1
|
Fukuda R, Fujiwara Y, Maeda H, Pan C, Minayoshi Y, Yano H, Mizuta Y, Takano M, Yamada R, Saito Y, Hirata K, Imoto S, Yamasaki K, Oniki K, Saruwatari J, Otagiri M, Watanabe H, Komohara Y, Maruyama T. Lymph node macrophage-targeted interferon alpha boosts anticancer immune responses by regulating CD169-positive phenotype of macrophages. Mol Cancer 2025; 24:132. [PMID: 40319320 PMCID: PMC12049019 DOI: 10.1186/s12943-025-02324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/08/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND CD169+ macrophages in lymph nodes (LNs) activate cytotoxic T lymphocytes (CTLs), which play a crucial role in anticancer immunity, through antigen presentation and co-stimulation by CD169. Interferon alpha (IFNα) is capable of inducing the CD169+ phenotype of macrophages; however, its clinical applications have been hindered by pharmacokinetic limitations-low LN distribution and an inability to target macrophages. To overcome these issues, this study genetically fused mouse IFNα (mIFNα) with mannosylated mouse serum albumin (Man-MSA), and investigated the antitumor effects of the hybrid protein (Man-MSA-mIFNα) or its add-on effects with programmed death-ligand 1 (PD-L1) blockade. METHODS To confirm the possibility of CD169+ macrophage-mediated T cell priming, positional information about individual immune cells in LNs of cancer patients was obtained. Traits of Man-MSA-mIFNα, which was prepared using Pichia pastoris to form the high-mannose structure, were characterized by several physicochemical methods. To evaluate the lymphatic drainage of Man-MSA-mIFNα, radioiodine or Cy5-labeled Man-MSA-mIFNα was subcutaneously administered in mice, and then the radioactivity or fluorescence in LNs was analyzed. CD169-diphtheria toxin (DT) receptor (CD169-DTR) mice in which LN CD169+ macrophages can be depleted by DT injection were used to verify whether the antitumor effect of Man-MSA-mIFNα is dependent on LN CD169+ macrophages. RESULTS Multiplex tissue imaging predicted close proximity of CD169+ macrophages and T cells and positive correlation between the number of CD169+ macrophages and T cells in neighborhoods in LNs of cancer patients. Physicochemical analyses showed that Man-MSA-mIFNα was formed from the fusion of the intact Man-MSA and mIFNα. Man-MSA-mIFNα efficiently induced the CD169+ phenotype of macrophages by its high LN distribution and macrophage-targeting capability, and significantly exerted antitumor activity through CD8+ T cell activation in the LNs, whereas its antitumor effects were canceled in CD169-DTR mice. Finally, combination therapy with PD-L1 blockade markedly suppressed tumor growth in MB49-bearing mice, which exhibit resistance to PD-L1 blockade monotherapy. CONCLUSIONS The present study successfully designed and developed Man-MSA-mIFNα, which efficiently induces the CD169+ phenotype in LN macrophages, contributing to the antitumor immunity. The findings suggest that our novel strategy targeting CD169⁺ macrophages could be a promising immunotherapy for cancer patients who are unresponsive to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ryo Fukuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- , Laboratory of Biopharmaceutics, Kyoto Pharmaceutical University 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuki Minayoshi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Tumor Pathology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Honjo, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Yuki Mizuta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mei Takano
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Rin Yamada
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoichi Saito
- Laboratory of Bioengineering, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Kenshiro Hirata
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Shuhei Imoto
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Keishi Yamasaki
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masaki Otagiri
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
2
|
Briem O, Tahin B, Frank AM, Olsson L, Gerdtsson AS, Källberg E, Leandersson K. Altered immune signatures in breast cancer lymph nodes with metastases revealed by spatial proteome analyses. J Transl Med 2025; 23:422. [PMID: 40211433 PMCID: PMC11987258 DOI: 10.1186/s12967-025-06415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/24/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND Metastasis to lymph nodes is strongly associated with reduced survival in breast cancer patients. To increase the understanding on how lymph node metastasis impairs the local immune response in affected lymph nodes, we here studied spatial proteomic changes of critical lymph node immune populations in uninvolved lymph nodes (UnLN) and paired lymph nodes with metastases (LNM) from five breast cancer patients. METHODS The proteome was analyzed for cortical lymphocyte compartments, subcapsular sinus (SCS) and medullary sinus (MS) CD169+ macrophages, using the Digital Spatial Profiling (DSP) platform from NanoString. RESULTS Our results identified a stable proteome of SCS CD169+ macrophages in LNM, with the exception for downregulation of the anti-apoptotic protein Bcl-xL and FAPα, but a clear reduction in numbers of SCS CD169+ macrophages in LNM. In contrast, the proteome of MS CD169+ macrophages, B-cell compartments and interfollicular T-cells showed altered immune signatures in LNM, indicating that the decline in SCS CD169+ macrophages coincide with a malfunction in the local, anti-tumor immune responses. CONCLUSIONS The findings from our study support the notion that metastasis to lymph nodes in breast cancer patients modifies local immune responses. These changes may contribute to explain unsuccessful therapeutic responses, and thereby worsened prognosis, for breast cancer patients with LNM.
Collapse
Affiliation(s)
- Oscar Briem
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Jan Waldenströms gata 35, Malmö, SE-214 28, Sweden
| | - Balázs Tahin
- Division of Clinical Pathology, Department of Clinical Sciences, Lund University, Malmö, 214 28, Sweden
| | - Asger Meldgaard Frank
- Division of Immunotechnology, Faculty of Engineering, Lund University, Malmö, 211 00, Sweden
| | - Lina Olsson
- Division of Immunotechnology, Faculty of Engineering, Lund University, Malmö, 211 00, Sweden
| | | | - Eva Källberg
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Jan Waldenströms gata 35, Malmö, SE-214 28, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Jan Waldenströms gata 35, Malmö, SE-214 28, Sweden.
| |
Collapse
|
3
|
Yuan Q, Jia L, Yang J, Li W. The role of macrophages in liver metastasis: mechanisms and therapeutic prospects. Front Immunol 2025; 16:1542197. [PMID: 40034694 PMCID: PMC11872939 DOI: 10.3389/fimmu.2025.1542197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Metastasis is a hallmark of advanced cancer, and the liver is a common site for secondary metastasis of many tumor cells, including colorectal, pancreatic, gastric, and prostate cancers. Macrophages in the tumor microenvironment (TME) promote tumor cell metastasis through various mechanisms, including angiogenesis and immunosuppression, and play a unique role in the development of liver metastasis. Macrophages are affected by a variety of factors. Under conditions of hypoxia and increased acidity in the TME, more factors are now found to promote the polarization of macrophages to the M2 type, including exosomes and amino acids. M2-type macrophages promote tumor cell angiogenesis through a variety of mechanisms, including the secretion of factors such as VEGF, IL-1β, and TGF-β1. M2-type macrophages are subjected to multiple regulatory mechanisms. They also interact with various cells within the tumor microenvironment to co-regulate certain conditions, including the creation of an immunosuppressive microenvironment. This interaction promotes tumor cell metastasis, drug resistance, and immune escape. Based on the advent of single-cell sequencing technology, further insights into macrophage subpopulations in the tumor microenvironment may help in exploring new therapeutic targets in the future. In this paper, we will focus on how macrophages affect the TME, how tumor cells and macrophages as well as other immune cells interact with each other, and further investigate the mechanisms involved in liver metastasis of tumor cells and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- *Correspondence: Jiahua Yang, ; Wei Li,
| |
Collapse
|
4
|
Stader F, Liu C, Derbalah A, Momiji H, Pan X, Gardner I, Jamei M, Sepp A. A Physiologically Based Pharmacokinetic Model Relates the Subcutaneous Bioavailability of Monoclonal Antibodies to the Saturation of FcRn-Mediated Recycling in Injection-Site-Draining Lymph Nodes. Antibodies (Basel) 2024; 13:70. [PMID: 39189241 PMCID: PMC11348173 DOI: 10.3390/antib13030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
The bioavailability of a monoclonal antibody (mAb) or another therapeutic protein after subcutaneous (SC) dosing is challenging to predict from first principles, even if the impact of injection site physiology and drug properties on mAb bioavailability is generally understood. We used a physiologically based pharmacokinetic model to predict pre-systemic clearance after SC administration mechanistically by incorporating the FcRn salvage pathway in antigen-presenting cells (APCs) in peripheral lymph nodes, draining the injection site. Clinically observed data of the removal rate of IgG from the arm as well as its plasma concentration after SC dosing were mostly predicted within the 95% confidence interval. The bioavailability of IgG was predicted to be 70%, which mechanistically relates to macropinocytosis in the draining lymph nodes and transient local dose-dependent partial saturation of the FcRn receptor in the APCs, resulting in higher catabolism and consequently less drug reaching the systemic circulation. The predicted free FcRn concentration was reduced to 40-45%, reaching the minimum 1-2 days after the SC administration of IgG, and returned to baseline after 8-12 days, depending on the site of injection. The model predicted the uptake into APCs, the binding affinity to FcRn, and the dose to be important factors impacting the bioavailability of a mAb.
Collapse
Affiliation(s)
- Felix Stader
- Simcyp Division, Certara UK Ltd., Level 2 Acero, 1 Concourse Way, Sheffield S1 2BJ, UK (X.P.); (I.G.); (A.S.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kanemitsu K, Yamada R, Pan C, Tsukamoto H, Yano H, Shiota T, Fujiwara Y, Miyamoto Y, Mikami Y, Baba H, Komohara Y. Age-associated reduction of sinus macrophages in human mesenteric lymph nodes. J Clin Exp Hematop 2024; 64:79-85. [PMID: 38462485 PMCID: PMC11303963 DOI: 10.3960/jslrt.24001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024] Open
Abstract
There are numerous macrophages and dendritic cells in lymph nodes (LNs). Recent studies have highlighted that sinus macrophages (SMs) in LNs possess antigen-presenting capabilities and are related to anti-cancer immune responses. In this study, we assessed the distribution of SMs in mesenteric LNs removed during surgery for colorectal cancer. A marked reduction of SMs was noted in elderly patients, particularly those over 80 years old. We observed a disappearance of CD169-positive cells in LNs where SMs were reduced. In silico analysis of publicly available single-cell RNA sequencing data from LNs revealed that CD169-positive macrophages express numerous genes associated with antigen presentation and lymphocyte proliferation, similar to dendritic cells' functions. In conclusion, our study demonstrates that SMs, potentially crucial for immune activation, diminish in the LNs of elderly patients. This reduction of SMs may contribute to the immune dysfunction observed in the elderly.
