Moreover, they mitigated oxidative stress-induced mitochondrial damage, restoring the membrane potential and morphology. Collectively, these findings underscore the therapeutic potential of hybrid PDNVs and offer an innovative strategy for their future research.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Fangting Xie
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Qiuxia He
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Siqin Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Xueqi Su
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Xueping Pan
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Tianyu Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Emad Karrar
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Jian Li
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Weijing Wu
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian, 361018, China
| | - Chaoxiang Chen
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| |
Collapse
|
11
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
12
|
Ricardez‐Garcia C, Reyes‐Becerril M, Mosqueda‐Martinez E, Mendez‐Romero O, Ruiz‐Ramírez A, Uribe‐Carvajal S. Tissue-specific differences in Ca 2+ sensitivity of the mitochondrial permeability transition pore (PTP). Experiments in male rat liver and heart. Physiol Rep 2024; 12:e16056. [PMID: 38777811 PMCID: PMC11111423 DOI: 10.14814/phy2.16056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Permeability transition pore (PTP) opening dissipates ion and electron gradients across the internal mitochondrial membrane (IMM), including excess Ca2+ in the mitochondrial matrix. After opening, immediate PTP closure must follow to prevent outer membrane disruption, loss of cytochrome c, and eventual apoptosis. Flickering, defined as the rapid alternative opening/closing of PTP, has been reported in heart, which undergoes frequent, large variations in Ca2+. In contrast, in tissues that undergo depolarization events less often, such as the liver, PTP would not need to be as dynamic and thus these tissues would not be as resistant to stress. To evaluate this idea, it was decided to follow the reversibility of the permeability transition (PT) in isolated murine mitochondria from two different tissues: the very dynamic heart, and the liver, which suffers depolarizations less frequently. It was observed that in heart mitochondria PT remained reversible for longer periods and at higher Ca2+ loads than in liver mitochondria. In all cases, Ca2+ uptake was inhibited by ruthenium red and PT was delayed by Cyclosporine A. Characterization of this phenomenon included measuring the rate of oxygen consumption, organelle swelling and Ca2+ uptake and retention. Results strongly suggest that there are tissue-specific differences in PTP physiology, as it resists many more Ca2+ additions before opening in a highly active organ such as the heart than in an organ that seldom suffers Ca2+ loading, such as the liver.
Collapse
Affiliation(s)
- Carolina Ricardez‐Garcia
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| | - Mauricio Reyes‐Becerril
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| | - Edson Mosqueda‐Martinez
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| | - Ofelia Mendez‐Romero
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| | - Angelica Ruiz‐Ramírez
- Departamento de Biomedicina CardiovascularInstituto Nacional de Cardiología Ignacio ChávezMexico CityMexico
| | - Salvador Uribe‐Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| |
Collapse
|
13
|
Rhodes EM, Yap KN, Mesquita PHC, Parry HA, Kavazis AN, Krause JS, Hill GE, Hood WR. Flexibility underlies differences in mitochondrial respiratory performance between migratory and non-migratory White-crowned Sparrows (Zonotrichia leucophrys). Sci Rep 2024; 14:9456. [PMID: 38658588 PMCID: PMC11043447 DOI: 10.1038/s41598-024-59715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Migration is one of the most energy-demanding behaviors observed in birds. Mitochondria are the primary source of energy used to support these long-distance movements, yet how mitochondria meet the energetic demands of migration is scarcely studied. We quantified changes in mitochondrial respiratory performance in the White-crowned Sparrow (Zonotrichia leucophrys), which has a migratory and non-migratory subspecies. We hypothesized that the long-distance migratory Gambel's subspecies (Z. l. gambelii) would show higher mitochondrial respiratory performance compared to the non-migratory Nuttall's subspecies (Z. l. nuttalli). We sampled Gambel's individuals during spring pre-migration, active fall migration, and a period with no migration or breeding (winter). We sampled Nuttall's individuals during periods coinciding with fall migration and the winter period of Gambel's annual cycle. Overall, Gambel's individuals had higher citrate synthase, a proxy for mitochondrial volume, than Nuttall's individuals. This was most pronounced prior to and during migration. We found that both OXPHOS capacity (state 3) and basal respiration (state 4) of mitochondria exhibit high seasonal flexibility within Gambel's individuals, with values highest during active migration. These values in Nuttall's individuals were most similar to Gambel's individuals in winter. Our observations indicate that seasonal changes in mitochondrial respiration play a vital role in migration energetics.
Collapse
Affiliation(s)
- Emma M Rhodes
- Department of Biological Sciences, Auburn University, Auburn, USA.
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paulo H C Mesquita
- School of Kinesiology, Auburn University, Auburn, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | | | | | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| |
Collapse
|
14
|
Cai M, Li S, Cai K, Du X, Han J, Hu J. Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism 2024; 152:155787. [PMID: 38215964 DOI: 10.1016/j.metabol.2024.155787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
15
|
Brand JA, Garcia-Gonzalez F, Dowling DK, Wong BBM. Mitochondrial genetic variation as a potential mediator of intraspecific behavioural diversity. Trends Ecol Evol 2024; 39:199-212. [PMID: 37839905 DOI: 10.1016/j.tree.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Mitochondrial genes play an essential role in energy metabolism. Variation in the mitochondrial DNA (mtDNA) sequence often exists within species, and this variation can have consequences for energy production and organismal life history. Yet, despite potential links between energy metabolism and the expression of animal behaviour, mtDNA variation has been largely neglected to date in studies investigating intraspecific behavioural diversity. We outline how mtDNA variation and interactions between mitochondrial and nuclear genotypes may contribute to the expression of individual-to-individual behavioural differences within populations, and why such effects may lead to sex differences in behaviour. We contend that integration of the mitochondrial genome into behavioural ecology research may be key to fully understanding the evolutionary genetics of animal behaviour.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station-CSIC, Seville, Spain; Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Lu L, Yang Y, Shi G, He X, Xu X, Feng Y, Wang W, Li Z, Yang J, Li B, Sun G. Alterations in mitochondrial structure and function in response to environmental temperature changes in Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106330. [PMID: 38171258 DOI: 10.1016/j.marenvres.2023.106330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Global temperatures have risen as a result of climate change, and the resulting warmer seawater will exert physiological stresses on many aquatic animals, including Apostichopus japonicus. It has been suggested that the sensitivity of aquatic poikilothermal animals to climate change is closely related to mitochondrial function. Therefore, understanding the interaction between elevated temperature and mitochondrial functioning is key to characterizing organisms' responses to heat stress. However, little is known about the mitochondrial response to heat stress in A. japonicus. In this work, we investigated the morphological and functional changes of A. japonicus mitochondria under three representative temperatures, control temperature (18 °C), aestivation temperature (25 °C) and heat stress temperature (32 °C) temperatures using transmission electron microscopy (TEM) observation of mitochondrial morphology combined with proteomics and metabolomics techniques. The results showed that the mitochondrial morphology of A. japonicus was altered, with decreases in the number of mitochondrial cristae at 25 °C and mitochondrial lysis, fracture, and vacuolization at 32 °C. Proteomic and metabolomic analyses revealed 103 differentially expressed proteins and 161 differential metabolites at 25 °C. At 32 °C, the levels of 214 proteins and 172 metabolites were significantly altered. These proteins and metabolites were involved in the tricarboxylic acid (TCA) cycle, substance transport, membrane potential homeostasis, anti-stress processes, mitochondrial autophagy, and apoptosis. Furthermore, a hypothetical network of proteins and metabolites in A. japonicus mitochondria in response to temperature changes was constructed based on proteomic and metabolomic data. These results suggest that the dynamic regulation of mitochondrial energy metabolism, resistance to oxidative stress, autophagy, apoptosis, and mitochondrial morphology in A. japonicus may play important roles in the response to elevated temperatures. In summary, this study describes the response of A. japonicus mitochondria to temperature changes from the perspectives of morphology, proteins, and metabolites, which provided a better understanding the mechanisms of mitochondrial regulation under environment stress in marine echinoderms.
