1
|
Kim H, Bae S, Kim SJ. Increased SNAI2 expression and defective collagen adhesion in cells with pediatric dementia, juvenile ceroid lipofuscinosis. Biochem Biophys Res Commun 2024; 738:150561. [PMID: 39154552 DOI: 10.1016/j.bbrc.2024.150561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Dementia-related neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), are known to be caused by accumulation of toxic proteins. However, the molecular mechanisms that cause neurodegeneration and its biophysical effects on cells remain unclear. In this study, we used juvenile neuronal ceroid lipofuscinosis (JNCL), a pediatric dementia with a clear etiology of mutations in ceroid lipofuscinosis neuronal 3 (CLN3), to explore the changes in cell adhesion, a biophysical process that regulates neuronal development and survival. We used JNCL cerebral organoid gene expression datasets to identify the biological pathways that affect neural development, and found enriched gene expression in the epithelial-mesenchymal transition (EMT) pathway and increased expression of its inducer snail family transcriptional repressor 2 (SNAI2). A cell adhesion assay using lymphoblasts from patients with JNCL revealed defective adhesion to cell culture plates, glass surfaces, collagen type I, and neuroblast-like cells. To determine whether inhibition of EMT could improve the cell adhesion of JNCL lymphoblasts, we used all-trans retinoic acid, a well-known EMT inhibitor and inducer of neural differentiation. In JNCL lymphoblasts, ATRA treatment enhanced adhesion to collagen type I and these effects were abolished by Ca2+ chelator. These results provide new insights into the role of CLN3 and cell adhesion in the pathogenesis of NDD.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam, 31499, South Korea
| | - Sechul Bae
- Jung Cosmetic Corporation, Sinchang, Asan, Chungnam, 31537, South Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam, 31499, South Korea.
| |
Collapse
|
2
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Moon DO. Interplay between paclitaxel, gap junctions, and kinases: unraveling mechanisms of action and resistance in cancer therapy. Mol Biol Rep 2024; 51:472. [PMID: 38551726 DOI: 10.1007/s11033-024-09411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
This comprehensive review elucidates the multifaceted roles of paclitaxel, a key chemotherapeutic agent, in cancer therapy, with a focus on its interactions with gap junctions and related kinases. Paclitaxel, with its complex diterpene structure, mediates its anticancer effects predominantly through specific interactions with β-tubulin, instigating cell cycle arrest and triggering various cell death pathways, including apoptosis, pyroptosis, ferroptosis, and necroptosis. The paper systematically delineates the chemical attributes and action mechanisms of paclitaxel and its analogs, underscoring their capacity to disrupt microtubule dynamics, thereby leading to mitotic arrest and subsequent cell death induction. It also scrutinizes the pivotal role of gap junctions, composed of connexin proteins, in the modulation of cancer cell behavior and chemoresistance, especially in the milieu of paclitaxel administration. The review articulates how gap junctions can either suppress tumors or contribute to cancer progression, thereby influencing chemotherapy outcomes. Furthermore, the paper provides an in-depth analysis of how paclitaxel modulates gap junction-associated kinases via phosphorylation, influencing the drug's therapeutic efficacy and resistance profiles. By integrating insights from numerous key studies, the review offers a comprehensive understanding of the interplay between paclitaxel, gap junctions, and kinases, shedding light on potential approaches to augment paclitaxel's anti-tumor effectiveness and counteract chemoresistance in cancer treatment.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do, 38453, Republic of Korea.
| |
Collapse
|
4
|
Caricasulo MA, Zanetti A, Terao M, Garattini E, Paroni G. Cellular and micro-environmental responses influencing the antitumor activity of all-trans retinoic acid in breast cancer. Cell Commun Signal 2024; 22:127. [PMID: 38360674 PMCID: PMC10870483 DOI: 10.1186/s12964-024-01492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
All-trans retinoic acid (ATRA) is the most relevant and functionally active metabolite of Vitamin-A. From a therapeutic standpoint, ATRA is the first example of pharmacological agent exerting its anti-tumor activity via a cell differentiating action. In the clinics, ATRA is used in the treatment of Acute Promyelocytic Leukemia, a rare form of myeloid leukemia with unprecedented therapeutic results. The extraordinary effectiveness of ATRA in the treatment of Acute Promyelocytic Leukemia patients has raised interest in evaluating the potential of this natural retinoid in the treatment of other types of neoplasias, with particular reference to solid tumors.The present article provides an overview of the available pre-clinical and clinical studies focussing on ATRA as a therapeutic agent in the context of breast cancer from a holistic point of view. In detail, we focus on the direct effects of ATRA in breast cancer cells as well as the underlying molecular mechanisms of action. In addition, we summarize the available information on the action exerted by ATRA on the breast cancer micro-environment, an emerging determinant of the progression and invasive behaviour of solid tumors. In particular we discuss the recent evidences of ATRA activity on the immune system. Finally, we analyse and discuss the results obtained with the few ATRA-based clinical trials conducted in the context of breast cancer.
Collapse
Affiliation(s)
- Maria Azzurra Caricasulo
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Adriana Zanetti
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Mineko Terao
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Enrico Garattini
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Gabriela Paroni
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy.
| |
Collapse
|
5
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Vo HVT, Nguyen YT, Kim N, Lee HJ. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int J Mol Sci 2023; 24:17038. [PMID: 38069361 PMCID: PMC10707015 DOI: 10.3390/ijms242317038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases' (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
| | - Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
- Kongju National University Institute of Science Education, Kongju National University, Gongju 32588, Republic of Korea
- Kongju National University’s Physical Fitness for Health Research Lab (KNUPFHR), Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
7
|
Hakim F, Kazemiraad C, Akbari-Birgani S, Abdollahpour D, Mohammadi S. Caspase-9-mediated cleavage of vimentin attenuates the aggressiveness of leukemic NB4 cells. Mol Cell Biochem 2023; 478:2435-2444. [PMID: 36807844 DOI: 10.1007/s11010-023-04671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/30/2023] [Indexed: 02/21/2023]
Abstract
Vimentin is a main type 3 intermediate filament protein. It seems that abnormal expression of vimentin is contributed to the appearance of the aggressive feature of cancer cells. So that it has been reported that malignancy and epithelial-mesenchymal transition in solid tumors, and poor clinical outcomes in patients with lymphocytic leukemia and acute myelocytic leukemia have been associated with the high expression of vimentin. Vimentin is a non-caspase substrate of caspase-9 although its cleavage by caspase-9 in biological processes has not been reported. In the present study, we sought to understand whether vimentin cleavage mediated by caspase-9 could reverse the malignancy in leukemic cells. Herein, to address the issue, we investigated vimentin changes in differentiation and took advantage of the inducible caspase-9 (iC9)/AP1903 system in human leukemic NB4 cells. Following the transfection and treatment of the cells using the iC9/AP1903 system, vimentin expression, cleavage, and subsequently, the cell invasion and the relevant markers such as CD44 and MMP-9 were evaluated. Our results revealed the downregulation and cleavage of vimentin which attenuates the malignant phenotype of the NB4 cells. Considering the favorable effect of this strategy in keeping down the malignant features of the leukemic cells, the effect of the iC9/AP1903 system in combination with all-trans-retinoic acid (ATRA) treatment was evaluated. The obtained data prove that iC9/AP1903 significantly makes the leukemic cells more sensitive to ATRA.
