1
|
Wang K, Li X, Guo S, Chen J, Lv Y, Guo Z, Liu H. Metabolic reprogramming of glucose: the metabolic basis for the occurrence and development of hepatocellular carcinoma. Front Oncol 2025; 15:1545086. [PMID: 39980550 PMCID: PMC11839411 DOI: 10.3389/fonc.2025.1545086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Primary liver cancer is a common malignant tumor of the digestive system, with hepatocellular carcinoma (HCC) being the most prevalent type. It is characterized by high malignancy, insidious onset, and a lack of specific early diagnostic and therapeutic markers, posing a serious threat to human health. The occurrence and development of HCC are closely related to its metabolic processes. Similar to other malignant tumors, metabolic reprogramming occurs extensively in tumor cells, with glucose metabolism reprogramming being particularly prominent. This is characterized by abnormal activation of glycolysis and inhibition of oxidative phosphorylation and gluconeogenesis, among other changes. Glucose metabolism reprogramming provides intermediates and energy for HCC to meet its demands for rapid growth, proliferation, and metastasis. Additionally, various enzymes and signaling molecules involved in glucose metabolism reprogramming play irreplaceable roles. Therefore, regulating key metabolic enzymes and pathways in these processes is considered an important target for the diagnosis and treatment of HCC. This paper reviews the current status and progress of glucose metabolism reprogramming in HCC, aiming to provide new insights for the diagnosis, detection, and comprehensive treatment strategies of HCC involving combined glucose metabolism intervention in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaodan Li
- Department of Pediatric Health Care, Zhangzi County Maternal and Child Health Family Planning Service Center, Changzhi, Shanxi, China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Junsheng Chen
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
2
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Zhang C, An S, Lv R, Li K, Liu H, Li J, Tang Y, Cai Z, Huang T, Long L, Deng W. The dynamic variation position and predominant quasispecies of hepatitis B virus: Novel predictors of early hepatocarcinoma. Virus Res 2024; 341:199317. [PMID: 38242020 PMCID: PMC10831745 DOI: 10.1016/j.virusres.2024.199317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
To find the predictors of early HCC based on the dynamic changes of HBV quasispecies, this study utilizing the second-generation sequencing (NGS) and high-order multiplex droplet digital PCR (ddPCR) technology to examine the HBV quasispecies in serum of total 247 subjects recruited from high-incidence area of HCC. In the discovery stage, 15 non-synonymous Single Nucleotide Polymorphisms (SNPs) with higher variant proportion in HCC case group were founded (all P<0.05). Furthermore, the variant proportions in some of these SNPs were observed changing regularly within 5 years before the onset of HCC, and 5 of them located in HBX, 2 in HBS and 2 in HBC. The HBV predominant quasispecies and their consensus sequences were identified by genetic evolution analysis, in which the high HBS and HBC quasispecies heterogeneity were found associated with the forming of multifarious quasispecies clones, and the HBX gene had the highest proportion of predominant quasispecies (46.7 % in HBX vs 12.7 % and 13.8 % in HBS and HBC respectively) with the key variations (G1512A, A1630G, T1753C/G/A, A1762T and G1764A) determined. In the validation stage, we confirmed that the combined double mutations of G1512A+A1630G, A1762T+G1764A, and the combined triple mutations of T1753C/G/A + A1762T+G1764A, all expressed higher in early HCC cases when comparing with control group (all P<0.05). We also demonstrated the advantages of ddPCR using in multi-variations detection in large-sample for early HCC surveillance and screening. So we think that the dynamic of key HBV variation positions and their different combinations determined by quasispecies anlysis in this study can act as the novel predictors of early hepatocarcinoma and suitable to popularize and apply in HCC screening.
Collapse
Affiliation(s)
- Chaojun Zhang
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Sanchun An
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ruibo Lv
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Kezhi Li
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Haizhou Liu
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Jilin Li
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Yanping Tang
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Zhengmin Cai
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Tianren Huang
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China.
| | - Long Long
- Big data College of Nanning normal University, Nanning, Guangxi 530100, China.
| | - Wei Deng
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China.
| |
Collapse
|
4
|
Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int J Mol Sci 2023; 25:334. [PMID: 38203503 PMCID: PMC10779197 DOI: 10.3390/ijms25010334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis is an inflammatory liver disease primarily caused by hepatitis A (HAV), B (HBV), C (HCV), D (HDV), and E (HEV) viruses. The chronic forms of hepatitis resulting from HBV and HCV infections can progress to cirrhosis or hepatocellular carcinoma (HCC), while acute hepatitis can lead to acute liver failure, sometimes resulting in fatality. Viral hepatitis was responsible for over 1 million reported deaths annually. The treatment of hepatitis caused by viral infections currently involves the use of interferon-α (IFN-α), nucleoside inhibitors, and reverse transcriptase inhibitors (for HBV). However, these methods do not always lead to a complete cure for viral infections, and chronic forms of the disease pose significant treatment challenges. These facts underscore the urgent need to explore novel drug developments for the treatment of viral hepatitis. The discovery of the CRISPR/Cas9 system and the subsequent development of various modifications of this system have represented a groundbreaking advance in the quest for innovative strategies in the treatment of viral infections. This technology enables the targeted disruption of specific regions of the genome of infectious agents or the direct manipulation of cellular factors involved in viral replication by introducing a double-strand DNA break, which is targeted by guide RNA (spacer). This review provides a comprehensive summary of our current knowledge regarding the application of the CRISPR/Cas system in the regulation of viral infections caused by HAV, HBV, and HCV. It also highlights new strategies for drug development aimed at addressing both acute and chronic forms of viral hepatitis.
Collapse
Affiliation(s)
| | | | | | | | - Grigory A. Stepanov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; (U.I.B.); (A.S.D.); (N.V.Z.); (P.E.K.)
| |
Collapse
|
5
|
Adugna A. Histomolecular characterisation of hepatitis B virus induced liver cancer. Rev Med Virol 2023; 33:e2485. [PMID: 37902197 DOI: 10.1002/rmv.2485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Hepatitis B virus (HBV)-associated liver cancer is the third most prevalent cancer-related cause of death worldwide. Different studies have been done on the histomolecular analysis of HBV induced-liver cancer including epigenetics which are dynamic molecular mechanisms to control gene expression without altering the host deoxyribonucleic acid, genomics characterise the integration of the viral genome with host genome, proteomics characterise how gene modifies and results overexpression of proteins, glycoproteomics discover different glyco-biomarker candidates and show glycosylation in malignant hepatocytes, metabolomics characterise how HBV impairs a variety of metabolic functions during hepatocyte immortalisation, exosomes characterise immortalised liver cells in terms of their differentiation and proliferation, and autophagy plays a role in the development of hepatocarcinogenesis linked to HBV infection.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Microbiology, Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
6
|
Shoraka S, Hosseinian SM, Hasibi A, Ghaemi A, Mohebbi SR. The role of hepatitis B virus genome variations in HBV-related HCC: effects on host signaling pathways. Front Microbiol 2023; 14:1213145. [PMID: 37588887 PMCID: PMC10426804 DOI: 10.3389/fmicb.2023.1213145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, with a high prevalence in many regions. There are variations in the etiology of HCC in different regions, but most cases are due to long-term infection with viral hepatitis. Hepatitis B virus (HBV) is responsible for more than 50% of virus-related HCC, which highlights the importance of HBV in pathogenesis of the disease. The development and progression of HBV-related HCC is a complex multistep process that can involve host, viral, and environmental factors. Several studies have suggested that some HBV genome mutations as well as HBV proteins can dysregulate cell signaling pathways involved in the development of HCC. Furthermore, it seems that the pathogenicity, progression of liver diseases, response to treatment and also viral replication are different among HBV mutants. Understanding the relationship between HBV genome variations and host signaling pathway alteration will improve our understanding of the molecular pathogenesis of HBV-related HCC. Furthermore, investigating commonly dysregulated pathways in HBV-related HCC is necessary to discover more specific therapeutic targets and develop more effective strategies for HCC treatment. The objective of this review is to address the role of HBV in the HCC progression and primarily focus on the impacts of HBV genome variations on HCC-related signaling pathways.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Mahdi Hosseinian
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayda Hasibi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lin N, Yin W, Miller H, Byazrova MG, Herrada AA, Benlagha K, Lee P, Guan F, Lei J, Gong Q, Yan Y, Filatov A, Liu C. The role of regulatory T cells and follicular T helper cells in HBV infection. Front Immunol 2023; 14:1169601. [PMID: 37275865 PMCID: PMC10235474 DOI: 10.3389/fimmu.2023.1169601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.
