1
|
Mei Y, Gosztyla ML, Tan X, Dozier LE, Wilkinson B, McKetney J, Lee J, Chen M, Tsai D, Kopalle H, Gritsenko MA, Hartel N, Graham NA, Flores I, Gilmore-Hall SK, Xu S, Marquez CA, Liu SN, Fong D, Chen J, Licon K, Hong D, Wright SN, Kreisberg JF, Nott A, Smith RD, Qian WJ, Swaney DL, Iakoucheva LM, Krogan NJ, Patrick GN, Zhou Y, Feng G, Coba MP, Yeo GW, Ideker T. Integrated multi-omic characterizations of the synapse reveal RNA processing factors and ubiquitin ligases associated with neurodevelopmental disorders. Cell Syst 2025; 16:101204. [PMID: 40054464 DOI: 10.1016/j.cels.2025.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025]
Abstract
The molecular composition of the excitatory synapse is incompletely defined due to its dynamic nature across developmental stages and neuronal populations. To address this gap, we apply proteomic mass spectrometry to characterize the synapse in multiple biological models, including the fetal human brain and human induced pluripotent stem cell (hiPSC)-derived neurons. To prioritize the identified proteins, we develop an orthogonal multi-omic screen of genomic, transcriptomic, interactomic, and structural data. This data-driven framework identifies proteins with key molecular features intrinsic to the synapse, including characteristic patterns of biophysical interactions and cross-tissue expression. The multi-omic analysis captures synaptic proteins across developmental stages and experimental systems, including 493 synaptic candidates supported by proteomics. We further investigate three such proteins that are associated with neurodevelopmental disorders-Cullin 3 (CUL3), DEAD-box helicase 3 X-linked (DDX3X), and Y-box binding protein-1 (YBX1)-by mapping their networks of physically interacting synapse proteins or transcripts. Our study demonstrates the potential of an integrated multi-omic approach to more comprehensively resolve the synaptic architecture.
Collapse
Affiliation(s)
- Yuan Mei
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Lara E Dozier
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin McKetney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - John Lee
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dorothy Tsai
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hema Kopalle
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Ilse Flores
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephen K Gilmore-Hall
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuhao Xu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Charlotte A Marquez
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophie N Liu
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dylan Fong
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kate Licon
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Derek Hong
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah N Wright
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason F Kreisberg
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, White City Campus, London W12 7RH, UK; UK Dementia Research Institute, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Danielle L Swaney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Gentry N Patrick
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA.
| | - Trey Ideker
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Dong H, Peng Z, Yu T, Xiong J. YB-1 Targeted by miR-509-3-5p Affects Migration and Invasion of Triple‑Negative Breast Cancer by Regulating Cellular Epithelial‑Mesenchymal Transition. Mol Biotechnol 2025; 67:1014-1026. [PMID: 38436906 DOI: 10.1007/s12033-024-01101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The epithelial-mesenchymal transition (EMT) process is closely linked to metastasis of breast cancer. This article elucidates the role of Y-box binding protein-1 (YB-1) on the migration and invasion of triple-negative breast cancer (TNBC) cells by regulating EMT, and the related mechanism. The expression data of YB-1 and miR-509-3-5p in TNBC samples and normal samples were downloaded from the GEO database. The proliferation, migration, invasion, and EMT of TNBC cells were detected by CCK-8 assay, colony formation assay, wound-healing assay, transwell assay, and immunoblotting analyses. The targeted binding of YB-1 and miR-509-3-5p was validated by luciferase reporter experiment. A xenograft mouse model was constructed to investigate the influence of the miR-509-3-5p/YB-1 axis on TNBC tumor growth in vivo. YB-1 was overexpressed, while miR-509-3-5p was underexpressed in TNBC tumor tissues and various cell lines. Silencing YB-1 depressed cell viability, proliferation, motility, and EMT in vitro, and miR-509-3-5p upregulation exerted the same effects. YB-1 was targeted by miR-509-3-5p. The suppressive effects on the phenotypes of TNBC cells caused by overexpressed miR-509-3-5p were attenuated by YB-1 upregulation. In addition, miR-509-3-5p overexpression restrained TNBC tumor growth and downregulated the YB-1-mediated EMT process in vivo. YB-1 targeted by miR-509-3-5p affects motility of TNBC cells by regulating cellular EMT.
Collapse
Affiliation(s)
- Hanzhi Dong
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Donghu District, Nanchang, 330029, China
| | - Zhiqiang Peng
- Department of Lymphohematology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Jianping Xiong
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Donghu District, Nanchang, 330029, China.
| |
Collapse
|
3
|
Huang H, Ren L, Zhou Y, Chen P, Zhao H, Li S, Wang H, Li X. KAT7-acetylated YBX1 promotes hepatocellular carcinoma proliferation by reprogramming nucleotide metabolism. BMC Cancer 2025; 25:311. [PMID: 39984921 PMCID: PMC11844059 DOI: 10.1186/s12885-025-13708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Lysine acetylation is a critical post-translational modification regulating tumor initiation and progression. Lysine acetyltransferase 7 (KAT7)-mediated lysine acetylation is frequently dysregulated in cancer. However, the role of KAT7-mediated lysine acetylation in hepatocellular carcinoma (HCC) progression remains unclear. METHODS Bioinformatic analysis was used to investigate the expression, clinicopathological characteristics and diagnostic prognostic value of KAT7 in HCC. CCK-8 assays, colony-forming assays, apoptosis assays and nude mouse xenograft models were utilized to detect the oncogenic functions of KAT7 in HCC. Immunoprecipitation (IP) assay and mass spectrometry (MS) analysis were performed to identify the KAT7-binding protein Y-box binding protein 1 (YBX1). Transcriptome sequencing and functional enrichment analysis were employed to elucidate the downstream pathway regulated by KAT7 and YBX1. Chromatin immunoprecipitation (ChIP) assay was used to evaluate YBX1 binding to the promoter regions of ribonucleotide reductase regulatory subunit M2 (RRM2) and thymidine kinase 1 (TK1). Weighted gene co-expression network analysis and selection operator regression analysis were used to build risk prediction models. RESULTS This study demonstrated that elevated KAT7 expression is associated with poor prognosis in HCC patients. Knockdown of endogenous KAT7 in HCC cells attenuated tumorigenic phenotypes associated with cell proliferation, colony formation and orthotopic xenograft tumor growth, indicating a pro-tumorigenic role of KAT7 in HCC. YBX1 was identified as a novel non-histone substrate for KAT7, and the E508 residue of KAT7 is essential for binding. Following the functional enrichment analysis, KAT7 and YBX1 were correlated with nucleotide metabolism. Furthermore, KAT7 binds to YBX1 and modulates its post-translational expression, which enhances the transcriptional activity of the central nucleotide metabolism enzymes RRM2 and TK1. Additionally, we constructed a novel prognostic prediction model based on KAT7, YBX1, RRM2 and TK1, which validated the predictive accuracy and prognostic value of KAT7-mediated acetylation is consistent with clinical outcomes in HCC. CONCLUSIONS Our findings highlight that KAT7 acetylates YBX1 and promotes HCC progression by reprogramming nucleotide metabolism, offering therapeutic implications.
Collapse
Affiliation(s)
- He Huang
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Longfei Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yongqiang Zhou
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Pengyu Chen
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Haixia Zhao
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Shang Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Haiping Wang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, PR China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, PR China.
- National Clinical Key Specialty of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou, 730000, PR China.
- Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, 730000, PR China.
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, 730000, PR China.
| |
Collapse
|
4
|
Li Q, Guo G, Chen Y, Lu L, Li H, Zhou Z, Guo J, Gan X, Hu Y, Li Q, Sun M, Liu X. HCP5 Derived Novel Microprotein Triggers Progression of Gastric Cancer through Regulating Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407012. [PMID: 39447131 PMCID: PMC11633528 DOI: 10.1002/advs.202407012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Indexed: 10/26/2024]
Abstract
The context of long noncoding RNAs (lncRNAs) contains many unannotated open reading frames (ORFs). These ORFs potentially encode novel proteins or peptides with crucial roles in various human cancers, yet the translational potential of these lncRNAs and the functions of the protein products remain largely unexplored, especially in gastric cancer (GC). In this study, a comprehensive analysis is performed and identified a GC associated lncRNA known as HCP5, which contains a non-canonical ORF. Further analysis showed that HCP5-132aa, a microprotein encoded by HCP5 harboring this ORF, is highly expressed in GC cells and tissues, and can promote the proliferation of GC cells by inhibiting ferroptosis. Mechanistically, HCP5-132aa enhances the interaction between YBX1 and ELAVL1, facilitates recognition of YBX1 at the m5C site in the 3'UTR of SLC7A11 and G6PD mRNA, and preserves their stability via ELAVL1. By employing a Cas9/sgRNA delivery system with AAV in vivo, effectively knocked out the HCP5-132aa and inhibition of tumor growth in a patient-derived xenograft model are achieved. These findings demonstrate that the novel protein HCP5-132aa, derived from lncRNA HCP5, mediates the repression of ferroptosis, thereby driving the progression of GC and identifying a new potential therapeutic target for its treatment.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Guoqing Guo
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Yuli Chen
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215001China
| | - Lu Lu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Hanyang Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Zihan Zhou
- The First Clinical Medical CollegeNanjing Medical UniversityNanjing211166China
| | - Jiahao Guo
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215001China
| | - Xiongkang Gan
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Yanming Hu
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215001China
| | - Qiunuo Li
- The First Clinical Medical CollegeNanjing Medical UniversityNanjing211166China
| | - Ming Sun
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215001China
| | - Xianghua Liu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| |
Collapse
|
5
|
Sreelekshmi PK, Pooja SK, Vidya N, Sinosh S, Thejaswini V. Integrative Investigation of Flavonoids Targeting YBX1 Protein-Protein Interaction Network in Breast Cancer: From Computational Analysis to Experimental Validation. Mol Biotechnol 2024:10.1007/s12033-024-01311-6. [PMID: 39565541 DOI: 10.1007/s12033-024-01311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024]
Abstract
Y-box-binding protein 1 (YBX1) is a multifunctional oncoprotein with its nuclear localization contributing to chemo-resistance in breast cancer. Through its interactions with various proteins and lncRNAs, YBX1 promotes cancer cell migration, invasion, and metastasis. Despite its significant role in cancer progression, studies on YBX1's protein-protein interactions (PPIs) remain limited. Flavonoids are natural compounds with anticancer properties that inhibit metastasis, modulate immunity, and induce apoptosis, with minimal systemic toxicity, making them strong candidates for cancer therapy. Targeting PPIs offers a promising approach for cancer therapy and flavonoids, with their anticancer properties, may modulate these interactions. Our study focused on the YBX1 PPI network, specifically targeting HSPA1A, IGF2BP1, MECP2, G3BP1, EWSR1, PURA, and SYNCRIP. We selected four flavonoids Quercetin, Fisetin, Rutin, and Myricitrin based on literature and conducted 26 docking sessions. Further ADMET analysis indicated Quercetin and Fisetin as more favorable for drug-likeness parameters than Rutin and Myricitrin, which was underscored by MD simulation data. In vitro studies showed that Quercetin and Fisetin downregulated YBX1 expression in a dose-dependent manner (50 μM to 150 μM) in MCF-7 cells. Our study provides a preliminary understanding of YBX1 PPI and the potential of flavonoids to disrupt these interactions. This study investigates the potential of flavonoids to target YBX1 PPIs, providing insights into novel therapeutic strategies for YBX1-driven cancers.
