1
|
Wang L, Lin B, Wang F, Dai Z, Xie G, Zhang J. Exploring PANoptosis in head and neck cancer: A novel approach to cancer therapy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117678. [PMID: 39765120 DOI: 10.1016/j.ecoenv.2025.117678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
PANoptosis is a newly discovered complex programmed cell death (PCD) form. In the field of cancer research, PANoptosis is involved in multiple cell death pathways that affect tumor cell survival, proliferation, and response to treatment, serving as an innovative strategy for cancer therapy. Endocrine-disrupting chemicals (EDCs) impact the endocrine system, including cancer. However, research on their influence on head and neck carcinoma (HNSC) through PANoptosis genes remains limited. This study utilises transcriptomic and clinical data related to HNSC from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. We developed a risk model based on PANoptosis-related genes through LASSO Cox regression analysis. Finally, we utilized a Sankey diagram to depict the relationships between EDCs and key genes, identifying DSCAM, IL-6, and SYCP2 as critical predictors of HNSC PANoptosis. These essential genes identified 214 EDCs potentially influencing HNSC, including 3 (Aroclor 1242, Pentachlorobenzene, and Propanil) previously unreported to HNSC. These findings elucidate novel relationships between PANoptosis-related genes mediated by EDCs and the pathogenesis of HNSC.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baisheng Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Feixiang Wang
- Department of Thoracic Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zili Dai
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guofeng Xie
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jian Zhang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Baek M, Kim CL, Kim SH, la Cour Karottki KJ, Hefzi H, Grav LM, Pedersen LE, Lewis NE, Lee JS, Lee GM. Unraveling productivity-enhancing genes in Chinese hamster ovary cells via CRISPR activation screening using recombinase-mediated cassette exchange system. Metab Eng 2025; 87:11-20. [PMID: 39566816 DOI: 10.1016/j.ymben.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Chinese hamster ovary (CHO) cells, which are widely used for therapeutic protein production, have been genetically manipulated to enhance productivity. Nearly half of the genes in CHO cells are silenced, which are promising targets for CHO cell engineering. To identify novel gene targets among the silenced genes that can enhance productivity, we established a genome-wide clustered regularly interspaced short palindromic repeats activation (CRISPRa) screening platform for bispecific antibody (bsAb)-producing CHO (CHO-bsAb) cells with 110,979 guide RNAs (gRNAs) targeting 13,812 silenced genes using a virus-free recombinase-mediated cassette exchange-based gRNA integration method. Using this platform, we performed a fluorescence-activated cell sorting-based cold-capture assay to isolate cells with high fluorescence intensity, which is indicative of high specific bsAb productivity (qbsAb), and identified 90 significantly enriched genes. To verify the screening results, 14 high-scoring candidate genes were individually activated in CHO-bsAb cells via CRISPRa. Among these, 10 genes demonstrated enhanced fluorescence intensity of CHO-bsAb cells in the cold-capture assay when activated. Furthermore, the overexpression of the identified novel gene target Syce3 in CHO-bsAb cells resulted in a 1.4- to 1.9-fold increase in the maximum bsAb concentration, owing to improved qbsAb and specific growth rate. Thus, this virus-free CRISPRa screening platform is a potent tool for identifying novel engineering targets in CHO cells to improve bsAb production.
Collapse
Affiliation(s)
- Minhye Baek
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Che Lin Kim
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | | | - Hooman Hefzi
- Departments of Pediatrics and Bioengineering, University of California, San Diego, USA
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, USA
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Xi R, Li D, Yang S, Zhang H, Hu L, Wang X, Wang G, Wang Y. Identification of potential prognostic biomarkers in vulval squamous cell carcinoma based on human papillomavirus infection Status-Analysis of GSE183454. J OBSTET GYNAECOL 2023; 43:2160930. [PMID: 36689258 DOI: 10.1080/01443615.2022.2160930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study aimed to elucidate the differences in vulval squamous cell carcinomas (VSCC) based on the HPV infection status. The sequencing data GSE183454 which contains 23 VSCC samples based on its HPV infection status was obtained from the Gene Expression Omnibus (GEO) database. We comprehensively dissected the differences of genomic and tumour microenvironment (TME) immune cell infiltration landscapes between HPV + and HPV- VSCC. The potential molecular mechanisms of prognostic genes were explored by functional enrichment analysis. Five novel key molecules (SYCP2, SMC1B, RNF212, MAJIN and C14orf39) with significantly up-regulated expression in HPV + VSCC were identified while protein-protein interaction (PPI) networks were created upon Cytoscape software. Additionally, VSCC with up-regulated expression of these key molecules exhibited a significantly decreased TME immune cell infiltration. SYCP2 is overexpressed in HPV + VSCC and could be a candidate therapy target for further research.IMPACT STATEMENTWhat is already known on this subject? VSCC are characterised by two aetiological pathways. The former occurs in the background of lichen sclerosus, while the latter is related to HPV infection. VSCC most commonly arises from the non-HPV related pathway portends worse prognosis than VSCC derived from HPV infection.What do the results of this study add? Five key molecules are identified and significantly up-regulated in HPV + VSCC. In which, SYCP2 is overexpressed in HPV + VSCC and exhibited a significantly decreased TME immune cell infiltration. SYCP2 constant expression could be a potential biomarker of neoplasms associated with HPV and could be a candidate therapy target in VSCC especially HPV + VSCC for further research.What are the implications of these findings for clinical practice and/or further research? SYCP2 could be a candidate therapy target in VSCC especially with HPV + for further research.