Collapse
Affiliation(s)
- Nengqi Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Research and Development, BD Biosciences, San Jose, CA, United States
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Youqing Yan
- Department of Infectious Disease, Wuhan No.7 Hospital, Wuhan, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
You H, Wang X, Ma L, Zhang F, Zhang H, Wang Y, Pan X, Zheng K, Kong F, Tang R. Insights into the impact of hepatitis B virus on hepatic stellate cell activation. Cell Commun Signal 2023; 21:70. [PMID: 37041599 PMCID: PMC10088164 DOI: 10.1186/s12964-023-01091-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/26/2023] [Indexed: 04/13/2023] Open
Abstract
During chronic hepatitis B virus (HBV) infection, hepatic fibrosis is a serious pathological condition caused by virus-induced liver damage. The activation of hepatic stellate cells (HSCs) is a central event in the occurrence and progression of liver fibrosis. Although accumulating evidence has shown that HBV directly stimulates HSC activation, whether the virus infects and replicates in HSCs remains controversial. Inflammation is one of the obvious characteristics of chronic HBV infection, and it has been demonstrated that persistent inflammation has a predominant role in triggering and maintaining liver fibrosis. In particular, the regulation of HSC activation by HBV-related hepatocytes via various inflammatory modulators, including TGF-β and CTGF, in a paracrine manner has been reported. In addition to these inflammation-related molecules, several inflammatory cells are essential for the progression of HBV-associated liver fibrosis. Monocytes, macrophages, Th17 cells, NK cells, as well as NKT cells, participate in the modulation of HBV-related liver fibrosis by interacting with HSCs. This review summarizes current findings on the effects of HBV and the relevant molecular mechanisms involved in HSC activation. Because HSC activation is essential for liver fibrosis, targeting HSCs is an attractive therapeutic strategy to prevent and reverse hepatic fibrosis induced by HBV infection. Video abstract.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Huanyang Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Trivedi P, Patel SK, Bellavia D, Messina E, Palermo R, Ceccarelli S, Marchese C, Anastasiadou E, Minter LM, Felli MP. When Viruses Cross Developmental Pathways. Front Cell Dev Biol 2021; 9:691644. [PMID: 34422814 PMCID: PMC8375270 DOI: 10.3389/fcell.2021.691644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
de Mattos ÂZ, Debes JD, Boonstra A, Yang JD, Balderramo DC, Sartori GDP, de Mattos AA. Current impact of viral hepatitis on liver cancer development: The challenge remains. World J Gastroenterol 2021; 27:3556-3567. [PMID: 34239269 PMCID: PMC8240060 DOI: 10.3748/wjg.v27.i24.3556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic infections due to hepatitis B and hepatitis C viruses are responsible for most cases of hepatocellular carcinoma (HCC) worldwide, and this association is likely to remain during the next decade. Moreover, viral hepatitis-related HCC imposes an important burden on public health in terms of disability-adjusted life years. In order to reduce such a burden, some major challenges must be faced. Universal vaccination against hepatitis B virus, especially in the neonatal period, is probably the most relevant primary preventive measure against the development of HCC. Moreover, considering the large adult population already infected with hepatitis B and C viruses, it is also imperative to identify these individuals to ensure their access to treatment. Both hepatitis B and C currently have highly effective therapies, which are able to diminish the risk of development of liver cancer. Finally, it is essential for individuals at high-risk of HCC to be included in surveillance programs, so that tumors are detected at an early stage. Patients with hepatitis B or C and advanced liver fibrosis or cirrhosis benefit from being followed in a surveillance program. As hepatitis B virus is oncogenic and capable of leading to liver cancer even in individuals with early stages of liver fibrosis, other high-risk groups of patients with hepatitis B are also candidates for surveillance. Considerable effort is required concerning these strategies in order to decrease the incidence and the mortality of viral hepatitis-related HCC.
Collapse
MESH Headings
- Adult
- Carcinoma, Hepatocellular/epidemiology
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/prevention & control
- Hepatitis B/complications
- Hepatitis B/epidemiology
- Hepatitis B/prevention & control
- Hepatitis B virus
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/epidemiology
- Hepatitis, Viral, Human/complications
- Hepatitis, Viral, Human/epidemiology
- Humans
- Infant, Newborn
- Liver Neoplasms/epidemiology
- Liver Neoplasms/prevention & control
- Risk Factors
Collapse
Affiliation(s)
- Ângelo Zambam de Mattos
- Department of Gastroenterology and Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90020-090, Brazil
- Gastroenterology and Hepatology Unit, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Jose D Debes
- Department of Medicine, Division of Gastroenterology and Infectious Diseases, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam NL-3015, Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam NL-3015, Netherlands
| | - Ju-Dong Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Domingo C Balderramo
- Department of Gastroenterology, Hospital Privado Universitario de Córdoba, Córdoba 5016, Argentina
- Department of Medicine, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba 5016, Argentina
| | - Giovana D P Sartori
- Department of Internal Medicine, Hospital Nossa Senhora da Conceição, Porto Alegre 91350-200, Brazil
| | - Angelo Alves de Mattos
- Department of Gastroenterology and Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90020-090, Brazil
- Gastroenterology and Hepatology Unit, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90050-170, Brazil
| |
Collapse
|
11
|
Sekiba K, Otsuka M, Koike K. Potential of HBx Gene for Hepatocarcinogenesis in Noncirrhotic Liver. Semin Liver Dis 2021; 41:142-149. [PMID: 33984871 DOI: 10.1055/s-0041-1723033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Current treatments for hepatitis B virus (HBV) using nucleos(t)ide analogs cannot eliminate the risk of hepatocellular carcinoma (HCC) development. As HBV-associated HCC can develop even in the absence of liver cirrhosis, HBV is regarded to possess direct oncogenic potential. HBV regulatory protein X (HBx) has been identified as a primary mediator of HBV-mediated hepatocarcinogenesis. A fragment of the HBV genome that contains the coding region of HBx is commonly integrated into the host genome, resulting in the production of aberrant proteins and subsequent hepatocarcinogenesis. Besides, HBx interferes with the host DNA or deoxyribonucleic acid damage repair pathways, signal transduction, epigenetic regulation of gene expression, and cancer immunity, thereby promoting carcinogenesis in the noncirrhotic liver. However, numerous molecules and pathways have been implicated in the development of HBx-associated HCC, suggesting that the mechanisms underlying HBx-mediated hepatocarcinogenesis remain to be elucidated.