Collapse
Affiliation(s)
- Presanna Kumar Sreelekshmi
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India
| | - Suresh Kumar Pooja
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Niranjan Vidya
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Skariyachan Sinosh
- Department of Microbiology, St. Pius X College, Rajapuram, Kasargod, Kerala, India
| | - Venkatesh Thejaswini
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India.
| |
Collapse
|
6
|
Wang Y, Ding B, Tao Y, Huang L, Zhu Q, Gao C, Feng M, Han Y. Homologous recombination deficiency score is an independent prognostic factor in esophageal squamous cell carcinoma. J Pathol Clin Res 2024; 10:e70007. [PMID: 39469984 PMCID: PMC11519826 DOI: 10.1002/2056-4538.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Homologous recombination deficiency (HRD) represents an impairment in the homologous recombination repair (HRR) pathway, crucial for repairing DNA double-strand breaks and contributing to genomic instability in cancer. The HRD score may be a more reliable biomarker than HRR-related gene mutations for identifying patients sensitive to poly(ADP-ribose) polymerase inhibitors. Despite its relevance in various cancers, the HRD score remains underexplored in esophageal squamous cell carcinoma (ESCC). We retrospectively analyzed HRD scores in 96 ESCC patients, examining correlations with clinical characteristics and survival outcomes, and validated our findings using the TCGA dataset. Genomic sequencing utilized a custom superHRD next-generation sequencing panel, and HRD scores were calculated from 54,000 single-nucleotide polymorphisms using Kruskal-Wallis rank-sum tests and two cut-off points for analysis. Higher HRD scores correlated with advanced tumor stages, recurrence, and mutations in TP53 and ABCB1, while APC mutations were linked to lower HRD scores. Patients with high HRD scores had significantly shorter disease-free survival (p = 0.013) and a trend toward shorter overall survival (OS) (p = 0.005), particularly those not receiving adjuvant therapy. Conversely, HRD-high patients undergoing adjuvant therapy showed a trend toward longer OS (p = 0.015). Multivariate analysis identified HRD as an independent prognostic factor (hazard ratio = 2.814 for recurrence, p = 0.015). Validation with the TCGA dataset supported these findings. This study highlights the associations between HRD scores, clinical characteristics, and genomic mutations in ESCC, suggesting HRD as a potential prognostic biomarker. HRD assessment may aid in patient stratification and personalized treatment strategies, warranting further investigation to validate the therapeutic implications of HRD scores in ESCC.
Collapse
Affiliation(s)
- Yulu Wang
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Bowen Ding
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Yunlan Tao
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Lingli Huang
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Qian Zhu
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Chengying Gao
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Mingli Feng
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| |
Collapse
|
7
|
Wu F, Li D. YB1 and its role in osteosarcoma: a review. Front Oncol 2024; 14:1452661. [PMID: 39497723 PMCID: PMC11532169 DOI: 10.3389/fonc.2024.1452661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
YB1 (Y box binding protein 1), a multifunctional protein capable of binding to DNA/RNA, is present in most cells and acts as a splicing factor. It is involved in numerous cellular processes such as transcription, translation, and DNA repair, significantly affecting cell proliferation, differentiation, and apoptosis. Abnormal expression of this protein is closely linked to the formation of various malignancies (osteosarcoma, nasopharyngeal carcinoma, breast cancer, etc.). This review examines the multifaceted functions of YB1 and its critical role in osteosarcoma progression, providing new perspectives for potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Dapeng Li
- Affiliated Hospital of Jiangsu University, Zhenjiang,
Jiangsu, China
| |
Collapse
|
8
|
Li B, Xing F, Wang J, Wang X, Zhou C, Fan G, Zhuo Q, Ji S, Yu X, Xu X, Qin Y, Li Z. YBX1 as a therapeutic target to suppress the LRP1-β-catenin-RRM1 axis and overcome gemcitabine resistance in pancreatic cancer. Cancer Lett 2024; 602:217197. [PMID: 39216548 DOI: 10.1016/j.canlet.2024.217197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly malignant and has a poor prognosis, without effective therapeutic targets in common gene mutations. Gemcitabine, a first-line chemotherapeutic for PDAC, confers <10 % 5-year survival rate because of drug resistance. Y-box binding protein 1 (YBX1), associated with multidrug-resistance gene activation, remains unelucidated in PDAC gemcitabine resistance. In vivo and in vitro, we verified YBX1's promotional effects, especially gemcitabine resistance, in pancreatic cancer cells. YBX1-induced LRP1 transcription by binding to the LRP1 promoter region significantly altered the concentration and distribution of β-catenin in pancreatic cancer cells. Through TCF3, β-catenin bound to the promoter region of RRM1, a key gene for gemcitabine resistance, that promotes RRM1 expression. Combination therapy with the YBX1 inhibitor SU056 and gemcitabine effectively reduced gemcitabine resistance in in vivo and in vitro experiments. High YBX1 expression promoted pathogenesis and gemcitabine resistance in pancreatic cancer through the YBX1-LRP1-β-catenin-RRM1 axis. Combining YBX1 inhibitors with gemcitabine may provide a new direction for combination chemotherapy to overcome gemcitabine resistance, which frequently occurs during chemotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Faliang Xing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jingyi Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4067, Australia
| | - Xiaohong Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Murakami Y, Katsuchi D, Matsumoto T, Kanazawa K, Shibata T, Kawahara A, Akiba J, Yanaihara N, Okamoto A, Itamochi H, Sugiyama T, Terada A, Nishio S, Tsuda N, Kato K, Ono M, Kuwano M. Y-box binding protein 1/cyclin A1 axis specifically promotes cell cycle progression at G 2/M phase in ovarian cancer. Sci Rep 2024; 14:21701. [PMID: 39289424 PMCID: PMC11408696 DOI: 10.1038/s41598-024-72174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Y-box binding protein 1 (YBX1) promotes oncogenic transformation and tumor growth. YBX1 plays a role in regulation of cell cycle promotion via upregulation of cell cycle-related genes. In ovarian cancer, YBX1 also promotes tumor growth, but the mechanisms of YBX1 in cell growth and cell cycle in ovarian cancer remain not to be fully understood. Here, we investigated whether YBX1-dependent cancer cell proliferation was specifically associated with expression of cell cycle related genes in ovarian cancer. Protein and mRNA expression levels of YBX1 and cell cycle-related genes in ovarian cancer cell lines and tissues were determined by western blot analysis, immunohistochemical analysis and reverse transcription-quantitative PCR. Cell cycle analysis was performed by flow cytometry. Luciferase assay and Chromatin immunoprecipitation assay were used to investigate a transcriptional function of YBX1. YBX1 silencing induced marked growth suppression in 4 cell lines (group A), moderate suppression in 5 cell lines (group B), and no suppression in 3 cell lines (group C) among 12 ovarian cancer cell lines in culture. The YBX1 silencing induced cell cycle arrest at G2/M phase and suppressed expression of cyclin A1 gene in group A and B cell lines, but not in group C cell lines. Cyclin A1 silencing specifically suppressed cell proliferation in group A cell lines and partially in group B cell lines, but not at all in group C cell lines. YBX1 mRNA levels were significantly correlated with cyclin A1 mRNA levels in patients with high-grade serous carcinoma. Augmented YBX1 expression plays a key role in tumor growth promotion in ovarian cancer in its close association with cyclin A1.
Collapse
Affiliation(s)
- Yuichi Murakami
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan.
| | - Daisuke Katsuchi
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| | - Taichi Matsumoto
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| | - Kuon Kanazawa
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| | - Tomohiro Shibata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Nozomu Yanaihara
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Hiroaki Itamochi
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Yahaba-Cho, 028-3694, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, St. Mary's Hospital, Kurume, 830-8543, Japan
| | - Atsumu Terada
- Department of Obstetrics and Gynecology, St. Mary's Hospital, Kurume, 830-8543, Japan
| | - Shin Nishio
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Naotake Tsuda
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mayumi Ono
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| | - Michihiko Kuwano
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| |
Collapse
|
10
|
Wang X, Guo T, Niu L, Zheng B, Huang W, Xu H, Huang W. Engineered targeting OIP5 sensitizes bladder cancer to chemotherapy resistance via TRIP12-PPP1CB-YBX1 axis. Oncogene 2024; 43:2850-2867. [PMID: 39155295 DOI: 10.1038/s41388-024-03136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Chemoresistance is an important cause of treatment failure in bladder cancer, and identifying genes that confer drug resistance is an important step toward developing new therapeutic strategies to improve treatment outcomes. In the present study, we show that gemcitabine plus cisplatin (GEM/DDP) therapy induces NF-κB signaling, which promotes p65-mediated transcriptional activation of OIP5. OIP5 recruits the E3 ubiquitin ligase TRIP12 to bind to and degrade the phosphatase PPP1CB, thereby enhancing the transcription factor activity of YBX1. This in turn upregulates drug-resistance-related genes under the transcriptional control of YBX1, leading to chemoresistance. Moreover, PPP1CB degradation can enhance the phosphorylation activity of IKKβ, triggering the NF-κB signaling cascade, which further stimulates OIP5 gene expression, thus forming a negative feedback regulatory loop. Consistently, elevated OIP5 expression was associated with chemoresistance and poor prognosis in patients with bladder cancer. Furthermore, we used a CRISPR/Cas9-based engineered gene circuit, which can monitor the progression of chemoresistance in real-time, to induce OIP5 knockout upon detection of increased NF-κB signaling. The gene circuit significantly inhibited tumor cell growth in vivo, underscoring the potential for synergy between gene therapy and chemotherapy in the treatment of cancer.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ting Guo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Haibo Xu
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
11
|
Ahuja S, Lazar IM. Proteomic insights into breast cancer response to brain cell-secreted factors. Sci Rep 2024; 14:19351. [PMID: 39169222 PMCID: PMC11339284 DOI: 10.1038/s41598-024-70386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The most devastating feature of cancer cells is their ability to metastasize to distant sites in the body. HER2 + and TN breast cancers frequently metastasize to the brain and stay potentially dormant for years until favorable conditions support their proliferation. The sheltered and delicate nature of the brain prevents, however, early disease detection and effective delivery of therapeutic drugs. Moreover, the challenges associated with the acquisition of brain biopsies add compounding difficulties to exploring the mechanistic aspects of tumor development. To provide insights into the determinants of cancer cell behavior at the brain metastatic site, this study was aimed at exploring the early response of HER2 + breast cancer cells (SKBR3) to factors present in the brain perivascular niche. The neural microenvironment was simulated by using the secretome of a set of brain cells that come first in contact with the cancer cells upon crossing the blood brain barrier, i.e., endothelial cells, astrocytes, and microglia. Cytokine microarrays were used to investigate the secretome mediators of intercellular communication, and proteomic technologies for assessing the changes in the behavior of cancer cells upon exposure to the brain cell-secreted factors. The cytokines detected in the brain secretomes were supportive of inflammatory conditions, while the SKBR3 cells secreted numerous cancer-promoting growth factors that were either absent or present in lower abundance in the brain cell cultures, indicating that upon exposure the SKBR3 cells may have been deprived of favorable conditions for optimal growth. Altogether, the results suggest that the exposure of SKBR3 cells to the brain cell-secreted factors altered their growth potential and drove them toward a state of quiescence, with broader overall outcomes that affected cellular metabolism, adhesion and immune response processes. The findings of this study underscore the key role played by the neural niche in shaping the behavior of metastasized cancer cells, provide insights into the cellular cross-talk that may lead cancer cells into dormancy, and highlight novel opportunities for the development of metastatic breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Fralin Life Sciences Institute, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Carilion School of Medicine, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Division of Systems Biology/AIS, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
12
|
Wang D, Chen D, Liang L, Hu J. The circZEB1/miR-337-3p/ OGT axis mediates angiogenesis and metastasis via O-GlcNAcylation and up-regulating YBX1 in breast cancer. Heliyon 2024; 10:e34079. [PMID: 39114035 PMCID: PMC11305230 DOI: 10.1016/j.heliyon.2024.e34079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND A growing corpus of research has revealed that circular RNAs (circRNAs) have become increasingly important for the growth of malignancies in recent years. CircRNAs as ideal candidates for breast cancer (BC) therapeutic targets is still absent. METHODS In our study, the dysregulated circRNAs in BC progression were explored, we analysed the BC's circRNA expression profiles using publicly available datasets (GSE101124 and GSE101122). The expression of circZEB1 in BC and cell lines was investigated by qPCR. RNase and actinomycin D were used to examine the features of circZEB1. The function of circZEB1 was subsequently investigated through the utilisation of colony formation, tube formation, transwell assays, and xenograft animal models.RNA immunoprecipitation (RIP), luciferase reporter assays, immunoprecipitation (co-IP) test in conjunction with LC-MS, and ChIP-seq assay to investigate the molecular mechanism underlying the biological activity of circZEB1 in BC. RESULTS Among the circRNAs, we were particularly interested in hsa_circ_0000228, which is spliced from the oncogene ZEB1. In BC cell lines, CircZEB1 expression was upregulated. CircZEB1 knockdown prevented BC cells from migrating and invading, as well as HUVECs from forming tubes and developing. By sponging miR-337-3p, functional testing revealed that circZEB1 promoted O-GlcNAcylation, increased YBX1, and OGT expression. Moreover, circZEB1 overexpression is reversible, in contrast to YBX1 knockdown, which mostly results in the downregulation of multiple oncogenes. CONCLUSION Our study indicate that circZEB1 had oncogenic function in BC by focusing on circZEB1/miR-337-3p/OGT and YBX1. It might be inferred that circZEB1 could be a promising new target for BC treatment.