Collapse
|
6
|
Oldan JD, Schroeder JA, Hoffman-Censits J, Rathmell WK, Milowsky MI, Solnes LB, Nimmagadda S, Gorin MA, Khandani AH, Rowe SP. PET/Computed Tomography Transformation of Oncology: Kidney and Urinary Tract Cancers. PET Clin 2024; 19:197-206. [PMID: 38199916 DOI: 10.1016/j.cpet.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Renal cell carcinoma (RCC) and urothelial carcinoma (UC) are two of the most common genitourinary malignancies. 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) can play an important role in the evaluation of patients with RCC and UC. In addition to the clinical utility of 18F-FDG PET to evaluate for metastatic RCC or UC, the shift in molecular imaging to focus on specific ligand-receptor interactions should provide novel diagnostic and therapeutic opportunities in genitourinary malignancies. In combination with the rise of artificial intelligence, our ability to derive imaging biomarkers that are associated with treatment selection, response assessment, and overall patient prognostication will only improve.
Collapse
Affiliation(s)
- Jorge D Oldan
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer A Schroeder
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Jean Hoffman-Censits
- Department of Medical Oncology and Urology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Gorin
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir H Khandani
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Steven P Rowe
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Fujiwara Y, Yano H, Pan C, Shiota T, Komohara Y. Anticancer immune reaction and lymph node sinus macrophages: a review from human and animal studies. J Clin Exp Hematop 2024; 64:71-78. [PMID: 38925976 PMCID: PMC11303962 DOI: 10.3960/jslrt.24017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/28/2024] Open
Abstract
Lymph nodes are secondary lymphoid organs localized throughout the body that typically appear as bean-like nodules. Numerous antigen-presenting cells, including dendritic cells and macrophages, that mediate host defense responses against pathogens, such as bacteria and viruses, reside within lymph nodes. To react to cancer cell-derived antigens in a variety of cancers, antigen-presenting cells induce cytotoxic T lymphocytes (CTLs). In relation to anticancer immune responses, macrophages in the lymph node sinus have been of particular interest because a number of studies involving both human specimens and animal models have reported that lymph node macrophages expressing CD169 play a key role in activating anticancer CTLs. Recent studies have indicated that dysfunction of lymph node macrophages potentially contributes to immune suppression in elderly patients and immunological "cold" tumors. Therefore, in anticancer therapy, the regulation of lymph node macrophages is a potentially promising approach.
Collapse
|
8
|
Su F, Zhang Y, Maimaiti S, Chen S, Shen Y, Feng M, Guo Z, Tan L, He J. Mechanisms and characteristics of subcapsular sinus macrophages in tumor immunity: a narrative review. Transl Cancer Res 2023; 12:3779-3791. [PMID: 38192994 PMCID: PMC10774050 DOI: 10.21037/tcr-23-2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Background and Objective Lymph nodes constitute an integral component of the secondary lymphoid organs, housing a diverse population of macrophages. Macrophages exhibit heterogeneity in terms of localization, phenotype and ontogeny. Recent evidence has established that subcapsular sinus macrophages (SCSMs) are the initial cells exposed to antigens from afferent lymph vessels, playing a crucial role in the host immune response against invading pathogens and tumor cells. In order to summarize the role and mechanisms of SCSM in tumor immunity, this study systematically reviews research on SCSMs in tumor immunity. Methods A systematic search was conducted in PubMed and Web of Science to identify articles investigating clinical significance and mechanisms of SCSMs. Study eligibility was independently evaluated by two authors based on the assessment of titles, abstracts and full-texts. Key Content and Findings The narrative review included a total of 17 studies. Previous research consistently showed that a high level of SCSM in patients with various carcinomas is associated with a favorable long-term prognosis. SCSM acts as the front-line defender in antitumor activity, engaging in intricate communication with other immune cells. Moreover, SCSM could directly and indirectly modulate tumor immunity, and the integrity of SCSM layer is interrupted in disease status. Several studies explored the feasibility of targeting SCSM to activate immunity against tumors. However, the direct molecular interactions and alternation in signal pathway in the tumor immunity of SCSM are less well established in previous researches. Conclusions This narrative review underscores the critical role of SCSM in tumor immunity. Future studies should focus on the deeper mechanism underlying SCSMs and explore their clinical applications.
Collapse
Affiliation(s)
- Feng Su
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yutao Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China
| | | | - Shanglin Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaxing Shen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Yamada R, Ohnishi K, Pan C, Yano H, Fujiwara Y, Shiota T, Mikami Y, Komohara Y. Expression of macrophage/dendritic cell-related molecules in lymph node sinus macrophages. Microbiol Immunol 2023; 67:490-500. [PMID: 37622582 DOI: 10.1111/1348-0421.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The role of sinus macrophages (SMs) in anticancer immune responses has received considerable interest in recent years, but the types of molecules that are expressed in human SMs have not yet been clarified in detail. We therefore sought to identify dendritic cell (DC)- or macrophage-related molecules in SMs in human lymph nodes (LNs). SMs are strongly positive for Iba-1, CD163, CD169, and CD209. CD169 (clone SP216) reacted with almost all SMs, mainly in the cell surface membrane, while CD169 (clone HSn 7D2) reacted with a subpopulation of SMs, mainly in the cytoplasm, with a significant increase observed after IFN-α stimulation. The immunoreactivity of clone HSn 7D2 was markedly reduced after transfection with small interfering RNA against CD169, while that of clone SP216 was slightly reduced. The induction of CCL8 and CXCL10 messenger RNA (mRNA) expression by IFN-α was confirmed using cultured macrophages and RT-qPCR, but fluorescence in situ hybridization did not detect CCL8 and CXCL10 mRNA expression in SMs. Single-cell RNA sequence data of LNs indicated that the highest level of CXCL10 gene expression occurred in monocytes. In conclusion, we found that CD209, also known as DC-related molecule, was expressed in human SMs. The heterogeneity observed in CD169 reacted with cone HSn 7D2 and SP216 was potentially due to the modification of CD169 protein by IFN stimulation. Further, no expression of CXCL10 mRNA in SMs suggested that SMs might be resident macrophages.
Collapse
Affiliation(s)
- Rin Yamada
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Koji Ohnishi
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takuya Shiota
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshiki Mikami
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
10
|
Li CX, Gong ZC, Tan XR. Considerations regarding the tumor-suppressor role of naringenin as a novel agent for the treatment of oral squamous cell carcinoma. Cancer Immunol Immunother 2023; 72:3133-3134. [PMID: 37149552 PMCID: PMC10992600 DOI: 10.1007/s00262-023-03452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Affiliation(s)
- Chen-Xi Li
- School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Zhong-Cheng Gong
- School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China
| | - Xiao-Rong Tan
- School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China
| |
Collapse
|
11
|
Peng JM, Su YL. Lymph node metastasis and tumor-educated immune tolerance: Potential therapeutic targets against distant metastasis. Biochem Pharmacol 2023; 215:115731. [PMID: 37541450 DOI: 10.1016/j.bcp.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|
12
|
Verghese G, Li M, Liu F, Lohan A, Kurian NC, Meena S, Gazinska P, Shah A, Oozeer A, Chan T, Opdam M, Linn S, Gillett C, Alberts E, Hardiman T, Jones S, Thavaraj S, Jones JL, Salgado R, Pinder SE, Rane S, Sethi A, Grigoriadis A. Multiscale deep learning framework captures systemic immune features in lymph nodes predictive of triple negative breast cancer outcome in large-scale studies. J Pathol 2023; 260:376-389. [PMID: 37230111 PMCID: PMC10720675 DOI: 10.1002/path.6088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
The suggestion that the systemic immune response in lymph nodes (LNs) conveys prognostic value for triple-negative breast cancer (TNBC) patients has not previously been investigated in large cohorts. We used a deep learning (DL) framework to quantify morphological features in haematoxylin and eosin-stained LNs on digitised whole slide images. From 345 breast cancer patients, 5,228 axillary LNs, cancer-free and involved, were assessed. Generalisable multiscale DL frameworks were developed to capture and quantify germinal centres (GCs) and sinuses. Cox regression proportional hazard models tested the association between smuLymphNet-captured GC and sinus quantifications and distant metastasis-free survival (DMFS). smuLymphNet achieved a Dice coefficient of 0.86 and 0.74 for capturing GCs and sinuses, respectively, and was comparable to an interpathologist Dice coefficient of 0.66 (GC) and 0.60 (sinus). smuLymphNet-captured sinuses were increased in LNs harbouring GCs (p < 0.001). smuLymphNet-captured GCs retained clinical relevance in LN-positive TNBC patients whose cancer-free LNs had on average ≥2 GCs, had longer DMFS (hazard ratio [HR] = 0.28, p = 0.02) and extended GCs' prognostic value to LN-negative TNBC patients (HR = 0.14, p = 0.002). Enlarged smuLymphNet-captured sinuses in involved LNs were associated with superior DMFS in LN-positive TNBC patients in a cohort from Guy's Hospital (multivariate HR = 0.39, p = 0.039) and with distant recurrence-free survival in 95 LN-positive TNBC patients of the Dutch-N4plus trial (HR = 0.44, p = 0.024). Heuristic scoring of subcapsular sinuses in LNs of LN-positive Tianjin TNBC patients (n = 85) cross-validated the association of enlarged sinuses with shorter DMFS (involved LNs: HR = 0.33, p = 0.029 and cancer-free LNs: HR = 0.21 p = 0.01). Morphological LN features reflective of cancer-associated responses are robustly quantifiable by smuLymphNet. Our findings further strengthen the value of assessment of LN properties beyond the detection of metastatic deposits for prognostication of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gregory Verghese
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Mengyuan Li
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Fangfang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of EducationKey Laboratory of Cancer Prevention and TherapyTianjinPR China
| | - Amit Lohan
- Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
| | - Nikhil Cherian Kurian
- Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
| | - Swati Meena
- Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
| | - Patrycja Gazinska
- Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Biobank Research GroupLukasiewicz Research Network, PORT Polish Center for Technology DevelopmentWroclawPoland
| | - Aekta Shah
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Department of PathologyTata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National InstituteMumbaiIndia
| | - Aasiyah Oozeer
- King's Health Partners Cancer Biobank, King's College LondonLondonUK
| | - Terry Chan
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mark Opdam
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sabine Linn
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Medical OncologyThe Netherlands Cancer Institute, Antoni van LeeuwenhoekAmsterdamThe Netherlands
- Department of PathologyUniversity Medical CentreUtrechtThe Netherlands
| | - Cheryl Gillett
- King's Health Partners Cancer Biobank, King's College LondonLondonUK
| | - Elena Alberts
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Thomas Hardiman
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Samantha Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Selvam Thavaraj
- Faculty of Dentistry, Oral & Craniofacial ScienceKing's College LondonLondonUK
- Head and Neck PathologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Roberto Salgado
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Division of ResearchPeter Mac Callum Cancer CentreMelbourneAustralia
| | - Sarah E Pinder
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Swapnil Rane
- Department of PathologyTata Memorial Centre‐ACTREC, HBNIMumbaiIndia
| | - Amit Sethi
- Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
13
|
Gunnarsdottir FB, Briem O, Lindgren AY, Källberg E, Andersen C, Grenthe R, Rosenqvist C, Millrud CR, Wallgren M, Viklund H, Bexell D, Johansson ME, Hedenfalk I, Hagerling C, Leandersson K. Breast cancer associated CD169 + macrophages possess broad immunosuppressive functions but enhance antibody secretion by activated B cells. Front Immunol 2023; 14:1180209. [PMID: 37404831 PMCID: PMC10315498 DOI: 10.3389/fimmu.2023.1180209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
CD169+ resident macrophages in lymph nodes of breast cancer patients are for unknown reasons associated with a beneficial prognosis. This contrasts CD169+ macrophages present in primary breast tumors (CD169+ TAMs), that correlate with a worse prognosis. We recently showed that these CD169+ TAMs were associated with tertiary lymphoid structures (TLSs) and Tregs in breast cancer. Here, we show that CD169+ TAMs can be monocyte-derived and express a unique mediator profile characterized by type I IFNs, CXCL10, PGE2 and inhibitory co-receptor expression pattern. The CD169+ monocyte-derived macrophages (CD169+ Mo-M) possessed an immunosuppressive function in vitro inhibiting NK, T and B cell proliferation, but enhanced antibody and IL6 secretion in activated B cells. Our findings indicate that CD169+ Mo-M in the primary breast tumor microenvironment are linked to both immunosuppression and TLS functions, with implications for future targeted Mo-M therapy.