Collapse
Affiliation(s)
- Lixin Lu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yu Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Guojun Shi
- Hekou District Science and Technology Bureau, China
| | - Xiaohua He
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Bin Li
- Yantai Haiyu Marine Science and Technology Co. Ltd, Yantai, 264002, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| |
Collapse
|
17
|
Tagliatti E, Desiato G, Mancinelli S, Bizzotto M, Gagliani MC, Faggiani E, Hernández-Soto R, Cugurra A, Poliseno P, Miotto M, Argüello RJ, Filipello F, Cortese K, Morini R, Lodato S, Matteoli M. Trem2 expression in microglia is required to maintain normal neuronal bioenergetics during development. Immunity 2024; 57:86-105.e9. [PMID: 38159572 PMCID: PMC10783804 DOI: 10.1016/j.immuni.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (Trem2) is a myeloid cell-specific gene expressed in brain microglia, with variants that are associated with neurodegenerative diseases, including Alzheimer's disease. Trem2 is essential for microglia-mediated synaptic refinement, but whether Trem2 contributes to shaping neuronal development remains unclear. Here, we demonstrate that Trem2 plays a key role in controlling the bioenergetic profile of pyramidal neurons during development. In the absence of Trem2, developing neurons in the hippocampal cornus ammonis (CA)1 but not in CA3 subfield displayed compromised energetic metabolism, accompanied by reduced mitochondrial mass and abnormal organelle ultrastructure. This was paralleled by the transcriptional rearrangement of hippocampal pyramidal neurons at birth, with a pervasive alteration of metabolic, oxidative phosphorylation, and mitochondrial gene signatures, accompanied by a delay in the maturation of CA1 neurons. Our results unveil a role of Trem2 in controlling neuronal development by regulating the metabolic fitness of neurons in a region-specific manner.
Collapse
Affiliation(s)
- Erica Tagliatti
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Sara Mancinelli
- Humanitas University, Department of Biomedical Sciences, Via Levi Montalicini 4, Pieve Emanuele 20072 Milan, Italy
| | - Matteo Bizzotto
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Levi Montalicini 4, Pieve Emanuele 20072 Milan, Italy
| | - Maria C Gagliani
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Elisa Faggiani
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | | | - Andrea Cugurra
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paola Poliseno
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Matteo Miotto
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Fabia Filipello
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Simona Lodato
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Levi Montalicini 4, Pieve Emanuele 20072 Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| |
Collapse
|
18
|
Cossin-Sevrin N, Stier A, Hukkanen M, Zahn S, Viblanc VA, Anttila K, Ruuskanen S. Early-life environmental effects on mitochondrial aerobic metabolism: a brood size manipulation in wild great tits. J Exp Biol 2023; 226:jeb245932. [PMID: 37815441 DOI: 10.1242/jeb.245932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
In avian species, the number of chicks in the nest and subsequent sibling competition for food are major components of the offspring's early-life environment. A large brood size is known to affect chick growth, leading in some cases to long-lasting effects for the offspring, such as a decrease in size at fledgling and in survival after fledging. An important pathway underlying different growth patterns could be the variation in offspring mitochondrial metabolism through its central role in converting energy. Here, we performed a brood size manipulation in great tits (Parus major) to unravel its impact on offspring mitochondrial metabolism and reactive oxygen species (ROS) production in red blood cells. We investigated the effects of brood size on chick growth and survival, and tested for long-lasting effects on juvenile mitochondrial metabolism and phenotype. As expected, chicks raised in reduced broods had a higher body mass compared with enlarged and control groups. However, mitochondrial metabolism and ROS production were not significantly affected by the treatment at either chick or juvenile stages. Interestingly, chicks raised in very small broods were smaller in size and had higher mitochondrial metabolic rates. The nest of rearing had a significant effect on nestling mitochondrial metabolism. The contribution of the rearing environment in determining offspring mitochondrial metabolism emphasizes the plasticity of mitochondrial metabolism in relation to the nest environment. This study opens new avenues regarding the effect of postnatal environmental conditions in shaping offspring early-life mitochondrial metabolism.
Collapse
Affiliation(s)
- Nina Cossin-Sevrin
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Antoine Stier
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - Mikaela Hukkanen
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sandrine Zahn
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Vincent A Viblanc
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Katja Anttila
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Suvi Ruuskanen
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
19
|
Wang G, Lian H, Zhang H, Wang X. Microcirculation and Mitochondria: The Critical Unit. J Clin Med 2023; 12:6453. [PMID: 37892591 PMCID: PMC10607663 DOI: 10.3390/jcm12206453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Critical illness is often accompanied by a hemodynamic imbalance between macrocirculation and microcirculation, as well as mitochondrial dysfunction. Microcirculatory disorders lead to abnormalities in the supply of oxygen to tissue cells, while mitochondrial dysfunction leads to abnormal energy metabolism and impaired tissue oxygen utilization, making these conditions important pathogenic factors of critical illness. At the same time, there is a close relationship between the microcirculation and mitochondria. We introduce here the concept of a "critical unit", with two core components: microcirculation, which mainly comprises the microvascular network and endothelial cells, especially the endothelial glycocalyx; and mitochondria, which are mainly involved in energy metabolism but perform other non-negligible functions. This review also introduces several techniques and devices that can be utilized for the real-time synchronous monitoring of the microcirculation and mitochondria, and thus critical unit monitoring. Finally, we put forward the concepts and strategies of critical unit-guided treatment.