Collapse
Affiliation(s)
- Dongying Wang
- Molecular Genetics Laboratory, Yiwu Maternity and Children Hospital, Jinhua, 321000, China
| | - Dengyi Chen
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Leilei Liang
- Zhejiang Cancer Hospital, Hangzhou, 310011, China
| | - Jialei Hu
- Molecular Genetics Laboratory, Yiwu Maternity and Children Hospital, Jinhua, 321000, China
| |
Collapse
|
13
|
Chen H, Hu J, Xiong X, Chen H, Liao Q, Lin B, Chen Y, Peng Y, Li Y, Cheng D, Li Z. SETD8 inhibits apoptosis and ferroptosis of Ewing's sarcoma through YBX1/RAC3 axis. Cell Death Dis 2024; 15:494. [PMID: 38987564 PMCID: PMC11237091 DOI: 10.1038/s41419-024-06882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Ewing's sarcoma (ES) represents a rare yet exceedingly aggressive neoplasm that poses a significant health risk to the pediatric and adolescent population. The clinical outcomes for individuals with relapsed or refractory ES are notably adverse, primarily attributed to the constrained therapeutic alternatives available. Despite significant advancements in the field, molecular pathology-driven therapeutic strategies have yet to achieve a definitive reduction in the mortality rates associated with ES. Consequently, there exists an imperative need to discover innovative therapeutic targets to effectively combat ES. To reveal the mechanism of the SETD8 (also known as lysine methyltransferase 5A) inhibitor UNC0379, cell death manners were analyzed with different inhibitors. The contributions of SETD8 to the processes of apoptosis and ferroptosis in ES cells were evaluated employing the histone methyltransferase inhibitor UNC0379 in conjunction with RNA interference techniques. The molecular regulatory mechanisms of SETD8 in ES were examined through the application of RNA sequencing (RNA-seq) and mass spectrometry-based proteomic analysis. Moreover, nude mouse xenograft models were established to explore the role of SETD8 in ES in vivo. SETD8, a sole nucleosome-specific methyltransferase that catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), was found to be upregulated in ES, and its overexpression was associated with dismal outcomes of patients. SETD8 knockdown dramatically induced the apoptosis and ferroptosis of ES cells in vitro and suppressed tumorigenesis in vivo. Mechanistic investigations revealed that SETD8 facilitated the nuclear translocation of YBX1 through post-transcriptional regulatory mechanisms, which subsequently culminated in the transcriptional upregulation of RAC3. In summary, SETD8 inhibits the apoptosis and ferroptosis of ES cells through the YBX1/RAC3 axis, which provides new insights into the mechanism of tumorigenesis of ES. SETD8 may be a potential target for clinical intervention in ES patients.
Collapse
Affiliation(s)
- Huimou Chen
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Jing Hu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xilin Xiong
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Hongling Chen
- Department of Clinical Laboratory, Maoming People's Hospital, Maoming, Guangdong, 525000, China
| | - Qiaofang Liao
- Department of Oncology, Huizhou First Hospital, Huizhou, Guangdong, 516000, China
| | - Biaojun Lin
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Yusong Chen
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Yanting Peng
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Yang Li
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China.
| | - Di Cheng
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China.
| | - Zhihua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China.
| |
Collapse
|
14
|
Ning F, Du L, Li J, Wu T, Zhou J, Chen Z, Hu X, Zhang Y, Luan X, Xin H, Yuan C, Zhang X. The deubiquitinase USP5 promotes cholangiocarcinoma progression by stabilizing YBX1. Life Sci 2024; 348:122674. [PMID: 38692507 DOI: 10.1016/j.lfs.2024.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
AIMS Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.
Collapse
Affiliation(s)
- Fengling Ning
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Ling Du
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jiayang Li
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Tiangang Wu
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jiacheng Zhou
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Zihui Chen
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yuai Zhang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| | - Chunyan Yuan
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| |
Collapse
|
15
|
Yao B, Xing M, Zeng X, Zhang M, Zheng Q, Wang Z, Peng B, Qu S, Li L, Jin Y, Li H, Yuan H, Zhao Q, Ma C. KMT2D-mediated H3K4me1 recruits YBX1 to facilitate triple-negative breast cancer progression through epigenetic activation of c-Myc. Clin Transl Med 2024; 14:e1753. [PMID: 38967349 PMCID: PMC11225074 DOI: 10.1002/ctm2.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved. METHODS AND RESULTS We recognized Y-box-binding protein 1 (YBX1) as a "reader" of the H3K4me1 mark, and a point mutation of YBX1 (E121A) disrupted this interaction. We found that KMT2D and YBX1 cooperatively promoted cell growth and metastasis of TNBC cells in vitro and in vivo. The expression levels of KMT2D and YBX1 were both upregulated in tumour tissues and correlated with poor prognosis for breast cancer patients. Combined analyses of ChIP-seq and RNA-seq data indicated that YBX1 was co-localized with KMT2D-mediated H3K4me1 in the promoter regions of c-Myc and SENP1, thereby activating their expressions in TNBC cells. Moreover, we demonstrated that YBX1 activated the expressions of c-Myc and SENP1 in a KMT2D-dependent manner. CONCLUSION Our results suggest that KMT2D-mediated H3K4me1 recruits YBX1 to facilitate TNBC progression through epigenetic activation of c-Myc and SENP1. These results together unveil a crucial interplay between histone mark and gene regulation in TNBC progression, thus providing novel insights into targeting the KMT2D-H3K4me1-YBX1 axis for TNBC treatment. HIGHLIGHTS YBX1 is a KMT2D-mediated H3K4me1-binding effector protein and mutation of YBX1 (E121A) disrupts its binding to H3K4me1. KMT2D and YBX1 cooperatively promote TNBC proliferation and metastasis by activating c-Myc and SENP1 expression in vitro and in vivo. YBX1 is colocalized with H3K4me1 in the c-Myc and SENP1 promoter regions in TNBC cells and increased YBX1 expression predicts a poor prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Bing Yao
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical MedicineNanjing Medical UniversityTaizhouChina
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
| | - Mengying Xing
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Xiangwei Zeng
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingChina
| | - Ming Zhang
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Que Zheng
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Zhi Wang
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingChina
| | - Bo Peng
- MOE Key Laboratory of Protein SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesDepartment of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijingChina
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Lingyun Li
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Yucui Jin
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Haitao Li
- MOE Key Laboratory of Protein SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesDepartment of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijingChina
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingChina
| | - Changyan Ma
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
| |
Collapse
|
16
|
Liu L, Gong P, Li X, Zhang L, Niu J, Zhu J, Wang Z, Long X, Cao T, Liu Y, Wang G, Fu T, Sun L, Li W. Targeting LINC070974 inhibits lung adenocarcinoma cell proliferation and progression by interacting with Y-box binding protein 1. Acta Biochim Biophys Sin (Shanghai) 2024; 57:182-194. [PMID: 38899362 PMCID: PMC11868936 DOI: 10.3724/abbs.2024093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Increasing evidence suggests that long noncoding RNAs play crucial roles in lung cancer pathogenesis. We previously identified a novel lncRNA, LINC070974, which is associated with tumor cell proliferation. In the present study, we find that knockdown of LINC070974 inhibits cell proliferation, migration and invasion as well as tumor formation both in vitro and in nude mice. LINC070974 silencing also improves cisplatin efficacy in A549/DDP cells. The function of LINC070974 may depend on its interaction with YBX1. Knockdown of LINC070974 reduces the recruitment of YBX1 to the CCND1 promoter and delays tumor progression through its coregulatory genes, which are mainly involved in the p53 signaling pathway. We utilize nebulized inhalation to deliver siRNAs targeting LINC070974 and find that knockdown of LINC070974 significantly prevents tumor metastasis and growth in lung tissues. These findings reveal the role of LINC070974 in lung cancer and suggest a promising therapeutic approach involving siRNA inhalation.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
- Zhuji Affiliated Hospital of Wenzhou Medical UniversityZhuji311899China
| | - Pengfei Gong
- College of Artificial Intelligence and Big Data for Medical SciencesShandong First Medical UniversityJinan250118China
| | - Xueling Li
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Li Zhang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Jiale Niu
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Jinhui Zhu
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Ziwei Wang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xingwang Long
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Tenghui Cao
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Yewen Liu
- Zhuji Affiliated Hospital of Wenzhou Medical UniversityZhuji311899China
| | - Ganglin Wang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Tingming Fu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical SciencesShandong First Medical UniversityJinan250118China
| | - Wei Li
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
17
|
