1
|
Liu HF, Chou SC, Huang SC, Huang TY, Hsiao PY, Chou FP, Wu TK. Dehydroepiandrosterone-α-2-Deoxyglucoside Exhibits Enhanced Anticancer Effects in MCF-7 Breast Cancer Cells and Inhibits Glucose-6-Phosphate Dehydrogenase Activity. Chem Biol Drug Des 2024; 104:e14624. [PMID: 39317696 DOI: 10.1111/cbdd.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
In the pentose phosphate pathway, dehydroepiandrosterone (DHEA) uncompetitively inhibits glucose-6-phosphate dehydrogenase (G6PD), reducing NADPH production and increasing oxidative stress, which can influence the onset and/or progression of several diseases, including cancer. 2-Deoxy-D-glucose (2-DG), a glucose mimetic, competes with glucose for cellular uptake, inhibiting glycolysis and competing with glucose-6-phosphate (G-6-P) for G6PD activity. In this study, we report that DHEA-α-2-DG (5), an α-covalent conjugate of DHEA and 2-DG, exhibits better anticancer activity than DHEA, 2-DG, DHEA +2-DG, and polydatin in MCF-7 cells, and reduces NADPH/NADP+ ratio in cellular assays. In vitro enzyme kinetics and molecular docking studies showed that 5 uncompetitively inhibits human G6PD activity and binds to the structural NADP+ site but not to the catalytic NADP+ site. Further combining 5 with the FDA-approved drug tamoxifen enhanced its cytotoxicity against MCF-7 cells, suggesting that it could serve as a candidate for combination of drug strategies.
Collapse
Affiliation(s)
- Hsu-Feng Liu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Shen-Chieh Chou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Sheng-Cih Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Tzu-Yu Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Po-Yun Hsiao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Feng-Pai Chou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Tung-Kung Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Elshenawi Y, Hu S, Hathroubi S. Biofilm of Helicobacter pylori: Life Cycle, Features, and Treatment Options. Antibiotics (Basel) 2023; 12:1260. [PMID: 37627679 PMCID: PMC10451559 DOI: 10.3390/antibiotics12081260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that infects nearly half of the global population and is recognized as a group 1 carcinogen by the Word Health Organization. The global rise in antibiotic resistance has increased clinical challenges in treating H. pylori infections. Biofilm growth has been proposed to contribute to H. pylori's chronic colonization of the host stomach, treatment failures, and the eventual development of gastric diseases. Several components of H. pylori have been identified to promote biofilm growth, and several of these may also facilitate antibiotic tolerance, including the extracellular matrix, outer membrane proteins, shifted morphology, modulated metabolism, efflux pumps, and virulence factors. Recent developments in therapeutic approaches targeting H. pylori biofilm have shown that synthetic compounds, such as small molecule drugs and plant-derived compounds, are effective at eradicating H. pylori biofilms. These combined topics highlight the necessity for biofilm-based research in H. pylori, to improve current H. pylori-targeted therapeutic approaches and alleviate relative public health burden. In this review we discuss recent discoveries that have decoded the life cycle of H. pylori biofilms and current biofilm-targeted treatment strategies.
Collapse
Affiliation(s)
- Yasmine Elshenawi
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Skander Hathroubi
- Spartha Medical, CRBS 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
3
|
Vaccine protection by Cryptococcus neoformans Δsgl1 is mediated by γδ T cells via TLR2 signaling. Mucosal Immunol 2022; 15:1416-1430. [PMID: 36229573 PMCID: PMC9705245 DOI: 10.1038/s41385-022-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 02/04/2023]
Abstract
We previously reported that administration of Cryptococcus neoformans Δsgl1 mutant vaccine, accumulating sterylglucosides (SGs) and having normal capsule (GXM), protects mice from a subsequent infection even during CD4+ T cells deficiency, a condition commonly associated with cryptococcosis. Here, we studied the immune mechanism that confers host protection during CD4+T deficiency. Mice receiving Δsgl1 vaccine produce IFNγ and IL-17A during CD4+ T (or CD8+ T) deficiency, and protection was lost when either cytokine was neutralized. IFNγ and/or IL-17A are produced by γδ T cells, and mice lacking these cells are no longer protected. Interestingly, ex vivo γδ T cells are highly stimulated in producing IFNγ and/or IL-17A by Δsgl1 vaccine, but this production was significantly decreased when cells were incubated with C. neoformans Δcap59/Δsgl1 mutant, accumulating SGs but lacking GXM. GXM modulates toll-like receptors (TLRs), including TLR2. Importantly, neither Δsgl1 nor Δcap59/Δsgl1 stimulate IFNγ or IL-17A production by ex vivo γδ T cells from TLR2-/- mice. Finally, TLR2-/- animals do not produce IL-17A in response to Δsgl1 vaccine and were no longer protected from WT challenge. Our results suggest that SGs may act as adjuvants for GXM to stimulate γδ T cells in producing IFNγ and IL-17A via TLR2, a mechanism that is still preserved upon CD4+ T deficiency.