Collapse
Affiliation(s)
- Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| |
Collapse
|
20
|
Zou W, Yang L, Lu H, Li M, Ji D, Slone J, Huang T. Application of super-resolution microscopy in mitochondria-dynamic diseases. Adv Drug Deliv Rev 2023; 200:115043. [PMID: 37536507 DOI: 10.1016/j.addr.2023.115043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Limited by spatial and temporal resolution, traditional optical microscopy cannot image the delicate ultra-structure organelles and sub-organelles. The emergence of super-resolution microscopy makes it possible. In this review, we focus on mitochondria. We summarize the process of mitochondrial dynamics, the primary proteins that regulate mitochondrial morphology, the diseases related to mitochondrial dynamics. The purpose is to apply super-resolution microscopy developed during recent years to the mitochondrial research. By providing the right research tools, we will help to promote the application of this technique to the in-depth elucidation of the pathogenesis of diseases related to mitochondrial dynamics, assistdiagnosis and develop the therapeutic treatment.
Collapse
Affiliation(s)
- Weiwei Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hedong Lu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jesse Slone
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Taosheng Huang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
21
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
22
|
Shang Y, Li Z, Cai P, Li W, Xu Y, Zhao Y, Xia S, Shao Q, Wang H. Megamitochondria plasticity: function transition from adaption to disease. Mitochondrion 2023:S1567-7249(23)00053-3. [PMID: 37276954 DOI: 10.1016/j.mito.2023.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
As the cell's energy factory and metabolic hub, mitochondria are critical for ATP synthesis to maintain cellular function. Mitochondria are highly dynamic organelles that continuously undergo fusion and fission to alter their size, shape, and position, with mitochondrial fusion and fission being interdependent to maintain the balance of mitochondrial morphological changes. However, in response to metabolic and functional damage, mitochondria can grow in size, resulting in a form of abnormal mitochondrial morphology known as megamitochondria. Megamitochondria are characterized by their considerably larger size, pale matrix, and marginal cristae structure and have been observed in various human diseases. In energy-intensive cells like hepatocytes or cardiomyocytes, the pathological process can lead to the growth of megamitochondria, which can further cause metabolic disorders, cell damage and aggravates the progression of the disease. Nonetheless, megamitochondria can also form in response to short-term environmental stimulation as a compensatory mechanism to support cell survival. However, extended stimulation can reverse the benefits of megamitochondria leading to adverse effects. In this review, we will focus on the findings of the different roles of megamitochondria, and their link to disease development to identify promising clinical therapeutic targets.
Collapse
Affiliation(s)
- Yuxing Shang
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Zhanghui Li
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Peiyang Cai
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wuhao Li
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Ye Xu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Sheng Xia
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an 223002, Jiangsu, PR China.
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
23
|
Reardon KM, Walton BN, Husak JF. How does mitochondria function contribute to aerobic performance enhancement in lizards? Front Physiol 2023; 14:1165313. [PMID: 37215170 PMCID: PMC10198381 DOI: 10.3389/fphys.2023.1165313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Aims: Aerobic exercise typically enhances endurance across vertebrates so that chronically high energy demands can be met. Some known mechanisms of doing this include increases in red blood cell numbers, angiogenesis, muscle fiber adaptions, mitochondria biogenesis, and changes to cellular metabolism and oxidative phosphorylation. We used green anole lizards (Anolis carolinensis) to test for an effect of aerobic exercise on metabolism, mitochondria densities, and mitochondrial function. Methods: We first tested the response of green anoles to endurance training and pyrroloquinoline quinone (PQQ) supplementation, which has been shown to increase mitochondria biogenesis. We also conducted a mitochondrial stress test to determine how training affected mitochondrial function in skeletal muscle fibers. Results: Aerobic exercise led to increased endurance and decreased standard metabolic rate (SMR), while PQQ did not affect endurance and increased SMR. In a second experiment, aerobic exercise increased endurance and decreased resting metabolic rate (RMR) in both male and female green anoles. Higher counts of mitochondrial gene copies in trained lizards suggested additional mitochondria adaptations to achieve increased endurance and decreased metabolism. A mitochondrial stress test revealed no effect on baseline oxygen consumption rates of muscle fibers, but untrained lizards had higher maximal oxygen consumption rates with the addition of metabolic fuel. Conclusion: It is likely that trained lizards exhibited lower maximal oxygen consumption rates by developing higher mitochondria efficiency. This adaptation allows for high ATP demand to be met by making more ATP per oxygen molecule consumed. On the other hand, it is possible that untrained lizards prioritized limiting reactive oxygen species (ROS) production at rest, while sacrificing higher levels of proton leak and higher oxygen consumption rates when working to meet high ATP demand.
Collapse
|
24
|
Heine KB, Parry HA, Hood WR. How does density of the inner mitochondrial membrane influence mitochondrial performance? Am J Physiol Regul Integr Comp Physiol 2023; 324:R242-R248. [PMID: 36572555 PMCID: PMC9902215 DOI: 10.1152/ajpregu.00254.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Our current understanding of variation in mitochondrial performance is incomplete. The production of ATP via oxidative phosphorylation is dependent, in part, on the structure of the inner mitochondrial membrane. Morphology of the inner membrane is crucial for the formation of the proton gradient across the inner membrane and, therefore, ATP synthesis. The inner mitochondrial membrane is dynamic, changing shape and surface area. These changes alter density (amount per volume) of the inner mitochondrial membrane within the confined space of the mitochondrion. Because the number of electron transport system proteins within the inner mitochondrial membrane changes with inner mitochondrial membrane area, a change in the amount of inner membrane alters the capacity for ATP production within the organelle. This review outlines the evidence that the association between ATP synthases, inner mitochondrial membrane density, and mitochondrial density (number of mitochondria per cell) impacts ATP production by mitochondria. Furthermore, we consider possible constraints on the capacity of mitochondria to produce ATP by increasing inner mitochondrial membrane density.
