1
|
Wang L, Chang Y, Ma J, Qu W, Li Y. Identifying high-risk candidates for prolonging progression-free survival in primary gastric carcinoma subject to "double invasion": an analytical approach utilizing lasso-cox regression. BMC Cancer 2025; 25:381. [PMID: 40022037 PMCID: PMC11871700 DOI: 10.1186/s12885-025-13810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE To identify high-risk gastric carcinoma patients with concurrent vascular and neural invasion ("double invasion") who are at heightened risk of progression-free survival (PFS) decline, enabling personalized clinical management. METHODS In this multi-center retrospective study, 559 patients with double invasion who underwent curative gastrectomy between May 2002 and December 2020 were analyzed. Prognostic factors for PFS were identified using Lasso-Cox regression. Model validation included internal bootstrapping, calibration plots, and comparison against the American Joint Committee on Cancer(AJCC) 8th edition TNM staging system via Harrell's C-index, decision curve analysis (DCA), and time-dependent receiver operating characteristic (ROC) curves. RESULTS The nomogram integrated gender, positive lymph node count, surgical gastrectomy method, PTEN/FHIT expression levels, and maximum tumor diameter. It demonstrated superior predictive accuracy to AJCC staging, with a C-index of 0.651 (95% CI: 0.612-0.691) versus 0.543 (95% CI: 0.517-0.569). Calibration plots showed strong agreement between predicted and observed outcomes. The area under the curve(AUC) for 3- and 5-year PFS predictions were 0.719 (95% CI: 0.655-0.771) and 0.767 (95% CI: 0.670-0.841), respectively. DCA confirmed clinical utility across decision thresholds, and risk stratification effectively differentiated low- and high-risk groups. In the training cohort, the model significantly outperformed AJCC staging (NRI: 0.218, p < 0.01; IDI: 0.085, p < 0.01). However, this superiority was not statistically significant in the validation cohort (NRI: 0.141, p = 0.08; IDI: 0.031, p = 0.239). CONCLUSION We developed a Lasso-Cox regression-based nomogram to stratify PFS risk in gastric carcinoma patients with double invasion. While the model outperformed AJCC staging in training, validation cohort results highlight the need for further refinement. This tool holds potential for guiding tailored therapeutic strategies, though broader validation is warranted to confirm clinical applicability.
Collapse
Affiliation(s)
- Liwei Wang
- Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Shanxi Province Carcinoma Hospital, Carcinoma Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China
| | - Yu Chang
- Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Shanxi Province Carcinoma Hospital, Carcinoma Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China
| | - Jinfeng Ma
- Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Shanxi Province Carcinoma Hospital, Carcinoma Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China
| | - Wenqing Qu
- Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Shanxi Province Carcinoma Hospital, Carcinoma Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China.
| | - Yifan Li
- Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Shanxi Province Carcinoma Hospital, Carcinoma Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Kang K, Huang L, Li Q, Liao X, Dang Q, Yang Y, Luo J, Zeng Y, Li L, Gou D. An improved Tet-on system in microRNA overexpression and CRISPR/Cas9-mediated gene editing. J Anim Sci Biotechnol 2019; 10:43. [PMID: 31198556 PMCID: PMC6556963 DOI: 10.1186/s40104-019-0354-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tetracycline (Tet)-regulated expression system has become a widely applied tool to control gene activity. This study aimed to improve the Tet-on system with superior regulatory characteristics. Results By comprehensively comparing factors of transactivators, Tet-responsive elements (TREs), orientations of induced expression cassette, and promoters controlling the transactivator, we developed an optimal Tet-on system with enhanced inducible efficiency and lower leakiness. With the system, we successfully performed effective inducible and reversible expression of microRNA, and presented a more precise and easily reproducible fine-tuning for confirming the target of a miRNA. Finally, the system was applied in CRISPR/Cas9-mediated knockout of nuclear factor of activated T cells-5 (NFAT5), a protective transcription factor in cellular osmoregulation. Conclusions This study established an improved Tet-on system for powerful and stringent gene regulation in functional genetic studies. Electronic supplementary material The online version of this article (10.1186/s40104-019-0354-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kang Kang
- 1Department of Biochemistry and Molecular Biology, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060 People's Republic of China