Wang X, Li X, Niu L, Lv F, Guo T, Gao Y, Ran Y, Huang W, Wang B. FAK-LINC01089 negative regulatory loop controls chemoresistance and progression of small cell lung cancer. Oncogene 2024; 43:1669-1687. [PMID: 38594505 DOI: 10.1038/s41388-024-03027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The focal adhesion kinase (FAK) tyrosine kinase is activated and upregulated in multiple cancer types including small cell lung cancer (SCLC). However, FAK inhibitors have shown limited efficacy in clinical trials for cancer treatment. With the aim of identifying potential therapeutic strategies to inhibit FAK for cancer treatment, we investigated long non-coding RNAs (lncRNAs) that potentially regulate FAK in SCLC. In this study, we identified a long non-coding RNA LINC01089 that binds and inhibits FAK phosphorylation (activation). Expression analysis revealed that LINC01089 was downregulated in SCLC tissues and negatively correlated with chemoresistance and survival in SCLC patients. Functionally, LINC01089 inhibited chemoresistance and progression of SCLC in vitro and in vivo. Mechanistically, LINC01089 inhibits FAK activation by blocking binding with Src and talin kinases, while FAK negatively regulates LINC01089 transcription by activating the ERK signaling pathway to recruit the REST transcription factor. Furthermore, LINC01089-FAK axis mediates the expression of drug resist-related genes by modulating YBX1 phosphorylation, leading to drug resistance in SCLC. Intriguingly, the FAK-LINC01089 interaction depends on the co-occurrence of the novel FAK variant and the non-conserved region of LINC01089 in primates. In Conclusion, our results indicated that LINC01089 may serve as a novel high-efficiency FAK inhibitor and the FAK-LINC01089 axis represents a valuable prognostic biomarker and potential therapeutic target in SCLC.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liman Niu
- Chongqing Key Laboratory of Sichuan-Chongging Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Guo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Li Z, Xue H, Li J, Zheng Z, Liu Z, Dong X, Wang H, Chen J, Xu S. CDKL1 potentiates the antitumor efficacy of radioimmunotherapy by binding to transcription factor YBX1 and blocking PD-L1 expression in lung cancer. J Exp Clin Cancer Res 2024; 43:89. [PMID: 38520004 PMCID: PMC10958935 DOI: 10.1186/s13046-024-03007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The evasion of the immune response by tumor cells through programmed death-ligand 1 (PD-L1) has been identified as a factor contributing to resistance to radioimmunotherapy in lung cancer patients. However, the precise molecular mechanisms underlying the regulation of PD-L1 remain incompletely understood. This study aimed to investigate the role of cyclin-dependent kinase-like 1 (CDKL1) in the modulation of PD-L1 expression and the response to radioimmunotherapy in lung cancer. METHODS The tumorigenic roles of CDKL1 were assessed via cell growth, colony formation, and EdU assays and an in vivo nude mouse xenograft model. The in vitro radiosensitization effect of CDKL1 was evaluated using a neutral comet assay, γH2AX foci formation analysis, and a clonogenic cell survival assay. The protein‒protein interactions were confirmed via coimmunoprecipitation and GST pulldown assays. The regulation of PD-L1 by CDKL1 was evaluated via chromatin immunoprecipitation (ChIP), real-time quantitative PCR, and flow cytometry analysis. An in vitro conditioned culture model and an in vivo C57BL/6J mouse xenograft model were developed to detect the activation markers of CD8+ T cells and evaluate the efficacy of CDKL1 overexpression combined with radiotherapy (RT) and an anti-PD-L1 antibody in treating lung cancer. RESULTS CDKL1 was downregulated and suppressed the growth and proliferation of lung cancer cells and increased radiosensitivity in vitro and in vivo. Mechanistically, CDKL1 interacted with the transcription factor YBX1 and decreased the binding affinity of YBX1 for the PD-L1 gene promoter, which consequently inhibits the expression of PD-L1, ultimately leading to the activation of CD8+ T cells and the inhibition of immune evasion in lung cancer. Moreover, the combination of CDKL1 overexpression, RT, and anti-PD-L1 antibody therapy exhibited the most potent antitumor efficacy against lung cancer. CONCLUSIONS Our findings demonstrate that CDKL1 plays a crucial role in regulating PD-L1 expression, thereby enhancing the antitumor effects of radioimmunotherapy. These results suggest that CDKL1 may be a promising therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zixuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Huichan Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jinsong Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Hongbo Wang
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Jiang T, Qi J, Xue Z, Liu B, Liu J, Hu Q, Li Y, Ren J, Song H, Xu Y, Xu T, Fan R, Song J. The m 6A modification mediated-lncRNA POU6F2-AS1 reprograms fatty acid metabolism and facilitates the growth of colorectal cancer via upregulation of FASN. Mol Cancer 2024; 23:55. [PMID: 38491348 PMCID: PMC10943897 DOI: 10.1186/s12943-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Junwen Qi
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zhenyu Xue
- Department of Radiation Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jianquan Liu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qihang Hu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuqiu Li
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jing Ren
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ruizhi Fan
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
20
|
Ru J, Lu J, Ge J, Ding B, Su R, Jiang Y, Sun Y, Ma J, Li Y, Sun J, Xu G, Tong R, Zheng S, Yang B, Wu J. IRGM is a novel regulator of PD-L1 via promoting S6K1-mediated phosphorylation of YBX1 in hepatocellular carcinoma. Cancer Lett 2024; 581:216495. [PMID: 37993085 DOI: 10.1016/j.canlet.2023.216495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/22/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Immunity-related GTPase M (IRGM), an Interferon-inducible protein, functions as a pivotal immunoregulator in multiple autoimmune diseases and infection. However, the role of IRGM in hepatocellular carcinoma (HCC) development remains unveiled. Here, we found interferon-γ (IFN-γ) treatment in HCC drastically triggered the expression of IRGM, and the high level of IRGM indicated poor prognosis in HCC patients. Functionally, IRGM promoted the malignant progression of HCC. Single-cell sequencing revealed that IRGM inhibition promoted the infiltration of CD8+ cytotoxic T lymphocytes (CTLs) with significant downregulation of PD-L1 expression in HCC. Furthermore, Immunoprecipitation-Mass Spectrometry assay revealed that IRGM interacted with transcription factor YBX1, which facilitated PD-L1 transcription. Mechanistically, IRGM promoted the interaction of YBX1 and phosphokinase S6K1, increasing phosphorylation and nuclear localization of YBX1, transcription of PD-L1. Additionally, the combination of IRGM inhibition with α-PD1 demonstrated a stronger anti-tumor effect compared to the single application of α-PD1. In summary, IRGM is a novel regulator of PD-L1, which suppresses CD8+ CTLs infiltration and function in HCC, resulting in cancer progression. This study may raise a novel therapeutic strategy combined with immune checkpoint inhibitors (ICIs) against HCC.
Collapse
Affiliation(s)
- Junnan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China
| | - Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Jiangzhen Ge
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Rong Su
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China
| | - Yujing Sun
- General Practice Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China
| | - Yu Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Jingqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China
| | - Guangming Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China.
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang province, Hangzhou, China.
| |
Collapse
|
21
|
Li J, Zhang B, Feng Z, An D, Zhou Z, Wan C, Hu Y, Sun Y, Wang Y, Liu X, Wei W, Yang X, Meng J, Che M, Sheng Y, Wu B, Wen L, Huang F, Li Y, Yang K. Stabilization of KPNB1 by deubiquitinase USP7 promotes glioblastoma progression through the YBX1-NLGN3 axis. J Exp Clin Cancer Res 2024; 43:28. [PMID: 38254206 DOI: 10.1186/s13046-024-02954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. It is an aggressive tumor characterized by rapid proliferation, diffuse tumor morphology, and poor prognosis. Unfortunately, current treatments, such as surgery, radiotherapy, and chemotherapy, are unable to achieve good outcomes. Therefore, there is an urgent need to explore new treatment targets. A detailed mechanistic exploration of the role of the nuclear pore transporter KPNB1 in GBM is lacking. This study demonstrated that KPNB1 regulated GBM progression through a transcription factor YBX1 to promote the expression of post-protrusion membrane protein NLGN3. This regulation was mediated by the deubiquitinating enzyme USP7. METHODS A tissue microarray was used to measure the expression of KPNB1 and USP7 in glioma tissues. The effects of KPNB1 knockdown on the tumorigenic properties of glioma cells were characterized by colony formation assays, Transwell migration assay, EdU proliferation assays, CCK-8 viability assays, and apoptosis analysis using flow cytometry. Transcriptome sequencing identified NLGN3 as a downstream molecule that is regulated by KPNB1. Mass spectrometry and immunoprecipitation were performed to analyze the potential interaction between KPNB1 and YBX1. Moreover, the nuclear translocation of YBX1 was determined with nuclear-cytoplasmic fractionation and immunofluorescence staining, and chromatin immunoprecipitation assays were conducted to study DNA binding with YBX1. Ubiquitination assays were performed to determine the effects of USP7 on KPNB1 stability. The intracranial orthotopic tumor model was used to detect the efficacy in vivo. RESULTS In this study, we found that the nuclear receptor KPNB1 was highly expressed in GBM and could mediate the nuclear translocation of macromolecules to promote GBM progression. Knockdown of KPNB1 inhibited the progression of GBM, both in vitro and in vivo. In addition, we found that KPNB1 could regulate the downstream expression of Neuroligin-3 (NLGN3) by mediating the nuclear import of transcription factor YBX1, which could bind to the NLGN3 promoter. NLGN3 was necessary and sufficient to promote glioma cell growth. Furthermore, we found that deubiquitinase USP7 played a critical role in stabilizing KPNB1 through deubiquitination. Knockdown of USP7 expression or inhibition of its activity could effectively impair GBM progression. In vivo experiments also demonstrated the promoting effects of USP7, KPNB1, and NLGN3 on GBM progression. Overall, our results suggested that KPNB1 stability was enhanced by USP7-mediated deubiquitination, and the overexpression of KPNB1 could promote GBM progression via the nuclear translocation of YBX1 and the subsequent increase in NLGN3 expression. CONCLUSION This study identified a novel and targetable USP7/KPNB1/YBX1/NLGN3 signaling axis in GBM cells.