Collapse
Grants
- Japan Agency for Medical Research and Development, AMED JP20fk0210054
- Japan Agency for Medical Research and Development, AMED JP20fk0210080h0001
- Japan Agency for Medical Research and Development, AMED JP20fk0310102
- The Ministry of Education, Culture, Sports, Science, and Technology, Japan 19H03430
- The Ministry of Education, Culture, Sports, Science, and Technology, Japan 19J11829
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Jia Q, Xu B, Zhang Y, Ali A, Liao X. CCN Family Proteins in Cancer: Insight Into Their Structures and Coordination Role in Tumor Microenvironment. Front Genet 2021; 12:649387. [PMID: 33833779 PMCID: PMC8021874 DOI: 10.3389/fgene.2021.649387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between tumor cells and the tumor microenvironment (TME), triggers a variety of critical signaling pathways and promotes the malignant progression of cancer. The success rate of cancer therapy through targeting single molecule of this crosstalk may be extremely low, whereas co-targeting multiple components could be complicated design and likely to have more side effects. The six members of cellular communication network (CCN) family proteins are scaffolding proteins that may govern the TME, and several studies have shown targeted therapy of CCN family proteins may be effective for the treatment of cancer. CCN protein family shares similar structures, and they mutually reinforce and neutralize each other to serve various roles that are tightly regulated in a spatiotemporal manner by the TME. Here, we review the current knowledge on the structures and roles of CCN proteins in different types of cancer. We also analyze CCN mRNA expression, and reasons for its diverse relationship to prognosis in different cancers. In this review, we conclude that the discrepant functions of CCN proteins in different types of cancer are attributed to diverse TME and CCN truncated isoforms, and speculate that targeting CCN proteins to rebalance the TME could be a potent anti-cancer strategy.
Collapse
Affiliation(s)
- Qingan Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Binghui Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yaoyao Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:13. [PMID: 33407720 PMCID: PMC7788901 DOI: 10.1186/s13046-020-01808-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Background Tumour-associated macrophages (TAMs) in the tumour microenvironment (TME) can promote the progression of hepatocellular carcinoma (HCC). Some tumours can be suppressed by targeting Wnt2b in tumour cells. However, the role of Wnt2b in HCC is still unknown. In particular, the role of Wnt2b-mediated signal activation in macrophage polarization in the HCC microenvironment, and the regulatory effect between Wnt and glycolysis in TAMs has not been described. Methods The expression of Wnt2b in TAMs was detected by qPCR and immunofluorescence. Wnt2b/β-catenin interference in HCC-TAMs was performed by lentivirus carrying targeted shRNA or TLR9 agonist. Markers related to macrophage polarization and the changes of key glycolytic enzymes expression were detected by flow cytometry and qPCR. ECAR was analysed by Seahorse analyser. MTT assay, wound healing assay, western blotting were used to evaluate the promoting effect of different HCC-TAMs on the proliferation, migration and EMT of HCC in vitro. Tumour cells and different HCC-TAMs were injected via subcutaneously into immunodeficient mice to assess the effects of CpG ODN, Wnt2b, or β-catenin on HCC-TAMs in tumour growth in vivo. Results Polarization-promoting factors derived from HCC cells upregulated the expression of Wnt2b in macrophages, which promoted the polarization of TAMs to M2-like macrophages by activating Wnt2b/β-catenin/c-Myc signalling. Furthermore, this process was associated with the activation of glycolysis in HCC-TAMs. These HCC-TAMs could promote the development of EMT, proliferation, and migration of HCC. In addition to silencing Wnt2b or β-catenin expression, TLR9 agonist CpG ODN downregulated the level of glycolysis and inhibited the M2 polarization of HCC-TAMs, reversing the tumour-promoting effects of TAMs in vitro and vivo. Conclusions As a potential target for HCC therapy, Wnt2b may play an important regulatory role for the functions of TAMs in the TME. Moreover, the TLR9 agonist CpG ODN might act as a Wnt2b signal inhibitor and can potentially be employed for HCC therapy by disturbing Wnt2b/β-catenin/c-Myc and inhibiting glycolysis in HCC-TAMs.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
14
|
Deng L, Huang S, Chen B, Tang Y, Huang F, Li D, Tang D. Tumor-Linked Macrophages Promote HCC Development by Mediating the CCAT1/Let-7b/HMGA2 Signaling Pathway. Onco Targets Ther 2020; 13:12829-12843. [PMID: 33363387 PMCID: PMC7751845 DOI: 10.2147/ott.s283786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The role of high mobility group A2 (HMGA2) in the progression of hepatocellular carcinoma (HCC) is yet to be investigated, though tumor-associated macrophages (TAMs) are known to mediate the process. METHODS Immunohistochemistry (IHC), Western blot, and real-time PCR assays were performed to identify HMGA2 and TAMs markers. The TAMs-like macrophages (TAMs-Mφs) were triggered with the help of 25 ng/mL hM-CSF and 50% NBCM. EdU assay wound healing assay, transwell assay, and TUNEL assay, as well as flow cytometry, were carried out to study the effect of HMGA2 or TAMs on the functioning of HCC cells. RESULTS HCC tumor tissues were detected with upregulated HMGA2 and TAMs markers (CD68, CD163, and CD204); in addition, HMGA2 was positively correlated with TAMs markers. The proliferation, migration, and invasion of HepG2 cells were also observed to be stimulated by HMGA2. Remarkably, cell apoptosis was not affected by upregulated HMGA2, but HMAG2 inhibition was observed to intensify it. Also, the release of CSF1 was observed to be amplified by HMGA2. HMGA2-overexpressed-HepG2 cells promoted the migrating abilities of both M0-Mφs and TAMs-Mφs but were suppressed by HMGA2 down-regulated HepG2 cells. In addition, TAMs-Mφs supernatant regulated the CCAT1/let-7b/HMGA2 signaling pathway by intensifying the malignant biological behaviors. CONCLUSION HMGA2 stimulated TAMs-induced HCC progression, mediated by the CCAT1/let-7b/HMGA2 signaling pathway, TAMs aggravated HCC development.