Collapse
Affiliation(s)
- Kyle B Heine
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Hailey A Parry
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
25
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
26
|
Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Front Pharmacol 2022; 13:947387. [PMID: 36339617 PMCID: PMC9632297 DOI: 10.3389/fphar.2022.947387] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is one of the largest organs in the body and the largest protein repository. Mitochondria are the main energy-producing organelles in cells and play an important role in skeletal muscle health and function. They participate in several biological processes related to skeletal muscle metabolism, growth, and regeneration. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor and regulator of systemic energy balance. AMPK is involved in the control of energy metabolism by regulating many downstream targets. In this review, we propose that AMPK directly controls several facets of mitochondrial function, which in turn controls skeletal muscle metabolism and health. This review is divided into four parts. First, we summarize the properties of AMPK signal transduction and its upstream activators. Second, we discuss the role of mitochondria in myogenesis, muscle atrophy, regeneration post-injury of skeletal muscle cells. Third, we elaborate the effects of AMPK on mitochondrial biogenesis, fusion, fission and mitochondrial autophagy, and discuss how AMPK regulates the metabolism of skeletal muscle by regulating mitochondrial function. Finally, we discuss the effects of AMPK activators on muscle disease status. This review thus represents a foundation for understanding this biological process of mitochondrial dynamics regulated by AMPK in the metabolism of skeletal muscle. A better understanding of the role of AMPK on mitochondrial dynamic is essential to improve mitochondrial function, and hence promote skeletal muscle health and function.
Collapse
Affiliation(s)
- Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Jie Lin
- Department of Infectious Disease, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Dajun Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| |
Collapse
|
27
|
A 3D analysis revealed complexe mitochondria morphologies in porcine cumulus cells. Sci Rep 2022; 12:15403. [PMID: 36100690 PMCID: PMC9470746 DOI: 10.1038/s41598-022-19723-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
In the ovarian follicle, a bilateral cell-to-cell communication exists between the female germ cell and the cumulus cells which surround the oocyte. This communication allows the transit of small size molecules known to impact oocyte developmental competence. Pyruvate derivatives produced by mitochondria, are one of these transferred molecules. Interestingly, mitochondria may adopt a variety of morphologies to regulate their functions. In this study, we described mitochondrial morphologies in porcine cumulus cells. Active mitochondria were stained with TMRM (Tetramethylrhodamine, Methyl Ester, Perchlorate) and observed with 2D confocal microscopy showing mitochondria of different morphologies such as short, intermediate, long, and very long. The number of mitochondria of each phenotype was quantified in cells and the results showed that most cells contained elongated mitochondria. Scanning electron microscopy (SEM) analysis confirmed at nanoscale resolution the different mitochondrial morphologies including round, short, intermediate, and long. Interestingly, 3D visualisation by focused ion-beam scanning electron microscopy (FIB-SEM) revealed different complex mitochondrial morphologies including connected clusters of different sizes, branched mitochondria, as well as individual mitochondria. Since mitochondrial dynamics is a key regulator of function, the description of the mitochondrial network organisation will allow to further study mitochondrial dynamics in cumulus cells in response to various conditions such as in vitro maturation.
Collapse
|
28
|
Lemonnier C, Bize P, Boonstra R, Dobson FS, Criscuolo F, Viblanc VA. Effects of the social environment on vertebrate fitness and health in nature: Moving beyond the stress axis. Horm Behav 2022; 145:105232. [PMID: 35853411 DOI: 10.1016/j.yhbeh.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Social interactions are a ubiquitous feature of the lives of vertebrate species. These may be cooperative or competitive, and shape the dynamics of social systems, with profound effects on individual behavior, physiology, fitness, and health. On one hand, a wealth of studies on humans, laboratory animal models, and captive species have focused on understanding the relationships between social interactions and individual health within the context of disease and pathology. On the other, ecological studies are attempting an understanding of how social interactions shape individual phenotypes in the wild, and the consequences this entails in terms of adaptation. Whereas numerous studies in wild vertebrates have focused on the relationships between social environments and the stress axis, much remains to be done in understanding how socially-related activation of the stress axis coordinates other key physiological functions related to health. Here, we review the state of our current knowledge on the effects that social interactions may have on other markers of vertebrate fitness and health. Building upon complementary findings from the biomedical and ecological fields, we identify 6 key physiological functions (cellular metabolism, oxidative stress, cellular senescence, immunity, brain function, and the regulation of biological rhythms) which are intimately related to the stress axis, and likely directly affected by social interactions. Our goal is a holistic understanding of how social environments affect vertebrate fitness and health in the wild. Whereas both social interactions and social environments are recognized as important sources of phenotypic variation, their consequences on vertebrate fitness, and the adaptive nature of social-stress-induced phenotypes, remain unclear. Social flexibility, or the ability of an animal to change its social behavior with resulting changes in social systems in response to fluctuating environments, has emerged as a critical underlying factor that may buffer the beneficial and detrimental effects of social environments on vertebrate fitness and health.
Collapse
Affiliation(s)
- Camille Lemonnier
- Ecole Normale Supérieur de Lyon, 69342 Lyon, France; Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France.
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; Swiss Institute of Ornithology, Sempach, Switzerland
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
29
|
Powers MJ, Baty JA, Dinga AM, Mao JH, Hill GE. Chemical manipulation of mitochondrial function affects metabolism of red carotenoids in a marine copepod (Tigriopus californicus). J Exp Biol 2022; 225:275691. [PMID: 35695335 DOI: 10.1242/jeb.244230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 01/25/2023]
Abstract
The shared-pathway hypothesis offers a cellular explanation for the connection between ketocarotenoid pigmentation and individual quality. Under this hypothesis, ketocarotenoid metabolism shares cellular pathways with mitochondrial oxidative phosphorylation such that red carotenoid-based coloration is inextricably linked mitochondrial function. To test this hypothesis, we exposed Tigriopus californicus copepods to a mitochondrially targeted protonophore, 2,4-dinitrophenol (DNP), to induce proton leak in the inner mitochondrial membranes. We then measured whole-animal metabolic rate and ketocarotenoid accumulation. As observed in prior studies of vertebrates, we observed that DNP treatment of copepods significantly increased respiration and that DNP-treated copepods accumulated more ketocarotenoid than control animals. Moreover, we observed a relationship between ketocarotenoid concentration and metabolic rate, and this association was strongest in DNP-treated copepods. These data support the hypothesis that ketocarotenoid and mitochondrial metabolism are biochemically intertwined. Moreover, these results corroborate observations in vertebrates, perhaps suggesting a fundamental connection between ketocarotenoid pigmentation and mitochondrial function that should be explored further.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - James A Baty
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Alexis M Dinga
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - James H Mao
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
30
|
Niitepõld K, Parry HA, Harris NR, Appel AG, de Roode JC, Kavazis AN, Hood WR. Flying on empty: Reduced mitochondrial function and flight capacity in food-deprived monarch butterflies. J Exp Biol 2022; 225:275693. [PMID: 35694960 DOI: 10.1242/jeb.244431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Mitochondrial function is fundamental to organismal performance, health, and fitness - especially during energetically challenging events, such as migration. With this investigation, we evaluated mitochondrial sensitivity to ecologically relevant stressors. We focused on an iconic migrant, the North American monarch butterfly (Danaus plexippus), and examined the effects of two stressors: seven days of food deprivation, and infection by the protozoan parasite Ophryocystis elektroscirrha (known to reduce survival and flight performance). We measured whole-animal resting (RMR) and peak flight metabolic rate, and mitochondrial respiration of isolated mitochondria from the flight muscles. Food deprivation reduced mass-independent RMR and peak flight metabolic rate, whereas infection did not. Fed monarchs used mainly lipids in flight (respiratory quotient 0.73), but the respiratory quotient dropped in food-deprived individuals, possibly indicating switching to alternative energy sources, such as ketone bodies. Food deprivation decreased mitochondrial maximum oxygen consumption but not basal respiration, resulting in lower respiratory control ratio (RCR). Furthermore, food deprivation decreased mitochondrial complex III activity, but increased complex IV activity. Infection did not result in any changes in these mitochondrial variables. Mitochondrial maximum respiration rate correlated positively with mass-independent RMR and flight metabolic rate, suggesting a link between mitochondria and whole-animal performance. In conclusion, low food availability negatively affects mitochondrial function and flight performance, with potential implications on migration, fitness, and population dynamics. Although previous studies have reported poor flight performance in infected monarchs, we found no differences in physiological performance, suggesting that reduced flight capacity may be due to structural differences or low energy stores.