Collapse
Affiliation(s)
- Fatemeh Hakim
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
| | - Cyrus Kazemiraad
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station6, 1015, Lausanne, Switzerland
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran.
| | - Daryoush Abdollahpour
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
- Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
| | - Saeed Mohammadi
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lv Y, Wang W, Liu Y, Yi B, Chu T, Feng Z, Liu J, Wan X, Wang Y. Platycodin D represses β-catenin to suppress metastasis of cetuximab-treated KRAS wild-type colorectal cancer cells. Clin Exp Metastasis 2023; 40:339-356. [PMID: 37326719 DOI: 10.1007/s10585-023-10218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR) inhibitor, is extensively used for clinical therapy in KRAS wild-type colorectal cancer (CRC) patients. However, some patients still cannot get benefit from the therapy, because metastasis and resistance occur frequently after cetuximab treatment. New adjunctive therapy is urgently needed to suppress metastasis of cetuximab-treated CRC cells. In this study, we used two KRAS wild-type CRC cells, HT29 and CaCo2, to investigate whether platycodin D, a triterpenoid saponin isolated from Chinese medicinal herb Platycodon grandifloras, is able to suppress the metastasis of cetuximab-treated CRC. Label-free quantitative proteomics analyses showed that platycodin D but not cetuximab significantly inhibited expression of β-catenin in both CRC cells, and suggested that platycodin D counteracted the inhibition effect of cetuximab on cell adherence and functioned in repressing cell migration and invasion. Western blot results showed that single platycodin D treatment or combined platycodin D and cetuximab enhanced inhibition effects on expressions of key genes in Wnt/β-catenin signaling pathway, including β-catenin, c-Myc, Cyclin D1 and MMP-7, compared to single cetuximab treatment. Scratch wound-healing and transwell assays showed that platycodin D combined with cetuximab suppressed migration and invasion of CRC cells, respectively. Pulmonary metastasis model of HT29 and CaCo2 in nu/nu nude mice consistently showed that combined treatment using platycodin D and cetuximab inhibited metastasis significantly in vivo. Our findings provide a potential strategy to inhibit CRC metastasis during cetuximab therapy by addition of platycodin D.
Collapse
Affiliation(s)
- Yongming Lv
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Wenhong Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Yanfei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianhao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Liu
- The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
| | - Yijia Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Sousa-Pimenta M, Estevinho LM, Szopa A, Basit M, Khan K, Armaghan M, Ibrayeva M, Sönmez Gürer E, Calina D, Hano C, Sharifi-Rad J. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: paclitaxel, docetaxel, and cabazitaxel. Front Pharmacol 2023; 14:1157306. [PMID: 37229270 PMCID: PMC10203197 DOI: 10.3389/fphar.2023.1157306] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Over the years, many biological and synthetic agents have been explored and tested in attempts to halt the spread of cancer and/or cure it. Currently, several natural compounds have and are being considered in this regard. For example, paclitaxel is a potent anticancer drug that originates from the tree Taxus brevifolia. Paclitaxel has several derivatives, namely, docetaxel and cabazitaxel. These agents work by disrupting microtubule assembling dynamics and inducing cell cycle arrest at the G2/M phase of the cell cycle, ultimately triggering apoptosis. Such features have helped to establish paclitaxel as an authoritative therapeutic compound against neoplastic disorders. After the completion of compound (hemi) synthesis, this drug received approval for the treatment of solid tumors either alone or in combination with other agents. In this review, we explore the mechanisms of action of paclitaxel and its derivatives, the different formulations available, as well as the molecular pathways of cancer resistance, potential risks, and other therapeutic applications. In addition, the role of paclitaxel in hematological malignancies is explored, and potential limitations in the therapeutic use of paclitaxel at the clinical level are examined. Furthermore, paclitaxel is known to cause increased antigen presentation. The immunomodulatory potential of taxanes, alone or in combination with other pharmacologic agents, is explored. Despite terpene-alkaloids derivatives' anti-mitotic potential, the impact of this class of drugs on other oncogenic pathways, such as epithelial-to-mesenchymal transition and the epigenetic modulation of the transcription profile of cancer cells, is also analyzed, shedding light on potential future chemotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Mário Sousa-Pimenta
- Department of Onco‐Hematology, Portuguese Institute of Oncology of Porto (IPO-Porto), Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Letícia M. Estevinho
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, Campus Santa Apolónia, Bragança, Portugal
- Department of Biology and Biotechnology, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, Bragança, Portugal
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Kraków, Poland
| | - Mahnoor Basit
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Manshuk Ibrayeva
- Department of Natural Sciences, Faculty of Science and Technology, Caspian University of Technology and Engineering named after Sh.Yessenov, Aktau, Kazakhstan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Christophe Hano
- Department of Biological Chemistry, Université ď Orléans, Chartres, France
| | | |
Collapse
|
10
|
Manna S, Kirtana R, Roy A, Baral T, Patra SK. Mechanisms of hedgehog, calcium and retinoic acid signalling pathway inhibitors: Plausible modes of action along the MLL-EZH2-p53 axis in cellular growth control. Arch Biochem Biophys 2023; 742:109600. [PMID: 37142078 DOI: 10.1016/j.abb.2023.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Understanding the molecular mechanism(s) of small compounds in cellular growth control are essential for using those against the disease(s). Oral cancers exhibit a very high mortality rate due to higher metastatic potential. Aberrant EGFR, RAR, HH signalling, enhanced [Ca2+] and oxidative stress are some of the important characteristics of oral cancer. So, we target these for our study. Herein, we tested the effect of fendiline hydrochloride (FH) as an LTCC Ca2+-channel inhibitor, erismodegib (a SMO inhibitor of HH-signalling) and all-trans retinoic acid (RA) inducer of RAR signalling that causes cellular differentiation. OCT4 activating compound (OAC1) counters differentiation and induces stemness properties. Cytosine β-D arabinofuranoside (Cyto-BDA), a DNA replication inhibitor was used to reduce high proliferative capacity. Treatment of FaDu cells with OAC1, Cyto-BDA and FH increase G0/G1 population by 3%, 20% and 7% respectively, and lead to reduction of cyclin D1, CDK4/6 levels. Erismodegib arrests the cells in S-phase with reduced cyclin-E1&A1 levels, whereas RA-treatment causes G2/M phase arrest with reduced cyclin-B1. There was a decrease in the expression of EGFR and mesenchymal markers, Snail/Slug/Vim/Zeb/Twist, and increased E-cadherin expression in all the drug treatments, indicating a reduction in proliferative signal and EMT. Enhanced MLL2 (Mll4) and reduced EZH2 expression associated overexpression of p53 and p21 were traced out. We conclude that these drugs impact expression of epigenetic modifiers by modulating signalling pathways and the epigenetic modifiers then controls the expression of cell cycle control genes, including p53 and p21.
Collapse
Affiliation(s)
- Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - R Kirtana
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
11
|
Butsri S, Kukongviriyapan V, Senggunprai L, Kongpetch S, Prawan A. 13‑ cis‑retinoic acid inhibits the self‑renewal, migration, invasion and adhesion of cholangiocarcinoma cells. Int J Mol Med 2023; 51:20. [PMID: 36660943 PMCID: PMC9911079 DOI: 10.3892/ijmm.2023.5223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
13‑cis‑retinoic acid (13CRA), a Food and Drug Administration‑approved drug for severe acne, is currently being investigated for its potential use in skin cancer prevention. 13CRA has been reported to exhibit antitumor effects against various types of cancer cells, both in vitro and in vivo. However, to the best of our knowledge, no information is yet available regarding the effects of 13CRA on cholangiocarcinoma (CCA), a malignancy of the bile duct epithelia. Currently, there are no reliably effective therapeutic options for metastatic CCA. The present study thus aimed to evaluate the effects of 13CRA on the self‑renewal, migration, invasion and adhesion of CCA cells, and also investigated the underlying mechanisms. The results revealed that 13CRA suppressed cell proliferation via the inhibition of the self‑renewal ability of CCA cells. 13CRA induced cell cycle arrest at the G2/M phase in KKU‑100 and KKU‑213B CCA cells through the regulation of cell cycle‑regulatory genes and proteins. 13CRA reduced the cell migratory ability of both cell lines via the modulation of the genes and proteins associated with epithelial‑mesenchymal transition. 13CRA also inhibited the invasive and adhesive abilities of CCA cells via the suppression of genes and proteins associated with the invasion and adhesion of CCA cells. On the whole, these results suggested that 13CRA exerts suppressive effects on CCA cell proliferation, migration, adhesion and invasion.