Collapse
Affiliation(s)
- Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zishan Feng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dandan An
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
23
|
Zeng W, Pan Y, Chen H, Lei X, Zhang X. YBX1, Targeted By Microrna-382-5p, Promotes Laryngeal Squamous Cell Carcinoma Progression via Modulating RAS/MAPK Signaling. Recent Pat Anticancer Drug Discov 2024; 19:176-187. [PMID: 38214357 DOI: 10.2174/1574892818666230207091720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is the most common cancer of head and neck cancer. Y-box binding protein-1 (YBX1) has tumor-promoting effects in some types of cancers. However, its role in LSCC remains unknown. This study set out to identify the role of YBX1 in LSCC. METHODS Bioinformatics analysis of the Gene Expression Omnibus (GEO) database and our cohort data were used to explore the association of YBX1 expression with clinicopathological factors in LSCC. Then, cells with stably or transiently transfected with plasmid or siRNA were constructed to assess the effect of loss and gain of YBX1 on the biological phenotypes of LSCC cells in vitro. In addition, subcutaneous xenograft and orthotopic liver tumor mouse models were constructed for validation. The interrogated miRNA databases and subsequent luciferase reporter assays were used to confirm the miR-382-5p target of YBX1. At last, KEGG enrichment annotation from TGCA data was used for downstream analyses of miR-382-5p/YBX1 and verified by PCR and Western immunoblotting. RESULTS The results showed that significant upregulation of YBX1 in LSCC tumors was correlated with advanced TNM stage and poor prognosis. Knockdown of YBX1 markedly impaired the proliferative, invasive, and migratory activity of Tu212 cells. We confirmed that miR-382-5p targets YBX1 to mediate LSCC progression both in vitro and in vivo. We further confirmed that miR-382-5p/YBX1 modulated the Ras/MAPK signaling axis to regulate the progression of LSCC. CONCLUSION Together, our results indicated that YBX1 is an important promoter of LSCC progression. And miR-382-5p/YBX1/RAS/MAPK signaling pathway can be perceived as a promising target in the treatment of LSCC.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Head and Neck Surgery, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
| | - Yiyun Pan
- Department of Oncology, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
| | - Hailong Chen
- Department of Oncology, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
| | - Xianhua Lei
- Department of Pathology, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
| | - Xiangmin Zhang
- Department of Head and Neck Surgery, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
24
|
Salman A, Abdel Mageed SS, Fathi D, Elrebehy MA, Abulsoud AI, Elshaer SS, Khidr EG, Al-Noshokaty TM, Khaled R, Rizk NI, Elballal MS, Sayed GA, Abd-Elmawla MA, El Tabaa MM, Mohammed OA, Ashraf A, El-Husseiny AA, Midan HM, El-Dakroury WA, Abdel-Reheim MA, Doghish AS. Deciphering signaling pathway interplay via miRNAs in malignant pleural mesothelioma. Pathol Res Pract 2023; 252:154947. [PMID: 37977032 DOI: 10.1016/j.prp.2023.154947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly invasive form of lung cancer that adversely affects the pleural and other linings of the lungs. MPM is a very aggressive tumor that often has an advanced stage at diagnosis and a bad prognosis (between 7 and 12 months). When people who have been exposed to asbestos experience pleural effusion and pain that is not explained, MPM should be suspected. After being diagnosed, most MPM patients have a one- to four-year life expectancy. The life expectancy is approximately six months without treatment. Despite the plethora of current molecular investigations, a definitive universal molecular signature has yet to be discovered as the causative factor for the pathogenesis of MPM. MicroRNAs (miRNAs) are known to play a crucial role in the regulation of gene expression at the posttranscriptional level. The association between the expression of these short, non-coding RNAs and several neoplasms, including MPM, has been observed. Although the incidence of MPM is very low, there has been a significant increase in research focused on miRNAs in the past few years. In addition, miRNAs have been found to have a role in various regulatory signaling pathways associated with MPM, such as the Notch signaling network, Wnt/β-catenin, mutation of KRAS, JAK/STAT signaling circuit, protein kinase B (AKT), and Hedgehog signaling pathway. This study provides a comprehensive overview of the existing understanding of the roles of miRNAs in the underlying mechanisms of pathogenic symptoms in MPM, highlighting their potential as viable targets for therapeutic interventions.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
25
|
Ahuja S, Lazar IM. Proteomic Insights into Metastatic Breast Cancer Response to Brain Cell-Secreted Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563488. [PMID: 37961261 PMCID: PMC10634729 DOI: 10.1101/2023.10.22.563488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The most devastating feature of cancer cells is their ability to metastasize to distant sites in the body. HER2+ and triple negative breast cancers frequently metastasize to the brain and stay potentially dormant for years, clinging to the microvasculature, until favorable environmental conditions support their proliferation. The sheltered and delicate nature of the brain prevents, however, early disease detection, diagnosis, and effective delivery of therapeutic drugs. Moreover, the challenges associated with the acquisition of brain tissues and biopsies add compounding difficulties to exploring the mechanistic aspects of tumor development, leading to slow progress in understanding the drivers of disease progression and response to therapy. To provide insights into the determinants of cancer cell behavior at the brain metastatic site, this study was aimed at exploring the growth and initial response of HER2+ breast cancer cells (SKBR3) to factors present in the brain perivascular niche. The neural microenvironment conditions were simulated by using the secretome of a set of brain cells that come first in contact with the cancer cells upon crossing the blood brain barrier, i.e., human endothelial cells (HBEC5i), human astrocytes (NHA) and human microglia (HMC3) cells. Cytokine microarrays were used to investigate the cell secretomes and explore the mediators responsible for cell-cell communication, and proteomic technologies for assessing the changes in the behavior of cancer cells upon exposure to the brain cell-secreted factors. The results of the study suggest that the exposure of SKBR3 cells to the brain secretomes altered their growth potential and drove them towards a state of quiescence. The cytokines, growth factors and enzymes detected in the brain cell-conditioned medium were supportive of mostly inflammatory conditions, indicating a collective functional contribution to cell activation, defense, inflammatory responses, chemotaxis, adhesion, angiogenesis, and ECM organization. The SKBR3 cells, on the other hand, secreted numerous cancer-promoting growth factors that were either absent or present in lower abundance in the brain cell culture media, suggesting that upon exposure the SKBR3 cells were deprived of favorable environmental conditions required for optimal growth. The findings of this study underscore the key role played by the neural niche in shaping the behavior of metastasized cancer cells, providing insights into the cancer-host cell cross-talk that contributes to driving metastasized cancer cells into dormancy and into the opportunities that exist for developing novel therapeutic strategies that target the brain metastases of breast cancer.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Carilion School of Medicine, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Division of Systems Biology/AIS, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
| |
Collapse
|
26
|
Sun X, Gao C, Xu X, Li M, Zhao X, Wang Y, Wang Y, Zhang S, Yan Z, Liu X, Wu C. FBL promotes cancer cell resistance to DNA damage and BRCA1 transcription via YBX1. EMBO Rep 2023; 24:e56230. [PMID: 37489617 PMCID: PMC10481664 DOI: 10.15252/embr.202256230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Fibrillarin (FBL) is a highly conserved nucleolar methyltransferase responsible for methylation of ribosomal RNA and proteins. Here, we reveal a role for FBL in DNA damage response and its impact on cancer proliferation and sensitivity to DNA-damaging agents. FBL is highly expressed in various cancers and correlates with poor survival outcomes in cancer patients. Knockdown of FBL sensitizes tumor cells and xenografts to DNA crosslinking agents, and leads to homologous recombination-mediated DNA repair defects. We identify Y-box-binding protein-1 (YBX1) as a key interacting partner of FBL, and FBL increases the nuclear accumulation of YBX1 in response to DNA damage. We show that FBL promotes the expression of BRCA1 by increasing the binding of YBX1 to the BRCA1 promoter. Our study sheds light on the regulatory mechanism of FBL in tumorigenesis and DNA damage response, providing potential therapeutic targets to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Xiaorui Sun
- College of Life SciencesHebei UniversityBaodingChina
| | - Congwen Gao
- College of Life SciencesHebei UniversityBaodingChina
| | - Xin Xu
- College of Life SciencesHebei UniversityBaodingChina
| | - Mengyuan Li
- College of Life SciencesHebei UniversityBaodingChina
| | - Xinhua Zhao
- College of Life SciencesHebei UniversityBaodingChina
| | - Yanan Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Yun Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Shun Zhang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Zhenzhen Yan
- College of Life SciencesHebei UniversityBaodingChina
| | - Xiuhua Liu
- College of Life SciencesHebei UniversityBaodingChina
| | - Chen Wu
- College of Life SciencesHebei UniversityBaodingChina
- The Key Laboratory of Zoological Systematics and ApplicationHebei UniversityBaodingChina
| |
Collapse
|
27
|
Smith S, Seth J, Midkiff A, Stahl R, Syu YC, Shkriabai N, Kvaratskhelia M, Musier-Forsyth K, Jain P, Green PL, Panfil AR. The Pleiotropic Effects of YBX1 on HTLV-1 Transcription. Int J Mol Sci 2023; 24:13119. [PMID: 37685922 PMCID: PMC10487795 DOI: 10.3390/ijms241713119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
HTLV-1 is an oncogenic human retrovirus and the etiologic agent of the highly aggressive ATL malignancy. Two viral genes, Tax and Hbz, are individually linked to oncogenic transformation and play an important role in the pathogenic process. Consequently, regulation of HTLV-1 gene expression is a central feature in the viral lifecycle and directly contributes to its pathogenic potential. Herein, we identified the cellular transcription factor YBX1 as a binding partner for HBZ. We found YBX1 activated transcription and enhanced Tax-mediated transcription from the viral 5' LTR promoter. Interestingly, YBX1 also interacted with Tax. shRNA-mediated loss of YBX1 decreased transcript and protein abundance of both Tax and HBZ in HTLV-1-transformed T-cell lines, as well as Tax association with the 5' LTR. Conversely, YBX1 transcriptional activation of the 5' LTR promoter was increased in the absence of HBZ. YBX1 was found to be associated with both the 5' and 3' LTRs in HTLV-1-transformed and ATL-derived T-cell lines. Together, these data suggest that YBX1 positively influences transcription from both the 5' and 3' promoter elements. YBX1 is able to interact with Tax and help recruit Tax to the 5' LTR. However, through interactions with HBZ, YBX1 transcriptional activation of the 5' LTR is repressed.
Collapse
Affiliation(s)
- Susan Smith
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Jaideep Seth
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Amanda Midkiff
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Rachel Stahl
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Yu-Ci Syu
- Center for Retrovirus Research, Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; (Y.-C.S.); (K.M.-F.)
| | - Nikoloz Shkriabai
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.S.); (M.K.)
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.S.); (M.K.)
| | - Karin Musier-Forsyth
- Center for Retrovirus Research, Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; (Y.-C.S.); (K.M.-F.)
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Patrick L. Green
- Center for Retrovirus Research, Comprehensive Cancer Center and Solove Research Institute, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Amanda R. Panfil
- Center for Retrovirus Research, Comprehensive Cancer Center and Solove Research Institute, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
28
|
Lu L, Zeng Y, Yu Z, Chen S, Xie J, Rao B, Yang B, Qiu F, Lu J, Yang L. EIF4a3-regulated circRABL2B regulates cell stemness and drug sensitivity of lung cancer via YBX1-dependent downregulation of MUC5AC expression. Int J Biol Sci 2023; 19:2725-2739. [PMID: 37324942 PMCID: PMC10266078 DOI: 10.7150/ijbs.78588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Identification of mucin modulators is of remarkable significance to facilitate mucin-based antineoplastic therapy. However, little is known about circular RNAs (circRNAs) on regulating mucins. Dysregulated mucins and circRNAs were identified via high-throughput sequencing and their relationships with lung cancer survival were analyzed in tumor samples of 141 patients. The biological functions of circRABL2B were determined via gain- and loss-of-function experiments and exosome-packaged circRABL2B treatment in cells, patient-derived lung cancer organoids and nude mice. We identified that circRABL2B was negatively correlated with MUC5AC. Patients with low circRABL2B and high MUC5AC displayed the poorest survival (HR=2.00; 95% CI=1.12-3.57). Overexpressed circRABL2B significantly inhibited cell malignant phenotypes, while it knock-down exerted opposite effects. CircRABL2B interacted with YBX1 to inhibit MUC5AC, and subsequently suppressed integrin β4/pSrc/p53 signaling and impoverished cell stemness, and promoted erlotinib sensitivity. Exosome-packaged circRABL2B exerted significant anti-cancer actions in cells, patient-derived lung cancer organoids and nude mice. Meanwhile, circRABL2B in plasma exosomes could distinguish early-stage lung cancer patients from healthy controls. Finally, we found circRABL2B was downregulated at the transcriptional level, and EIF4a3 involved the formation of circRABL2B. In conclusion, our data suggest that circRABL2B counteracts lung cancer progression via MUC5AC/integrin β4/pSrc/p53 axis, which provides a rationale to enhance the efficacy of anti-MUCs treatment in lung cancer.