Collapse
Affiliation(s)
- Kristjan Niitepõld
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.,The Finnish Science Centre Heureka, 01300 Vantaa, Finland
| | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Natalie R Harris
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | | | | | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
31
|
Rees BB, Reemeyer JE, Irving BA. Interindividual variation in maximum aerobic metabolism varies with gill morphology and myocardial bioenergetics. J Exp Biol 2022; 225:275636. [DOI: 10.1242/jeb.243680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
This study asked whether interindividual variation in maximum and standard aerobic metabolic rates of the Gulf killifish, Fundulus grandis, correlate with gill morphology and cardiac mitochondrial bioenergetics, traits reflecting critical steps in the O2 transport cascade from the environment to the tissues. Maximum metabolic rate (MMR) was positively related to body mass, total gill filament length, and myocardial oxygen consumption during maximum oxidative phosphorylation (multiple R2=0.836). Standard metabolic rate (SMR) was positively related to body mass, total gill filament length, and myocardial oxygen consumption during maximum electron transport system activity (multiple R2=0.717). After controlling for body mass, individuals with longer gill filaments, summed over all gill arches, or greater cardiac respiratory capacity had higher whole-animal metabolic rates. The overall model fit and the explanatory power of individual predictor variables were better for MMR than for SMR, suggesting that gill morphology and myocardial bioenergetics are more important in determining active rather than resting metabolism. After accounting for body mass, heart ventricle mass was not related to variation in MMR or SMR, indicating that the quality of the heart (i.e., the capacity for mitochondrial metabolism) was more influential than heart size. Finally, the myocardial oxygen consumption required to offset the dissipation of the transmembrane proton gradient in the absence of ATP synthesis was not correlated with either MMR or SMR. The results support the idea that interindividual variation in aerobic metabolism, particularly maximum metabolic rate, is associated with variation in specific steps in the O2 transport cascade.
Collapse
Affiliation(s)
- Bernard B. Rees
- 1 Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Jessica E. Reemeyer
- 2 Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Brian A. Irving
- 3 School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA
- 4 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| |
Collapse
|
32
|
Justyn NM, Heine KB, Hood WR, Peteya JA, Vanthournout B, Debruyn G, Shawkey MD, Weaver RJ, Hill GE. A combination of red structural and pigmentary coloration in the eyespot of a copepod. J R Soc Interface 2022; 19:20220169. [PMID: 35611618 DOI: 10.1098/rsif.2022.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While the specific mechanisms of colour production in biological systems are diverse, the mechanics of colour production are straightforward and universal. Colour is produced through the selective absorption of light by pigments, the scattering of light by nanostructures or a combination of both. When Tigriopus californicus copepods were fed a carotenoid-limited diet of yeast, their orange-red body coloration became faint, but their eyespots remained unexpectedly bright red. Raman spectroscopy indicated a clear signature of the red carotenoid pigment astaxanthin in eyespots; however, refractive index matching experiments showed that eyespot colour disappeared when placed in ethyl cinnamate, suggesting a structural origin for the red coloration. We used transmission electron microscopy to identify consecutive nanolayers of spherical air pockets that, when modelled as a single thin film layer, possess the correct periodicity to coherently scatter red light. We then performed microspectrophotometry to quantify eyespot coloration and confirmed a distinct colour difference between the eyespot and the body. The observed spectral reflectance from the eyespot matched the reflectance predicted from our models when considering the additional absorption by astaxanthin. Together, this evidence suggests the persistence of red eyespots in copepods is the result of a combination of structural and pigmentary coloration.
Collapse
Affiliation(s)
- Nicholas M Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kyle B Heine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer A Peteya
- Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Bram Vanthournout
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Gerben Debruyn
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
33
|
Treidel LA, Quintanilla Ramirez GS, Chung DJ, Menze MA, Vázquez-Medina JP, Williams CM. Selection on dispersal drives evolution of metabolic capacities for energy production in female wing-polymorphic sand field crickets, Gryllus firmus. J Evol Biol 2022; 35:599-609. [PMID: 35255175 PMCID: PMC9311679 DOI: 10.1111/jeb.13996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/21/2022] [Accepted: 02/20/2022] [Indexed: 01/08/2023]
Abstract
Life history and metabolism covary, but the mechanisms and individual traits responsible for these linkages remain unresolved. Dispersal capability is a critical component of life history that is constrained by metabolic capacities for energy production. Conflicting relationships between metabolism and life histories may be explained by accounting for variation in dispersal and maximal metabolic rates. We used female wing-polymorphic sand field crickets, Gryllus firmus, selected either for long wings (LW, flight-capable) or short wings (SW, flightless) to test the hypothesis that selection on dispersal capability drives the evolution of metabolic capacities. While resting metabolic rates were similar, long-winged crickets reached higher maximal metabolic rates than short-winged crickets, resulting in improved running performance. We further provided insight into the mechanisms responsible for covariation between life history and metabolism by comparing mitochondrial content of tissues involved in powering locomotion and assessing the function of mitochondria isolated from long- and short-winged crickets. Our results demonstrated that larger metabolic capacities in long-winged crickets were underpinned by increases in mitochondrial content of dorsoventral flight muscle and enhanced bioenergetic capacities of mitochondria within the fat body, a tissue responsible for fuel storage and mobilization. Thus, selection on flight capability correlates with increases in maximal, but not resting metabolic rates, through modifications of tissues powering locomotion at the cellular and organelle levels. This allows organisms to meet high energetic demands of activity for life history. Dispersal capability should therefore explicitly be considered as a potential factor driving the evolution of metabolic capacities.