Collapse
Affiliation(s)
- Siriwoot Butsri
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
12
|
Targeting prolyl isomerase Pin1 as a promising strategy to overcome resistance to cancer therapies. Pharmacol Res 2022; 184:106456. [PMID: 36116709 DOI: 10.1016/j.phrs.2022.106456] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
The development of tumor therapeutic resistance is one of the important reasons for the failure of antitumor therapy. Starting with multiple targets and multiple signaling pathways is helpful in understanding the mechanism of tumor resistance. The overexpression of prolyl isomerase Pin1 is highly correlated with the malignancy of cancer, since Pin1 controls many oncogenes and tumor suppressors, as well as a variety of cancer-driving signaling pathways. Strikingly, numerous studies have shown that Pin1 is directly involved in therapeutic resistance. In this review, we mainly summarize the functions and mechanisms of Pin1 in therapeutic resistance of multifarious cancers, such as breast, liver, and pancreatic carcinomas. Furtherly, from the perspective of Pin1-driven cancer signaling pathways including Raf/MEK/ERK, PI3K/Akt, Wnt/β-catenin, NF-κB, as well as Pin1 inhibitors containing juglone, epigallocatechin-3-gallate (EGCG), all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), it is better to demonstrate the important potential role and mechanism of Pin1 in resistance and sensitization to cancer therapies. It will provide new therapeutic approaches for clinical reversal and prevention of tumor resistance by employing synergistic administration of Pin1 inhibitors and chemotherapeutics, implementing combination therapy of Pin1-related cancer signaling pathway inhibitors and Pin1 inhibitors, and exploiting novel Pin1-specific inhibitors.
Collapse
|
13
|
Wang Y, Chen L, Lai S, Liu Y, Yi B, Zhu S, Hu X, Zhang Q, Zhang C. Connexin 43 contributes to the sensitization of colorectal cancer cells to photodynamic therapy through Akt inhibition. Photodiagnosis Photodyn Ther 2022; 39:103040. [PMID: 35907621 DOI: 10.1016/j.pdpdt.2022.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Photodynamic therapy could be one approach to treat colorectal cancer though resistance leads to failure of therapy. Akt activation is a cellular survival response to photodynamic therapy and is also a reason for resistance. Thus, inhibition of Akt is a strategy to decrease resistance. Akt interacts with connexin 43, another protein involved in photodynamic therapy resistance. Connexin 43 is widely expressed in different human tissues and has a complex role in tumor development. However, the mechanism of inhibition of Akt by connexin 43 that sensitizes colorectal cancer cells to photodynamic therapy needs further investigation. METHODS In this study, two colorectal cancer cells with low phosphorylated connexin 43 level were used to explore this mechanism. LY294002 was used as an Akt inhibitor, and connexin 43-pCMV3 was transfected into cells to increase connexin 43 expression. RESULTS Akt and connexin 43 inhibit each other in both colorectal cancer cell lines. In vitro and in vivo experiments showed that LY294002 and connexin 43 transfection sensitized cells to hematoporphyrin-Photodynamic therapy. LY294002 increased the sensitivity of cells to photodynamic therapy with a pronounced effect in cells with high expression levels of connexin 43. CONCLUSIONS Connexin 43 should be considered an important factor in increasing the phototoxicity of photodynamic therapy in colorectal cancer through Akt inhibition.
Collapse
Affiliation(s)
- Yijia Wang
- Laboratory of Oncologic molecular medicine, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Lankai Chen
- Nankai University School of Medicine, Nankai University, Tianjin, 300121, China
| | - Sizhen Lai
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300121, China
| | - Yanfei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300121, China
| | - Ben Yi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300121, China
| | - Siwei Zhu
- Laboratory of Oncologic molecular medicine, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Xia Hu
- Department of Agriculture Insect, Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Qinghuai Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China.
| |
Collapse
|
14
|
Huang W, Wang Y, He T, Zhu J, Li J, Zhang S, Zhu Y, Xu Y, Xu L, Wang H, Yu R, Song L. Arteannuin B Enhances the Effectiveness of Cisplatin in Non-Small Cell Lung Cancer by Regulating Connexin 43 and MAPK Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1963-1992. [PMID: 36040035 DOI: 10.1142/s0192415x22500847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cisplatin (DDP)-based chemotherapy is the first-line regimen for advanced non-small cell lung cancer (NSCLC) patients. However, advanced NSCLC patients may have innate resistance to DDP or develop resistance during DDP treatment. We investigated a natural compound, arteannuin B (Art B), for its potential effects on DDP resistance in NSCLC. Art B was isolated from Artemisia annua by chromatographic purification and spectral elucidation. The activities of Art B on DDP-mediated effects were examined using in vitro and in vivo assays. We observed significant correlations in T stage, clinical stage, chemotherapy resistance and poor survival of NSCLC patients with low Cx43 expression. Art B enhanced the effectiveness of cisplatin by increasing Cx43 expression in normal and DDP-resistant NSCLC cells. Art B also increased DDP uptake through up-regulating Cx43. The combination of DDP and Art B showed better therapeutic effect than individual treatments both in vitro and in vivo. Art B increased intracellular Fe[Formula: see text] level, promoted calcium influx, and activated gap junction and MAPK pathways, which might contribute to Art B-mediated effects. Art B may serve as a new drug candidate to enhance the antitumor effect of DDP on NSCLC.
Collapse
Affiliation(s)
- Weijuan Huang
- Department of Pharmacology, College of Pharmacy, P. R. China
| | - Yanqing Wang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Tingsha He
- Department of Pharmacology, College of Pharmacy, P. R. China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Jianhuan Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Sirui Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Yong Zhu
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230002, P. R. China
| | - Yafang Xu
- Department of Pharmacology, College of Pharmacy, P. R. China
| | - Lv Xu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Haoran Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, P. R. China
| |
Collapse
|
15
|
Lou C, Shi J, Xu Q. Exosomal miR-626 promotes the malignant behavior of oral cancer cells by targeting NFIB. Mol Biol Rep 2022; 49:4829-4840. [PMID: 35711020 DOI: 10.1007/s11033-022-07336-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Tumor-derived exosomes, as emerging regulators of intercellular communication, are important for tumorigenesis and development in multiple tumors. The purpose of this study was to investigate whether exosomal miR-626 exists. More importantly, if exosomal miR-626 exists, the mechanism by which it is transferred into neighboring cancer cells and contributes to tumor progression needs to be clarified. METHODS AND RESULTS The expression of miRNA and mRNA are analyzed by RT-qPCR. Proliferation, colony formation, wound healing, cell cycle are carried out to assess the function of exosomal miR-626. Furthermore, a xenograft experiment is utilized to conform the cancer-promoting role of exosomal miR-626 in oral cancer. Here, we showed that miR-626 is upregulated in oral cancer-derived exosomes and can be transferred between oral cancer cells. Exosomal miR-626 promotes cancer cell proliferation, colony formation, migration and G0/G1-to-S phase transition. Nuclear factor I/B (NFIB), a tumor suppressor gene in various cancers, was predicted to be a potential target of miR-626 by using three algorithms. Luciferase reporter assay data revealed that miR-626 can directly bind to the 3'-UTR of NFIB and subsequently suppress its expression and downstream signaling. Restoration of NFIB expression rescued the malignant phenotype induced by exosomal miR-626. In addition, exosomal miR-626 administration facilitated cancer growth in a xenograft tumor model, accompanied by downregulation of NFIB expression. CONCLUSIONS Our data demonstrate that exosomal miR-626 can facilitate the development of oral cancer by inhibiting the expression of its target NFIB. Exosomal miR-626 might be a therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Chao Lou
- Department of Oral and Maxillofacial-Head Neck Oncology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, 200011, Shanghai, China
| | - Jianbo Shi
- Department of Oral and Maxillofacial-Head Neck Oncology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, 200011, Shanghai, China.
| | - Qin Xu
- Department of Oral and Maxillofacial-Head Neck Oncology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, 200011, Shanghai, China.