Collapse
Affiliation(s)
- Liming Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuyuan Zeng
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Ziqi Yu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Shizhen Chen
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianjiang Xie
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510080, China
| | - Boqi Rao
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Binyao Yang
- Innovation center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510735, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
- The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
29
|
Fritzke M, Chen K, Tang W, Stinson S, Pham T, Wang Y, Xu L, Chen EY. The MYC-YBX1 Circuit in Maintaining Stem-like Vincristine-Resistant Cells in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2788. [PMID: 37345125 DOI: 10.3390/cancers15102788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that causes significant devastation, with no effective therapy for relapsed disease. The mechanisms behind treatment failures are poorly understood. Our study showed that treatment of RMS cells with vincristine led to an increase in CD133-positive stem-like resistant cells. Single cell RNAseq analysis revealed that MYC and YBX1 were among the top-scoring transcription factors in CD133-high expressing cells. Targeting MYC and YBX1 using CRISPR/Cas9 reduced stem-like characteristics and viability of the vincristine-resistant cells. MYC and YBX1 showed mutual regulation, with MYC binding to the YBX1 promoter and YBX1 binding to MYC mRNA. The MYC inhibitor MYC361i synergized with vincristine to reduce tumor growth and stem-like cells in a zebrafish model of RMS. MYC and YBX expression showed a positive correlation in RMS patients, and high MYC expression correlated with poor survival. Targeting the MYC-YBX1 axis holds promise for improving survival in RMS patients.
Collapse
Affiliation(s)
- Madeline Fritzke
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weiliang Tang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Spencer Stinson
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Thao Pham
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
- Astellas US Technologies, Universal Cells, Inc., Seattle, WA 98121, USA
| | - Yadong Wang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eleanor Y Chen
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Shi Y, Niu Y, Yuan Y, Li K, Zhong C, Qiu Z, Li K, Lin Z, Yang Z, Zuo D, Qiu J, He W, Wang C, Liao Y, Wang G, Yuan Y, Li B. PRMT3-mediated arginine methylation of IGF2BP1 promotes oxaliplatin resistance in liver cancer. Nat Commun 2023; 14:1932. [PMID: 37024475 PMCID: PMC10079833 DOI: 10.1038/s41467-023-37542-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Although oxaliplatin-based chemotherapy has been effective in the treatment of hepatocellular carcinoma (HCC), primary or acquired resistance to oxaliplatin remains a major challenge in the clinic. Through functional screening using CRISPR/Cas9 activation library, transcriptomic profiling of clinical samples, and functional validation in vitro and in vivo, we identify PRMT3 as a key driver of oxaliplatin resistance. Mechanistically, PRMT3-mediated oxaliplatin-resistance is in part dependent on the methylation of IGF2BP1 at R452, which is critical for the function of IGF2BP1 in stabilizing the mRNA of HEG1, an effector of PRMT3-IGF2BP1 axis. Also, PRMT3 overexpression may serve as a biomarker for oxaliplatin resistance in HCC patients. Collectively, our study defines the PRTM3-IGF2BP1-HEG1 axis as important regulators and therapeutic targets in oxaliplatin-resistance and suggests the potential to use PRMT3 expression level in pretreatment biopsy as a biomarker for oxaliplatin-resistance in HCC patients.
Collapse
Affiliation(s)
- Yunxing Shi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yichuan Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kai Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chengrui Zhong
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhiyu Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Keren Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhu Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhiwen Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chenwei Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yadi Liao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Binkui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
31
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
YB-1 Expression Is Associated with Lymph Node Metastasis and Drug Resistance to Adriamycin in Breast Cancer. DISEASE MARKERS 2023; 2023:4667089. [PMID: 36785738 PMCID: PMC9922184 DOI: 10.1155/2023/4667089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Background Breast cancer (BC) is the most common malignant tumor among females. Although there are multiple treatments for breast cancer, many patients still face the dilemma of drug resistance after multiline treatment. It would be greatly helpful for clinical work to identify additional and improved prognostic predictors. Y-box binding protein-1 (YB-1) is a member of the cold shock protein family, and patients with overexpression of YB-1 have a worse prognosis. Methods This study collected 48 specimens from 48 patients with breast cancer and analyzed the clinicopathological characteristics of the patients. Immunohistochemistry, immunofluorescence, cell viability analysis, tumor spheroid formation and cell morphology, cell invasion, cycle analysis, qRT-PCR, Western blot, and tumorigenicity in BALB/c nude mice were performed to verify the results. Results We found that patients with overexpression of YB-1 were related to lymph node metastasis and the patients' age tended to be young. Because of the short follow-up time, a survival analysis could not be performed. Based on the results of in vitro and in vivo experiments, this study indicated that breast cancer cells with overexpression of YB-1 had stronger proliferation, migration, and invasion abilities than cells with low expression of YB-1. Compared with cells with low expression of YB-1, the proliferation, migration, and invasion abilities of YB-1 overexpressed cells were not significantly affected by adriamycin. Conclusion This suggested that breast cancer cells with overexpression of YB-1 were resistant to adriamycin. Therefore, YB-1 is associated with lymph node metastasis of breast cancer cell. YB-1 could be a prognostic, predictive factor and a novel therapeutic target of BC.
Collapse
|
33
|
Lu JT, Yan ZY, Xu TX, Zhao F, Liu L, Li F, Guo W. Reciprocal regulation of LINC00941 and SOX2 promotes progression of esophageal squamous cell carcinoma. Cell Death Dis 2023; 14:72. [PMID: 36717549 PMCID: PMC9886991 DOI: 10.1038/s41419-023-05605-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
LINC00941 is a novel long noncoding RNA (lncRNA) and emerging as an important factor in cancer development. However, the exact function and relative regulatory mechanism of LINC00941 in carcinogenesis of esophageal squamous cell carcinoma (ESCC) remain to be further clarified. The present study was to investigate the expression level, functions, and mechanisms of LINC00941 in ESCC tumorigenesis. LINC00941 was significantly upregulated in ESCC, and upregulated LINC00941 was correlated with dismal patient outcomes. LINC00941 functioned as an oncogene by promoting cells proliferation, stemness, migration, and invasion in ESCC. In terms of mechanisms, SOX2 could bind directly to the promoter region of LINC00941 and activate its transcription. In turn, LINC00941 upregulated SOX2 through interacting with interleukin enhancer binding factor 2 (ILF2) and Y-box binding protein 1 (YBX1) at the transcriptional and post-transcriptional levels. LINC00941 recruited ILF2 and YBX1 to the promoter region of SOX2, leading to upregulation of the transcription of SOX2. Moreover, LINC00941 could promote the binding ability of ILF2 and YBX1 on mRNA of SOX2 and further stabilize SOX2 mRNA. Therefore, LINC00941 contributed to the malignant behaviors of ESCC cells via the unrestricted increase in SOX2 expression. In conclusion, our data indicate that LINC00941 exacerbates ESCC progression through forming a LINC00941-ILF2/YBX1-SOX2 positive feedback loop, and LINC00941 may be a promising prognostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jun-Tao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhao-Yang Yan
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tong-Xin Xu
- Department of CT&MRI, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fan Zhao
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
34
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
35
|
Correlation of expression of Major Vault Protein with androgen receptor and immune checkpoint protein B7-H3, and with poor prognosis in prostate cancer. Pathol Res Pract 2023; 241:154243. [PMID: 36481650 DOI: 10.1016/j.prp.2022.154243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Prostate cancer diagnosis and early stratification is an important aspect to avoid undertreatment of high-risk prostate cancer patients. Major Vault Protein (MVP) has been proposed as a prognostic biomarker in prostate cancer. PTEN and the immune checkpoint protein B7-H3 interact with MVP and are important in prostate cancer progression and therapy response. We evaluated the expression of MVP by immunohistochemistry of tissue microarray samples from a retrospective cohort consisting of 119 prostate cancer patients. We correlated the protein expression of MVP with clinicopathological characteristics, and protein expression of androgen receptor (AR), PTEN, immune checkpoint proteins B7-H3 and PD-L1. We found MVP to be expressed in 53 % of prostate tumors, and correlated positively with biochemical recurrence (ρ = 0.211/p = 0.021). Furthermore, we found positive correlation of MVP expression with expression of AR (ρ = 0.244/p = 0.009) and the immune checkpoint protein B7-H3 (ρ = 0.200/p = 0.029), but not with PD-L1 (ρ = 0.152/p = 0.117) or PTEN expression (ρ = - 0.034/p = 0.721). Our findings support the notion that expression of MVP is associated with poor prognosis in prostate cancer. The correlation between MVP and immune checkpoint protein B7-H3 in prostate cancer suggests a role for MVP in immunoregulation and drug resistance.
Collapse
|
36
|
Zhang L, Zhang Y, Zhang S, Qiu L, Zhang Y, Zhou Y, Han J, Xie J. Translational Regulation by eIFs and RNA Modifications in Cancer. Genes (Basel) 2022; 13:2050. [PMID: 36360287 PMCID: PMC9690228 DOI: 10.3390/genes13112050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/04/2023] Open
Abstract
Translation is a fundamental process in all living organisms that involves the decoding of genetic information in mRNA by ribosomes and translation factors. The dysregulation of mRNA translation is a common feature of tumorigenesis. Protein expression reflects the total outcome of multiple regulatory mechanisms that change the metabolism of mRNA pathways from synthesis to degradation. Accumulated evidence has clarified the role of an increasing amount of mRNA modifications at each phase of the pathway, resulting in translational output. Translation machinery is directly affected by mRNA modifications, influencing translation initiation, elongation, and termination or altering mRNA abundance and subcellular localization. In this review, we focus on the translation initiation factors associated with cancer as well as several important RNA modifications, for which we describe their association with cancer.
Collapse
Affiliation(s)
- Linzhu Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhou
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| |
Collapse
|
37
|
Cheng S, Fahmi NA, Park M, Sun J, Thao K, Yeh HS, Zhang W, Yong J. mTOR Contributes to the Proteome Diversity through Transcriptome-Wide Alternative Splicing. Int J Mol Sci 2022; 23:ijms232012416. [PMID: 36293270 PMCID: PMC9604279 DOI: 10.3390/ijms232012416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is crucial in energy metabolism and cell proliferation. Previously, we reported transcriptome-wide 3′-untranslated region (UTR) shortening by alternative polyadenylation upon mTOR activation and its impact on the proteome. Here, we further interrogated the mTOR-activated transcriptome and found that hyperactivation of mTOR promotes transcriptome-wide exon skipping/exclusion, producing short isoform transcripts from genes. This widespread exon skipping confers multifarious regulations in the mTOR-controlled functional proteomics: AS in coding regions widely affects the protein length and functional domains. They also alter the half-life of proteins and affect the regulatory post-translational modifications. Among the RNA processing factors differentially regulated by mTOR signaling, we found that SRSF3 mechanistically facilitates exon skipping in the mTOR-activated transcriptome. This study reveals a role of mTOR in AS regulation and demonstrates that widespread AS is a multifaceted modulator of the mTOR-regulated functional proteome.