Collapse
Affiliation(s)
- Ruxing Xi
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Donghong Li
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Shuanque Yang
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Hui Zhang
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Lijuan Hu
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Xiaowei Wang
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Guoqing Wang
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Yan Wang
- Department of Nursing, Shaanxi Provincial Tumor Hospital, Xi'an, China
| |
Collapse
|
4
|
Amin MR, Hasan M, Arnab SP, DeGiorgio M. Tensor Decomposition-based Feature Extraction and Classification to Detect Natural Selection from Genomic Data. Mol Biol Evol 2023; 40:msad216. [PMID: 37772983 PMCID: PMC10581699 DOI: 10.1093/molbev/msad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic data involved development of summary statistic and likelihood methods. However, such techniques are grounded in simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such techniques include estimation of large numbers of model parameters under nonconvex settings and feature identification without regard to location within an image. An alternative approach is to use tensor decomposition to extract features from multidimensional data although preserving the latent structure of the data, and to feed these features to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx, which extracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes predictions from these features using classical machine learning methods. As a proof of concept, we explore the performance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature importance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mahmudul Hasan
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
5
|
Adzibolosu N, Alvero AB, Ali-Fehmi R, Gogoi R, Corey L, Tedja R, Chehade H, Gogoi V, Morris R, Anderson M, Vitko J, Lam C, Craig DB, Draghici S, Rutherford T, Mor G. Immunological modifications following chemotherapy are associated with delayed recurrence of ovarian cancer. Front Immunol 2023; 14:1204148. [PMID: 37435088 PMCID: PMC10331425 DOI: 10.3389/fimmu.2023.1204148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Ovarian cancer recurs in most High Grade Serous Ovarian Cancer (HGSOC) patients, including initial responders, after standard of care. To improve patient survival, we need to identify and understand the factors contributing to early or late recurrence and therapeutically target these mechanisms. We hypothesized that in HGSOC, the response to chemotherapy is associated with a specific gene expression signature determined by the tumor microenvironment. In this study, we sought to determine the differences in gene expression and the tumor immune microenvironment between patients who show early recurrence (within 6 months) compared to those who show late recurrence following chemotherapy. Methods Paired tumor samples were obtained before and after Carboplatin and Taxol chemotherapy from 24 patients with HGSOC. Bioinformatic transcriptomic analysis was performed on the tumor samples to determine the gene expression signature associated with differences in recurrence pattern. Gene Ontology and Pathway analysis was performed using AdvaitaBio's iPathwayGuide software. Tumor immune cell fractions were imputed using CIBERSORTx. Results were compared between late recurrence and early recurrence patients, and between paired pre-chemotherapy and post-chemotherapy samples. Results There was no statistically significant difference between early recurrence or late recurrence ovarian tumors pre-chemotherapy. However, chemotherapy induced significant immunological changes in tumors from late recurrence patients but had no impact on tumors from early recurrence patients. The key immunological change induced by chemotherapy in late recurrence patients was the reversal of pro-tumor immune signature. Discussion We report for the first time, the association between immunological modifications in response to chemotherapy and the time of recurrence. Our findings provide novel opportunities to ultimately improve ovarian cancer patient survival.