| |
Collapse
|
16
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
17
|
Hussain Y, Abdullah, Alsharif KF, Aschner M, Theyab A, Khan F, Saso L, Khan H. Therapeutic Role of Carotenoids in Blood Cancer: Mechanistic Insights and Therapeutic Potential. Nutrients 2022; 14:1949. [PMID: 35565917 PMCID: PMC9104383 DOI: 10.3390/nu14091949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
Blood cancers are characterized by pathological disorders causing uncontrolled hematological cell division. Various strategies were previously explored for the treatment of blood cancers, including chemotherapy, Car-T therapy, targeting chimeric antigen receptors, and platelets therapy. However, all these therapies pose serious challenges that limit their use in blood cancer therapy, such as poor metabolism. Furthermore, the solubility and stability of anticancer drugs limit efficacy and bio-distribution and cause toxicity. The isolation and purification of natural killer cells during Car-T cell therapy is a major challenge. To cope with these challenges, treatment strategies from phyto-medicine scaffolds have been evaluated for blood cancer treatments. Carotenoids represent a versatile class of phytochemical that offer therapeutic efficacy in the treatment of cancer, and specifically blood cancer. Carotenoids, through various signaling pathways and mechanisms, such as the activation of AMPK, expression of autophagy biochemical markers (p62/LC3-II), activation of Keap1-Nrf2/EpRE/ARE signaaling pathway, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), increased level of reactive oxygen species, cleaved poly (ADP-ribose) polymerase (c-PARP), c-caspase-3, -7, decreased level of Bcl-xL, cycle arrest at the G0/G1 phase, and decreasing STAT3 expression results in apoptosis induction and inhibition of cancer cell proliferation. This review article focuses the therapeutic potential of carotenoids in blood cancers, addressing various mechanisms and signaling pathways that mediate their therapeutic efficacy.
Collapse
Affiliation(s)
- Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, China;
- Department of Pharmacy, Bashir Institute of Health Sciences, Bharakahu, Islamabad 44000, Pakistan
| | - Abdullah
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA;
| | - Abdulrahman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia;
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Fazlullah Khan
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad 44000, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
18
|
Zhou X, Li M, Cheng Q, Shao Y, Wang W, Du Q, Liu J, Yang Y. Methylselenocysteine Potentiates Etoposide-Induced Cytotoxicity by Enhancing Gap Junction Activity. Biol Pharm Bull 2022; 45:467-476. [DOI: 10.1248/bpb.b21-00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xueli Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Man Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Qianqian Cheng
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Yu Shao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Qianyu Du
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Jing Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| |
Collapse
|
19
|
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, Sharifzadeh SO, Soleymani L, Daneshi S, Hushmandi K, Khan H, Kumar AP, Aref AR, Samarghandian S. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021; 141:111824. [PMID: 34175815 DOI: 10.1016/j.biopha.2021.111824] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis and migration of cancer cells to neighboring cells and tissues. Morphologically, epithelial cells are transformed to mesenchymal cells, and at molecular level, E-cadherin undergoes down-regulation, while an increase occurs in N-cadherin and vimentin levels. Increasing evidence demonstrates role of EMT in mediating drug resistance of cancer cells. On the other hand, paclitaxel (PTX) and docetaxel (DTX) are two chemotherapeutic agents belonging to taxene family, capable of inducing cell cycle arrest in cancer cells via preventing microtubule depolymerization. Aggressive behavior of cancer cells resulted from EMT-mediated metastasis can lead to PTX and DTX resistance. Upstream mediators of EMT such as ZEB1/2, TGF-β, microRNAs, and so on are involved in regulating response of cancer cells to PTX and DTX. Tumor-suppressing factors inhibit EMT to promote PTX and DTX sensitivity of cancer cells. Furthermore, three different strategies including using anti-tumor compounds, gene therapy and delivery systems have been developed for suppressing EMT, and enhancing cytotoxicity of PTX and DTX against cancer cells that are mechanistically discussed in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leyla Soleymani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
20
|
Cai J, Cui Y, Yang J, Wang S. Epithelial-mesenchymal transition: When tumor cells meet myeloid-derived suppressor cells. Biochim Biophys Acta Rev Cancer 2021; 1876:188564. [PMID: 33974950 DOI: 10.1016/j.bbcan.2021.188564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell population characterized by protumoral functions in the tumor immune network. An increasing number of studies have focused on the biological functions of MDSCs in tumor immunity. Epithelial-mesenchymal transition (EMT) is a cellular plasticity process accompanied by a loss of epithelial phenotypes and an acquisition of mesenchymal phenotypes. In general, tumor cells that undergo EMT are more likely to invade and metastasize. Recently, extensive evidence suggests that EMT is closely related to a highly immunosuppressive environment. This review will summarize the immunosuppressive capacities of MDSC subsets and their distinct role in tumor EMT and further discuss immunotherapy for tumor EMT by targeting MDSCs.
Collapse
Affiliation(s)
- Jingshan Cai
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yudan Cui
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
21
|
Gingrich J, Pu Y, Veiga-Lopez A. A modified parachute assay for assessment of gap junction intercellular communication in placental trophoblast cells. Toxicol Mech Methods 2021; 31:393-399. [PMID: 33784946 DOI: 10.1080/15376516.2021.1904072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Gap junction intercellular communication (GJIC) is a necessary process for placental development. GJIC can be assessed with a parachute assay, where fluorescent dye-loaded donor cells are 'parachuted' onto acceptor cells and dye diffuses to adjacent cells with active GJIC. During co-culture, donor cells can attach, but the assay does not allow their distinction from acceptor cells, which presents as a major limitation. We have developed a modified parachute assay that permits distinction between donor and acceptor cells, using the extravillous trophoblast cell line HTR-8/SVneo and a lentiviral transduction technique. Using PKA activator CW008 as a positive control and 12-o-tetradecanoylphorbol-13-acetate as a negative control, this modified parachute assay reliably detects both enhanced and attenuated GJIC. Importantly, the ease and accuracy of quantification over currently available methods makes this modified assay optimal for automation and represents a useful tool for in vitro placental toxicological testing.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Yong Pu
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Chicago Center for Health and Environment, Chicago, IL, USA
| |
Collapse
|
22
|
Wang Y, Wan X, Wu X, Zhang C, Liu J, Hou S. Eubacterium rectale contributes to colorectal cancer initiation via promoting colitis. Gut Pathog 2021; 13:2. [PMID: 33436075 PMCID: PMC7805161 DOI: 10.1186/s13099-020-00396-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease caused by microbial dysbiosis is an important factor contributing to colorectal cancer (CRC) initiation. The 'driver-passenger' model in human gut microbial dysbiosis suggests that 'driver' bacteria may colonize with low relative abundance on tumor site but persistently induce chronic change in normal intestinal epithelium and initiate CRC. They are gradually replaced by 'passenger' bacteria later on, due to their low adaptability to the on-tumor site niche. RESULTS To reveal site-specific bacterial taxon markers in CRC patients, we analyzed the gut mucosal microbiome of 75 paired samples of on-tumor and tumor-adjacent sites, 75 off-tumor sites, and 26 healthy controls. Linear discriminant analysis of relative abundance profiles revealed unique bacterial taxon distribution correlated with specific tumor sites, with Eubacterium having the distribution characteristic of potential driver bacteria. We further show that Eubacterium rectale endotoxin activates the transcription factor NF-κΒ, which regulates multiple aspects of innate and adaptive immune responses in normal colon epithelial cells. Unlike the 'passenger' bacterium Fusobacterium nucleatum, E. rectale promotes dextran sodium sulfate-induced colitis in Balb/c mice. CONCLUSIONS Our findings reveal that E. rectale functions as a 'driver' bacterium and contributes to cancer initiation via promoting inflammation.