Collapse
Affiliation(s)
- Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Meeyeon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Kaitlyn Thao
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (W.Z.); (J.Y.); Tel.: +1-407-823-2763 (W.Z.); +1-612-626-2420 (J.Y.)
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
- Correspondence: (W.Z.); (J.Y.); Tel.: +1-407-823-2763 (W.Z.); +1-612-626-2420 (J.Y.)
| |
Collapse
|
38
|
Abstract
Signaling via extracellular regulated kinase 1/2 (ERK1/2) and p90 ribosomal S6 kinase (RSK), a downstream effector, mediates numerous processes. For example, ERK1/2-RSK signaling is essential for estrogen homeostasis in the mammary gland and uterus to maintain physiological responsiveness. This review will focus on the coordination of ERK1/2-RSK2 and estrogen signaling through estrogen receptor alpha (ERα). The interrelationship and the feedback mechanisms between these pathways occurs at the level of transcription, translation, and posttranslational modification. Identifying how ERK1/2-RSK2 and estrogen signaling cooperate in homeostasis and disease may lead to novel therapeutic approaches in estrogen-dependent disorders.
Collapse
Affiliation(s)
- Deborah A Lannigan
- Correspondence: Deborah A. Lannigan, PhD, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
39
|
Yun D, Yang Z, Zhang S, Yang H, Liu D, Grützmann R, Pilarsky C, Britzen-Laurent N. An m5C methylation regulator-associated signature predicts prognosis and therapy response in pancreatic cancer. Front Cell Dev Biol 2022; 10:975684. [PMID: 36060802 PMCID: PMC9437259 DOI: 10.3389/fcell.2022.975684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive digestive malignancy due to frequent late-stage diagnosis, rapid progression and resistance to therapy. With increasing PDAC incidence worldwide, there is an urgent need for new prognostic biomarkers and therapy targets. Recently, RNA methylation has emerged as a new tumorigenic mechanism in different cancers. 5-methylcytosine (m5C) is one of the most frequent RNA modifications and occurs on a variety of RNA species including mRNA, thereby regulating gene expression. Here we investigated the prognostic role of m5C-regulator-associated transcriptional signature in PDAC. We evaluated m5C-regulator status and expression in 239 PDAC samples from publicly available datasets. We used unsupervised consensus clustering analyses to classify PDACs based on m5C-regulator expression. From the resulting signature of differentially expressed genes (DEGs), we selected prognosis-relevant DEGs to stratify patients and build a scoring signature (m5C-score) through LASSO and multivariate Cox regression analyses. The m5C-score represented a highly significant independent prognostic marker. A high m5C-score correlated with poor prognosis in different PDAC cohorts, and was associated with the squamous/basal subtype as well as activated cancer-related pathways including Ras, MAPK and PI3K pathways. Furthermore, the m5C-score correlated with sensitivity to pathway-specific inhibitors of PARP, EGFR, AKT, HER2 and mTOR. Tumors with high m5C-score were characterized by overall immune exclusion, low CD8+ T-cell infiltration, and higher PD-L1 expression. Overall, the m5C-score represented a robust predictor of prognosis and therapy response in PDAC, which was associated with unfavorable molecular subtypes and immune microenvironment.
Collapse
Affiliation(s)
- Duo Yun
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Zhirong Yang
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shuman Zhang
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hai Yang
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dongxue Liu
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Pilarsky
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Nathalie Britzen-Laurent,
| |
Collapse
|
40
|
Hwang SY, Park S, Jo H, Hee Seo S, Jeon KH, Kim S, Jung AR, Song C, Ahn M, Yeon Kwak S, Lee HJ, Uesugi M, Na Y, Kwon Y. Interrupting specific hydrogen bonds between ELF3 and MED23 as an alternative drug resistance-free strategy for HER2-overexpressing cancers. J Adv Res 2022; 47:173-187. [PMID: 35963541 PMCID: PMC10173165 DOI: 10.1016/j.jare.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION HER2 overexpression induces cancer aggression and frequent recurrences in many solid tumors. Because HER2 overproduction is generally followed by gene amplification, inhibition of protein-protein interaction (PPI) between transcriptional factor ELF3 and its coactivator MED23 has been considered an effective but challenging strategy. OBJECTIVES This study aimed to determine the hotspot of ELF3-MED23 PPI and further specify the essential residues and their key interactions in the hotspot which are controllable by small molecules with significant anticancer activity. METHODS Intensive biological evaluation methods including SEAP, fluorescence polarization, LC-MS/MS-based quantitative, biosensor, GST-pull down assays, and in silico structural analysis were performed to determine hotspot of ELF3-MED23 PPI and to elicit YK1, a novel small molecule PPI inhibitor. The effects of YK1 on possible PPIs of MED23 and the efficacy of trastuzumab were assessed using cell culture and tumor xenograft mouse models. RESULTS ELF3-MED23 PPI was found to be specifically dependent on H-bondings between D400, H449 of MED23 and W138, I140 of ELF3 for upregulating HER2 gene transcription. Employing YK1, we confirmed that interruption on these H-bondings significantly attenuated the HER2-mediated oncogenic signaling cascades and exhibited significant in vitro and in vivo anticancer activity against HER2-overexpressing breast and gastric cancers even in their trastuzumab refractory clones. CONCLUSION Our approach to develop specific ELF3-MED23 PPI inhibitor without interfering other PPIs of MED23 can finally lead to successful development of a drug resistance-free compound to interrogate HER2 biology in diverse conditions of cancers overexpressing HER2.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Seojeong Park
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hyunji Jo
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Seung Hee Seo
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Kyung-Hwa Jeon
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Seojeong Kim
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Ah-Reum Jung
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Chanju Song
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Misun Ahn
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Soo Yeon Kwak
- College of Pharmacy, CHA University, Pocheon 11160, Korea
| | - Hwa-Jong Lee
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Motonari Uesugi
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 11160, Korea.
| | - Youngjoo Kwon
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
41
|
Chen S, Cao X, Ben S, Zhu L, Gu D, Wu Y, Li S, Yu Q. Genetic variants in RNA m 5 C modification genes associated with survival and chemotherapy efficacy of colorectal cancer. Cancer Med 2022; 12:1376-1388. [PMID: 35861369 PMCID: PMC9883553 DOI: 10.1002/cam4.5018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common malignant digestive tract tumors with a poor prognosis. RNA 5-methylcytosine (m5 C) is an important posttranscriptional widespread modification involved in many biological processes. However, the association between genetic variations of m5 C modification genes and the prognostic value of colorectal cancer remains unclear. METHODS We investigated the association between candidate single nucleotide polymorphisms (SNPs) in 13 m5 C modification genes and colorectal cancer overall survival (OS) after chemotherapy by the Cox regression model. The combined effect of selected SNPs on OS, progression-free survival (PFS), and disease control rate (DCR) was assessed by the number of risk alleles (NRA). The GTEx and TCGA database were used to perform expression qualitative trait locus (eQTL) analysis. RESULTS We identified that two SNPs in YBX1 were associated with OS after chemotherapy (HR = 1.43, p = 0.001 for rs10890208; HR = 1.36, p = 0.025 for rs3862218). A striking dose-response effect between NRA and OS after chemotherapy was found (ptrend = 0.002). The DCR of patients receiving oxaliplatin chemotherapy in the 3-4 NRA group was markedly reduced in comparison to that in the 0-2 NRA group (OR = 1.49, p = 0.036). Moreover, YBX1 mRNA expression was significantly overexpressed in tumor tissues (p < 0.05) in the TCGA database, and eQTL analysis demonstrated that the two SNPs were associated with YBX1 (p = 0.003 for rs10890208 and p = 0.024 for rs3862218). CONCLUSION Our study indicates that genetic variants in m5 C modification genes may mediate changes in YBX1 mRNA levels and affect the chemotherapeutic efficacy of colorectal cancer patients.
Collapse
Affiliation(s)
- Silu Chen
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversityJiangsuChina,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Xiangming Cao
- Department of OncologyThe Affiliated Jiangyin Hospital of Southeast University Medical CollegeJiangyinChina
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Lingjun Zhu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Dongying Gu
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Yuan Wu
- Department of Medical OncologyJiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Qiang Yu
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversityJiangsuChina
| |
Collapse
|
42
|
Gouda MB, Hassan NM, Kandil EI, Haroun RAH. Pathogenetic Significance of YBX1 Expression in Acute Myeloid Leukemia Relapse. Curr Res Transl Med 2022; 70:103336. [DOI: 10.1016/j.retram.2022.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
43
|
Su H, Fan G, Huang J, Qiu X. LncRNA HOXC-AS3 promotes non-small-cell lung cancer growth and metastasis through upregulation of YBX1. Cell Death Dis 2022; 13:307. [PMID: 35387975 PMCID: PMC8986809 DOI: 10.1038/s41419-022-04723-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
Abstract
NSCLC is common and is the primary cause of cancer-related deaths due to a lack of early diagnosis and its propensity for metastasis. The pathogenesis of NSCLC is still unclear. Here, we explored the molecular mechanisms underlying NSCLC development, focusing on the HOXC-AS3/YBX1/HOXC8 axis. Human NSCLC specimens and cell lines were used. qRT-PCR and western blotting were utilised to examine the levels of HOXC-AS3/YBX1/HOXC8. CCK-8, colony formation, scratch wound healing and Transwell assays were performed to evaluate cancer cell proliferation, migration and invasion. A nude mouse xenograft model was used to examine tumour growth and metastasis in vivo. RNA pull-down, chromatin immunoprecipitation, coimmunoprecipitation and dual-luciferase assays were applied to validate the interactions of HOXC-AS3/YBX1, MDM2/YBX1 and the YBX1/HOXC8 promoter. The levels of HOXC-AS3 and HOXC8 were increased in human NSCLC specimens and cells. Knockdown of HOXC-AS3 suppressed NSCLC cell proliferation, migration and invasion, as well as tumour growth and metastasis in vivo. HOXC-AS3 directly bound to YBX1 to suppress its ubiquitination mediated by MDM2. YBX1 bound to the HOXC8 promoter and enhanced its transcription. Knockdown of HOXC8 inhibited the effects of HOXC-AS3 overexpression on NSCLC. HOXC-AS3 promotes NSCLC growth and metastasis by stabilising YBX1 and thus increasing HOXC8 transcription. Our study indicates that the HOXC-AS3/YBX1/HOXC8 axis could serve as a biomarker for NSCLC diagnosis or as a target for therapy development.