Collapse
Affiliation(s)
- Lisa A Treidel
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | | | - Dillon J Chung
- National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - José P Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
34
|
Husak JF, Lailvaux SP. Conserved and convergent mechanisms underlying performance-life-history trade-offs. J Exp Biol 2022; 225:274252. [PMID: 35119073 DOI: 10.1242/jeb.243351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phenotypic trade-offs are inevitable in nature, but the mechanisms driving them are poorly understood. Movement and oxygen are essential to all animals, and as such, the common ancestor to all living animals passed on mechanisms to acquire oxygen and contract muscle, sometimes at the expense of other activities or expression of traits. Nevertheless, convergent pathways have also evolved to deal with critical trade-offs that are necessary to survive ubiquitous environmental challenges. We discuss how whole-animal performance traits, such as locomotion, are important to fitness, yet costly, resulting in trade-offs with other aspects of the phenotype via specific conserved and convergent mechanistic pathways across all animals. Specifically, we discuss conserved pathways involved in muscle structure and signaling, insulin/insulin-like signaling, sirtuins, mitochondria and hypoxia-inducible factors, as well as convergent pathways involved in energy regulation, development, reproductive investment and energy storage. The details of these mechanisms are only known from a few model systems, and more comparative studies are needed. We make two main recommendations as a framework for future studies of animal form and function. First, studies of performance should consider the broader life-history context of the organism, and vice versa, as performance expression can require a large portion of acquired resources. Second, studies of life histories or mechanistic pathways that measure performance should do so in meaningful and standardized ways. Understanding proximate mechanisms of phenotypic trade-offs will not only better explain the phenotypes of the organisms we study, but also allow predictions about phenotypic variation at the evolutionary scale.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
35
|
Huang W, Mao L, Xie W, Cai S, Huang Q, Liu Y, Chen Z. Impact of UCP2 depletion on heat stroke-induced mitochondrial function in human umbilical vein endothelial cells. Int J Hyperthermia 2022; 39:287-296. [PMID: 35129048 DOI: 10.1080/02656736.2022.2032846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Wei Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Liangfeng Mao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Weidang Xie
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Sumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qiaobing Huang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, Southern Medical University, Guangzhou, P.R. China
| | - Yanan Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhongqing Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
36
|
Liu M, Wu Y. Role of Mitophagy in Coronary Heart Disease: Targeting the Mitochondrial Dysfunction and Inflammatory Regulation. Front Cardiovasc Med 2022; 9:819454. [PMID: 35187131 PMCID: PMC8854491 DOI: 10.3389/fcvm.2022.819454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary heart disease (CHD) is one of the main causes of death worldwide. In the past few decades, several in-depth research on the pathological mechanisms and effective treatment methods for CHD have been conducted. At present, the intervention of a variety of therapeutic drugs and treatment technologies have greatly reduced the burden on global public health. However, severe arrhythmia and myocardial fibrosis accompanying CHD in the later stages need to be addressed urgently. Mitochondria are important structural components for energy production and the main sites for aerobic respiration in cells. Mitochondria are involved in arrhythmia, myocardial fibrosis, and acute CHD and play a crucial role in regulating myocardial ischemia/hypoxia. Mitochondrial dysfunction or mitophagy disorders (including receptor-dependent mitophagy and receptor-independent mitophagy) play an important role in the pathogenesis of CHD, especially mitophagy. Mitophagy acts as a “mediator” in the inflammatory damage of cardiomyocytes or vascular endothelial cells and can clear mitochondria or organelles damaged by inflammation under normal conditions. We reviewed experimental advances providing evidence that mitochondrial homeostasis or mitochondrial quality control are important in the pathological mechanism of CHD. Further, we reviewed and summarized relevant regulatory drugs that target mitochondrial function and quality control.
Collapse
|
37
|
Yang D, Liu HQ, Liu FY, Guo Z, An P, Wang MY, Yang Z, Fan D, Tang QZ. Mitochondria in Pathological Cardiac Hypertrophy Research and Therapy. Front Cardiovasc Med 2022; 8:822969. [PMID: 35118147 PMCID: PMC8804293 DOI: 10.3389/fcvm.2021.822969] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac hypertrophy, a stereotypic cardiac response to increased workload, ultimately progresses to severe contractile dysfunction and uncompensated heart failure without appropriate intervention. Sustained cardiac overload inevitably results in high energy consumption, thus breaking the balance between mitochondrial energy supply and cardiac energy demand. In recent years, accumulating evidence has indicated that mitochondrial dysfunction is implicated in pathological cardiac hypertrophy. The significant alterations in mitochondrial energetics and mitochondrial proteome composition, as well as the altered expression of transcripts that have an impact on mitochondrial structure and function, may contribute to the initiation and progression of cardiac hypertrophy. This article presents a summary review of the morphological and functional changes of mitochondria during the hypertrophic response, followed by an overview of the latest research progress on the significant modulatory roles of mitochondria in cardiac hypertrophy. Our article is also to summarize the strategies of mitochondria-targeting as therapeutic targets to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- *Correspondence: Di Fan
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- Qi-Zhu Tang
| |
Collapse
|
38
|
Lin Y, Patterson A, Jimenez AG, Elliott K. Altered Oxidative Status as a Cost of Reproduction in a Seabird with High Reproductive Costs. Physiol Biochem Zool 2021; 95:35-53. [PMID: 34846992 DOI: 10.1086/717916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractLife history theory posits that reproduction is constrained by a cost of reproduction such that any increase in breeding effort should reduce subsequent survival. Oxidative stress refers to an imbalance between the prooxidant reactive oxygen species (ROS) and antioxidant defense. If not thwarted, ROS can cause damage to DNA, lipids, and proteins, potentially increasing the rate of senescence and decreasing cellular function. Reproduction is often associated with higher metabolic rates, which could increase production of ROS and lead to oxidative damage if the animal does not increase antioxidant protection. Thus, oxidative stress could be one mechanism creating a cost of reproduction. In this study we explored how reproduction may affect oxidative status differently between male and female thick-billed murres during early and late breeding seasons over three consecutive years. We manipulated breeding efforts by removing an egg from the nest of some individuals, which forced females to relay, and by handicapping other individuals by clipping wings. We measured total antioxidant capacity (TAC), uric acid (UA) concentration, and malondialdehyde (MDA; an index of lipid oxidative damage) concentration in blood plasma as well as activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in red blood cells. Oxidative status was highly variable across years, and year was consistently the most important factor determining oxidative status; inconsistent results in previous field studies may be because reproductive oxidative stress occurs only in some years. Females had lower SOD and GPx and higher MDA and TAC than males immediately after egg laying, suggesting that the cost of egg laying required investment in cheaper nonenzymatic antioxidant defenses that had lower capacity for defending against lipid peroxidation. Delayed birds had lower UA and lower SOD, GPx, and CAT activity compared with control birds. In conclusion, when reproductive costs increase via higher energy costs or longer breeding seasons, the oxidative status of both male and female murres deteriorated as a result of reduced antioxidant defenses.