Collapse
Affiliation(s)
- Frida Björk Gunnarsdottir
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Oscar Briem
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Aida Yifter Lindgren
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Eva Källberg
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Cajsa Andersen
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Robert Grenthe
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Cassandra Rosenqvist
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Camilla Rydberg Millrud
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mika Wallgren
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Hannah Viklund
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Daniel Bexell
- Translational Cancer Research, TCR, Medicon Village, Lund University, Lund, Sweden
| | - Martin E. Johansson
- Sahlgrenska Center for Cancer Research, Department of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Catharina Hagerling
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| |
Collapse
|
14
|
Georgoulis V, Papoudou-Bai A, Makis A, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Classic Hodgkin Lymphoma: Prognostic and Therapeutic Implications. BIOLOGY 2023; 12:862. [PMID: 37372147 PMCID: PMC10294989 DOI: 10.3390/biology12060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Classic Hodgkin lymphoma (cHL) is a lymphoid neoplasm composed of rare neoplastic Hodgkin and Reed-Sternberg (HRS) cells surrounded by a reactive tumor microenvironment (TME) with suppressive properties against anti-tumor immunity. TME is mainly composed of T cells (CD4 helper, CD8 cytotoxic and regulatory) and tumor-associated macrophages (TAMs), but the impact of these cells on the natural course of the disease is not absolutely understood. TME contributes to the immune evasion of neoplastic HRS cells through the production of various cytokines and/or the aberrant expression of immune checkpoint molecules in ways that have not been fully understood yet. Herein, we present a comprehensive review of findings regarding the cellular components and the molecular features of the immune TME in cHL, its correlation with treatment response and prognosis, as well as the potential targeting of the TME with novel therapies. Among all cells, macrophages appear to be a most appealing target for immunomodulatory therapies, based on their functional plasticity and antitumor potency.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandra Papoudou-Bai
- Department of Pathology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandros Makis
- Department of Child Health, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 000 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| |
Collapse
|
15
|
Kiełb P, Kowalczyk K, Gurwin A, Nowak Ł, Krajewski W, Sosnowski R, Szydełko T, Małkiewicz B. Novel Histopathological Biomarkers in Prostate Cancer: Implications and Perspectives. Biomedicines 2023; 11:1552. [PMID: 37371647 DOI: 10.3390/biomedicines11061552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer in men. Despite the significant progress in cancer diagnosis and treatment over the last few years, the approach to disease detection and therapy still does not include histopathological biomarkers. The dissemination of PCa is strictly related to the creation of a premetastatic niche, which can be detected by altered levels of specific biomarkers. To date, the risk factors for biochemical recurrence include lymph node status, prostate-specific antigen (PSA), PSA density (PSAD), body mass index (BMI), pathological Gleason score, seminal vesicle invasion, extraprostatic extension, and intraductal carcinoma. In the future, biomarkers might represent another prognostic factor, as discussed in many studies. In this review, we focus on histopathological biomarkers (particularly CD169 macrophages, neuropilin-1, cofilin-1, interleukin-17, signal transducer and activator of transcription protein 3 (STAT3), LIM domain kinase 1 (LIMK1), CD15, AMACR, prostate-specific membrane antigen (PSMA), Appl1, Sortilin, Syndecan-1, and p63) and their potential application in decision making regarding the prognosis and treatment of PCa patients. We refer to studies that found a correlation between the levels of biomarkers and tumor characteristics as well as clinical outcomes. We also hypothesize about the potential use of histopathological markers as a target for novel immunotherapeutic drugs or targeted radionuclide therapy, which may be used as adjuvant therapy in the future.
Collapse
Affiliation(s)
- Paweł Kiełb
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Kamil Kowalczyk
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Adam Gurwin
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Łukasz Nowak
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Roman Sosnowski
- Department of Urogenital Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
16
|
Nagata M, Ishizaka K, Asano T. CD169 + Macrophages Residing in the Draining Lymph Nodes and Infiltrating the Tumor Play Opposite Roles in the Pathogenesis of Bladder Cancer. Res Rep Urol 2023; 15:1-7. [PMID: 36660299 PMCID: PMC9843471 DOI: 10.2147/rru.s384113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose CD169+ macrophages are considered to enhance anti-tumor immunity by capturing lymph-borne dead tumor cells. The number of CD169+ macrophages in regional lymph nodes (RLNs) is positively correlated with prolonged cancer-free survival in various human cancers. However, a recent study argued against this dogma; that is, CD169+ macrophages infiltrating into the tumor were associated with poor prognosis in patients with breast cancer. To explain this discrepancy, we quantified the number of CD169+ macrophages located in the bladder tumor and RLNs of the same patients and examined their relationship with the 5-year survival rate. Patients and Methods Tumor and RLN specimens resected from 40 invasive bladder cancer patients (29 males and 11 females; median age, 70.7 years; range, 49-81 years) who underwent radical cystectomy were evaluated using immunostaining. Results The number of CD169+ macrophages in RLNs was associated with a good cancer prognosis, while CD169+ macrophages infiltrating the tumor strongly correlated with a higher incidence of lymphovascular invasion. Conclusion CD169+ macrophages play opposing roles in the induction of anti-tumor immunity based on their location in RLNs or tumors.
Collapse
Affiliation(s)
- Masakazu Nagata
- Department of Urology, Teikyo University Hospital Mizonokuchi, Kawasaki, Kanagawa, Japan
| | - Kazuhiro Ishizaka
- Department of Urology, Teikyo University Hospital Mizonokuchi, Kawasaki, Kanagawa, Japan
| | - Touko Asano
- Department of Urology, Teikyo University Hospital Mizonokuchi, Kawasaki, Kanagawa, Japan,Department of Urology, Omori Red Cross Hospital, Ota, Tokyo, Japan,Correspondence: Touko Asano, Department of Urology, Teikyo University Hospital Mizonokuchi, 5-1-1 Futago, Takatsu, Kawasaki, Kanagawa, 213-8507, Japan, Tel +81-044-844-3333, Fax +81-044-844-3208, Email
| |
Collapse
|
17
|
Sui D, Liang K, Gui Y, Du Z, Xin D, Yu G, Zhai W, Liu X, Song Y, Deng Y. Optimization design of sialic acid derivatives enhances the performance of liposomes for modulating immunosuppressive tumor microenvironments. Life Sci 2022; 310:121081. [DOI: 10.1016/j.lfs.2022.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
18
|
Kawaguchi S, Kawahara K, Fujiwara Y, Ohnishi K, Pan C, Yano H, Hirosue A, Nagata M, Hirayama M, Sakata J, Nakashima H, Arita H, Yamana K, Gohara S, Nagao Y, Maeshiro M, Iwamoto A, Hirayama M, Yoshida R, Komohara Y, Nakayama H. Naringenin potentiates anti-tumor immunity against oral cancer by inducing lymph node CD169-positive macrophage activation and cytotoxic T cell infiltration. Cancer Immunol Immunother 2022; 71:2127-2139. [PMID: 35044489 PMCID: PMC9374624 DOI: 10.1007/s00262-022-03149-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022]
Abstract
The CD169+ macrophages in lymph nodes are implicated in cytotoxic T lymphocyte (CTL) activation and are associated with improved prognosis in several malignancies. Here, we investigated the significance of CD169+ macrophages in oral squamous cell carcinoma (OSCC). Further, we tested the anti-tumor effects of naringenin, which has been previously shown to activate CD169+ macrophages, in a murine OSCC model. Immunohistochemical analysis for CD169 and CD8 was performed on lymph node and primary tumor specimens from 89 patients with OSCC. We also evaluated the effects of naringenin on two murine OSCC models. Increased CD169+ macrophage counts in the regional lymph nodes correlated with favorable prognosis and CD8+ cell counts within tumor sites. Additionally, naringenin suppressed tumor growth in two murine OSCC models. The mRNA levels of CD169, interleukin (IL)-12, and C-X-C motif chemokine ligand 10 (CXCL10) in lymph nodes and CTL infiltration in tumors significantly increased following naringenin administration in tumor-bearing mice. These results suggest that CD169+ macrophages in lymph nodes are involved in T cell-mediated anti-tumor immunity and could be a prognostic marker for patients with OSCC. Moreover, naringenin is a new potential agent for CD169+ macrophage activation in OSCC treatment.