Collapse
Affiliation(s)
- Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong518107, People's Republic of China
| | - Shan Huang
- Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong518107, People's Republic of China
| | - Bin Chen
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510800, People's Republic of China
| | - Yajun Tang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong518107, People's Republic of China
| | - Fei Huang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong518107, People's Republic of China
| | - Dong Li
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong518107, People's Republic of China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong518107, People's Republic of China
| |
Collapse
|
15
|
Javanmard D, Karbalaie Niya MH, Khalafkhany D, Najafi M, Ziaee M, Babaei MR, Kiani SJ, Esghaei M, Jazayeri SM, Panahi M, Safarnezhad Tameshkel F, Mehrabi M, Monavari SH, Bokharaei-Salim F. Downregulation of GSK3β and Upregulation of URG7 in Hepatitis B-Related Hepatocellular Carcinoma. HEPATITIS MONTHLY 2020; 20. [DOI: 10.5812/hepatmon.100899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 08/30/2023]
Abstract
: Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC). The exact molecular contributors to the development of HBV-related HCC are not yet completely understood. Recent studies demonstrated that the deregulation of the Wnt pathway is highly associated with the development of HCC. Besides, HBV is known to have roles in the deregulation of this pathway. The present study evaluated the molecular aspects of the Wnt pathway in HBV-related HCC in liver tissue samples. Viral characterization was done by identifying the HBx mutations and the assessment of intrahepatic viral load. The expression of Wnt pathway genes was assessed using real-time PCR and methylation-specific PCR. The intrahepatic viral load was significantly higher in tumor samples than in normal tissues (P = 0.0008). Aberrant expression was observed in Wnt-1, Wnt-7a, FZD2, FZD7, β-catenin, URG7, c-Myc, SFRP5, and GSK3β, among which Wnt1, FZD2, SFRP5, Gsk3β, and URG7 were associated with HBV. HBx mutations at positions I88, L116, and I127 + F132 were associated with the decreased expression of GSK3β and overexpression of URG7 and Wnt1. Alterations in the expression level of β-catenin, as well as some mutants of HBx, were correlated with the level of c-Myc. HBV-related HCC seems to be mostly coordinated with epigenetic behaviors of HBx, such a multi-functional peptide with suppressing/trans-activating functions.
Collapse
|
16
|
Investigation of CTNNB1 gene mutations and expression in hepatocellular carcinoma and cirrhosis in association with hepatitis B virus infection. Infect Agent Cancer 2020; 15:37. [PMID: 32514293 PMCID: PMC7268324 DOI: 10.1186/s13027-020-00297-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV), along with Hepatitis C virus chronic infection, represents a major risk factor for hepatocellular carcinoma (HCC) development. However, molecular mechanisms involved in the development of HCC are not yet completely understood. Recent studies have indicated that mutations in CTNNB1 gene encoding for β-catenin protein lead to aberrant activation of the Wnt/ β-catenin pathway. The mutations in turn activate several downstream genes, including c-Myc, promoting the neoplastic process. The present study evaluated the mutational profile of the CTNNB1 gene and expression levels of CTNNB1 and c-Myc genes in HBV-related HCC, as well as in cirrhotic and control tissues. Mutational analysis of the β-catenin gene and HBV genotyping were conducted by direct sequencing. Expression of β-catenin and c-Myc genes was assessed using real-time PCR. Among the HCC cases, 18.1% showed missense point mutation in exon 3 of CTNNB1, more frequently in codons 32, 33, 38 and 45. The frequency of mutation in the hotspots of exon 3 was significantly higher in non-viral HCCs (29.4%) rather than HBV-related cases (12.7%, P = 0.021). The expression of β-catenin and c-Myc genes was found upregulated in cirrhotic tissues in association with HBV infection. Mutations at both phosphorylation and neighboring sites were associated with increased activity of the Wnt pathway. The results demonstrated that mutated β-catenin caused activation of the Wnt pathway, but the rate of CTNNB1 gene mutations was not related to HBV infection. HBV factors may deregulate the Wnt pathway by causing epigenetic alterations in the HBV-related HCC.
Collapse
|
17
|
Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, McCubrey JA, Cervello M. GSK-3 in liver diseases: Friend or foe? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118743. [PMID: 32417256 DOI: 10.1016/j.bbamcr.2020.118743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Liver diseases, including hepatitis due to hepatitis B or C virus infection, non-alcoholic fatty liver disease, and hepatocellular carcinoma pose major challenges for overall health due to limited curative treatment options. Thus, there is an urgent need to develop new therapeutic strategies for the treatment of these diseases. A better understanding of the signaling pathways involved in the pathogenesis of liver diseases can help to improve the efficacy of emerging therapies, mainly based on pharmacological approaches, which influence one or more specific molecules involved in key signal transduction pathways. These emerging therapies are very promising for the prevention and treatment of liver diseases. One promising druggable molecular target is the multifunctional serine/threonine kinase, glycogen synthase kinase 3 (GSK-3). In this review, we discuss conditions in which GSK-3 is implicated in liver diseases. In addition, we explore newly emerging drugs that target GSK-3β, as well as their potential use in and impact on the management of liver diseases.
Collapse
Affiliation(s)
- Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
18
|
Wang Q, Cheng ST, Chen J. HBx mediated Increase of SIRT1 Contributes to HBV-related Hepatocellular Carcinoma Tumorigenesis. Int J Med Sci 2020; 17:1783-1794. [PMID: 32714081 PMCID: PMC7378664 DOI: 10.7150/ijms.43491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is one of the main causes of cancer-related deaths worldwide, and chronic hepatitis B virus (HBV) infection is strongly associated with HCC development, but the pathogenesis of HBV-related HCC remains obscure. Sirtuin 1 (SIRT1) has been implicated to enhance the replication of HBV and to promote the tumorigenesis of HCC. In this study, we aim to investigate the functional role of SIRT1 on HBV viral protein and HBV-induced HCC. Methods: Tumorous liver tissues from patient diagnosed with HBV-related HCC were collected and further divided into two groups (with or without metastasis). Then, the mRNA and protein level of SIRT1 in those tissues were detected by real time PCR and Western blot, respectively. Meanwhile, the protein level of epithelial-mesenchymal transition (EMT) relative markers in those tissues was determined by Western blot. Furthermore, the expression of SIRT1 in HBV-expressing HCC cells was examined. Next, the relationship between viral proteins and SIRT1 expression were determined by real time PCR and Western blot. In addition, the potential role of HBx-upregulated SIRT1 in HCC proliferation, migration and invasion were analyzed by cell viability assays, cell proliferation assay, wound healing assay, transwell assay and Western blot. Results: In this study, we found that the expression of SIRT1 was obviously increased in patients with metastasis compared to the patients without metastasis. Consistently, the expression of SIRT1 was also upregulated in HBV-expressing HCC cells compared to the controls. Further investigation showed that viral protein HBx was responsible for the elevated SIRT1 in HBV-expressing HCC cells. Meanwhile, the expression of HBx could be upregulated by SIRT1. Additionally, functional studies showed that HBx-elevated SIRT1 could promote HCC cell proliferation, migration and invasion. Importantly, HBx induced HCC proliferation and migration could be suppressed by Nicotinamide in a dose dependent manner. Conclusions: Our findings uncovered the positive role of SIRT1 in HBx-mediated tumorigenesis which implicated the potential role of SIRT1 in HBV-related HCC treatment.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Sheng-Tao Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
19
|
Zheng W, Yao M, Fang M, Pan L, Wang L, Yang J, Dong Z, Yao D. Oncogenic Wnt3a: A Candidate Specific Marker and Novel Molecular Target for Hepatocellular Carcinoma. J Cancer 2019; 10:5862-5873. [PMID: 31737122 PMCID: PMC6843874 DOI: 10.7150/jca.31599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