Collapse
|
44
|
YB1 associates with oncogenetic roles and poor prognosis in nasopharyngeal carcinoma. Sci Rep 2022; 12:3699. [PMID: 35260638 PMCID: PMC8904596 DOI: 10.1038/s41598-022-07636-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the malignant tumor arising from the nasopharynx epithelium with ethnic and geographical distribution preference. Y-box binding protein-1 (YB1) is the highly expressed DNA/RNA-binding protein with cold shock domain, and enhanced YB1 expression was proved to be associated with many kinds of malignant tumors. There is no systematic study about the regulation of YB1 and cell proliferation, migration, invasion and stress granules (SGs) in NPC, and the relationship between YB1 expression and clinical characteristics and prognosis of NPC patients. We analyzed the mRNA expression of YBX1 in head and neck squamous carcinoma (HNSC) and NPC in databases, investigated the functions of YB1 in cell proliferation, migration and invasion and SGs formation of NPC cells, and detected expression of YB1 protein in a large scale of NPC samples and analyzed their association with clinicopathological features and prognostic significance of NPC patients. YBX1 mRNA was significantly high expression in HNSC and NPC by bioinformatic analysis, and higher expression of YBX1 mRNA indicated poorer prognosis of HNSC patients. Clinically, the expression of YB1 in NPC tissues was significantly higher than these in the control nasopharyngeal epithelial tissues. We further found that the expression of YB1 had an evidently positive relation with advanced clinical stages of patients with NPC. The overall survival rates (OS) were significantly lower for NPC patients with positive expression of YB1. Multivariate analysis confirmed that positive expression of YB1 was the independent poorer prognostic factor for patients with NPC. Moreover, compared with the immortalized nasopharyngeal epithelial cell line (NP69), the basal level of YB1 in NPC cell lines was significantly higher. Knocking down YB1 may inhibit Akt/mTOR pathway in NPC cells. Knocking down YB1 by small interfering RNAs can reduce the ability of proliferation, migration, invasion and SGs formation of NPC cells. The expression of YB1 in NPC cell lines or patients with NPC was significantly higher. The high expression of YB1 protein may act as one valuable independent biomarker to predict poor prognosis for patients with NPC. Knocking down YB1 may release the malignant phenotype of NPC cells.
Collapse
|
45
|
Rohatgi A, Govindan R. Targeting KRAS G12C mutation in lung adenocarcinoma. Lung Cancer 2022; 165:28-33. [PMID: 35066360 DOI: 10.1016/j.lungcan.2021.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Lung cancer continues to be a major cause of cancer related death globally. Therapies targeting driver mutations have significantly extended the survival of patients whose lung cancer cells harbor these mutations. Patients with KRAS mutations, however, lacked specific targeted therapy until the recent FDA approval of sotorasib, a specific inhibitor of KRAS G12C mutant protein. We will discuss the efficacy and toxicities of the novel KRAS G12C inhibitors as well as other indirect strategies for targeting oncogenic KRAS mutations. We will review the limited literature on acquired resistance to these inhibitors and the novel combinatorial treatment strategies that are being tested currently in clinical trials.
Collapse
Affiliation(s)
- Anjali Rohatgi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, United States; Alvin J. Siteman Cancer Center, St Louis, MO, United States
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, United States; Alvin J. Siteman Cancer Center, St Louis, MO, United States.
| |
Collapse
|
46
|
Hamidi AA, Khalili-Tanha G, Nasrpour Navaei Z, Moghbeli M. Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell Int 2022; 22:71. [PMID: 35144601 PMCID: PMC8832734 DOI: 10.1186/s12935-022-02501-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer mortality and a major health challenge worldwide. Despite advances in therapeutic and diagnostic methods, there is still a poor prognosis in CRC patients. Tumor recurrence and metastasis are the main causes of high mortality rate in these patients, which are due to late diagnosis in advanced tumor stages. Epithelial-mesenchymal transition (EMT) is known to be the most important cause of CRC metastasis, during which tumor cells obtain metastasis ability by losing epithelial features and gaining mesenchymal features. Long non-coding RNAs (lncRNAs) are pivotal regulators of EMT process. Regarding the higher stability of lncRNAs compared with coding RNAs in body fluids, they can be used as non-invasive diagnostic markers for EMT process. In the present review, we summarized all of the lncRNAs involved in regulation of EMT process during CRC progression and metastasis. It was observed that lncRNAs mainly induced the EMT process in CRC cells by regulation of EMT-related transcription factors, Poly comb repressive complex (PRC), and also signaling pathways such as WNT, NOTCH, MAPK, and Hippo.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Nasrpour Navaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Pandey G, Kuykendall AT, Reuther GW. JAK2 inhibitor persistence in MPN: uncovering a central role of ERK activation. Blood Cancer J 2022; 12:13. [PMID: 35082276 PMCID: PMC8792018 DOI: 10.1038/s41408-022-00609-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
The Philadelphia chromosome negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are driven by hyper activation of the JAK2 tyrosine kinase, the result of mutations in three MPN driving genes: JAK2, MPL, and CALR. While the anti-inflammatory effects of JAK2 inhibitors can provide improved quality of life for many MPN patients, the upfront and persistent survival of disease-driving cells in MPN patients undergoing JAK2 inhibitor therapy thwarts potential for remission. Early studies indicated JAK2 inhibitor therapy induces heterodimeric complex formation of JAK2 with other JAK family members leading to sustained JAK2-dependent signaling. Recent work has described novel cell intrinsic details as well as cell extrinsic mechanisms that may contribute to why JAK2 inhibition may be ineffective at targeting MPN driving cells. Diverse experimental strategies aimed at uncovering mechanistic details that contribute to JAK2 inhibitor persistence have each highlighted the role of MEK/ERK activation. These approaches include, among others, phosphoproteomic analyses of JAK2 signaling as well as detailed assessment of JAK2 inhibition in mouse models of MPN. In this focused review, we highlight these and other studies that collectively suggest targeting MEK/ERK in combination with JAK2 inhibition has the potential to improve the efficacy of JAK2 inhibitors in MPN patients. As MPN patients patiently wait for improved therapies, such studies should further strengthen optimism that pre-clinical research is continuing to uncover mechanistic insights regarding the ineffectiveness of JAK2 inhibitors, which may lead to development of improved therapeutic strategies.
Collapse
Affiliation(s)
- Garima Pandey
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
48
|
Xie Q, Zhao S, Liu W, Cui Y, Li F, Li Z, Guo T, Yu W, Guo W, Deng W, Gu C. YBX1 Enhances Metastasis and Stemness by Transcriptionally Regulating MUC1 in Lung Adenocarcinoma. Front Oncol 2022; 11:702491. [PMID: 34976785 PMCID: PMC8714800 DOI: 10.3389/fonc.2021.702491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal expression of the transcription factor Y-box-binding protein-1 (YBX1) is associated with the proliferation, migration, aggressiveness, and stem-like properties of various cancers. These characteristics contribute to the tumorigenesis and metastasis of cancer. We found that the expression levels of Mucin-1 (MUC1) and YBX1 were positively correlated in lung adenocarcinoma cells and lung adenocarcinoma tissue. Our retrospective cohort study of 176 lung adenocarcinoma patients after surgery showed that low expression of both YBX1 and MUC1 was an independent predictor of the prognosis and recurrence of lung adenocarcinoma. In lung adenocarcinoma cells, the silencing/overexpression of YBX1 caused a simultaneous change in MUC1, and MUC1 overexpression partially reversed the decreased tumor cell migration, aggressiveness, and stemness caused by YBX1 silencing. Moreover, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays proved that MUC1 was the downstream target of YBX1 and that YBX1 bound to the -1480~-1476 position in the promoter region of MUC1 to regulate its transcription. Furthermore, in mouse xenograft models and a lung cancer metastasis model, MUC1, which is downstream of YBX1, partially reversed the decreased number and size of tumors caused by YBX1 silencing. In conclusion, our findings indicated a novel mechanism by which YBX1 promotes the stemness and metastasis of lung adenocarcinoma by targeting MUC1 and provided a combination approach for diagnosis different from traditional single tumor biomarkers to predict patient prognosis and provide clinical treatment targets.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenzhi Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Cui
- Zhongshan Hospital, Dalian University, Dalian, China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhuoshi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Lung Cancer Diagnosis and Treatment Center, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Lung Cancer Diagnosis and Treatment Center, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
49
|
Abumustafa W, Zamer BA, Khalil BA, Hamad M, Maghazachi AA, Muhammad JS. Protein arginine N-methyltransferase 5 in colorectal carcinoma: Insights into mechanisms of pathogenesis and therapeutic strategies. Biomed Pharmacother 2022; 145:112368. [PMID: 34794114 DOI: 10.1016/j.biopha.2021.112368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Protein arginine N-methyltransferase 5 (PRMT5) enzyme is one of the eight canonical PRMTs, classified as a type II PRMT, induces arginine monomethylation and symmetric dimethylation. PRMT5 is known to be overexpressed in multiple cancer types, including colorectal cancer (CRC), where its overexpression is associated with poor survival. Recent studies have shown that upregulation of PRMT5 induces tumor growth and metastasis in CRC. Moreover, various novel PRMT5 inhibitors tested on CRC cell lines showed promising anticancer effects. Also, it was suggested that PRMT5 could be a valid biomarker for CRC diagnosis and prognosis. Hence, a deeper understanding of PRMT5-mediated CRC carcinogenesis could provide new avenues towards developing a targeted therapy. In this study, we started with in silico analysis correlating PRMT5 expression in CRC patients as a prelude to further our investigation of its role in CRC. We then carried out a comprehensive review of the scientific literature that dealt with the role(s) of PRMT5 in CRC pathogenesis, diagnosis, and prognosis. Also, we have summarized key findings from in vitro research using various therapeutic agents and strategies directly targeting PRMT5 or disrupting its function. In conclusion, PRMT5 seems to play a significant role in the pathogenesis of CRC; therefore, its prognostic and therapeutic potential merits further investigation.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
50
|
Sogorina EM, Kim ER, Sorokin AV, Lyabin DN, Ovchinnikov LP, Mordovkina DA, Eliseeva IA. YB-1 Phosphorylation at Serine 209 Inhibits Its Nuclear Translocation. Int J Mol Sci 2021; 23:ijms23010428. [PMID: 35008856 PMCID: PMC8745666 DOI: 10.3390/ijms23010428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
YB-1 is a multifunctional DNA- and RNA-binding protein involved in cell proliferation, differentiation, and migration. YB-1 is a predominantly cytoplasmic protein that is transported to the nucleus in certain conditions, including DNA-damaging stress, transcription inhibition, and viral infection. In tumors, YB-1 nuclear localization correlates with high aggressiveness, multidrug resistance, and a poor prognosis. It is known that posttranslational modifications can regulate the nuclear translocation of YB-1. In particular, well-studied phosphorylation at serine 102 (S102) activates YB-1 nuclear import. Here, we report that Akt kinase phosphorylates YB-1 in vitro at serine 209 (S209), which is located in the vicinity of the YB-1 nuclear localization signal. Using phosphomimetic substitutions, we showed that S209 phosphorylation inhibits YB-1 nuclear translocation and prevents p-S102-mediated YB-1 nuclear import.
Collapse
Affiliation(s)
- Ekaterina M. Sogorina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Ekaterina R. Kim
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexey V. Sorokin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dmitry N. Lyabin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Lev P. Ovchinnikov
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Daria A. Mordovkina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| | - Irina A. Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| |
Collapse
|