Collapse
Affiliation(s)
- Sho Kawaguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Manabu Maeshiro
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Asuka Iwamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
19
|
Lim J, Sari-Ak D, Bagga T. Siglecs as Therapeutic Targets in Cancer. BIOLOGY 2021; 10:1178. [PMID: 34827170 PMCID: PMC8615218 DOI: 10.3390/biology10111178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Hypersialylation is a common post-translational modification of protein and lipids found on cancer cell surfaces, which participate in cell-cell interactions and in the regulation of immune responses. Sialic acids are a family of nine-carbon α-keto acids found at the outermost ends of glycans attached to cell surfaces. Given their locations on cell surfaces, tumor cells aberrantly overexpress sialic acids, which are recognized by Siglec receptors found on immune cells to mediate broad immunomodulatory signaling. Enhanced sialylation exposed on cancer cell surfaces is exemplified as "self-associated molecular pattern" (SAMP), which tricks Siglec receptors found on leukocytes to greatly down-regulate immune responsiveness, leading to tumor growth. In this review, we focused on all 15 human Siglecs (including Siglec XII), many of which still remain understudied. We also highlighted strategies that disrupt the course of Siglec-sialic acid interactions, such as antibody-based therapies and sialic acid mimetics leading to tumor cell depletion. Herein, we introduced the central roles of Siglecs in mediating pro-tumor immunity and discussed strategies that target these receptors, which could benefit improved cancer immunotherapy.
Collapse
Affiliation(s)
- Jackwee Lim
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Singapore 138648, Singapore;
| | - Duygu Sari-Ak
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul 34668, Turkey;
| | - Tanaya Bagga
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Singapore 138648, Singapore;
| |
Collapse
|
20
|
Regulation of prognosis-related Siglecs in the glioma microenvironment. J Cancer Res Clin Oncol 2021; 147:3343-3357. [PMID: 34472004 DOI: 10.1007/s00432-021-03762-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The anti-inflammatory environment of glioma reduces the efficacy of immunotherapies. Therefore, it is vital to transform the immunosuppressive microenvironment of glioma into a pro-inflammatory environment. Sialic acid-binding immunoglobulin-type lectins (Siglecs) can serve as immune checkpoint targets that enhance the anti-tumor immune response. However, the roles of Siglecs in the glioma microenvironment are unknown. This study was conducted to identify targets to inhibit the anti-inflammatory environment to improve therapeutic outcomes in patients with glioma. METHODS We analyzed the regulatory effect of prognosis-related Siglecs identified from data available in The Cancer Genome Atlas database (TCGA) and China Glioma Genome Atlas Data portal on the immunosuppressive microenvironment of glioma. The effects of prognosis-related Siglecs on the glioma microenvironment were investigated by determining the Pearson correlation coefficients of the Siglecs in transcriptome data from the TCGA database. RESULTS Siglec-1, -9, -10, and -14 were closely associated with the prognosis of patients with glioma. The expression of these four Siglecs was significantly increased in the high-risk group and positively correlated with anti-inflammatory cytokine levels in the glioma microenvironment. CONCLUSION Our study provides insights into the effects of prognosis-related Siglecs in glioma immunotherapy, suggesting that targeted prognosis-related Siglecs can modify the microenvironment of glioma and improve the sensitivity of patients with glioma to immunotherapy.
Collapse
|
21
|
Anti-Cancer Immune Reaction and Lymph Node Macrophage; A Review from Human and Animal Studies. IMMUNO 2021. [DOI: 10.3390/immuno1030014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lymph nodes are secondary lymphoid organs that appear as bean-like nodules usually <1 cm in size, and they are localized throughout the body. Many antigen-presenting cells such as dendritic cells and macrophages reside in lymph nodes, where they mediate host defense responses against pathogens such as viruses and bacteria. In cancers, antigen-presenting cells induce cytotoxic T lymphocytes (CTLs) to react to cancer cell-derived antigens. Macrophages located in the lymph node sinus are of particular interest in relation to anti-cancer immune responses because many studies using both human specimens and animal models have suggested that lymph node macrophages expressing CD169 play a key role in activating anti-cancer CTLs. The regulation of lymph node macrophages therefore represents a potentially promising novel approach in anti-cancer therapy.
Collapse
|
22
|
Pellin D, Claudio N, Guo Z, Ziglari T, Pucci F. Gene Expression Profiling of Lymph Node Sub-Capsular Sinus Macrophages in Cancer. Front Immunol 2021; 12:672123. [PMID: 34168645 PMCID: PMC8218730 DOI: 10.3389/fimmu.2021.672123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/03/2022] Open
Abstract
Lymph nodes are key lymphoid organs collecting lymph fluid and migratory cells from the tissue area they survey. When cancerous cells arise within a tissue, the sentinel lymph node is the first immunological organ to mount an immune response. Sub-capsular sinus macrophages (SSMs) are specialized macrophages residing in the lymph nodes that play important roles as gatekeepers against particulate antigenic material. In the context of cancer, SSMs capture tumor-derived extracellular vesicles (tEVs), a form of particulate antigen released in high amounts by tumor cells. We and others have recently demonstrated that SSMs possess anti-tumor activity because in their absence tumors progress faster. A comprehensive profiling of SSMs represents an important first step to identify the cellular and molecular mechanisms responsible for SSM anti-tumor activity. Unfortunately, the isolation of SSMs for molecular analyses is very challenging. Here, we combined an optimized dissociation protocol, careful marker selection and stringent gating strategies to highly purify SSMs. We provide evidence of decreased T and B cell contamination, which allowed us to reveal the gene expression profile of this elusive macrophage subset. Squamous cell carcinomas induced an increase in the expression of Fc receptors, lysosomal and proteasomal enzymes in SSMs. Imaging of mouse and patient lymph nodes confirmed the presence of the top differentially expressed genes. These results suggest that SSMs respond to tumor formation by upregulating the machinery necessary for presentation of tumor particulate antigens to B cells.
Collapse
Affiliation(s)
- Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Natalie Claudio
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Zihan Guo
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States.,Program in Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Tahereh Ziglari
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Ferdinando Pucci
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
23
|
Xiang Q, Feng Z, Diao B, Tu C, Qiao Q, Yang H, Zhang Y, Wang G, Wang H, Wang C, Liu L, Wang C, Liu L, Chen R, Wu Y, Chen Y. SARS-CoV-2 Induces Lymphocytopenia by Promoting Inflammation and Decimates Secondary Lymphoid Organs. Front Immunol 2021; 12:661052. [PMID: 33995382 PMCID: PMC8113960 DOI: 10.3389/fimmu.2021.661052] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/30/2021] [Indexed: 12/30/2022] Open
Abstract
While lymphocytopenia is a common characteristic of coronavirus disease 2019 (COVID-19), the mechanisms responsible for this lymphocyte depletion are unclear. Here, we retrospectively reviewed the clinical and immunological data from 18 fatal COVID-19 cases, results showed that these patients had severe lymphocytopenia, together with high serum levels of inflammatory cytokines (IL-6, IL-8 and IL-10), and elevation of many other mediators in routine laboratory tests, including C-reactive protein, lactate dehydrogenase, α-hydroxybutyrate dehydrogenase and natriuretic peptide type B. The spleens and hilar lymph nodes (LNs) from six additional COVID-19 patients with post-mortem examinations were also collected, histopathologic detection showed that both organs manifested severe tissue damage and lymphocyte apoptosis in these six cases. In situ hybridization assays illustrated that SARS-CoV-2 viral RNA accumulates in these tissues, and transmission electronic microscopy confirmed that coronavirus-like particles were visible in the LNs. SARS-CoV-2 Spike and Nucleocapsid protein (NP) accumulated in the spleens and LNs, and the NP antigen restricted in angiotensin-converting enzyme 2 (ACE2) positive macrophages and dendritic cells (DCs). Furthermore, SARS-CoV-2 triggered the transcription of Il6, Il8 and Il1b genes in infected primary macrophages and DCs in vitro, and SARS-CoV-2-NP+ macrophages and DCs also manifested high levels of IL-6 and IL-1β, which might directly decimate human spleens and LNs and subsequently lead to lymphocytopenia in vivo. Collectively, these results demonstrated that SARS-CoV-2 induced lymphocytopenia by promoting systemic inflammation and direct neutralization in human spleen and LNs.
Collapse
Affiliation(s)
- Qun Xiang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Chao Tu
- Department of Pathology, Jinyintan Hospital, Wuhan, China
| | - Qinghua Qiao
- Pingdingshan Medical District, The 989th Hospital of the PLA Joint Logistic Support Force, Pingdingshan, China
| | - Han Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Gang Wang
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changsong Wang
- Department of Pathology, 989th Hospital of PLA, Luoyang, China
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Rong Chen
- Department of Pathology, Jinyintan Hospital, Wuhan, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
24
|
Tsukamoto H, Komohara Y, Oshiumi H. The role of macrophages in anti-tumor immune responses: pathological significance and potential as therapeutic targets. Hum Cell 2021; 34:1031-1039. [PMID: 33905102 DOI: 10.1007/s13577-021-00514-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022]
Abstract
Malignant tumors comprise various types of normal cells and tumor cells, and are infiltrated by large numbers of immune cells, including macrophages. The results of numerous studies on the function and significance of intratumoral macrophages (tumor-associated macrophages) suggest that these macrophages generally enhance tumor progression rather than act as anti-tumor immune agents. Although much remains unknown, in this review, we attempt to describe the role of macrophages in the tumor microenvironment, and discuss their potential mechanisms on the recent immunotherapy.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Komohara
- Department of Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan.