Collapse
Affiliation(s)
- Nicholas Adzibolosu
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ayesha B. Alvero
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Rouba Ali-Fehmi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Radhika Gogoi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Logan Corey
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roslyn Tedja
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hussein Chehade
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vir Gogoi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert Morris
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Julie Vitko
- Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Clarissa Lam
- Department of Gynecologic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Douglas B. Craig
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sorin Draghici
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
- Advaita Corporation, Ann Arbor, MI, United States
- Division of Information and Intelligent Systems, Directorate for Computer and Information Science and Engineering, National Science Foundation, Alexandria, VA, United States
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Gil Mor
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
6
|
Llano E, Pendás AM. Synaptonemal Complex in Human Biology and Disease. Cells 2023; 12:1718. [PMID: 37443752 PMCID: PMC10341275 DOI: 10.3390/cells12131718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific multiprotein complex that forms between homologous chromosomes during prophase of meiosis I. Upon assembly, the SC mediates the synapses of the homologous chromosomes, leading to the formation of bivalents, and physically supports the formation of programmed double-strand breaks (DSBs) and their subsequent repair and maturation into crossovers (COs), which are essential for genome haploidization. Defects in the assembly of the SC or in the function of the associated meiotic recombination machinery can lead to meiotic arrest and human infertility. The majority of proteins and complexes involved in these processes are exclusively expressed during meiosis or harbor meiosis-specific subunits, although some have dual functions in somatic DNA repair and meiosis. Consistent with their functions, aberrant expression and malfunctioning of these genes have been associated with cancer development. In this review, we focus on the significance of the SC and their meiotic-associated proteins in human fertility, as well as how human genetic variants encoding for these proteins affect the meiotic process and contribute to infertility and cancer development.
Collapse
Affiliation(s)
- Elena Llano
- Departamento Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biologıía Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Alberto M. Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biologıía Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
7
|
Amin MR, Hasan M, Arnab SP, DeGiorgio M. Tensor decomposition based feature extraction and classification to detect natural selection from genomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.527731. [PMID: 37034767 PMCID: PMC10081272 DOI: 10.1101/2023.03.27.527731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic data involved development of summary statistic and likelihood methods. However, such techniques are grounded in simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such techniques include estimation of large numbers of model parameters under non-convex settings and feature identification without regard to location within an image. An alternative approach is to use tensor decomposition to extract features from multidimensional data while preserving the latent structure of the data, and to feed these features to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx , which extracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes predictions from these features using classical machine learning methods. As a proof of concept, we explore the performance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature importance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.
Collapse
|
8
|
Zhou P, Lu SL, Chang L, Liao B, Cheng M, Xu X, Sui X, Liu F, Zhang M, Wang Y, Yang R, Li R, Pan H, Zhang C. The pan-cancer landscape of abnormal DNA methylation and intratumor microorganisms. Neoplasia 2023; 37:100882. [PMID: 36791577 PMCID: PMC9958063 DOI: 10.1016/j.neo.2023.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Microorganisms play very important roles in carcinogenesis, tumor progression, and resistance upon treatment. Due to the challenge of accurately acquiring samples and quantifying low-biomass tissue microorganisms, most studies have focused on the effect of gut microorganisms on cancer treatments, especially the efficacy of immunotherapy. Although recent publications reveal the potential interactions between intratumor microorganisms and the immune microenvironment, whether and to what extent the intratumor microorganism could affect progression and treatment outcome remain controversial. This study is aiming to evaluate the associations among intratumor microorganisms, DNA methylation cancer driver genes, immune response, and clinical outcomes from a pan-cancer perspective, using 6,876 TCGA samples across 21 cancer types. We revealed that tumor microorganism dysbiosis is closely associated with the abnormal tumor methylome and/or tumor microenvironment, which might serve to enhance the proliferation ability and fitness for the therapy of tumors. These findings shed the light on a better understanding of the interactions between tumor cells and carcinogens during and after tumor formation, as well as microorganism-associated methylation alterations that could further serve as biomarkers for clinical outcome assessment.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | | | - Liang Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Baoying Liao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ming Cheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaolin Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xin Sui
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fenting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Mingshu Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yinxue Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Heng Pan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Chao Zhang
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
9
|
Coiled-coil structure of meiosis protein TEX12 and conformational regulation by its C-terminal tip. Commun Biol 2022; 5:921. [PMID: 36071143 PMCID: PMC9452514 DOI: 10.1038/s42003-022-03886-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022] Open
Abstract
Meiosis protein TEX12 is an essential component of the synaptonemal complex (SC), which mediates homologous chromosome synapsis. It is also recruited to centrosomes in meiosis, and aberrantly in certain cancers, leading to centrosome dysfunction. Within the SC, TEX12 forms an intertwined complex with SYCE2 that undergoes fibrous assembly, driven by TEX12’s C-terminal tip. However, we hitherto lack structural information regarding SYCE2-independent functions of TEX12. Here, we report X-ray crystal structures of TEX12 mutants in three distinct conformations, and utilise solution light and X-ray scattering to determine its wild-type dimeric four-helical coiled-coil structure. TEX12 undergoes conformational change upon C-terminal tip mutations, indicating that the sequence responsible for driving SYCE2-TEX12 assembly within the SC also controls the oligomeric state and conformation of isolated TEX12. Our findings provide the structural basis for SYCE2-independent roles of TEX12, including the possible regulation of SC assembly, and its known functions in meiotic centrosomes and cancer. The X-ray crystal structures of C-terminal mutants of the coiled-coil protein cancer testis antigen TEX12 in combination with modeling of the TEX12 wild-type dimer reveal the protein’s control of its oligomeric state, which resembles assembly of its complex with synaptonemal complex central element protein SYCE2.