Collapse
Affiliation(s)
- Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, No. 190 Jieyuan Rd., Hongqiao district, Tianjin, 300121, China
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300071, China
| | - Xiaojing Wu
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, No. 190 Jieyuan Rd., Hongqiao district, Tianjin, 300121, China
| | - Chunze Zhang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, No. 190 Jieyuan Rd., Hongqiao district, Tianjin, 300121, China
| | - Jun Liu
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, No. 190 Jieyuan Rd., Hongqiao district, Tianjin, 300121, China.
| | - Shaobin Hou
- Advanced Studies in Genomics, Proteomics, and Bioinformatics, University of Hawaii At Manoa, 2538 McCarthy Mall, Snyder Hall, Honolulu, HI, 96822, USA.
| |
Collapse
|
23
|
Koklesova L, Liskova A, Samec M, Zhai K, Abotaleb M, Ashrafizadeh M, Brockmueller A, Shakibaei M, Biringer K, Bugos O, Najafi M, Golubnitschaja O, Büsselberg D, Kubatka P. Carotenoids in Cancer Metastasis-Status Quo and Outlook. Biomolecules 2020; 10:E1653. [PMID: 33321708 PMCID: PMC7763577 DOI: 10.3390/biom10121653] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis represents a major obstacle in cancer treatment and the leading cause of cancer-related deaths. Therefore, the identification of compounds targeting the multi-step and complex process of metastasis could improve outcomes in the management of cancer patients. Carotenoids are naturally occurring pigments with a plethora of biological activities. Carotenoids exert a potent anti-cancer capacity in various cancer models in vitro and in vivo, mediated by the modulation of signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of the epithelial-mesenchymal transition and regulatory molecules, such as matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), urokinase plasminogen activator (uPA) and its receptor (uPAR), hypoxia-inducible factor-1α (HIF-1α), and others. Moreover, carotenoids modulate the expression of genes associated with cancer progression and inflammatory processes as key mediators of the complex process involved in metastasis. Nevertheless, due to the predominantly preclinical nature of the known anti-tumor effects of carotenoids, and unclear results from certain carotenoids in specific cancer types and/or specific parts of the population, a precise analysis of the anti-cancer effects of carotenoids is essential. The identification of carotenoids as effective compounds targeting the complex process of cancer progression could improve the outcomes of advanced cancer patients.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar; (K.Z.); (M.A.)
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar; (K.Z.); (M.A.)
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran;
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar; (K.Z.); (M.A.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
24
|
Liu Z, Zhou W, Lin C, Wang X, Zhang X, Zhang Y, Yang R, Chen W, Cao W. Dysregulation of FOXD2-AS1 promotes cell proliferation and migration and predicts poor prognosis in oral squamous cell carcinoma: a study based on TCGA data. Aging (Albany NY) 2020; 13:2379-2396. [PMID: 33318296 PMCID: PMC7880351 DOI: 10.18632/aging.202268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) plays an important role in the pathogenesis of some cancers. However, its functional role in oral squamous cell carcinoma (OSCC) remains largely unknown. In this study, we conducted expressional and functional analyses of FOXD2-AS1 using data from the Cancer Genome Atlas (TCGA) and in vitro OSCC assays. FOXD2-AS1 dysregulation was remarkably associated with radiation therapy, anatomic location, high histologic grade, and lymphovascular invasion (P < 0.05). A nomogram based on FOXD2-AS1 expression was constructed for use as a diagnostic indicator for OSCC patients, and multivariate cox regression analysis showed that FOXD2-AS1 expression was an independent prognostic factor for OSCC patients. KEGG, gene set enrichment analysis, and immune infiltration evaluations indicated that FOXD2-AS1 was involved in tumor progression via epithelial-to-mesenchymal transition and cell cycle regulation and was negatively associated with mast cell, DCs, iDCs, and B cells. FOXD2-AS1 silencing suppressed the proliferation and migration of Cal27 cells. Our findings showed that an aberrantly high FOXD2-AS1 expression predicts poor prognosis in OSCC; FOXD2-AS1 may act as an oncogenic protein by regulating cell proliferation and migration and may suppress adaptive immunity by modulating the number and function of antigen-presenting cells.
Collapse
Affiliation(s)
- Zheqi Liu
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Chengzhong Lin
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
- Second Dental Clinic, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Xu Zhang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Yu Zhang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Rong Yang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| |
Collapse
|
25
|
Connexins-Therapeutic Targets in Cancers. Int J Mol Sci 2020; 21:ijms21239119. [PMID: 33266154 PMCID: PMC7730856 DOI: 10.3390/ijms21239119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Connexins (Cx) are members of a protein family that forms intercellular channels localised in gap junction (GJ) plaques and single transmembrane channels called hemichannels. They participate in intercellular communication or communication between the intracellular and extracellular environments. Connexins affect cell homeostasis, growth and differentiation by enabling the exchange of metabolites or by interfering with various signalling pathways. Alterations in the functionality and the expression of connexins have been linked to the occurrence of many diseases. Connexins have been already linked to cancers, cardiac and brain disorders, chronic lung and kidney conditions and wound healing processes. Connexins have been shown either to suppress cancer tumour growth or to increase tumorigenicity by promoting cancer cell growth, migration and invasiveness. A better understanding of the complexity of cancer biology related to connexins and intercellular communication could result in the design of novel therapeutic strategies. The modulation of connexin expression may be an effective therapeutic approach in some types of cancers. Therefore, one important challenge is the search for mechanisms and new drugs, selectively modulating the expression of various connexin isoforms. We performed a systematic literature search up to February 2020 in the electronic databases PubMed and EMBASE. Our search terms were as follows: connexins, hemichannels, cancer and cancer treatment. This review aims to provide information about the role of connexins and gap junctions in cancer, as well as to discuss possible therapeutic options that are currently being studied.
Collapse
|
26
|
Discovery of novel cell-penetrating and tumor-targeting peptide-drug conjugate (PDC) for programmable delivery of paclitaxel and cancer treatment. Eur J Med Chem 2020; 213:113050. [PMID: 33280896 DOI: 10.1016/j.ejmech.2020.113050] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
To ameliorate the deficiencies (e.g. solubility, membrane permeability and non-selective cytotoxicity) of paclitaxel (PTX), we synthesized a "smart" PDC (peptide-drug conjugate), by linking PTX with a multifunctional peptide consisting of a tumor targeting peptide (TTP) and a cell penetrating peptide (CPP), to construct the TTP-CPP-PTX conjugate, LTP-1. LTP-1 could intelligently deliver PTX into LHRH receptor-overexpressed MCF-7 cells, showing 2 times higher cellular uptake than PTX, and enhanced cytotoxicity with IC50 of 3.8 nM (vs 6.6 nM for PTX). LTP-1 exhibited less cytotoxicity to normal cells and the ability to overcome PTX-resistance. Furthermore, LTP-1 had higher in vivo antitumor efficacy than PTX (TGI of 83.4% and 65.7% for LTP-1 and PTX, respectively, at 12 mmol/kg) without apparent toxicities. In summary, we proposed and testified the concept of constructing a novel PDC molecule, which can potentially conquer the drawbacks of PTX. LTP-1 represents a new class of antitumor PDC deserving further investigation.
Collapse
|
27
|
Retinoic Acid Sensitivity of Triple-Negative Breast Cancer Cells Characterized by Constitutive Activation of the notch1 Pathway: The Role of Rarβ. Cancers (Basel) 2020; 12:cancers12103027. [PMID: 33081033 PMCID: PMC7650753 DOI: 10.3390/cancers12103027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease that lacks effective therapeutic options. In this study, we profile eighteen TNBC cell lines for their sensitivity to the anti-proliferative action of all-trans retinoic acid (ATRA). The only three cell lines (HCC-1599, MB-157 and MDA-MB-157) endowed with ATRA-sensitivity are characterized by genetic aberrations of the NOTCH1-gene, causing constitutive activation of the NOTCH1 γ-secretase product, N1ICD. N1ICD renders HCC-1599, MB-157 and MDA-MB-157 cells sensitive not only to ATRA, but also to γ-secretase inhibitors (DAPT; PF-03084014). Combinations of ATRA and γ-secretase inhibitors produce additive/synergistic effects in vitro and in vivo. RNA-sequencing studies of HCC-1599 and MB-157 cells exposed to ATRA and DAPT and ATRA+DAPT demonstrate that the two compounds act on common gene sets, some of which belong to the NOTCH1 pathway. ATRA inhibits the growth of HCC-1599, MB-157 and MDA-MB-157 cells via RARα, which up-regulates several retinoid target-genes, including RARβ. RARβ is a key determinant of ATRA anti-proliferative activity, as its silencing suppresses the effects exerted by the retinoid. In conclusion, we demonstrate that ATRA exerts a significant anti-tumor action only in TNBC cells showing constitutive NOTCH1 activation. Our results support the design of clinical trials involving combinations between ATRA and γ-secretase inhibitors for the treatment of this TNBC subtype.