Background and aim: It is of the utmost importance for the specific diagnosis and effective therapy of hepatocellular carcinoma (HCC). Abnormality of oncogenic Wingless-type MMTV integration site family member 3a (Wnt3a) has been associated with progression of HCC. In this study, we aimed to evaluate Wnt3a as a novel biomarker and target for HCC. Methods: Circulating Wnt3a levels were quantitatively detected in a cohort of chronic liver diseases by an enzyme-linked immune-absorbent assay (ELISA). Hepatic Wnt3a expression in HCC and para-cancerous tissues was analyzed by immunohistochemistry. Prognostic value of Wnt3a for HCC was discovered in the cohort from the Cancer Genome Atlas (TCGA). Dynamic alterations of Wnt3a levels were detected in the hepatocarcinogenesis model induced by 2-acetylaminofluorene. Effects of Wnt3a on biological behaviors were evaluated in vitro and in vivo based on Crispr/Cas9. Results: Up-regulated Wnt3a levels were observed in serum of HCC patients with high specificity and sensitivity for HCC diagnosis. Combination of Wnt3a and AFP could improve sensitivity to 93.9% in serological detection. In addition, Wnt3a expression in HCC tissues was significantly higher than that in para-cancerous tissues. The cohort of TCGA demonstrated that high Wnt3a expression led to a poor survival of HCC patients, especially in cases at advanced stages. Furthermore, the hepatocarcinogenesis model showed that Wnt3a dynamically increased in the development of HCC. Functionally, silencing Wnt3a by Crispr/Cas9 suppressed the proliferation, colony formation, induced cell cycle arrest of HCC cells by de-activating Wnt/β-catenin pathway in vitro, and inhibited xenograft tumor growth in vivo. Conclusions: Oncogenic Wnt3a could be considered as a candidate biomarker and novel target for HCC.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Miao Fang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Liuhong Pan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhizhen Dong
- Department of Diagnostics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
20
|
Torresi J, Tran BM, Christiansen D, Earnest-Silveira L, Schwab RHM, Vincan E. HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer 2019; 19:707. [PMID: 31319796 PMCID: PMC6637598 DOI: 10.1186/s12885-019-5916-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is the leading cause of liver cancer, but the mechanisms by which HBV causes liver cancer are poorly understood and chemotherapeutic strategies to cure liver cancer are not available. A better understanding of how HBV requisitions cellular components in the liver will identify novel therapeutic targets for HBV associated hepatocellular carcinoma (HCC). MAIN BODY The development of HCC involves deregulation in several cellular signalling pathways including Wnt/FZD/β-catenin, PI3K/Akt/mTOR, IRS1/IGF, and Ras/Raf/MAPK. HBV is known to dysregulate several hepatocyte pathways and cell cycle regulation resulting in HCC development. A number of these HBV induced changes are also mediated through the Wnt/FZD/β-catenin pathway. The lack of a suitable human liver model for the study of HBV has hampered research into understanding pathogenesis of HBV. Primary human hepatocytes provide one option; however, these cells are prone to losing their hepatic functionality and their ability to support HBV replication. Another approach involves induced-pluripotent stem (iPS) cell-derived hepatocytes. However, iPS technology relies on retroviruses or lentiviruses for effective gene delivery and pose the risk of activating a range of oncogenes. Liver organoids developed from patient-derived liver tissues provide a significant advance in HCC research. Liver organoids retain the characteristics of their original tissue, undergo unlimited expansion, can be differentiated into mature hepatocytes and are susceptible to natural infection with HBV. CONCLUSION By utilizing new ex vivo techniques like liver organoids it will become possible to develop improved and personalized therapeutic approaches that will improve HCC outcomes and potentially lead to a cure for HBV.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Bang Manh Tran
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Renate Hilda Marianne Schwab
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Elizabeth Vincan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6845 Australia
| |
Collapse
|
21
|
Jiang Y, Han QJ, Zhang J. Hepatocellular carcinoma: Mechanisms of progression and immunotherapy. World J Gastroenterol 2019; 25:3151-3167. [PMID: 31333308 PMCID: PMC6626719 DOI: 10.3748/wjg.v25.i25.3151] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the most common malignancies, and various pathogenic factors can lead to its occurrence and development. Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most common. With extensive studies, an increasing number of molecular mechanisms that promote HCC are being discovered. Surgical resection is still the most effective treatment for patients with early HCC. However, early detection and treatment are difficult for most HCC patients, and the postoperative recurrence rate is high, resulting in poor clinical prognosis of HCC. Although immunotherapy takes longer than conventional chemotherapy to produce therapeutic effects, it persists for longer. In recent years, the emergence of many new immunotherapies, such as immune checkpoint blockade and chimeric antigen receptor T cell therapies, has given new hope for the treatment of HCC.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Antineoplastic Agents, Immunological/therapeutic use
- Cancer Vaccines/therapeutic use
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Disease Progression
- Humans
- Immunotherapy, Adoptive/methods
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Receptors, Chimeric Antigen/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
22
|
Xie X, Xu X, Sun C, Yu Z. Hepatitis B virus X protein promotes proliferation of hepatocellular carcinoma cells by upregulating miR-181b by targeting ING5. Biol Chem 2019; 399:611-619. [PMID: 29604207 DOI: 10.1515/hsz-2018-0178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus X protein (HBx) played a key role in the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Emerging evidence has demonstrated that miR-181b and the inhibitor of growth protein 5 (ING5) participated in the pathophysiological process. However, the regulatory mechanism of HBx remained unknown. The expression of miR-181b and ING5 in HCC tissues and cell lines were examined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Cell viability was determined using the MTT method following HCC cell lines transfection. The interaction between miR-181b and ING5 was assessed by luciferase reporter assay. The nude mice tumor model was well established to evaluate the role and biological functions of HBx on the progression of HBV-related HCC in vivo. MiR-181b was upregulated and ING5 was downregulated in HCC tissues and cell lines. As suggested by the results from in vitro and in vivo experiments, HBx downregulates the expression of the miR-181b target gene ING5, resulting in the promotion of HCC cell proliferation. HBx accelerates proliferation activity of HCC cells by increasing miR-181b expression via targeting ING5, thereby influencing the progression of HBV-related HCC.
Collapse
Affiliation(s)
- Xuhua Xie
- Infectious Disease Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Xiaopei Xu
- Department of Physical Examination, The Third People's Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Changyu Sun
- Infectious Disease Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Zujiang Yu
- Infectious Disease Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
23
|
Chai DM, Qin YZ, Wu SW, Ma L, Tan YY, Yong X, Wang XL, Wang ZP, Tao YS. WISP2 exhibits its potential antitumor activity via targeting ERK and E-cadherin pathways in esophageal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:102. [PMID: 30808397 PMCID: PMC6390602 DOI: 10.1186/s13046-019-1108-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Backgrounds Emerging evidence has demonstrated that WISP2 is critically involved in cell proliferation, migration, invasion and metastasis in cancers. However, the function of WISP2 in esophageal squamous cell carcinoma (ESCC) is largely unclear. Therefore, we aim to explore the effects and the potential mechanism of WISP2 on proliferation and motility and invasion of ESCC cells. Methods Cell proliferation was detected by MTT assay and apoptosis was measured by FACS in ESCC cells after WISP2 downregulation and overexpression. Cell migration and invasion were analyzed by wound healing assay and transwell migration assay, respectively. The expression of ERK-1/2, Slug and E-cadherin was measured by Western blot respectively. IHC was performed to measure the expression of WISP2 in ESCC tissues. Results WISP2 overexpression is associated with survival in ESCC patients. WISP2 overexpression inhibited cell growth and induced cell apoptosis, suppressed cell migration and invasion in ESCC cells. Moreover, WISP overexpression retarded tumor growth in mouse model. WISP2 downregulation enhanced cell growth, inhibited apoptosis, promoted cell migration and invasion in ESCC cells. Mechanistically, WISP2 exerts its tumor suppressive functions via regulation of ERK1/2, Slug, and E-cadherin in ESCC cells. Conclusions Our findings suggest that activation of WISP2 could be a useful therapeutic strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Da-Min Chai
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Yan-Zi Qin
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Shi-Wu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Li Ma
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Yuan-Yuan Tan
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Xiang Yong
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Xiao-Li Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Yi-Sheng Tao
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China.