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
25
|
CD169 + lymph node macrophages have protective functions in mouse breast cancer metastasis. Cell Rep 2021; 35:108993. [PMID: 33852863 DOI: 10.1016/j.celrep.2021.108993] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/01/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Although the contribution of macrophages to metastasis is widely studied in primary tumors, the involvement of macrophages in tumor-draining lymph nodes (LNs) in this process is less clear. We find CD169+ macrophages as the predominant macrophage subtype in naive LNs, which undergo proliferative expansion in response to tumor stimuli. CD169+ LN macrophage depletion, using an anti-CSF-1R antibody or clodronate-loaded liposomes, leads to increased metastatic burden in two mouse breast cancer models. The expansion of CD169+ macrophages is tightly connected to B cell expansion in tumor-draining LNs, and B cell depletion abrogates the effect of CD169+ macrophage absence on metastasis, indicating that the CD169+ macrophage anti-metastatic effects require B cell presence. These results reveal a protective role of CD169+ LN macrophages in breast cancer metastasis and raise caution for the use of drugs aiming at the depletion of tumor-associated macrophages, which might simultaneously deplete macrophages in tumor-draining LNs.
Collapse
|
26
|
Kumamoto K, Tasaki T, Ohnishi K, Shibata M, Shimajiri S, Harada M, Komohara Y, Nakayama T. CD169 Expression on Lymph Node Macrophages Predicts in Patients With Gastric Cancer. Front Oncol 2021; 11:636751. [PMID: 33816277 PMCID: PMC8017296 DOI: 10.3389/fonc.2021.636751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
The induction of an anti-cancer immune responses is potentially associated with the efficacy of anti-cancer therapy. Recent studies have indicated that sinus macrophages in regional lymph nodes are involved in anti-cancer immune responses in the cancer microenvironment. In the present study, we investigated the correlation between lymphocyte infiltration in cancer tissues and macrophage activation in regional lymph nodes. We retrospectively identified 294 patients with gastric cancer who underwent surgery from 2008 to 2012. Using immunohistochemistry, we evaluated CD169-expression on CD68-positive macrophages, and the density of CD8-postive lymphocytes in tumor microenvironment. We statistically examined the correlation between CD169 and CD8 expression, and performed Cox regression analysis of potential prognostic factors, including CD169 and CD8 expression, for cancer-specific survival (CSS) in patients with total and advanced gastric cancer. CD169 overexpression in lymph node sinus macrophages (LySMs) was positively correlated to the density of CD8-positive lymphocytes in primary cancer tissues (R = 0.367, p < 0.001). A high density of CD8-positive T lymphocytes in the primary site and a high level of CD169 expression in LySMs were independently associated with greater CSS in patients with total and advanced gastric cancer (p < 0.05 for all). The expression on CD169 in LySMs is a predictor of a favorable clinical course in patients with gastric cancer, and might be useful for evaluating anti-cancer immune responses.
Collapse
Affiliation(s)
- Keiichiro Kumamoto
- Department of Pathology, University of Environmental and Occupational Health, Fukuoka, Japan.,Third Department of Internal Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Takashi Tasaki
- Department of Pathology, University of Environmental and Occupational Health, Fukuoka, Japan.,Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Michihiko Shibata
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Shohei Shimajiri
- Department of Pathology, University of Environmental and Occupational Health, Fukuoka, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, University of Environmental and Occupational Health, Fukuoka, Japan
| |
Collapse
|
27
|
Grabowska J, Stolk DA, Nijen Twilhaar MK, Ambrosini M, Storm G, van der Vliet HJ, de Gruijl TD, van Kooyk Y, den Haan JM. Liposomal Nanovaccine Containing α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8 + T Cell Responses via CD169 + Macrophages and cDC1. Vaccines (Basel) 2021; 9:vaccines9010056. [PMID: 33467048 PMCID: PMC7830461 DOI: 10.3390/vaccines9010056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
Successful anti-cancer vaccines aim to prime and reinvigorate cytotoxic T cells and should therefore comprise a potent antigen and adjuvant. Antigen targeting to splenic CD169+ macrophages was shown to induce robust CD8+ T cell responses via antigen transfer to cDC1. Interestingly, CD169+ macrophages can also activate type I natural killer T-cells (NKT). NKT activation via ligands such as α-galactosylceramide (αGC) serve as natural adjuvants through dendritic cell activation. Here, we incorporated ganglioside GM3 and αGC in ovalbumin (OVA) protein-containing liposomes to achieve both CD169+ targeting and superior DC activation. The systemic delivery of GM3-αGC-OVA liposomes resulted in specific uptake by splenic CD169+ macrophages, stimulated strong IFNγ production by NKT and NK cells and coincided with the maturation of cDC1 and significant IL-12 production. Strikingly, superior induction of OVA-specific CD8+ T cells was detected after immunization with GM3-αGC-OVA liposomes. CD8+ T cell activation, but not B cell activation, was dependent on CD169+ macrophages and cDC1, while activation of NKT and NK cells were partially mediated by cDC1. In summary, GM3-αGC antigen-containing liposomes are a potent vaccination platform that promotes the interaction between different immune cell populations, resulting in strong adaptive immunity and therefore emerge as a promising anti-cancer vaccination strategy.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Dorian A. Stolk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hans J. van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (H.J.v.d.V.); (T.D.d.G.)
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (H.J.v.d.V.); (T.D.d.G.)
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Joke M.M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
- Correspondence: ; Tel.: +31-20-4448080
| |
Collapse
|
28
|
Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc 2021; 120:5-24. [DOI: 10.1016/j.jfma.2019.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
|
29
|
Liu Y, Xia Y, Qiu CH. Functions of CD169 positive macrophages in human diseases (Review). Biomed Rep 2020; 14:26. [PMID: 33408860 PMCID: PMC7780751 DOI: 10.3892/br.2020.1402] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
CD169+ macrophages are a unique type of macrophage subset that differ from M1 and M2 macrophages. CD169+ macrophages are present in multiple tissues and organs throughout the body and are primarily expressed in secondary lymphoid organs. These cells are primarily divided across three locations in secondary lymphoid organs: The metallophilic marginal zone of the spleen, the subcapsular sinus and the medulla of the lymph nodes. Due to their unique location distribution in vivo and the presence of the CD169 molecule on their surfaces, CD169+ macrophages are reported to serve important roles in several processes, such as phagocytosis, antigen presentation, immune tolerance, viral infection and inflammatory responses. At the same time, it has been reported that CD169+ macrophages may also serve an important role in anti-tumour immunity. The present review focuses on the research progress surrounding the function of CD169+ macrophages in a variety of diseases, such as viral infection, autoimmune diseases and tumours.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chun-Hong Qiu
- Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
30
|
Tu MM, Abdel-Hafiz HA, Jones RT, Jean A, Hoff KJ, Duex JE, Chauca-Diaz A, Costello JC, Dancik GM, Tamburini BAJ, Czerniak B, Kaye J, Theodorescu D. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun Biol 2020; 3:720. [PMID: 33247183 PMCID: PMC7699641 DOI: 10.1038/s42003-020-01441-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapies targeting the PD-1/PD-L1 axis are now a mainstay in the clinical management of multiple cancer types, however, many tumors still fail to respond. CCL2 is highly expressed in various cancer types and has been shown to be associated with poor prognosis. Inhibition or blockade of the CCL2/CCR2 signaling axis has thus been an area of interest for cancer therapy. Here we show across multiple murine tumor and metastasis models that CCR2 antagonism in combination with anti-PD-1 therapy leads to sensitization and enhanced tumor response over anti-PD-1 monotherapy. We show that enhanced treatment response correlates with enhanced CD8+ T cell recruitment and activation and a concomitant decrease in CD4+ regulatory T cell. These results provide strong preclinical rationale for further clinical exploration of combining CCR2 antagonism with PD-1/PD-L1-directed immunotherapies across multiple tumor types especially given the availability of small molecule CCR2 inhibitors and antibodies.
Collapse
Affiliation(s)
- Megan M Tu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hany A Abdel-Hafiz
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Robert T Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Annie Jean
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katelyn J Hoff
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jason E Duex
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ana Chauca-Diaz
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Jonathan Kaye
- Research Division of Immunology, Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.
- Department Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
31
|
Yukuyama MN, de Araujo GLB, de Souza A, Löbenberg R, Barbosa EJ, Henostroza MAB, Rocha NPD, de Oliveira IF, Folchini BR, Peroni CM, Masiero JF, Bou-Chacra NA. Cancer treatment in the lymphatic system: A prospective targeting employing nanostructured systems. Int J Pharm 2020; 587:119697. [PMID: 32750440 DOI: 10.1016/j.ijpharm.2020.119697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Cancer related to lymphangiogenesis has gained a great deal of attention in recent decades ever since specific markers of this intriguing system were discovered. Unlike the blood system, the lymphatic system has unique features that can advance cancer in future metastasis, or, conversely, can provide an opportunity to prevent or treat this disease that affects people worldwide. The aim of this review is to show the recent research of cancer treatment associated with the lymphatic system, considered one of the main gateways for disseminating metastatic cells to distant organs. Nanostructured systems based on theranostics and immunotherapies can offer several options for this complex disease. Precision targeting and accumulation of nanomaterials into the tumor sites and their elimination, or targeting the specific immune defense cells to promote optimal regression of cancer cells are highlighted in this paper. Moreover, therapies based on nanostructured systems through lymphatic systems may reduce the side effects and toxicity, avoid first pass hepatic metabolism, and improve patient recovery. We emphasize the general understanding of the association between the immune and lymphatic systems, their interaction with tumor cells, the mechanisms involved and the recent developments in several nanotechnology treatments related to this disease.