Collapse
|
28
|
Fang S, Hu C, Xu L, Cui J, Tao L, Gong M, Wang Y, He Y, He T, Bi Y. All-trans-retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating autophagy. Am J Transl Res 2020; 12:6793-6810. [PMID: 33194073 PMCID: PMC7653590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma is the fourth leading cause of cancer-related deaths due to its high rate of recurrence and metastasis. All-trans-retinoic acid (ATRA) can inhibit the malignant behaviors of hepatocarcinoma cells. Autophagy is reportedly involved in the migration and metastasis of various cancer cells. This study aimed to investigate the effect of autophagy on the function of ATRA on hepatocarcinoma cells, and to explore its possible underlying mechanism. Hepatocarcinoma cell lines, Hepa1-6 and HepG2, were treated with ATRA and autophagy inhibitors, including 3-methyladenine (3-MA) and Bafilomycin (Baf). Transmission electron microscopy, laser scanning, western blot, and real-time PCR demonstrated that ATRA induces autophagy in hepatocarcinoma cells. Trypan blue staining, a wound healing assay, and a transwell assay showed that 3-MA and Baf reverses the inhibitory functions of ATRA on the proliferation, migration, and invasion of hepatocarcinoma cells. Flow cytometry, Hoechst staining, periodic acid-Schiff staining, and indocyanine green uptake validated that 3-MA and Baf reverses the function of ATRA on apoptosis and the differentiation of hepatocarcinoma cells. Real-time PCR, western blot, and an immunofluorescence assay demonstrated that the reversal of the epithelial-mesenchymal transition (EMT) process by ATRA is weakened when autophagy is inhibited. Additionally, we confirmed that Bcl-2 is associated with the induction of ATRA-induced autophagy instead of the PI3K/Akt/mTOR pathway. These findings suggest that ATRA induces autophagy and autophagic cell death through the Bcl-2/Beclin1 pathway. Furthermore, ATRA-induced autophagy is involved in the inhibitory effect of ATRA on the malignant behaviors of hepatocarcinoma cells by reversing the EMT process.
Collapse
Affiliation(s)
- Shuyu Fang
- Department of Pediatric Research Institute of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of PediatricsChongqing, P.R. China
| | - Chaoqun Hu
- Department of Pediatric Research Institute of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of PediatricsChongqing, P.R. China
| | - Lei Xu
- Department of Microbiology, Chongqing Medical UniversityChongqing, P.R. China
| | - Jiejie Cui
- Department of Pediatric Research Institute of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of PediatricsChongqing, P.R. China
| | - Li Tao
- Department of Pediatric Research Institute of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of PediatricsChongqing, P.R. China
| | - Mengjia Gong
- Department of Pediatric Research Institute of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of PediatricsChongqing, P.R. China
| | - Yi Wang
- Department of Pediatric Research Institute of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of PediatricsChongqing, P.R. China
| | - Yun He
- Department of Pediatric Research Institute of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of PediatricsChongqing, P.R. China
| | - Tongchuan He
- Molecular Oncology Laboratory, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Yang Bi
- Department of Pediatric Research Institute of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of PediatricsChongqing, P.R. China
| |
Collapse
|
29
|
Schulte am Esch J, Windmöller BA, Hanewinkel J, Storm J, Förster C, Wilkens L, Krüger M, Kaltschmidt B, Kaltschmidt C. Isolation and Characterization of Two Novel Colorectal Cancer Cell Lines, Containing a Subpopulation with Potential Stem-Like Properties: Treatment Options by MYC/NMYC Inhibition. Cancers (Basel) 2020; 12:cancers12092582. [PMID: 32927768 PMCID: PMC7564713 DOI: 10.3390/cancers12092582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The aim of this study was to gain a better understanding of cancer stem cells, which are a small subpopulation of tumor cells with high plasticity driving tumor growth and metastasis. Here we isolated two novel colorectal cancer cell lines originating from a rectal neuroendocrine carcinoma and a colorectal adenocarcinoma, depicting stem-like properties. These in vitro models offer the possibility to evaluate pathophysiological mechanisms in order to develop tailored therapeutic strategies for distinct colorectal malignancies. Investigations revealed gene copy number gain of the N-myc proto-oncogene for both. Accordingly, inhibition of the protein–protein interaction of myc and N-myc proto-oncogenes with the myc-associated factor X utilizing small molecule KJ-Pyr-9, exhibited a significant reduction in survival of both cell lines by the induction of apoptosis. Consequently, the blockage of these interactions may serve as a possible treatment strategy for colorectal cancer cell lines with gene copy number gain of the N-myc proto-oncogene. Abstract Cancer stem cells (CSC) are crucial mediators of cancer relapse. Here, we isolated two primary human colorectal cancer cell lines derived from a rectal neuroendocrine carcinoma (BKZ-2) and a colorectal adenocarcinoma (BKZ-3), both containing subpopulations with potential stem-like properties. Protein expression of CSC-markers prominin-1 and CD44 antigen was significantly higher for BKZ-2 and BKZ-3 in comparison to well-established colon carcinoma cell lines. High sphere-formation capacity further confirmed the existence of a subpopulation with potential stem-like phenotype. Epithelial–mesenchymal transition markers as well as immune checkpoint ligands were expressed more pronounced in BKZ-2. Both cell populations demonstrated N-myc proto-oncogene (NMYC) copy number gain. Myc proto-oncogene (MYC)/NMYC activity inhibitor all-trans retinoic acid (ATRA) significantly reduced the number of tumor spheres for both and the volume of BKZ-2 spheres. In contrast, the sphere volume of ATRA-treated BKZ-3 was increased, and only BKZ-2 cell proliferation was reduced in monolayer culture. Treatment with KJ-Pyr-9, a specific inhibitor of MYC/NMYC-myc-associated factor X interaction, decreased survival by the induction of apoptosis of both. In summary, here, we present the novel colorectal cancer cell lines BKZ-2 and BKZ-3 as promising cellular in vitro models for colorectal carcinomas and identify the MYC/NMYC molecular pathway involved in CSC-induced carcinogenesis with relevant therapeutic potential.
Collapse
Affiliation(s)
- Jan Schulte am Esch
- Department of General and Visceral Surgery, Protestant Hospital of Bethel Foundation, 33611 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
| | - Beatrice Ariane Windmöller
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
- Correspondence: ; Tel.: +49-0521-106-5629
| | - Johannes Hanewinkel
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
| | - Jonathan Storm
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Institute of Pathology, KRH Hospital Nordstadt, affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Institute of Pathology, KRH Hospital Nordstadt, affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Martin Krüger
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Internal Medicine and Gastroenterology, Protestant Hospital of Bethel Foundation, 33611 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
- Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
| |
Collapse
|
30
|
Wei W, Ma XD, Jiang GM, Shi B, Zhong W, Sun CL, Zhao L, Hou YJ, Wang H. The AKT/GSK3-Mediated Slug Expression Contributes to Oxaliplatin Resistance in Colorectal Cancer via Upregulation of ERCC1. Oncol Res 2020; 28:423-438. [PMID: 32331534 PMCID: PMC7851510 DOI: 10.3727/096504020x15877284857868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although oxaliplatin serves as one of the first-line drugs prescribed for treating colorectal cancer (CRC), the therapeutic effect is disappointing due to drug resistance. So far, the molecular mechanisms mediating oxaliplatin resistance remain unclear. In this study, we found the chemoresistance in oxaliplatin-resistant HCT116 cells (HCT116/OXA) was mediated by the upregulation of ERCC1 expression. In addition, the acquisition of resistance induced epithelialmesenchymal transition (EMT) as well as the Slug overexpression. On the contrary, Slug silencing reversed the EMT phenotype, decreased ERCC1 expression, and ameliorated drug resistance. Further mechanistical studies revealed the enhanced Slug expression resulted from the activation of AKT/glycogen synthase kinase 3 (GSK3) signaling. Moreover, in CRC patients, coexpression of Slug and ERCC1 was observed, and increased Slug expression was significantly correlated with clinicopathological factors and prognosis. Taken together, the simultaneous inhibition of the AKT/GSK3/Slug axis may be of significance for surmounting metastasis and chemoresistance, thereby improving the therapeutic outcome of oxaliplatin.