Collapse
|
10
|
Sou IF, Hamer G, Tee WW, Vader G, McClurg UL. Cancer and meiotic gene expression: Two sides of the same coin? Curr Top Dev Biol 2022; 151:43-68. [PMID: 36681477 DOI: 10.1016/bs.ctdb.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meiosis increases genetic diversity in offspring by generating genetically unique haploid gametes with reshuffled chromosomes. This process requires a specialized set of meiotic proteins, which facilitate chromosome recombination and segregation. However, re-expression of meiotic proteins in mitosis can have catastrophic oncogenic consequences and aberrant expression of meiotic proteins is a common occurrence in human tumors. Mechanistically, re-activation of meiotic genes in cancer promotes oncogenesis likely because cancers-conversely to healthy mitosis-are fueled by genetic instability which promotes tumor evolution, and evasion of immune response and treatment pressure. In this review, we explore similarities between meiotic and cancer cells with a particular focus on the oncogenic activation of meiotic genes in cancer. We emphasize the role of histones and their modifications, DNA methylation, genome organization, R-loops and the availability of distal enhancers.
Collapse
Affiliation(s)
- Ieng Fong Sou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
11
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Morgan C, Nayak A, Hosoya N, Smith GR, Lambing C. Meiotic chromosome organization and its role in recombination and cancer. Curr Top Dev Biol 2022; 151:91-126. [PMID: 36681479 PMCID: PMC10022578 DOI: 10.1016/bs.ctdb.2022.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomes adopt specific conformations to regulate various cellular processes. A well-documented chromosome configuration is the highly compacted chromosome structure during metaphase. More regional chromatin conformations have also been reported, including topologically associated domains encompassing mega-bases of DNA and local chromatin loops formed by kilo-bases of DNA. In this review, we discuss the changes in chromatin conformation taking place between somatic and meiotic cells, with a special focus on the establishment of a proteinaceous structure, called the chromosome axis, at the beginning of meiosis. The chromosome axis is essential to support key meiotic processes such as chromosome pairing, homologous recombination, and balanced chromosome segregation to transition from a diploid to a haploid stage. We review the role of the chromosome axis in meiotic chromatin organization and provide a detailed description of its protein composition. We also review the conserved and distinct roles between species of axis proteins in meiotic recombination, which is a major factor contributing to the creation of genetic diversity and genome evolution. Finally, we discuss situations where the chromosome axis is deregulated and evaluate the effects on genome integrity and the consequences from protein deregulation in meiocytes exposed to heat stress, and aberrant expression of genes encoding axis proteins in mammalian somatic cells associated with certain types of cancers.
Collapse
Affiliation(s)
| | - Aditya Nayak
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christophe Lambing
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom.
| |
Collapse
|
13
|
Lingg L, Rottenberg S, Francica P. Meiotic Genes and DNA Double Strand Break Repair in Cancer. Front Genet 2022; 13:831620. [PMID: 35251135 PMCID: PMC8895043 DOI: 10.3389/fgene.2022.831620] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor cells show widespread genetic alterations that change the expression of genes driving tumor progression, including genes that maintain genomic integrity. In recent years, it has become clear that tumors frequently reactivate genes whose expression is typically restricted to germ cells. As germ cells have specialized pathways to facilitate the exchange of genetic information between homologous chromosomes, their aberrant regulation influences how cancer cells repair DNA double strand breaks (DSB). This drives genomic instability and affects the response of tumor cells to anticancer therapies. Since meiotic genes are usually transcriptionally repressed in somatic cells of healthy tissues, targeting aberrantly expressed meiotic genes may provide a unique opportunity to specifically kill cancer cells whilst sparing the non-transformed somatic cells. In this review, we highlight meiotic genes that have been reported to affect DSB repair in cancers derived from somatic cells. A better understanding of their mechanistic role in the context of homology-directed DNA repair in somatic cancers may provide useful insights to find novel vulnerabilities that can be targeted.