| | - Lian Huang
- 2Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People's Republic of China
| | - Qing Li
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Xiaoyun Liao
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Quanjin Dang
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Yi Yang
- 1Department of Biochemistry and Molecular Biology, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060 People's Republic of China
| | - Jun Luo
- 2Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People's Republic of China
| | - Yan Zeng
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Li Li
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Deming Gou
- 1Department of Biochemistry and Molecular Biology, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060 People's Republic of China.,3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| |
Collapse
|
3
|
Saldivar JC, Park D. Mechanisms shaping the mutational landscape of the FRA3B/FHIT-deficient cancer genome. Genes Chromosomes Cancer 2018; 58:317-323. [PMID: 30242938 DOI: 10.1002/gcc.22684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022] Open
Abstract
Genome instability is an enabling characteristic of cancer that facilitates the acquisition of oncogenic mutations that drive tumorigenesis. Underlying much of the instability in cancer is DNA replication stress, which causes both chromosome structural changes and single base-pair mutations. Common fragile sites are some of the earliest and most frequently altered loci in tumors. Notably, the fragile locus, FRA3B, lies within the fragile histidine triad (FHIT) gene, and consequently deletions within FHIT are common in cancer. We review the evidence in support of FHIT as a DNA caretaker and discuss the mechanism by which FHIT promotes genome stability. FHIT increases thymidine kinase 1 (TK1) translation to balance the deoxyribonucleotide triphosphates (dNTPs) for efficient DNA replication. Consequently, FHIT-loss causes replication stress, DNA breaks, aneuploidy, copy-number changes (CNCs), small insertions and deletions, and point mutations. Moreover, FHIT-loss-induced replication stress and DNA breaks cooperate with APOBEC3B overexpression to catalyze DNA hypermutation in cancer, as APOBEC family enzymes prefer single-stranded DNA (ssDNA) as substrates and ssDNA is enriched at sites of both replication stress and DNA breaks. Consistent with the frequent loss of FHIT across a broad spectrum of cancer types, FHIT-deficiency is highly associated with the ubiquitous, clock-like mutation signature 5 occurring in all cancer types thus far examined. The ongoing destabilization of the genome caused by FHIT loss underlies recurrent inactivation of tumor suppressors and activation of oncogenes. Considering that more than 50% of cancers are FHIT-deficient, we propose that FRA3B/FHIT fragility shapes the mutational landscape of cancer genomes.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| | - Dongju Park
- Department of Cancer Biology and Genetics, The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
4
|
Liu XP, Yin XH, Yan XH, Zeng XT, Wang XH. The Clinical Relevance of Fragile Histidine Triad Protein (FHIT) in Patients with Bladder Cancer. Med Sci Monit 2018; 24:3113-3118. [PMID: 29752880 PMCID: PMC5973508 DOI: 10.12659/msm.906721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The present study aimed to investigate the clinical relevance of fragile histidine triad protein (FHIT) in patients with bladder cancer (BC). MATERIAL AND METHODS Three independent BC microarray studies were collected and reanalyzed. The expression of FHIT was evaluated between BC samples and normal bladder tissues. The correlation between the expression of FHIT and clinicopathological features was analyzed using the chi-square test. Log-rank based survival analysis was conducted to detect the survival significance of FHIT in patients with BC. Gene set enrichment analysis (GSEA) was performed to identify the mechanisms. RESULTS FHIT was significantly downregulated in BC cells (p=0.0044). BC patients in the FHIT high expression group had better clinical characteristics (including invasiveness, tumor grade, disease progression, and T staging) than those in the FHIT low expression group (p<0.0001, p<0.0001, p=0.031, p<0.0001, and p=0.056, respectively). Patients in the FHIT high expression group had better cancer-specific survival (p<0.0001) and overall survival (p=0.0008) than those in the FHIT low expression. GSEA results indicated that BC samples in the FHIT low expression group were enriched in interferon alpha response, apoptosis, androgen response, interferon gamma response, heme metabolism, and transforming growth facto r(TGF) beta signaling. CONCLUSIONS FHIT predicts better clinical relevance for patients with BC, which may be a promising therapeutic target.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xiao-Hong Yin