| |
Collapse
|
24
|
Liu Y, Song Y, Ye M, Hu X, Wang ZP, Zhu X. The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med 2019; 17:28. [PMID: 30651114 PMCID: PMC6335850 DOI: 10.1186/s12967-019-1769-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence has demonstrated that WNT1 inducible signaling pathway protein (WISP) genes, which belong to members of the CCN growth factor family, play a pivotal role in tumorigenesis and progression of a broad spectrum of human cancers. Mounting studies have identified that WISP proteins (WISP1-3) exert different biological functions in various human malignancies. Emerging evidence indicates that WISP proteins are critically involved in cell proliferation, apoptosis, invasion and metastasis in cancers. Because the understanding of a direct function of WISP proteins in cancer development and progression has begun to emerge, in this review article, we describe the physiological function of WISP proteins in a variety of human cancers. Moreover, we highlight the current understanding of how the WISP protein is involved in tumorigenesis and cancer progression. Furthermore, we discuss that targeting WISP proteins could be a promising strategy for the treatment of human cancers. Hence, the regulation of WISP proteins could improve treatments for cancer patients.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Z. Peter Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030 Anhui China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
25
|
Tschuor C, Kachaylo E, Ungethüm U, Song Z, Lehmann K, Sánchez-Velázquez P, Linecker M, Kambakamba P, Raptis DA, Limani P, Eshmuminov D, Graf R, Columbano A, Humar B, Clavien PA. Yes-associated protein promotes early hepatocyte cell cycle progression in regenerating liver after tissue loss. FASEB Bioadv 2018; 1:51-61. [PMID: 30740593 PMCID: PMC6351850 DOI: 10.1096/fba.1023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/20/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
The ability of the liver to restore its original volume following tissue loss has been associated with the Hippo‐YAP1 pathway, a key controller of organ size. Yes‐associated protein 1 (YAP1)—a growth effector usually restrained by Hippo signaling—is believed to be of particular importance; however, its role in liver regeneration remains ill‐defined. To explore its function, we knocked down YAP1 prior to standard 70%‐hepatectomy (sHx) using a hepatocyte‐specific nanoformulation. Knockdown was effective during the major parenchymal growth phase (S‐phase/M‐phase peaks at 32 hours/48 hours post‐sHx). Liver weight gain was completely suppressed by the knockdown at 32 hours, but was reaccelerated toward 48 hours. Likewise, proliferative markers, Ccna2/b2 and YAP1 target gene expression were downregulated at 32 hours, but re‐elevated at 48 hours post‐sHx. Nonetheless, knockdown slightly compromised survival after sHx. When assessing a model of resection‐induced liver failure (extended 86%‐hepatectomy, eHx) featuring deficient S‐ and M‐phase progression, YAP1 was not induced at 32 hours, but upregulated at 48 hours post‐eHx, confirming its dissociation from M‐phase regulation. Therefore, YAP1 is vital to push hepatocytes into cycle and through the S‐phase, but is not required for further cell cycle progression during liver regeneration. The examination of YAP1 in human livers suggested its function is conserved in the regenerating mammalian liver.
Collapse
Affiliation(s)
- Christoph Tschuor
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Ekaterina Kachaylo
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Udo Ungethüm
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Zhuolun Song
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Kuno Lehmann
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Patricia Sánchez-Velázquez
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Michael Linecker
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Patryk Kambakamba
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Dimitri A Raptis
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Përparim Limani
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Dilmurodjon Eshmuminov
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Rolf Graf
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Amedeo Columbano
- Department of Biomedical Sciences University of Cagliari Sardinia Italy
| | - Bostjan Humar
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| | - Pierre-Alain Clavien
- Laboratory of the Swiss HPB and Transplantation Center, Department of Surgery University Hospital Zürich Zürich Switzerland
| |
Collapse
|
26
|
Zha Y, Yao Q, Liu JS, Wang YY, Sun WM. Hepatitis B virus X protein promotes epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma cell line HCCLM3 by targeting HMGA2. Oncol Lett 2018; 16:5709-5714. [PMID: 30356986 PMCID: PMC6196634 DOI: 10.3892/ol.2018.9359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC), and HBV X protein (HBx) serves an essential role in the development of HCC. However, its mechanism remains to be elucidated. The aim of the present study was to investigate the role and mechanism of the HBx protein in the epithelial-mesenchymal transition (EMT) and metastasis of HCC. The HCCLM3 cell line was transfected with a HBx-expressing vector. The effects of HBx overexpression on proliferation, migration, invasion and EMT capacities of the HCCLM3 cell line were evaluated using MTT, migration and invasion assays, and western blotting, respectively. Furthermore, the impact of High mobility group AT-hook 2 (HMGA2) knockdown on HBx-mediated metastasis was investigated in the HCC cell line HCCLM3. The results demonstrated that HBx significantly upregulated HMGA2 expression, and enhanced the proliferation, EMT, invasion and migration in HCC cells. Furthermore, HMGA2 knockdown almost abolished HBx-induced EMT and metastasis in HCC. The results of the present study suggest that HBx promotes the proliferation, EMT, invasion and migration of HCC cells by targeting HMGA2. HMGB2 may serve as a potential therapeutic target for HBV-associated HCC.