Collapse
Affiliation(s)
- Wei Wei
- *Department of Laboratory Medicine, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, P.R. China
| | - Xiao-Dong Ma
- †Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Guan-Min Jiang
- ‡Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, P.R. China
| | - Bin Shi
- §Department of General Surgery, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, P.R. China
| | - Wen Zhong
- ¶Department of Pathology, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, P.R. China
| | - Chun-Lei Sun
- §Department of General Surgery, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, P.R. China
| | - Liang Zhao
- *Department of Laboratory Medicine, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yan-Jiao Hou
- *Department of Laboratory Medicine, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, P.R. China
| | - Hao Wang
- *Department of Laboratory Medicine, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
31
|
Wang Y, Wang W, Wu X, Li C, Huang Y, Zhou H, Cui Y. Resveratrol Sensitizes Colorectal Cancer Cells to Cetuximab by Connexin 43 Upregulation-Induced Akt Inhibition. Front Oncol 2020; 10:383. [PMID: 32318334 PMCID: PMC7155766 DOI: 10.3389/fonc.2020.00383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Cetuximab is a monoclonal antibody that acts as an anti-epidermal growth factor receptor (EGFR) agent. Cetuximab inhibits the phosphorylation and activation of EGFR and blocks downstream signal pathways of EGF/EGFR, including Ras-Raf-MAPK and PI3K-Akt pathways. Akt activation is an important factor in cetuximab resistance. It has been reported that resveratrol and connexin 43 regulate Akt in different ways based on tissue type. Since connexin 43 interacts with Akt, and resveratrol is known to upregulate connexin 43, we investigated whether resveratrol can sensitize colorectal cancer cells to cetuximab via connexin 43 upregulation. Our work confirmed that resveratrol increases the inhibition of growth by cetuximab in vitro and in vivo, upregulates connexin 43 expression and phosphorylation, increases gap junction function, and inhibits the activation of Akt and NFκB in parental or cetuximab-treated parental HCT116 and CT26 cells. Resveratrol did not exhibit these effects on connexin 43-shRNA transfected cells, so connexin 43 upregulation may contribute to Akt inhibition in these cells. Given these data, resveratrol may sensitize colorectal cancer cells to cetuximab via upregulating connexin 43 to inhibit the Akt pathway.
Collapse
Affiliation(s)
- Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| | - Wenhong Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Xiaojing Wu
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Chunjun Li
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Yaping Huang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Huiyan Zhou
- Beijing Enmin Technology Co. Ltd, Beijing, China
| | - Yu Cui
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
32
|
Sun L, Wang Y, Zhang H, Min C, Zhang Y, Zhang C, Xin Z, Zhu S, Yang Y, Burge RE, Yuan X. Graphene-Based Confocal Refractive Index Microscopy for Label-Free Differentiation of Living Epithelial and Mesenchymal Cells. ACS Sens 2020; 5:510-518. [PMID: 31927913 DOI: 10.1021/acssensors.9b02340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Label-free imaging and investigation of living cells are significant for many biomedical studies. It has been challenging to detect the epithelial-mesenchymal transition of cells in situ without affecting cellular activity. Here, we present a common-path differential confocal microscope based on the polarization-sensitive absorption of graphene to realize high-performance refractive index imaging and differentiation of living colorectal cancer cells (HCT116) with large detecting depth (1.29 μm), excellent refractive index resolution (2.86 × 10-5 RIU), and high spatial resolution (727 nm) simultaneously. Compared with epithelial (parental HCT116) cells, mesenchymal (paclitaxel-resistant HCT116) cells manifest generally lower refractive index values through the refractive index statistics, which is due to the stronger migration ability and weaker surface adherence of mesenchymal cells. The graphene-based microscopy provides an effective label-free approach to high-resolution imaging and study of living cell kinetics, and we expect it to be widely used in the research fields of pathology, tumorigenesis, and chemotherapy.
Collapse
Affiliation(s)
- Lixun Sun
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine , Tianjin Union Medical Center , Tianjin 300121 , China
| | - Huiqin Zhang
- Institute of Modern Optics , Nankai University , Tianjin 300071 , China
| | - Changjun Min
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Yuquan Zhang
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Chonglei Zhang
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Ziqiang Xin
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Siwei Zhu
- Laboratory of Oncologic Molecular Medicine , Tianjin Union Medical Center , Tianjin 300121 , China
| | - Yong Yang
- Institute of Modern Optics , Nankai University , Tianjin 300071 , China
| | - Ronald E Burge
- Cavendish Laboratory , University of Cambridge , Madingley Road , Cambridge CB3 0HE , U.K
| | - Xiaocong Yuan
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
33
|
Costantini L, Molinari R, Farinon B, Merendino N. Retinoic Acids in the Treatment of Most Lethal Solid Cancers. J Clin Med 2020; 9:E360. [PMID: 32012980 PMCID: PMC7073976 DOI: 10.3390/jcm9020360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although the use of oral administration of pharmacological all-trans retinoic acid (ATRA) concentration in acute promyelocytic leukaemia (APL) patients was approved for over 20 years and used as standard therapy still to date, the same use in solid cancers is still controversial. In the present review the literature about the top five lethal solid cancers (lung, stomach, liver, breast, and colon cancer), as defined by The Global Cancer Observatory of World Health Organization, and retinoic acids (ATRA, 9-cis retinoic acid, and 13-cis retinoic acid, RA) was compared. The action of retinoic acids in inhibiting the cell proliferation was found in several cell pathways and compartments: from membrane and cytoplasmic signaling, to metabolic enzymes, to gene expression. However, in parallel in the most aggressive phenotypes several escape routes have evolved conferring retinoic acids-resistance. The comparison between different solid cancer types pointed out that for some cancer types several information are still lacking. Moreover, even though some pathways and escape routes are the same between the cancer types, sometimes they can differently respond to retinoic acid therapy, so that generalization cannot be made. Further studies on molecular pathways are needed to perform combinatorial trials that allow overcoming retinoic acids resistance.
