1
|
Baltazar F, Amaral M, Romanelli MM, de Castro Levatti EV, Ramos FF, Paulo Melchior de Oliveira Leão L, Chagas-Paula DA, Soares MG, Dias DF, Aranha CMS, dos Santos Fernandes JP, Lago JHG, Tempone AG. Toward New Therapeutics for Visceral Leishmaniasis: Efficacy and Mechanism of Action of Amides Inspired by Gibbilimbol B. ACS OMEGA 2024; 9:44385-44395. [PMID: 39524621 PMCID: PMC11541474 DOI: 10.1021/acsomega.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
The problems with current strategies to control canine visceral Leishmaniasis (CVL), which include the euthanasia of infected animals, and also the toxicity of the drugs currently used in human treatments for CVL, add urgency to the search for new therapeutic agents. This study aimed to evaluate the activity against Leishmania (L.) infantum of 12 amides that are chemically inspired by gibbilimbol B, a bioactive natural product that was initially obtained from Piper malacophyllum. Three of these compounds-N-(2-ethylhexyl)-4-chlorobenzamide (9), N-(2-ethylhexyl)-4-nitrobenzamide (10), and N-(2-ethylhexyl)-4-(tert-butyl)benzamide (12) -demonstrated activity against the intracellular amastigotes without toxicity to mammalian host cells (CC50 > 200 μM); compounds 9, 10, and 12 resulted in EC50 values of 12.7, 12.2, and 5.1 μM, respectively. In silico drug-likeness studies predicted that these compounds would show high levels of gastrointestinal absorption, would be able to penetrate the blood-brain barrier, would show moderate solubility, and would not show unwanted molecular interactions. Due to their promising pharmacological profiles, compounds 9 and 10 were selected for mechanism of action studies (MoA). The MoA studies in L. (L.) infantum revealed that neither of the compounds affected the permeabilization of the plasma membrane. Nevertheless, compound 9 induced strong alkalinization of acidocalcisomes, which resulted in a significant and rapid increase in intracellular Ca2+ levels, thereby causing the depolarization of the mitochondrial membrane potential and a reduction in the levels of reactive oxygen species (ROS). In contrast, compound 10 induced a gradual increase in intracellular Ca2+ levels and a similarly gradual reduction in ROS levels, but it caused neither acidocalcisome alkalinization nor mitochondrial membrane potential depolarization. Finally, the MALDI-TOF/MS assessment of protein alterations in L. (L.) infantum treated separately with compounds 9 and 10 revealed changes in mass spectral profiles from both treatments. These results highlight the anti-L. (L.) infantum potential of these amides-especially for compounds 9 and 10-and they suggest that these compounds could be promising candidates for future in vivo studies in VL-models.
Collapse
Affiliation(s)
- Fabio
Navarro Baltazar
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| | - Maiara Amaral
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| | - Maiara Maria Romanelli
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| | | | - Fernanda Fonseca Ramos
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
- Department
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau, 210, 09913030 Diadema, São Paulo, Brazil
| | | | - Daniela Aparecida Chagas-Paula
- Institute
of Chemistry, Federal University of Alfenas
(UNIFAL), R. Gabriel
Monteiro da Silva, 700, 37130-000 Alfenas, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Institute
of Chemistry, Federal University of Alfenas
(UNIFAL), R. Gabriel
Monteiro da Silva, 700, 37130-000 Alfenas, Minas Gerais, Brazil
| | - Danielle Ferreira Dias
- Institute
of Chemistry, Federal University of Alfenas
(UNIFAL), R. Gabriel
Monteiro da Silva, 700, 37130-000 Alfenas, Minas Gerais, Brazil
| | - Cecilia M. S.
Q. Aranha
- Department
of Medicine, Federal University of São
Paulo (UNIFESP), Av.