Collapse
Affiliation(s)
- Yong Zha
- Department of Gastroenterological Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Qian Yao
- Department of Gastroenterological Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Jin-Sheng Liu
- Department of Gastroenterological Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yuan-Yuan Wang
- Department of Gastroenterological Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Wei-Ming Sun
- Department of Gastroenterological Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
27
|
Wu IC, Liu WC, Chang TT. Applications of next-generation sequencing analysis for the detection of hepatocellular carcinoma-associated hepatitis B virus mutations. J Biomed Sci 2018; 25:51. [PMID: 29859540 PMCID: PMC5984823 DOI: 10.1186/s12929-018-0442-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is a powerful and high-throughput method for the detection of viral mutations. This article provides a brief overview about optimization of NGS analysis for hepatocellular carcinoma (HCC)-associated hepatitis B virus (HBV) mutations, and hepatocarcinogenesis of relevant mutations. MAIN BODY For the application of NGS analysis in the genome of HBV, four noteworthy steps were discovered in testing. First, a sample-specific reference sequence was the most effective mapping reference for NGS. Second, elongating the end of reference sequence improved mapping performance at the end of the genome. Third, resetting the origin of mapping reference sequence could probed deletion mutations and variants at a certain location with common mutations. Fourth, using a platform-specific cut-off value to distinguish authentic minority variants from technical artifacts was found to be highly effective. One hundred and sixty-seven HBV single nucleotide variants (SNVs) were found to be studied previously through a systematic literature review, and 12 SNVs were determined to be associated with HCC by meta-analysis. From comprehensive research using a HBV genome-wide NGS analysis, 60 NGS-defined HCC-associated SNVs with their pathogenic frequencies were identified, with 19 reported previously. All the 12 HCC-associated SNVs proved by meta-analysis were confirmed by NGS analysis, except for C1766T and T1768A which were mainly expressed in genotypes A and D, but including the subgroup analysis of A1762T. In the 41 novel NGS-defined HCC-associated SNVs, 31.7% (13/41) had cut-off values of SNV frequency lower than 20%. This showed that NGS could be used to detect HCC-associated SNVs with low SNV frequency. Most SNV II (the minor strains in the majority of non-HCC patients) had either low (< 20%) or high (> 80%) SNV frequencies in HCC patients, a characteristic U-shaped distribution pattern. The cut-off values of SNV frequency for HCC-associated SNVs represent their pathogenic frequencies. The pathogenic frequencies of HCC-associated SNV II also showed a U-shaped distribution. Hepatocarcinogenesis induced by HBV mutated proteins through cellular pathways was reviewed. CONCLUSION NGS analysis is useful to discover novel HCC-associated HBV SNVs, especially those with low SNV frequency. The hepatocarcinogenetic mechanisms of novel HCC-associated HBV SNVs defined by NGS analysis deserve further investigation.
Collapse
Affiliation(s)
- I-Chin Wu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan, Republic of China.,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wen-Chun Liu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan, Republic of China.,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan, Republic of China.
| |
Collapse
|
28
|
Zhu RX, Yang DY, Seto WK. Impact of wild-type and carboxyl-terminal truncated hepatitis B virus X on hepatocyte proliferation. Shijie Huaren Xiaohua Zazhi 2018; 26:760-768. [DOI: 10.11569/wcjd.v26.i13.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To construct lentiviral vectors expressing human wild-type HBx (wt-HBx) and truncated HBx (tHBxΔ35) and study the effect of wt-HBx and tHBxΔ35 on the proliferation and apoptosis of normal liver cell lines.
METHODS Lentiviral vectors TOPO3.1-wt-HBx and TOPO3.1-tHBxΔ35 were constructed and transfected into 293T cells with three packaging plasmids. The supernatants were collected to infect LO2 and MIHA cells, respectively. The expression of wt-HBx and tHBxΔ35 was detected by fluorescence microscopy and western blot analysis. The effect of HBx and tHBxΔ35 on the proliferation, cell cycle, and apoptosis was analyzed by cell counting, MTS, and flow cytometry, respectively.
RESULTS The recombinant lentiviral vectors were successfully constructed. The proliferation of liver cells infected with tHBxΔ35 was significantly increased, compared with HBx or CTRL infected cells, while the proliferation of liver cells infected with HBx was decreased compared with tHBxΔ35 or CTRL infected cells (P < 0.05). tHBxΔ35 improved the number of cells in S phase, while HBx induced G0/G1-S cell cycle arrest. The effect of tHBxΔ35 or HBx on apoptosis was mild.
CONCLUSION HBx can inhibit the proliferation of hepatocytes, while tHBxΔ35 can improve the proliferation of liver cells.
Collapse
Affiliation(s)
- Ran-Xu Zhu
- Department of Gastroenterology and Hepatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - Dong-Ye Yang
- Department of Gastroenterology and Hepatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - Wai-Kay Seto
- Department of Gastroenterology and Hepatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| |
Collapse
|
29
|
Sherif RN, Abdellatif H, Hazem N, Ebrahim NA, Saleh D, Shiha G, Eltahry H, Botros KG, Gabr OM. Effect of human umbilical cord blood derived CD34 + hematopoietic stem cell on the expression of Wnt4 and P53 genes in a rat model of hepatocellular carcinoma. Tissue Cell 2018; 50:125-132. [DOI: 10.1016/j.tice.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/15/2022]
|
30
|
Deregulation of Frizzled Receptors in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19010313. [PMID: 29361730 PMCID: PMC5796257 DOI: 10.3390/ijms19010313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have a substantial role in tumorigenesis and are described as a “cancer driver”. Aberrant expression or activation of GPCRs leads to the deregulation of downstream signaling pathways, thereby promoting cancer progression. In hepatocellular carcinoma (HCC), the Wnt signaling pathway is frequently activated and it is associated with an aggressive HCC phenotype. Frizzled (FZD) receptors, a family member of GPCRs, are known to mediate Wnt signaling. Accumulating findings have revealed the deregulation of FZD receptors in HCC and their functional roles have been implicated in HCC progression. Given the important role of FZD receptors in HCC, we summarize here the expression pattern of FZD receptors in HCC and their corresponding functional roles during HCC progression. We also further review and highlight the potential targeting of FZD receptors as an alternative therapeutic strategy in HCC.
Collapse
|
31
|
Zhao X, Guo X, Xing L, Yue W, Yin H, He M, Wang J, Yang J, Chen J. HBV infection potentiates resistance to S-phase arrest-inducing chemotherapeutics by inhibiting CHK2 pathway in diffuse large B-cell lymphoma. Cell Death Dis 2018; 9:61. [PMID: 29352124 PMCID: PMC5833392 DOI: 10.1038/s41419-017-0097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
A considerable number of diffuse large B-cell lymphoma (DLBCL) patients are infected with hepatitis B virus (HBV), which is correlated with their poor outcomes. However, the role of HBV infection in DLBCL treatment failure remains poorly understood. Here, our data demonstrated that HBV infection was closely associated with poorer clinical prognosis independent of its hepatic dysfunction in germinal center B-cell type (GCB type) DLBCL patients. Interestingly, we found that DLBCL cells expressing hepatitis B virus X protein (HBX) did not exhibit enhanced cell growth but did show reduced sensitivity to methotrexate (MTX) and cytarabine (Ara-C), which induced S-phase arrest. Mechanism studies showed that HBX specifically inhibited the phosphorylation of checkpoint kinase 2 (CHK2, a key DNA damage response protein). CHK2 depletion similarly conferred resistance to the S-phase arrest-inducing chemotherapeutics, consistent with HBX overexpression in DLBCL cells. Moreover, overexpression of wild-type CHK2 rather than its unphosphorylated mutant (T68A) significantly restored the reduced chemosensitivity in HBX-expressing cells, suggesting that HBV infection conferred resistance to chemotherapeutics that induced S-phase arrest by specifically inhibiting the activation of CHK2 response signaling in DLBCL.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Hematology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, China.,Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Libo Xing
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenqin Yue
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Haisen Yin
- Department of Hematology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Yang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jie Chen
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
32
|
Pan X, Zhu F, Li G, Cao H, Liu J. HBx induces expression of CTGF in the transfected hepatoma cell line HepG2. Future Virol 2018. [DOI: 10.2217/fvl-2017-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate the effect of HBx on CTGF expression by hepatocytes. Materials & methods: HepG2 cells were transfected with the full-length gene of HBV, HBV protein-expressing plasmids, rhTGFβ1, LY2109761 or Smad2 siRNA, respectively, using Lipofectamine 3000. CTGF expression was detected by real-time PCR, ELISA, respectively. Then the effect of IL-32 on CTGF promoter was assayed by the Dual Luciferase® Reporter Assay System. Results: We found that HBx could induce CTGF expression by HepG2 cells in a concentration-dependent manner. CTGF expression induced by HBx employed the activation of TGFβ1-Smad2 signal pathway. Inhibition of TGFβ1 or Smad2 decreased CTGF expression induced by HBx. Conclusion: HBV might be involved in the pathogenesis of liver fibrosis through the HBx-induced CTGF expression.