Collapse
|
4
|
Hou Y, Shang C, Meng T, Lou W. Anticancer potential of cardiac glycosides and steroid-azole hybrids. Steroids 2021; 171:108852. [PMID: 33887267 DOI: 10.1016/j.steroids.2021.108852] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
Steriods are well-known scaffolds that have a widespread occurrence in different compounds characterized by extensive biological properties including anticancer activity. Structural modifications on steroids always generate potential lead compounds with superior bioactivity, and creation of steroid hybrids by combining steroid with other anticancer pharmacophores in one molecule, which can exert the anticancer activity through different mechanisms, is one of the most promising strategies to enhance efficiency, overcome drug resistance and reduce side effects. Sugars and azoles, can act on diverse receptors, proteins and enzymes in cancer cells, are pharmacologically significant scaffolds in the development of novel anticancer agents. Therefore, steroid-sugar hybrids cardiac glycosides and steroid-azole hybrids are privileged scaffolds for the discovery of novel anticancer candidates. This review emphasized on the development, the structure-activity relationship and the mechanism of action of cardiac glycosides and steroid-azole hybrids with potential application for fighting against various cancers including drug-resistant forms to facilitate further rational design of novel drug candidates covering articles published between 2015 and 2020.
Collapse
Affiliation(s)
- Yani Hou
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Congshan Shang
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Tingting Meng
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Wei Lou
- Department of Respiratory, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China.
| |
Collapse
|
5
|
Normile TG, McEvoy K, Del Poeta M. Steryl Glycosides in Fungal Pathogenesis: An Understudied Immunomodulatory Adjuvant. J Fungi (Basel) 2020; 6:E25. [PMID: 32102324 PMCID: PMC7151148 DOI: 10.3390/jof6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal infections pose an increasing threat to human hosts, especially in immunocompromised individuals. In response to the increasing morbidity and mortality of fungal infections, numerous groups have shown great strides in uncovering novel treatment options and potential efficacious vaccine candidates for this increasing threat due to the increase in current antifungal resistance. Steryl glycosides are lipid compounds produced by a wide range of organisms, and are largely understudied in the field of pathogenicity, especially to fungal infections. Published works over the years have shown these compounds positively modulating the host immune response. Recent advances, most notably from our lab, have strongly indicated that steryl glycosides have high efficacy in protecting the host against lethal Cryptococcal infection through acting as an immunoadjuvant. This review will summarize the keystone studies on the role of steryl glycosides in the host immune response, as well as elucidate the remaining unknown characteristics and future perspectives of these compounds for the host-fungal interactions.
Collapse
Affiliation(s)
- Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, New York, NY 11768, USA
| |
Collapse
|
6
|
Chou FP, Hsu WC, Huang SC, Chang CY, Chiou YS, Tsai CT, Lyu JW, Chen WT, Wu TK. Pregnenolonyl-α-glucoside exhibits marked anti-cancer and CYP17A1 enzymatic inhibitory activities. Chem Commun (Camb) 2020; 56:1733-1736. [PMID: 31938799 DOI: 10.1039/c9cc09415f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here that pregnenolonyl-α-glucoside (2), a steryl glycoside synthesized directly from pregnenolone and glucose via a consecutive multienzyme-catalyzed process, exhibits marked dose-dependent cytotoxic activity against HT29, AGS, and ES-2 cells with IC50 values of 23.5 to 50.9 μM. An in vitro CYP17A1 binding pattern assay and protein-ligand docking model support that 2, like abiraterone, binds in the active site heme iron pocket of CYP17A1.
Collapse
Affiliation(s)
- Feng-Pai Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yamaguchi T, Lee JH, Lim AR, Sim JS, Yu EJ, Oh TJ. Bioconversion of Corticosterone into Corticosterone-Glucoside by Glucosyltransferase. Molecules 2018; 23:molecules23071783. [PMID: 30029555 PMCID: PMC6100193 DOI: 10.3390/molecules23071783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022] Open
Abstract
Glucosylation of the 21-hydroxyl group of glucocorticoid changes its solubility into hydrophilicity from hydrophobicity and, as with glucocorticoid glucuronides as a moving object in vivo, it is conceivable that it exhibits the same behavior. Therefore, glucosylation to the 21-hydroxyl group while maintaining the 11β-hydroxyl group is particularly important, and glucosylation of corticosterone was confirmed by high-resolution mass spectrometry and 1D (¹H and 13C) and 2D (COSY, ROESY, HSQC-DEPT and HMBC) NMR. Moreover, the difference in bioactivity between corticosterone and corticosterone 21-glucoside was investigated in vitro. Corticosterone 21-glucoside showed greater neuroprotective effects against H₂O₂-induced cell death and reactive oxygen species (ROS) compared with corticosterone. These results for the first time demonstrate that bioconversion of corticosterone through the region-selective glucosylation of a novel compound can present structural potential for developing new neuroprotective agents.
Collapse
Affiliation(s)
- Tokutaro Yamaguchi
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
- Genome-based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - Joo-Ho Lee
- Genome-based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - A-Rang Lim
- Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Korea.
| | - Joon-Soo Sim
- Genomics Division, National Institute of Agricultural Science, RDA, Jeonju 54874, Korea.
| | - Eun-Ji Yu
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
- Genome-based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| |
Collapse
|