- Center for Evidence-Based and Translational Medicine, Zhongnan hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xin-Hui Yan
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
5
|
Zheng HC, Liu LL. FHIT down-regulation was inversely linked to aggressive behaviors and adverse prognosis of gastric cancer: a meta- and bioinformatics analysis. Oncotarget 2017; 8:108261-108273. [PMID: 29296239 PMCID: PMC5746141 DOI: 10.18632/oncotarget.22369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
FHIT (fragile histine triad) acts as diadenosine P1, P3-bis (5'-adenosyl)-triphosphate adenylohydrolase involved in purine metabolism, and induces apoptosis as a tumor suppressor. We performed a systematic meta- and bioinformatics analysis through multiple online databases up to March 14, 2017. The down-regulated FHIT expression was found in gastric cancer, compared with normal mucosa and dysplasia (p < 0.05). FHIT expression was negatively with depth of invasion, lymph node metastasis, distant metastasis, TNM staging and dedifferentiation of gastric cancer (p < 0.05). A positive association between FHIT expression and favorable overall survival was found in patients with gastric cancer (p < 0.05). According to Kaplan-Meier plotter, we found that a higher FHIT expression was negatively correlated with overall and progression-free survival rates of all cancer patients, even stratified by aggressive parameters (p < 0.05). These findings indicated that FHIT expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li-Li Liu
- Department of Pathology, Harbin Medical University-Daqing, Daqing 163319, China
| |
Collapse
|
6
|
The ubiquitous 'cancer mutational signature' 5 occurs specifically in cancers with deleted FHIT alleles. Oncotarget 2017; 8:102199-102211. [PMID: 29254236 PMCID: PMC5731946 DOI: 10.18632/oncotarget.22321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023] Open
Abstract
The FHIT gene is located at the fragile FRA3B locus where activation by carcinogen-induced and endogenous replication stress causes FHIT deletions even in normal cells over a lifetime. Our lab has shown that loss of FHIT expression causes genome instability and provides single-strand DNA substrates for APOBEC3B hypermutation, in line with evidence that FHIT locus deletions occur in many cancers. Based on these biological features, we hypothesized that FHIT loss drives development of COSMIC mutational signature 5 and here provide evidence, including data mining of >6,500 TCGA samples, that FHIT is the cancer-associated gene with copy number alterations correlating most significantly with signature 5 mutation rate. In addition, tissues of Fhit-deficient mice exhibit a mutational signature strongly resembling signature 5 (cosine similarity value = 0.89). We conclude that FHIT loss is a molecular determinant for signature 5 mutations, which occur in all cancer types early in cancer development, are clock-like, and accelerated by carcinogen exposure. Loss of FHIT caretaker function may be a predictive and preventive marker for cancer development.
Collapse
|
7
|
Fassan M, Rusev B, Corbo V, Gasparini P, Luchini C, Vicentini C, Mafficini A, Paiella S, Salvia R, Cataldo I, Scarpa A, Huebner K. Fhit down-regulation is an early event in pancreatic carcinogenesis. Virchows Arch 2017; 470:647-653. [PMID: 28289900 PMCID: PMC5568551 DOI: 10.1007/s00428-017-2105-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 02/22/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
Aberrant Fhit expression characterizes a large proportion of primary pancreatic ductal adenocarcinomas (PDACs), but fragmentary information is available on Fhit expression during the phenotypic changes of pancreatic ductal epithelium during multistep transformation. We assessed Fhit expression by immunohistochemistry in two different multistep pancreatic carcinogenic processes: pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasia (IPMN). We considered 105 surgically treated PDACs/IPMNs and selected 30 samples of non-neoplastic pancreatic parenchyma, 50 PanIN lesions, 30 IPMNs, 15 IPMNs with associated invasive carcinoma, and 60 adenocarcinomas. Normal pancreatic ducts and surrounding acinar cells consistently showed moderate to strong Fhit immunoreactivity. Significant down-regulation of Fhit expression was observed in association with increasing severity of dysplastia/neoplastia in both carcinogenic processes. This was further confirmed by studying multiple lesions obtained from the same surgical specimen. Of 60 PDACs, only 14 showed Fhit expression comparable to normal pancreatic ductal epithelium, while the remainder (77%) showed clearly negative or reduced Fhit expression. This study demonstrates that Fhit down-regulation is an early event in both multistep carcinogenic processes leading to PDAC.