Collapse
Affiliation(s)
- Megumi Nishitani Yukuyama
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Gabriel Lima Barros de Araujo
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil.
| | - Aline de Souza
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Raimar Löbenberg
- Division of Pharmaceutical Sciences, Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, 11361 - 87 Avenue, Room 3-142-K, Edmonton, AB T6G 2E1, Canada
| | - Eduardo José Barbosa
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Mirla Anali Bazán Henostroza
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Nataly Paredes da Rocha
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Isabela Fernandes de Oliveira
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Beatriz Rabelo Folchini
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Camilla Midori Peroni
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Jessica Fagionato Masiero
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil.
| |
Collapse
|
32
|
Uchida Y, Nishitai G, Kikuchi K, Shibuya T, Asano K, Tanaka M. CD204-positive monocytes and macrophages ameliorate septic shock by suppressing proinflammatory cytokine production in mice. Biochem Biophys Rep 2020; 23:100791. [PMID: 32793817 PMCID: PMC7415826 DOI: 10.1016/j.bbrep.2020.100791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 01/31/2023] Open
Abstract
Sepsis is defined as a life-threatening multiorgan dysfunction caused by dysregulated inflammatory response to infection. It remains the primary cause of death from infection if not diagnosed and treated promptly. Therefore, a better understanding of the mechanism for resolving inflammation is needed. Monocytes and macrophages play a pivotal role not only in the induction but also in the suppression of inflammation. However, a tissue-resident macrophage subset that regulates a hyperinflammatory state during sepsis has not been explored. Here we show that CD204+ monocytes and/or macrophages rescued mice from endotoxin-induced septic shock. Serum and tissue proinflammatory cytokine levels were significantly upregulated in the absence of these cells. This study provided evidence that CD204+ monocytes and/or macrophages ameliorate septic shock by suppressing proinflammatory cytokine production.
Collapse
|
33
|
Komohara Y, Harada M, Ohnishi K, Kumamoto K, Nakayama T. PD-L1 expression in regional lymph nodes and predictable roles in anti-cancer immune responses. J Clin Exp Hematop 2020; 60:113-116. [PMID: 32641599 PMCID: PMC7596915 DOI: 10.3960/jslrt.20015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Mamoru Harada
- Department of Immunology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichiro Kumamoto
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
34
|
Chapuy L, Sarfati M. Single-Cell Protein and RNA Expression Analysis of Mononuclear Phagocytes in Intestinal Mucosa and Mesenteric Lymph Nodes of Ulcerative Colitis and Crohn's Disease Patients. Cells 2020; 9:E813. [PMID: 32230977 PMCID: PMC7226791 DOI: 10.3390/cells9040813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are driven by an abnormal immune response to commensal microbiota in genetically susceptible hosts. In addition to epithelial and stromal cells, innate and adaptive immune systems are both involved in IBD immunopathogenesis. Given the advances driven by single-cell technologies, we here reviewed the immune landscape and function of mononuclear phagocytes in inflamed non-lymphoid and lymphoid tissues of CD and UC patients. Immune cell profiling of IBD tissues using scRNA sequencing combined with multi-color cytometry analysis identifies unique clusters of monocyte-like cells, macrophages, and dendritic cells. These clusters reflect either distinct cell lineages (nature), or distinct or intermediate cell types with identical ontogeny, adapting their phenotype and function to the surrounding milieu (nurture and tissue imprinting). These advanced technologies will provide an unprecedented view of immune cell networks in health and disease, and thus may offer a personalized medicine approach to patients with IBD.
Collapse
Affiliation(s)
| | - Marika Sarfati
- Immunoregulation Laboratory, CRCHUM, Montreal, QC H2X 0A9, Canada;
| |
Collapse
|
35
|
Chapuy L, Bsat M, Rubio M, Harvey F, Motta V, Schwenter F, Wassef R, Richard C, Deslandres C, Nguyen BN, Soucy G, Hacohen N, Fritz J, Villani AC, Mehta H, Sarfati M. Transcriptomic Analysis and High-dimensional Phenotypic Mapping of Mononuclear Phagocytes in Mesenteric Lymph Nodes Reveal Differences Between Ulcerative Colitis and Crohn's Disease. J Crohns Colitis 2020; 14:393-405. [PMID: 31541232 PMCID: PMC7068244 DOI: 10.1093/ecco-jcc/jjz156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] and ulcerative colitis [UC] are distinct forms of inflammatory bowel disease. Heterogeneity of HLA-DR+SIRPα + mononuclear phagocytes [MNPs], including macrophages [MΦ], monocyte-derived [Mono] cells, and dendritic cells [DCs], was reported in gut tissue but not yet investigated in mesenteric lymph nodes [MLNs] of IBD patients. We here compared the phenotype, function, and molecular profile of HLA-DR+SIRPα + MNPs in CD and UC MLNs. METHODS Cell distribution, morphology, immune function, and transcriptomic [bulk RNAseq] and high-dimensional protein expression profiles [CyTOF] of HLA-DR+SIRPα + MNPs were examined in MLNs of UC [n = 14], CD [n = 35], and non-IBD [n = 12] patients. RESULTS Elevated frequencies of CD14+CD64+CD163+ [Mono/MΦ-like] MNPs displaying monocyte/MΦ morphology and phagocytic function were a distinct feature of UC MLNs. In CD, the proportion of CD14-CD64-CD163- [DC-like] cells was augmented relative to Mono/MΦ-like cells; DC-like cells drove naïve T cell proliferation, Th1 polarisation, and Th17 TCM plasticity. Gene expression profile corroborated the nature of DC-like cells, best represented by BTLA, SERPINF, IGJ and, of Mono/MΦ-like cells, defined by CD163, MARCO, MAFB, CD300E, S100A9 expression. CyTOF analysis showed that CD123+ plasmacytoid cells predominated over conventional DCs in DC-like cells. Four CD163+ clusters were revealed in Mono/MΦ-like cells, two of which were enriched in MARCO-CD68dimHLA-DRdim monocyte-like cells and MARCOhiCD68hiHLA-DRhi Mɸ, whose proportion increased in UC relative to CD. CONCLUSIONS Defining the landscape of MNPs in MLNs provided evidence for expansion of CD163+ Mono/MΦ-like cells in UC only, highlighting a distinction between UC and CD, and thus the potential contribution of monocyte-like cells in driving colitis.
Collapse
Affiliation(s)
- Laurence Chapuy
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - Marwa Bsat
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - François Harvey
- Department of Biomedical Informatics, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - Vinicius Motta
- McGill Goodman Research Center, McGill University, Montréal, QC, Canada
| | - Frank Schwenter
- Digestive Surgery Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Ramses Wassef
- Digestive Surgery Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Carole Richard
- Digestive Surgery Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Colette Deslandres
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, CHU Sainte-Justine, Université de Montreal, QC, Canada
| | - Bich N Nguyen
- Pathology Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Geneviève Soucy
- Pathology Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Jorge Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, Qc, Canada
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Heena Mehta
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| |
Collapse
|
36
|
Maeta M, Miura N, Tanaka H, Nakamura T, Kawanishi R, Nishikawa Y, Asano K, Tanaka M, Tamagawa S, Nakai Y, Tange K, Yoshioka H, Harashima H, Akita H. Vitamin E Scaffolds of pH-Responsive Lipid Nanoparticles as DNA Vaccines in Cancer and Protozoan Infection. Mol Pharm 2020; 17:1237-1247. [PMID: 32129629 DOI: 10.1021/acs.molpharmaceut.9b01262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
DNA vaccinations are promising strategies for treating diseases that require cellular immunity (i.e., cancer and protozoan infection). Here, we report on the use of a liposomal nanocarrier (lipid nanoparticles (LNPs)) composed of an SS-cleavable and pH-activated lipidlike material (ssPalm) as an in vivo DNA vaccine. After subcutaneous administration, the LNPs containing an ssPalmE, an ssPalm with vitamin E scaffolds, elicited a higher gene expression activity in comparison with the other LNPs composed of the ssPalms with different hydrophobic scaffolds. Immunization with the ssPalmE-LNPs encapsulating plasmid DNA that encodes ovalbumin (OVA, a model tumor antigen) or profilin (TgPF, a potent antigen of Toxoplasma gondii) induced substantial antitumor or antiprotozoan effects, respectively. Flow cytometry analysis of the cells that had taken up the LNPs in draining lymph nodes (dLNs) showed that the ssPalmE-LNPs were largely taken up by macrophages and a small number of dendritic cells. We found that the transient deletion of CD169+ macrophages, a subpopulation of macrophages that play a key role in cancer immunity, unexpectedly enhanced the activity of the DNA vaccine. These data suggest that the ssPalmE-LNPs are effective DNA vaccine carriers, and a strategy for avoiding their being trapped by CD169+ macrophages will be a promising approach for developing next-generation DNA vaccines.