Collapse
Affiliation(s)
- Yimei Lin
- Department of Biology, Colgate University, Hamilton, New York
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
39
|
Powers MJ, Martz LD, Burton RS, Hill GE, Weaver RJ. Evidence for hybrid breakdown in production of red carotenoids in the marine invertebrate Tigriopus californicus. PLoS One 2021; 16:e0259371. [PMID: 34748608 PMCID: PMC8575244 DOI: 10.1371/journal.pone.0259371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
The marine copepod, Tigriopus californicus, produces the red carotenoid pigment astaxanthin from yellow dietary precursors. This ‘bioconversion’ of yellow carotenoids to red is hypothesized to be linked to individual condition, possibly through shared metabolic pathways with mitochondrial oxidative phosphorylation. Experimental inter-population crosses of lab-reared T. californicus typically produces low-fitness hybrids is due in large part to the disruption of coadapted sets nuclear and mitochondrial genes within the parental populations. These hybrid incompatibilities can increase variability in life history traits and energy production among hybrid lines. Here, we tested if production of astaxanthin was compromised in hybrid copepods and if it was linked to mitochondrial metabolism and offspring development. We observed no clear mitonuclear dysfunction in hybrids fed a limited, carotenoid-deficient diet of nutritional yeast. However, when yellow carotenoids were restored to their diet, hybrid lines produced less astaxanthin than parental lines. We observed that lines fed a yeast diet produced less ATP and had slower offspring development compared to lines fed a more complete diet of algae, suggesting the yeast-only diet may have obscured effects of mitonuclear dysfunction. Astaxanthin production was not significantly associated with development among lines fed a yeast diet but was negatively related to development in early generation hybrids fed an algal diet. In lines fed yeast, astaxanthin was negatively related to ATP synthesis, but in lines fed algae, the relationship was reversed. Although the effects of the yeast diet may have obscured evidence of hybrid dysfunction, these results suggest that astaxanthin bioconversion may still be related to mitochondrial performance and reproductive success.
Collapse
Affiliation(s)
- Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
- * E-mail: (MJP); (LDM)
| | - Lucas D. Martz
- University of California, Scripps Institution of Oceanography, San Diego, CA, United States of America
- * E-mail: (MJP); (LDM)
| | - Ronald S. Burton
- University of California, Scripps Institution of Oceanography, San Diego, CA, United States of America
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
| | - Ryan J. Weaver
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
40
|
Oxidative stress and the differential expression of traits associated with mating effort in humans. EVOL HUM BEHAV 2021. [DOI: 10.1016/j.evolhumbehav.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Effects of high rosuvastatin doses on hepatocyte mitochondria of hypercholesterolemic mice. Sci Rep 2021; 11:15809. [PMID: 34349148 PMCID: PMC8338935 DOI: 10.1038/s41598-021-95140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Statins are the cornerstone of therapy for individuals with hyperlipidemia. The aim of this study was to analyze the undesirable effects of mild, moderate and high doses of rosuvastatin in CD-1 male mice who received a cholesterol-rich diet, focusing on the morphological and functional changes on hepatocyte mitochondria. In a mouse model we studied the combined administration of a cholesterol-rich diet along with mild and moderate doses of rosuvastatin (1, 2.5 or 5 mg/kg/day) during several days. After the animals were sacrificed, liver mitochondria were isolated for microscopic studies and to analyze the respiratory function. The respiratory control (state-3/state-4) was evaluated in mice who received high doses of rosuvastatin. Rosuvastatin doses higher than 20 mg/kg/day induced premature death in mice with a hypercholesterolemic diet, but not in mice with a cholesterol-free diet. Doses from 2.5 to 5 mg/kg/day also induced morphological and functional alterations in mitochondria but these hypercholesterolemic animals survived longer. Giving 1 mg/kg/day, which is close to the maximal therapeutic dose for humans, did not affect mitochondrial architecture or respiratory function after two months of treatment. We analyzed the effect of rosuvastatin on hepatic tissue because it is where statins are mainly accumulated and it is the main site of endogenous cholesterol synthesis. Our results contribute to understand the side effects of rosuvastatin in hypercholesterolemic mice, effects that could also affect humans who are intolerant to statins.
Collapse
|
42
|
Powers MJ, Hill GE. A review and assessment of the Shared-Pathway Hypothesis for the maintenance of signal honesty in red ketocarotenoid-based coloration. Integr Comp Biol 2021; 61:1811-1826. [PMID: 33940618 DOI: 10.1093/icb/icab056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
For decades, scientists have noted connections between individual condition and carotenoid-based coloration in terrestrial and aquatic animals. Organisms that produce more vibrant carotenoid-based coloration tend to have better physiological performance and behavioral displays compared to less colorful members of the same species. Traditional explanations for this association between ornamental coloration and performance invoked the need for color displays to be costly, but evidence for such hypothesized costs is equivocal. An alternative explanation for the condition-dependence of carotenoid-based coloration, the Shared-Pathway Hypothesis, was developed in response. This hypothesis proposes that red ketocarotenoid-based coloration is tied to core cellular processes involving a shared pathway with mitochondrial energy metabolism, making the concentration of carotenoids an index of mitochondrial function. Since the presentation of this hypothesis, empirical tests of the mechanisms proposed therein have been conducted in many species. In this manuscript, we review the Shared-Pathway Hypothesis and the growing number of studies that have investigated a connection between carotenoid-based coloration and mitochondrial function. We also discuss future strategies for assessing the Shared-Pathway Hypothesis to more effectively disentangle evidence that may simultaneously support evidence of carotenoid-resource tradeoffs.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 USA
| |
Collapse
|
43
|
Iannello M, Bettinazzi S, Breton S, Ghiselli F, Milani L. A Naturally Heteroplasmic Clam Provides Clues about the Effects of Genetic Bottleneck on Paternal mtDNA. Genome Biol Evol 2021; 13:6130822. [PMID: 33555290 PMCID: PMC7936021 DOI: 10.1093/gbe/evab022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies within an organism. Since these copies are not identical, a single individual carries a heterogeneous population of mtDNAs, a condition known as heteroplasmy. Several factors play a role in the dynamics of the within-organism mtDNA population: among them, genetic bottlenecks, selection, and strictly maternal inheritance are known to shape the levels of heteroplasmy across mtDNAs. In Metazoa, the only evolutionarily stable exception to the strictly maternal inheritance of mitochondria is the doubly uniparental inheritance (DUI), reported in 100+ bivalve species. In DUI species, there are two highly divergent mtDNA lineages, one inherited through oocyte mitochondria (F-type) and the other through sperm mitochondria (M-type). Having both parents contributing to the mtDNA pool of the progeny makes DUI a unique system to study the dynamics of mtDNA populations. Since, in bivalves, the spermatozoon has few mitochondria (4–5), M-type mtDNA faces a tight bottleneck during embryo segregation, one of the narrowest mitochondrial bottlenecks investigated so far. Here, we analyzed the F- and M-type mtDNA variability within individuals of the DUI species Ruditapes philippinarum and investigated for the first time the effects of such a narrow bottleneck affecting mtDNA populations. As a potential consequence of this narrow bottleneck, the M-type mtDNA shows a large variability in different tissues, a condition so pronounced that it leads to genotypes from different tissues of the same individual not to cluster together. We believe that such results may help understanding the effect of low population size on mtDNA bottleneck.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Stefano Bettinazzi
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
44
|
Koch RE, Buchanan KL, Casagrande S, Crino O, Dowling DK, Hill GE, Hood WR, McKenzie M, Mariette MM, Noble DWA, Pavlova A, Seebacher F, Sunnucks P, Udino E, White CR, Salin K, Stier A. Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends Ecol Evol 2021; 36:321-332. [PMID: 33436278 DOI: 10.1016/j.tree.2020.12.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research.