Collapse
Affiliation(s)
- Xingfei Pan
- Department of Infectious Diseases, the 3rd Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Fengqin Zhu
- Department of Gastroenterology, the Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Gang Li
- Department of Infectious Diseases, the 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hong Cao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Bowel Disease, Wuhan 430071, China
| |
Collapse
|
33
|
Daud M, Rana MA, Husnain T, Ijaz B. Modulation of Wnt signaling pathway by hepatitis B virus. Arch Virol 2017; 162:2937-2947. [PMID: 28685286 DOI: 10.1007/s00705-017-3462-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) has a global distribution and is one of the leading causes of hepatocellular carcinoma. The precise mechanism of pathogenicity of HBV-associated hepatocellular carcinoma (HCC) is not yet fully understood. Viral-related proteins are known to take control of several cellular pathways like Wnt/β-catenin, TGF-β, Raf/MAPK and ROS for the virus's own replication. This affects cellular persistence, multiplication, migration, alteration and genomic instability. The Wnt/FZD/β-catenin signaling pathway plays a significant role in the pathology and physiology of the liver and has been identified as a main factor in HCC development. The role of β-catenin is linked mainly to the canonical pathway of the signaling system. Progression of liver diseases is known to be accompanied by disturbances in β-catenin expression (mainly overexpression), with its cytoplasmic or nuclear translocation. In recent years, studies have documented that the HBV X protein and hepatitis B surface antigen (HBsAg) can act as pathogenic factors that are involved in the modulation and induction of canonical Wnt signaling pathway. In the present review we explore the interaction of HBV genome products with components of the Wnt/β-catenin signaling pathway that results in the enhancement of the pathway and leads to hepatocarcinogenesis.
Collapse
Affiliation(s)
- Muhammad Daud
- Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | | | - Tayyab Husnain
- Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Bushra Ijaz
- Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig, Lahore, 53700, Pakistan.
| |
Collapse
|
34
|
Gao Q, Wang K, Chen K, Liang L, Zheng Y, Zhang Y, Xiang J, Tang N. HBx protein-mediated ATOH1 downregulation suppresses ARID2 expression and promotes hepatocellular carcinoma. Cancer Sci 2017; 108:1328-1337. [PMID: 28498550 PMCID: PMC5497798 DOI: 10.1111/cas.13277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/10/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus X protein plays a crucial role in the pathogenesis of hepatocellular carcinoma. We previously showed that the tumor suppressor ARID2 inhibits hepatoma cell cycle progression and tumor growth. Here, we evaluated whether hepatitis B virus X protein was involved in the modulation of ARID2 expression and hepatocarcinogenesis associated with hepatitis B virus infection. ARID2 expression was downregulated in HBV‐replicative hepatoma cells, HBV transgenic mice, and HBV‐related clinical HCC tissues. The expression levels of HBx were negatively associated with those of ARID2 in hepatocellular carcinoma tissues. Furthermore, HBx suppressed ARID2 at transcriptional level. Mechanistically, the promoter region of ARID2 gene inhibited by HBx was located at nt‐1040/nt‐601 and contained potential ATOH1 binding elements. In addition, ectopic expression of ATOH1 or mutation of ATOH1 binding sites within ARID2 promoter partially abolished HBx‐triggered ARID2 transcriptional repression. Functionally, ARID2 abrogated HBx‐enhanced migration and proliferation of hepatoma cells, whereas depletion of ATOH1 enhanced tumorigenecity of HCC cells. Therefore, our findings suggested that deregulation of ARID2 by HBx through ATOH1 may be involved in HBV‐related hepatocellular carcinoma development.
Collapse
Affiliation(s)
- Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaqiu Zheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yunzhi Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Liu Y, Zhou Q, Zhou D, Huang C, Meng X, Li J. Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep 2017; 69:403-408. [PMID: 28273499 DOI: 10.1016/j.pharep.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
Abstract
Secreted frizzled-related protein (SFRP)2, an identified member of the SFRPs family of molecules, is often methylated in human cancers and its down-regulation is closely related to Wnt signaling activity and tumor progression. Although the blocker of the Wnt signaling has not been fully used in clinical trial, interest has been further enhanced by the realization of SFRPs' potential as targets to modulate Wnt signaling and cancer cell growth. Emerging evidence showed that SFRP2 was an anti-oncogene, however, a steady flow of research has indicated that it may also have tumor promotion effects in some cancer types. Furthermore, SFRP2 methylation was shown to accelerate cancer cell invasion and growth in tumor progression. In this review, we define recent understanding of the diverse roles of SFRP2 in tumorigenesis, and it might promote the development of novel drugs for curing cancer by targeting SFRP2.
Collapse
Affiliation(s)
- Yanhui Liu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Qun Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Dexi Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China.
| |
Collapse
|
36
|
Chen Z, Tang J, Cai X, Huang Y, Gao Q, Liang L, Tian L, Yang Y, Zheng Y, Hu Y, Tang N. HBx mutations promote hepatoma cell migration through the Wnt/β-catenin signaling pathway. Cancer Sci 2016; 107:1380-1389. [PMID: 27420729 PMCID: PMC5084678 DOI: 10.1111/cas.13014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
HBx mutations (T1753V, A1762T, G1764A, and T1768A) are frequently observed in hepatitis B virus (HBV)‐related hepatocellular carcinoma (HCC). Aberrant activation of the Wnt/β‐catenin signaling pathway is involved in the development of HCC. However, activation of the Wnt/β‐catenin signaling pathway by HBx mutants has not been studied in hepatoma cells or HBV‐associated HCC samples. In this study, we examined the effects of HBx mutants on the migration and proliferation of HCC cells and evaluated the activation of Wnt/β‐catenin signaling in HBx‐transfected HCC cells and HBV‐related HCC tissues. We found that HBx mutants (T, A, TA, and Combo) promoted the migration and proliferation of hepatoma cells. The HBx Combo mutant potentiated TOP‐luc activity and increased nuclear translocation of β‐catenin. Moreover, the HBx Combo mutant increased and stabilized β‐catenin levels through inactivation of glycogen synthase kinase‐3β, resulting in upregulation of downstream target genes such as c‐Myc,CTGF, and WISP2. Enhanced activation of Wnt/β‐catenin was found in HCC tissues with HBx TA and Combo mutations. Knockdown of β‐catenin effectively abrogated cell migration and proliferation stimulated by the HBx TA and Combo mutants. Our results indicate that HBx mutants, especially the Combo mutant, allow constitutive activation of the Wnt signaling pathway and may play a pivotal role in HBV‐associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Zhen Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jia Tang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yao Huang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Qingzhu Gao
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li Liang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ling Tian
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Yang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yaqiu Zheng
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuan Hu
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|