Collapse
Affiliation(s)
- Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| |
Collapse
|
14
|
Wu SC, Münger K. Role and Clinical Utility of Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225690. [PMID: 34830845 PMCID: PMC8616139 DOI: 10.3390/cancers13225690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer/testis (CT) antigens exhibit selective expression predominantly in immunoprivileged tissues in non-pathological contexts but are aberrantly expressed in diverse cancers. Due to their expression pattern, they have historically been attractive targets for immunotherapies. A growing number of studies implicate CT antigens in almost all hallmarks of cancer, suggesting that they may act as cancer drivers. CT antigens are expressed in head and neck squamous cell carcinomas. However, their role in the pathogenesis of these cancers remains poorly studied. Given that CT antigens hold intriguing potential as therapeutic targets and as biomarkers for prognosis and that they can provide novel insights into oncogenic mechanisms, their further study in the context of head and squamous cell carcinoma is warranted.
Collapse
Affiliation(s)
- Sharon Changshan Wu
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Karl Münger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence:
| |
Collapse
|
15
|
Prevalence of HPV in Mexican Patients with Head and Neck Squamous Carcinoma and Identification of Potential Prognostic Biomarkers. Cancers (Basel) 2021; 13:cancers13225602. [PMID: 34830760 PMCID: PMC8616077 DOI: 10.3390/cancers13225602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of neoplasms that show diverse clinical and biological characteristics associated with human papillomavirus (HPV). Biological and clinical characterization is essential to stratify patients based on prognostic and predictive factors. The biological features of HNSCC may change according to geography and population characteristics. Studies on the molecular biology of HNSCC in Mexico are scarce. In the present study, we analyzed 414 Mexican patients with HNSCC and determined the presence and genotype of HPV, p16 expression, and global gene expression profiles. Twenty-two percent of total cases were HPV+, and 32% were p16+. We identified genes associated with survival, such as SLIRP, KLF10, AREG, ACT1, and LIMA. In addition, CSF1R, MYC, and SRC genes were identified as potential therapeutic targets. This study offers information that may be relevant for our understanding of the biology of HNSCC and the development of therapeutic strategies. Abstract Head and neck squamous cell carcinomas (HNSCC) show a variety of biological and clinical characteristics that could depend on the association with the human papillomavirus (HPV). Biological and clinical characterization is essential to stratify patients based on prognostic and predictive factors. Reports on HNSCC are scarce in Mexico. Herein, we analyzed 414 Mexican patients with HNSCC, including oropharynx (OPSCC), larynx (LASCC), and oral cavity (OCSCC), and identified HPV DNA and p16 expression. Global gene expression profiles were analyzed in 25 HPV+/p16+ vs. HPV−/p16− cases. We found 32.3% p16+ and 22.3% HPV+ samples, HPV 16, 18, 39, 52, and 31 being the most frequent genotypes. For OPSCC, LASCC and OCSCC, 39.2, 14.7, and 9.6% were HPV+/p16+, respectively. High expression of SLIRP, KLF10, AREG, and LIMA was associated with poor survival; in contrast, high expression of MYB and SYCP2 correlated with better survival. In HPV+ cases, high expression of SLC25A39 and GJB2 was associated with poor survival. Likewise, EGFR, IL-1, IL-6, JAK-STAT, WNT, NOTCH, and ESR1 signaling pathways were downregulated in HPV+ cases. CSF1R, MYC, and SRC genes were identified as key hubs and therapeutic targets. Our study offers information regarding the molecular and clinical characteristics of HNSCC in Mexican patients.
Collapse
|
16
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
17
|
Hosoya N, Miyagawa K. Synaptonemal complex proteins modulate the level of genome integrity in cancers. Cancer Sci 2021; 112:989-996. [PMID: 33382503 PMCID: PMC7935773 DOI: 10.1111/cas.14791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous structure that is transiently formed during meiosis to promote homologous recombination between maternal and paternal chromosomes. As this structure is required only for meiotic recombination, the proteins constituting the complex are almost undetectable in normal somatic cells, but they can be expressed under the conditions in which the transcriptional machinery is deregulated. Accumulating evidence indicates that they are epigenetically expressed in cancers of various origin. Not surprisingly, in contrast to their meiotic roles, the somatic roles of the SC proteins remain to be investigated. However, it has recently been reported that SYCP3 and SYCE2 control DNA double‐strand break repair negatively and positively, respectively, suggesting that the ectopic expression of the SC proteins in somatic cells could be associated with the maintenance of genomic instability. Thus, it is highly likely that the investigation of the somatic roles of the SC proteins would improve our understanding of the mechanisms underlying tumor development.
Collapse
Affiliation(s)
- Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|