Collapse
Affiliation(s)
- Rebecca E Koch
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia.
| | - Katherine L Buchanan
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Stefania Casagrande
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, Seewiesen, Eberhard-Gwinner-Str. Haus 5, 82319, Seewiesen, Germany
| | - Ondi Crino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Damian K Dowling
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Geoffrey E Hill
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Wendy R Hood
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Matthew McKenzie
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Mylene M Mariette
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Daniel W A Noble
- The Australian National University, Division of Ecology and Evolution, Research School of Biology, Canberra, ACT, 2600, Australia
| | - Alexandra Pavlova
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Frank Seebacher
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, 2006, Australia
| | - Paul Sunnucks
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Eve Udino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Craig R White
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Karine Salin
- Université de Brest, Ifremer, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, 29280, France
| | - Antoine Stier
- University of Turku, Department of Biology, Turku, Finland; University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, UK
| |
Collapse
|
45
|
Santos DE, Souza ADO, Tibério GJ, Alberici LC, Hartfelder K. Differential expression of antioxidant system genes in honey bee (Apis mellifera L.) caste development mitigates ROS-mediated oxidative damage in queen larvae. Genet Mol Biol 2020; 43:e20200173. [PMID: 33306776 PMCID: PMC7783730 DOI: 10.1590/1678-4685-gmb-2020-0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
The expression of morphological differences between the castes of social bees is
triggered by dietary regimes that differentially activate nutrient-sensing
pathways and the endocrine system, resulting in differential gene expression
during larval development. In the honey bee, Apis mellifera,
mitochondrial activity in the larval fat body has been postulated as a link that
integrates nutrient-sensing via hypoxia signaling. To understand regulatory
mechanisms in this link, we measured reactive oxygen species (ROS) levels,
oxidative damage to proteins, the cellular redox environment, and the expression
of genes encoding antioxidant factors in the fat body of queen and worker
larvae. Despite higher mean H2O2 levels in queens, there
were no differences in ROS-mediated protein carboxylation levels between the two
castes. This can be explained by their higher expression of antioxidant genes
(MnSOD, CuZnSOD, catalase, and
Gst1) and the lower ratio between reduced and oxidized
glutathione (GSH/GSSG). In worker larvae, the GSG/GSSH ratio is elevated and
antioxidant gene expression is delayed. Hence, the higher ROS production
resulting from the higher respiratory metabolism in queen larvae is effectively
counterbalanced by the up-regulation of antioxidant genes, avoiding oxidative
damage. In contrast, the delay in antioxidant gene expression in worker larvae
may explain their endogenous hypoxia response.
Collapse
Affiliation(s)
- Douglas Elias Santos
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Ribeirão Preto, SP, Brazil
| | - Anderson de Oliveira Souza
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências BioMoleculares, Ribeirão Preto, SP, Brazil
| | - Gustavo Jacomini Tibério
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Ribeirão Preto, SP, Brazil
| | - Luciane Carla Alberici
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências BioMoleculares, Ribeirão Preto, SP, Brazil
| | - Klaus Hartfelder
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Ribeirão Preto, SP, Brazil
| |
Collapse
|
46
|
Heine KB, Justyn NM, Hill GE, Hood WR. Ultraviolet irradiation alters the density of inner mitochondrial membrane and proportion of inter-mitochondrial junctions in copepod myocytes. Mitochondrion 2020; 56:82-90. [PMID: 33220503 DOI: 10.1016/j.mito.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/18/2020] [Accepted: 11/02/2020] [Indexed: 01/11/2023]
Abstract
The efficient production of energy via oxidative phosphorylation is essential to the growth, survival, and reproduction of eukaryotes. The behavior (position of, and communication between, mitochondria) and morphology of mitochondria play key roles in efficient energy production and are influenced by oxidative stressors such as ultraviolet (UV) radiation. We tested the hypothesis that mitochondria change their behavior and morphology to meet energetic demands of responding to changes in oxidative stress. Specifically, we predicted that UV irradiation would increase the density of inner mitochondrial membrane and proportion of inter-mitochondrial junctions to influence whole-animal metabolic rate. Using transmission electron microscopy, we found that both three and six hours of UV-A/B irradiation (0.5 W/m2) increased the proportion of inter-mitochondrial junctions (with increasing mitochondrial aspect ratio) and the density of inner mitochondrial membrane in myocytes of Tigriopus californicus copepods. Mitochondrial density increased following both irradiation treatments, but mitochondrial size decreased under the six hour treatment. Metabolic rate was maintained under three hours of irradiation but decreased following six hours of exposure. These observations demonstrate that the density of inner mitochondrial membrane and proportion of inter-mitochondrial junctions can play formative roles in maintaining whole-animal metabolic rate, and ultimately organismal performance, under exposure to an oxidative stressor.
Collapse
Affiliation(s)
- Kyle B Heine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Nicholas M Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
47
|
|