Collapse
Affiliation(s)
- Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | | | | | | |
Collapse
|
34
|
Ghazizadeh Z, Kiviniemi T, Olafsson S, Plotnick D, Beerens ME, Zhang K, Gillon L, Steinbaugh MJ, Barrera V, Sui SH, Werdich AA, Kapur S, Eranti A, Gunn J, Jalkanen J, Airaksinen J, Kleber AG, Hollmén M, MacRae CA. Metastable Atrial State Underlies the Primary Genetic Substrate for MYL4 Mutation-Associated Atrial Fibrillation. Circulation 2019; 141:301-312. [PMID: 31735076 DOI: 10.1161/circulationaha.119.044268] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common clinical arrhythmia and is associated with heart failure, stroke, and increased mortality. The myocardial substrate for AF is poorly understood because of limited access to primary human tissue and mechanistic questions around existing in vitro or in vivo models. METHODS Using an MYH6:mCherry knock-in reporter line, we developed a protocol to generate and highly purify human pluripotent stem cell-derived cardiomyocytes displaying physiological and molecular characteristics of atrial cells. We modeled human MYL4 mutants, one of the few definitive genetic causes of AF. To explore non-cell-autonomous components of AF substrate, we also created a zebrafish Myl4 knockout model, which exhibited molecular, cellular, and physiologic abnormalities that parallel those in humans bearing the cognate mutations. RESULTS There was evidence of increased retinoic acid signaling in both human embryonic stem cells and zebrafish mutant models, as well as abnormal expression and localization of cytoskeletal proteins, and loss of intracellular nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide + hydrogen. To identify potentially druggable proximate mechanisms, we performed a chemical suppressor screen integrating multiple human cellular and zebrafish in vivo endpoints. This screen identified Cx43 (connexin 43) hemichannel blockade as a robust suppressor of the abnormal phenotypes in both models of MYL4 (myosin light chain 4)-related atrial cardiomyopathy. Immunofluorescence and coimmunoprecipitation studies revealed an interaction between MYL4 and Cx43 with altered localization of Cx43 hemichannels to the lateral membrane in MYL4 mutants, as well as in atrial biopsies from unselected forms of human AF. The membrane fraction from MYL4-/- human embryonic stem cell derived atrial cells demonstrated increased phospho-Cx43, which was further accentuated by retinoic acid treatment and by the presence of risk alleles at the Pitx2 locus. PKC (protein kinase C) was induced by retinoic acid, and PKC inhibition also rescued the abnormal phenotypes in the atrial cardiomyopathy models. CONCLUSIONS These data establish a mechanistic link between the transcriptional, metabolic and electrical pathways previously implicated in AF substrate and suggest novel avenues for the prevention or therapy of this common arrhythmia.
Collapse
Affiliation(s)
- Zaniar Ghazizadeh
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tuomas Kiviniemi
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Sigurast Olafsson
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David Plotnick
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Manu E Beerens
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kun Zhang
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Leah Gillon
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Victor Barrera
- Chan School of Public Health, Boston, MA (M.J.S., V.B., S.H.S.)
| | - Shannan Ho Sui
- Chan School of Public Health, Boston, MA (M.J.S., V.B., S.H.S.)
| | - Andreas A Werdich
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sunil Kapur
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Antti Eranti
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Jarmo Gunn
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Juho Jalkanen
- Medicity Research Laboratories (J.J., M.H.), Harvard T.H
| | - Juhani Airaksinen
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Andre G Kleber
- Department of Pathology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA (A.G.K.)
| | - Maija Hollmén
- Medicity Research Laboratories (J.J., M.H.), Harvard T.H
| | - Calum A MacRae
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Genetics and Network Medicine Divisions (C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Boston, MA (C.A.M.)
| |
Collapse
|
35
|
Connexin43 Suppresses Lung Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11020175. [PMID: 30717421 PMCID: PMC6406368 DOI: 10.3390/cancers11020175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Alterations in gap junctions and their protein components, connexins, have been associated with neoplastic transformation and drug resistance, and more recently have been shown to play important roles in cancer stem cells (CSCs). However, there is less knowledge of connexins and gap junctions in lung CSCs. To address this, Connexin43 (Cx43), the major human lung epithelial gap junction protein, was expressed ectopically in poorly expressing National Cancer Institute-125 (NCI-H125) metastatic human lung adenocarcinoma cells, and phenotypic characteristics of malignant cells and abundance of CSCs were evaluated. The ectopic expression of Cx43 resulted in the formation of functional gap junctions; a more epithelial morphology; reduced proliferation, invasion, colony formation, tumorsphere formation, pluripotency marker expression, and percentage of aldehyde dehydrogenase (ALDH)-positive cells; and increased cisplatin sensitivity. Similarly, in NCI-H522 (human lung adenocarcinoma) and NCI-H661 (human lung large cell carcinoma) cell lines, which express Cx43 and functional gap junctions endogenously, the Cx43 content was lower in tumorspheres and ALDH-positive cells than in bulk cells. These results demonstrate that Cx43 can reverse several neoplastic characteristics and reduce the abundance of human lung CSCs.
Collapse
|
36
|
Yang CJ, Kuo CT, Wu LH, Chen MC, Pangilinan CR, Phacharapiyangkul N, Liu W, Chen YH, Lee CH. Eicosapentaenoic acids enhance chemosensitivity through connexin 43 upregulation in murine melanoma models. Int J Med Sci 2019; 16:636-643. [PMID: 31217730 PMCID: PMC6566740 DOI: 10.7150/ijms.30889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/29/2019] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy is now in common use for the treatment of tumors; however, with tumor growth retardation comes the severe side effects that occur after a chemotherapy cycle. Eicosapentaenoic acids (EPA) used in combination with chemotherapy has an additive effects and provides a rationale for using EPA in tandem with chemotherapy. To improve the efficacy and safety of this combination therapy, a further understanding that EPA modulates with the tumor microenvironment is necessary. Connexin 43 (Cx43) is involved in enhancing chemosensitivity that was suppressed in a tumor microenvironment. We aim to investigate the role of EPA in chemosensitivity in murine melanoma by inducing Cx43 expression. The dose-dependent upregulation of Cx43 expression and gap junction intercellular communication were observed in B16F10 cells after EPA treatment. Furthermore, EPA significantly increased the expression levels of mitogen-activated protein kinases (MAPK) signaling pathways. The EPA-induced Cx43 expression was reduced after MAPK inhibitors. Knockdown Cx43 in B16F10 cells reduced the therapeutic effects of combination therapy (EPA plus 5-Fluorouracil). Our results demonstrate that the treatment of EPA is a tumor induced Cx43 gap junction communication and enhances the combination of EPA and chemotherapeutic effects.
Collapse
Affiliation(s)
- Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Chi-Te Kuo
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Li-Hsien Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Man-Chin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Shi G, Zheng X, Wu X, Wang S, Wang Y, Xing F. All-trans retinoic acid reverses epithelial-mesenchymal transition in paclitaxel-resistant cells by inhibiting nuclear factor kappa B and upregulating gap junctions. Cancer Sci 2019; 110:379-388. [PMID: 30375704 PMCID: PMC6317959 DOI: 10.1111/cas.13855] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
Paclitaxel is a widely used chemotherapy drug, but development of resistance leads to treatment failure. Tumor cells that are treated with a sublethal dose of paclitaxel for a long period of time show the epithelial-mesenchymal transition (EMT) phenotype, which leads to metastasis and resistance. All-trans retinoic acid (ATRA) is always used in combination with paclitaxel and can reverse EMT in many types of cancer cells. The ability of ATRA to reverse EMT in chemoresistant cells is still unknown. In the present study, the ability of ATRA to reverse EMT in paclitaxel-resistant cells was investigated. Three colorectal cancer cell lines, HCT116, LoVo and CT26, were treated with sublethal doses of paclitaxel to create resistant cell lines. Western blotting, immunocytochemistry, and "parachute" dye-coupling assays showed that ATRA reverses EMT, inhibits nuclear factor kappa B (NF-κΒ), and upregulates gap junctions in paclitaxel-resistant cells. Scratch wound-healing and Transwell assays showed that ATRA decreases the migration and invasion abilities of paclitaxel-resistant cells. In addition, the CT26 cell line was used in the Balb/c pulmonary metastasis model to show that ATRA reduces metastasis of paclitaxel-resistant cells in vivo. Given these data, ATRA may reverse EMT by inhibiting NF-κΒ and upregulating gap junctions in paclitaxel-resistant cells.
Collapse
Affiliation(s)
| | | | | | - Siqi Wang
- Tianjin Union Medical CenterTianjinChina
| | - Yijia Wang
- Tianjin Union Medical CenterTianjinChina
- State Key Laboratory of Medicinal Chemical BiologyNanKai UniversityTianjinChina
| | - Fei Xing
- School of Physics and Optoelectronic EngineeringShandong University of TechnologyZiboChina
| |
Collapse
|