Collapse
Affiliation(s)
- Mio Maeta
- Department of Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo City, Hokkaido 060-0812, Japan
| | - Naoya Miura
- Department of Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo City, Hokkaido 060-0812, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan
| | - Takashi Nakamura
- Department of Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo City, Hokkaido 060-0812, Japan
| | - Ryo Kawanishi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro City, Hokkaido 080-8555, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro City, Hokkaido 080-8555, Japan
| | - Kenichi Asano
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji City, Tokyo 192-0392, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji City, Tokyo 192-0392, Japan
| | - Shinya Tamagawa
- DDS Research Laboratory, NOF CORPORATION, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Yuta Nakai
- DDS Research Laboratory, NOF CORPORATION, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Kota Tange
- DDS Research Laboratory, NOF CORPORATION, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Hiroki Yoshioka
- DDS Research Laboratory, NOF CORPORATION, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Hideyoshi Harashima
- Department of Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo City, Hokkaido 060-0812, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan
| |
Collapse
|
37
|
Takeya H, Ohnishi K, Shiota T, Saito Y, Fujiwara Y, Yagi T, Kiyozumi Y, Baba Y, Yoshida N, Asano K, Tanaka M, Baba H, Komohara Y. Maf expression in human macrophages and lymph node sinus macrophages in patients with esophageal cancer. J Clin Exp Hematop 2019; 59:112-118. [PMID: 31564713 PMCID: PMC6798145 DOI: 10.3960/jslrt.19002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The large Maf transcription factors are expressed in immune cells including macrophages and lymphocytes. To investigate the distribution of Maf expression in human organs, immunostaining for Maf was performed using sections of several human organs. High Maf expression was seen in the nucleus of macrophages in the gastrointestinal tract and lymph node sinus macrophages (LySMs). Then, we assessed whether Maf expression in LySMs was correlated with CD169 expression and the clinical prognosis in patients with esophageal cancer. Maf expression was associated with CD169 expression, but Maf expression in LySMs was not associated with the clinical course in patients with esophageal cancer. We determined which cytokines stimulate Maf expression using cultured macrophages. Immunocytochemistry showed that Maf expression was significantly elevated by interferon-γ. These results are the first report of Maf expression in human samples. Maf expression may be a marker for the macrophage population in humans.
Collapse
|
38
|
Matsusaka K, Ishima Y, Maeda H, Kinoshita R, Ichimizu S, Taguchi K, Giam Chuang VT, Nishi K, Yamasaki K, Otagiri M, Watanabe H, Maruyama T. α 1-Acid Glycoprotein Has the Potential to Serve as a Biomimetic Drug Delivery Carrier for Anticancer Agents. J Pharm Sci 2019; 108:3592-3598. [PMID: 31288036 DOI: 10.1016/j.xphs.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
Abstract
Nanosize plasma proteins could be used as a biomimetic drug delivery system (DDS) for cancer treatment when loaded with anticancer drugs based on the fact that plasma proteins can serve as a source of nutrients for cancer cells. This prompted us to investigate the potential of α1-acid glycoprotein (AGP) for this role because it is a nanosize plasma protein and binds a variety of anticancer agents. Pharmacokinetic analyses indicated that AGP is distributed more extensively in tumor tissue than human serum albumin, which was already established as a cancer DDS carrier. AGP is possibly being incorporated into tumor cells via endocytosis pathways. Moreover, a synthetic AGP-derived peptide which possesses a high ability to form an α-helix, as deduced from the primary structure of AGP, was also taken up by the tumor cells. AGP loaded with anticancer agents, such as paclitaxel or nitric oxide, efficiently induced tumor cell death. These results suggest that AGP has the potential to be a novel DDS carrier for anticancer agents.
Collapse
Affiliation(s)
- Kotaro Matsusaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryo Kinoshita
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shota Ichimizu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 1-22-4 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 1-22-4 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 1-22-4 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
39
|
Hu J, Xu J, Li M, Zhang Y, Yi H, Chen J, Dong L, Zhang J, Huang Z. Targeting Lymph Node Sinus Macrophages to Inhibit Lymph Node Metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:650-662. [PMID: 31121477 PMCID: PMC6529739 DOI: 10.1016/j.omtn.2019.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/23/2022]
Abstract
Lymph nodes are important peripheral immune organs in which numerous important immune responses occur. During the process of lymphatic metastasis, lymph nodes are also sites through which tumor cells must pass. Therefore, it is essential to develop a drug delivery system that can specifically transfer immunostimulatory medicine into lymph nodes to block lymphatic metastasis. Here, we developed a nucleic acid drug delivery system containing cationic agarose (C-agarose) and CpG oligodeoxynucleotides. C-agarose has a high affinity for Siglec-1 on the surface of lymph node sinus macrophages, which have a high specificity for targeting lymph nodes. Subcutaneous implantation of C-agarose+CpG gel caused the accumulation of CpG in the lymph node sinus macrophages and generated antitumor immune responses in the lymph node. C-agarose+CpG gel treatment decreased the metastasis size in the tumor-draining lymph node (TDLN) and lung metastatic nodules and suppressed tumor growth in both a mouse 4T1 breast cancer model and a B16F10 melanoma model. On this basis, this study proposes a nonsurgical invasive lymph node targeting immunotherapy concept that may provide a new approach for antitumor metastasis.
Collapse
Affiliation(s)
- Junqing Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Jinhao Xu
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Mingyue Li
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Yanping Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Huaiqiang Yi
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Lei Dong
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Junfeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| | - Zhen Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To evaluate role of the lymph node in immune regulation and tolerance in transplantation and recent advances in the delivery of antigen and immune modulatory signals to the lymph node. RECENT FINDINGS Lymph nodes are a primary site of immune cell priming, activation, and modulation, and changes within the lymph node microenvironment have the potential to induce specific regulation, suppression, and potentially tolerance. Antigen enters the lymph node either from tissues via lymphatics, from blood via high endothelial venules, or directly via injection. Here we review different techniques and materials to deliver antigen to the lymph node including microparticles or nanoparticles, ex-vivo antigen presenting cell manipulation, and use of receptor conjugation for specific intralymph node targeting locations. SUMMARY The promising results point to powerful techniques to harness the lymph node microenvironment and direct systemic immune regulation. The materials, techniques, and approaches suggest that translational and clinical trials in nonhuman primate and patients may soon be possible.
Collapse
|
41
|
Takeya H, Shiota T, Yagi T, Ohnishi K, Baba Y, Miyasato Y, Kiyozumi Y, Yoshida N, Takeya M, Baba H, Komohara Y. High CD169 expression in lymph node macrophages predicts a favorable clinical course in patients with esophageal cancer. Pathol Int 2018; 68:685-693. [PMID: 30516869 DOI: 10.1111/pin.12736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/13/2018] [Indexed: 12/27/2022]
Abstract
Recent findings indicate CD169-positive lymph node sinus macrophages (LySMs) in the regional lymph nodes (RLNs) play an important role in anti-cancer immunity. In the present study, we investigated the correlation between CD169 expression in RLNs and clinicopathologic factors. Higher CD169 expression in LySMs was significantly associated with longer cancer-specific survival (CSS). The density of tumor-infiltrating lymphocytes (TILs) in the cancer nest and CD169 expression on LySMs were positively associated in patients who underwent pretreatment. As CD169 expression is thought to reflect a high interferon signature in RLNs, we tried to identify immunity-related genes that are up-regulated by interferon in macrophages as well as CD169. Indoleamine 2,3-dioxygenase (IDO1) was found to be elevated by interferon, and expression of IDO1 was tested using immunohistochemistry. IDO1 expression on LySMs was positively correlated with CD169 expression; however, there was no significant correlation between IDO1 and clinicopathologic factors. These results suggest that high expression of CD169 in LySMs reflects a high potential for anti-cancer immune responses in esophageal cancer patients and that monitoring CD169 expression would be useful for evaluating the potential of anti-cancer immune reactions.
Collapse
Affiliation(s)
- Hiroto Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Takuya Shiota
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Taisuke Yagi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Yuko Miyasato
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Kumamoto, Japan
| |
Collapse
|
42
|
Moran I, Grootveld AK, Nguyen A, Phan TG. Subcapsular Sinus Macrophages: The Seat of Innate and Adaptive Memory in Murine Lymph Nodes. Trends Immunol 2018; 40:35-48. [PMID: 30502023 DOI: 10.1016/j.it.2018.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023]
Abstract
Subcapsular sinus (SCS) macrophages are strategically positioned at the lymph-tissue interface in the lymph node to trap and present antigen to B cells. Recent murine data has shown that SCS macrophages also prevent the systemic spread of lymph-borne pathogens and are capable of activating a diverse range of innate effector and adaptive memory cells, including follicular memory T cells and memory B cells (Bmems), that are either pre-positioned or rapidly recruited to the subcapsular niche following infection and inflammation. Furthermore, Bmems are rapidly reactivated to differentiate into plasma cells in subcapsular proliferative foci (SPF). Thus, understanding how SCS macrophages coordinate both innate and adaptive memory responses in the subcapsular niche can provide new opportunities to bolster immunity against pathogens and cancer.
Collapse
Affiliation(s)
- Imogen Moran
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Abigail K Grootveld
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; Department of Biology and Biochemistry, Faculty of Science, University of Bath, Bath, UK
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
43
|
Asano K, Kikuchi K, Tanaka M. CD169 macrophages regulate immune responses toward particulate materials in the circulating fluid. J Biochem 2018; 164:77-85. [PMID: 29905851 DOI: 10.1093/jb/mvy050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Tissue macrophages comprise heterogeneous subsets that differ in localization, phenotype and ontogeny. They acquire tissue-specific phenotype in order to maintain normal tissue physiology. This review summarizes the current knowledge about the functions of CD169-positive macrophage subset residing in the lymphoid organs and intestinal tract. Strategically positioned at the interface between tissue and circulating fluid, CD169+ macrophages in the lymphoid organs capture blood- and lymph-borne particulate materials. Antigen information relayed by CD169+ macrophages to neighbouring immune cells is important for enhancement of antimicrobial and antitumour immunity as well as induction of tolerance. In the intestinal tract, CD169+ macrophages localize distantly from epithelial border. Following mucosal injury, they exacerbate inflammation by producing CCL8 that recruits inflammatory monocytes. As such, a better understanding of CD169+ macrophage phenotypes may enable the design of tissue-specific therapies for both immunological and non-immunological diseases.
Collapse
Affiliation(s)
- Kenichi Asano
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenta Kikuchi
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
44
|
Abstract
The published during last few years data concerning communicative role of lectins (proteins and their complexes which recognize carbohydrates, glycoconjugates and their patterns) in on-duty supporting and increasing anticancer status of human immunity are analyzed. Examples of lectin-(glycoconjugate pattern) strategies, approaches and tactic variants in study and development of anticancer treatments, principle variants of therapy, possible vaccines in 35 cases of blood connected tumors (leukemia, lymphomas, others), solid tumors (carcinomas, sarcoma, cancers of vaginal biotopes, prostate, bladder, colon, other intestinal compartments, pancreas, liver, kidneys, others) and cancer cell lines are described and systemized. The list of mostly used communicative lectins (pattern recognition receptors, their soluble forms, other soluble lectins possessing specificities of importance) involving in key intercellular cascades and pathway co-functioning is presented. The regulation of resulting expression of distinct active lectins (available and hetero/di/oligomeric forms) and their interaction to adequate glycoconjugate patterns as well as influence distribution of co-functioning lectins and antigens CD between populations and subpopulations of antigen-presented cells (dendritic cells cDC, mDC, moDC, pDC; macrophages M2 and M1), mucosal M-cells, NK-cells play key role for choice and development of anticancer complex procedures increasing innate and innate-coupled immune responses. Prospects of (receptor lectin)-dependent intercellular communications and targeting glycoconjugate constructions into innate immunity cells for therapy of cancer and development of anticancer vaccines are evaluated and discussed.