Collapse
Affiliation(s)
- Matteo Fassan
- ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Via Gabelli 61, 35121, Padua, Italy.
| | - Borislav Rusev
- ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pierluigi Gasparini
- Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Claudio Luchini
- ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Surgical Pathology Unit, University and Hospital Trust of Verona, Verona, Italy
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | - Caterina Vicentini
- ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Andrea Mafficini
- ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Salvatore Paiella
- Department of Surgery, Unit of General Surgery B, University and Hospital Trust of Verona, Verona, Italy
| | - Roberto Salvia
- Department of Surgery, Unit of General Surgery B, University and Hospital Trust of Verona, Verona, Italy
| | - Ivana Cataldo
- ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Surgical Pathology Unit, University and Hospital Trust of Verona, Verona, Italy
| | - Kay Huebner
- Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Karras JR, Schrock MS, Batar B, Zhang J, La Perle K, Druck T, Huebner K. Fhit loss-associated initiation and progression of neoplasia in vitro. Cancer Sci 2016; 107:1590-1598. [PMID: 27513973 PMCID: PMC5132276 DOI: 10.1111/cas.13032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
The FHIT gene, encompassing an active common fragile site, FRA3B, is frequently silenced in preneoplasia and cancer, through gene rearrangement or methylation of regulatory sequences. Silencing of Fhit protein expression causes thymidine kinase 1 downregulation, resulting in dNTP imbalance, and spontaneous replication stress that leads to chromosomal aberrations, allele copy number variations, insertions/deletions, and single-base substitutions. Thus, Fhit, which is reduced in expression in the majority of human cancers, is a genome "caretaker" whose loss initiates genome instability in preneoplastic lesions. To follow the early genetic alterations and functional changes induced by Fhit loss that may recapitulate the neoplastic process in vitro, we established epithelial cell lines from kidney tissues of Fhit-/- and +/+ mouse pups early after weaning, and subjected cell cultures to nutritional and carcinogen stress, which +/+ cells did not survive. Through transcriptome profiling and protein expression analysis, we observed changes in the Trp53/p21 and survivin apoptotic pathways in -/- cells, and in expression of proteins involved in epithelial-mesenchymal transition. Some Fhit-deficient cell lines showed anchorage-independent colony formation and increased invasive capacity in vitro. Furthermore, cells of stressed Fhit-/- cell lines formed s.c. and metastatic tumors in nude mice. Collectively, we show that Fhit loss and subsequent thymidine kinase 1 inactivation, combined with selective pressures, leads to neoplasia-associated alterations in genes and gene expression patterns in vitro and in vivo.
Collapse
Affiliation(s)
- Jenna R. Karras
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Morgan S. Schrock
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Bahadir Batar
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Jie Zhang
- Department of Biomedical InformaticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Krista La Perle
- Department of Veterinary BiosciencesCollege of Veterinary MedicineOhio State UniversityColumbusOhioUSA
| | - Teresa Druck
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Kay Huebner
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
9
|
Schrock MS, Karras JR, Guggenbiller MJ, Druck T, Batar B, Huebner K. Fhit and Wwox loss-associated genome instability: A genome caretaker one-two punch. Adv Biol Regul 2016; 63:167-176. [PMID: 27773744 DOI: 10.1016/j.jbior.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 11/28/2022]
Abstract
Expression of Fhit and Wwox protein is frequently lost or reduced in many human cancers. In this report, we provide data that further characterizes the molecular consequences of Fhit loss in the initiation of DNA double-strand breaks (DSBs), and of Wwox loss in altered repair of DSBs. We show that loss of Fhit initiates mild genome instability in early passage mouse kidney cells, confirming that DNA damage associated with Fhit-deficiency is not limited to cancer cells. We also demonstrate that the cause of Fhit-deficient DSBs: thymidine deficiency-induced replication stress, can be resolved with thymidine supplementation in early passage mouse kidney cells before extensive genome instability occurs. As for consequences of Wwox loss in cancer, we show in a small panel of breast cancer cells and mouse embryonic fibroblasts that Wwox expression predicts response to radiation and mitomycin C, all agents that cause DSBs. In addition, loss of Wwox significantly reduced progression free survival in a cohort of ovarian cancer patients treated with platin-based chemotherapies. Finally, stratification of a cohort of squamous lung cancers by Fhit expression reveals that Wwox expression is significantly reduced in the low Fhit-expressing group, suggesting that loss of Fhit is quickly succeeded by loss of Wwox. We propose that Fhit and Wwox loss work synergistically in cancer progression and that DNA damage caused by Fhit could be targeted early in cancer initiation for prevention, while DNA damage caused by Wwox loss could be targeted later in cancer progression, particularly in cancers that develop resistance to genotoxic therapies.
Collapse
Affiliation(s)
- Morgan S Schrock
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jenna R Karras
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew J Guggenbiller
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Teresa Druck
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bahadir Batar
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|