Collapse
|
45
|
Fujiwara Y, Saito Y, Shiota T, Cheng P, Ikeda T, Ohnishi K, Takeya M, Komohara Y. Natural compounds that regulate lymph node sinus macrophages: Inducing an anti-tumor effect by regulating macrophage activation. J Clin Exp Hematop 2018; 58:17-23. [PMID: 29553092 DOI: 10.3960/jslrt.17032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent progress in anti-tumor therapy has revealed the significance of anti-tumor immune responses in tumor progression and clinical course in several kinds of malignant tumors. The draining lymph node is an important immune system component that contains a number of antigen-presenting cells, which induce rapid immune responses to foreign antigens. Current studies have shown that higher expression of CD169 on lymph node sinus macrophages is associated with the induction of anti-tumor immunity. In the present study, we searched for natural compounds that regulate the CD169-positive phenotype in macrophages to identify potential new anti-cancer agents targeting macrophage activation. Among 50 natural compounds, aculeatiside A, naringin, and onionin A significantly induced the CD169-positive phenotype in human monocyte-derived macrophages. These compounds also induced CD169 overexpression and secretion of inflammatory cytokines, including interleukin (IL)-1β and IL-12, in murine macrophages. Subcutaneous injection of aculeatiside A and naringin enhanced mRNA expression of IL-1β, IL12, and CD169 in regional lymph nodes in mice. These findings suggest aculeatiside A and naringin may enhance anti-tumor immune responses by inducing CD169-positive macrophages in lymph nodes.
Collapse
Affiliation(s)
- Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoichi Saito
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Shiota
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Pan Cheng
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Ikeda
- Department of Natural Medicine, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
46
|
Asano T, Ohnishi K, Shiota T, Motoshima T, Sugiyama Y, Yatsuda J, Kamba T, Ishizaka K, Komohara Y. CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis. Cancer Sci 2018. [PMID: 29520898 PMCID: PMC5980134 DOI: 10.1111/cas.13565] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD169+ macrophages are suggested to play a pivotal role in establishing anti‐tumor immunity. They capture dead tumor cell‐associated antigens and transfer their information to lymphocsytes, including CD8+ T cells, which is important for successful tumor suppression. This study aimed to determine the prognostic significance of CD169+ macrophages residing in the tumor‐draining lymph nodes from cases of bladder cancer. In this retrospective study, 44 bladder cancer patients who received radical cystectomy were examined. The abundance of CD169+ macrophages in the regional lymph nodes and the number of CD8+ T cells in the primary tumor were investigated by immunohistochemistry. A CD169 score was calculated based on the intensity of CD169 staining and the proportion of CD169+ macrophages, and the scores were compared to the patients’ clinicopathological parameters. A high CD169 score was significantly associated with low T stage and with a high number of CD8+ T cells infiltrating into the tumor. The group with high CD169 expression had significantly longer cancer‐specific survival than the group with low CD169 expression (5‐year cancer‐specific survival rate: 83.3% vs 31.3%). In a multivariate analysis, the CD169 score was identified as a strong and independent favorable prognostic factor for cancer‐specific survival. Our findings suggest that CD169+ macrophages in the lymph nodes enhance anti‐tumor immunity by expanding CD8+ T cells in bladder cancer. The CD169 score may serve as a novel marker for the evaluation of bladder cancer prognosis.
Collapse
Affiliation(s)
- Touko Asano
- Department of Urology, Omori Red Cross Hospital, Tokyo, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Shiota
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takanobu Motoshima
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Sugiyama
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Ishizaka
- Department of Urology, Teikyo University Hospital Mizonokuchi, Kanagawa, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
47
|
Eguchi T, Sogawa C, Okusha Y, Uchibe K, Iinuma R, Ono K, Nakano K, Murakami J, Itoh M, Arai K, Fujiwara T, Namba Y, Murata Y, Ohyama K, Shimomura M, Okamura H, Takigawa M, Nakatsura T, Kozaki KI, Okamoto K, Calderwood SK. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment. PLoS One 2018; 13:e0191109. [PMID: 29415026 PMCID: PMC5802492 DOI: 10.1371/journal.pone.0191109] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenta Uchibe
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | - Kisho Ono
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keisuke Nakano
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Murakami
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
- Department of Oral Diagnosis and Dent-maxillofacial Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Manabu Itoh
- JSR Life Sciences Corporation, Tsukuba, Japan
| | - Kazuya Arai
- JSR Life Sciences Corporation, Tsukuba, Japan
| | - Toshifumi Fujiwara
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuri Namba
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshiki Murata
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazumi Ohyama
- Radio Isotope Research Center, Okayama University Dental School, Okayama, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ken-ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
48
|
Strömvall K, Sundkvist K, Ljungberg B, Halin Bergström S, Bergh A. Reduced number of CD169 + macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate 2017; 77:1468-1477. [PMID: 28880401 PMCID: PMC5656907 DOI: 10.1002/pros.23407] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tumor-derived antigens are captured by CD169+ (SIGLEC1+ ) sinus macrophages in regional lymph nodes (LNs), and are presented to effector cells inducing an anti-tumor immune response. Reduced CD169 expression in pre-metastatic regional LNs is associated with subsequent metastatic disease and a poor outcome in several tumor types, but if this is the case in prostate cancer has not been explored. METHODS CD169 expression was measured with immunohistochemistry in metastasis-free regional LNs from 109 prostate cancer patients treated with prostatectomy (January 1996 to April 2002). Possible associations of CD169 expression with PSA-relapse, prostate cancer death, Gleason score, and other clinical data were assessed using Kaplan-Meier survival- and Cox regression analysis. In addition, the Dunning rat prostate tumor model was used to examine CD169 expression in pre-metastatic LNs draining either highly metastatic MatLyLu- or poorly metastatic AT1-tumors. RESULTS In patients with low CD169 immunostaining in metastasis-free regional LNs, 8 of the 27 patients died from prostate cancer compared with only three of the 82 patients with high immunostaining (P < 0.001). CD169 expression in regional LNs was not associated with PSA-relapse. Rats with highly metastatic tumors had decreased CD169 immunoreactivity in pre-metastatic regional LNs compared with rats with poorly metastatic tumors. CONCLUSION Low expression of CD169 in metastasis-free regional LNs indicates a reduced anti-tumor immune response. If verified in other studies, CD169 expression in regional LNs could, in combination with other factors, potentially be used as a marker of prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Kerstin Strömvall
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Kristoffer Sundkvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
49
|
Nakagawa T, Ohnishi K, Kosaki Y, Saito Y, Horlad H, Fujiwara Y, Takeya M, Komohara Y. Optimum immunohistochemical procedures for analysis of macrophages in human and mouse formalin fixed paraffin-embedded tissue samples. J Clin Exp Hematop 2017; 57:31-36. [PMID: 28679964 DOI: 10.3960/jslrt.17017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macrophages are closely related to various diseases and it is therefore important that the properties of macrophages are adequately evaluated in human diseases and mouse disease models. Immunohistochemistry (IHC) of formalin fixed paraffin-embedded (FFPE) samples is a very useful tool for examination of macrophages; however, an adequate IHC protocol is required for the examination of macrophage states. In this study, we assessed various antigen retrieval methods in order to devise the optimal protocols for staining of macrophages with a range of antibodies. Optimum combinations of primary antibodies and antigen retrieval protocols were determined; for example, heat treatment with ethylenediamine tetraacetic acid solution, pH 8.0, was the best procedure for IHC using mouse anti-Iba1 and human anti-CD11b, -CD163, -CD169, -CD204, and -CD206 antibodies. Moreover, we found that the immunoreactivity of sliced tissue sections decreased gradually over time in long term storage but that this immunoreactivity was preserved in storage at -80 °C in a deep freezer. The optimal IHC protocols and storage procedures that were determined in this study should be a useful tool for macrophage research.
Collapse
Affiliation(s)
- Takenobu Nakagawa
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yui Kosaki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yoichi Saito
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Hasita Horlad
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
50
|
Komohara Y, Ohnishi K, Takeya M. Possible functions of CD169-positive sinus macrophages in lymph nodes in anti-tumor immune responses. Cancer Sci 2017; 108:290-295. [PMID: 28002629 PMCID: PMC5378284 DOI: 10.1111/cas.13137] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/11/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022] Open
Abstract
The lymph node (LN) is an important immune system in which a number of antigen‐presenting cells are present that induce rapid immune responses to foreign antigens. While a great number of macrophages exist in lymph nodes, recent studies using animal models have shown that lymph node sinus macrophages are associated with the induction of anti‐tumor immunity, playing a significant role in host immune responses against tumor cells. In colorectal tumor, malignant melanoma, and endometrial tumor, it was shown that a high density of CD169‐positive macrophages in the LN sinus was a predictive factor for better clinical prognosis. The observations that the density of CD169‐positive macrophages in the LN sinus was positively associated with the density of infiltrating T or NK cells in tumor tissues, indicates the significance of CD169‐positive macrophages in anti‐tumor immune reactions of tumor patients. Moreover, antigen delivery targeting LN macrophages is also considered to be promising approach for vaccination. In this article, we have summarized the significance of CD169‐positive LN macrophages in anti‐tumor immunity.
Collapse
Affiliation(s)
- Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Chuouku, Kumamoto, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Chuouku, Kumamoto, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Chuouku, Kumamoto, Japan
| |
Collapse
|