Dr. Arnaldo, 455, 01246-903 São Paulo, São Paulo, Brazil
| | - João Paulo dos Santos Fernandes
- Department
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau, 210, 09913030 Diadema, São Paulo, Brazil
| | - Joao Henrique Ghilardi Lago
- Centre
of Natural Sciences and Humanities, Universidade
Federal do ABC, Av. dos Estados, 5001, 09210-580 Santo André, São Paulo, Brazil
| | - Andre Gustavo Tempone
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Leão LPMO, de B Vieira N, Oliveira PPS, Chagas-Paula DA, Soares MG, Souza TB, Baldim JL, Costa-Silva TA, Tempone AG, Dias DF, Lago JHG. Structure-activity relationship study of antitrypanosomal analogues of gibbilimbol B using multivariate analysis and computation-aided drug design. Bioorg Med Chem Lett 2023; 83:129190. [PMID: 36805048 DOI: 10.1016/j.bmcl.2023.129190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Gibbilimbol B and analogues were isolated from the Brazilian plant Piper malacophyllum and displayed activity against trypomastigote forms of Trypanosoma cruzi as well as reduced toxicity against NCTC cells. These results stimulated the preparation of a series of 24 chemically related analogues to study the potential of these compounds against T. cruzi trypomastigotes and explore structure-activity relationships. Initially, 12 compounds were planned, maintaining the same extension of the linear side chain of gibbilimbol B and unsaturation on the C-4 position but changing the functional groups - ester and amide - and variating the substituent at the p-position in the aromatic ring. Other 12 compounds were prepared using a branched side chain containing an ethyl group at the C-2 position. Overall, these structurally-related analogues demonstrated promising activity against trypomastigote forms (EC50 < 20 μM) and no mammalian cytotoxicity to fibroblasts (CC50 > 200 μM). Using multivariate statistics and machine learning analysis, aspects associated with structure/activity were related to their three-dimensional structure and, mainly, to the substituents on the aromatic ring. Obtained results suggested that the presence of t-butyl or nitro groups at p-position with appropriate side chains causes an alteration in the electron topological state, Van der Waals volumes, surface areas, and polarizabilities of tested compounds which seem to be essential for biological activity against T. cruzi parasites.
Collapse
Affiliation(s)
- Luiz P M O Leão
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | - Nátalie de B Vieira
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | - Paula P S Oliveira
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | | | - Marisi G Soares
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | - Thiago B Souza
- Pharmacy School, Federal University of Ouro Preto, Minas Gerais 35400-000, Brazil
| | - João L Baldim
- Federal Institute of Education, Science and Technology of South of Minas Gerais, Minas Gerais 37890-000, Brazil
| | | | - Andre G Tempone
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-902, Brazil
| | - Danielle F Dias
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil.
| | - João Henrique G Lago
- Center of Natural and Human Sciences, Federal University of ABC, São Paulo 09210-580, Brazil.
| |
Collapse
|
3
|
Synthetic Analogues of Gibbilimbol B Induce Bioenergetic Damage and Calcium Imbalance in Trypanosoma cruzi. Life (Basel) 2023; 13:life13030663. [PMID: 36983820 PMCID: PMC10052702 DOI: 10.3390/life13030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023] Open
Abstract
Chagas disease is an endemic tropical disease caused by the protozoan Trypanosoma cruzi, which affects around 7 million people worldwide, mostly in development countries. The treatment relies on only two available drugs, with severe adverse effects and a limited efficacy. Therefore, the search for new therapies is a legitimate need. Within this context, our group reported the anti-Trypanosoma cruzi activity of gibbilimbol B, a natural alkylphenol isolated from the plant Piper malacophyllum. Two synthetic derivatives, LINS03018 (1) and LINS03024 (2), demonstrated a higher antiparasitic potency and were selected for mechanism of action investigations. Our studies revealed no alterations in the plasma membrane potential, but a rapid alkalinization of the acidocalcisomes. Nevertheless, compound 1 exhibit a pronounced effect in the bioenergetics metabolism, with a mitochondrial impairment and consequent decrease in ATP and reactive oxygen species (ROS) levels. Compound 2 only depolarized the mitochondrial membrane potential, with no interferences in the respiratory chain. Additionally, no macrophages response of nitric oxide (NO) was observed in both compounds. Noteworthy, simple structure modifications in these derivatives induced significant differences in their lethal effects. Thus, this work reinforces the importance of the mechanism of action investigations at the early phases of drug discovery and support further developments of the series.
Collapse
|
4
|
Pereira Filho AA, Cunha MM, Alves Stanton M, Fumiko Yamaguchi L, Jorge Kato M, Martins-Duarte ÉS. In Vitro Activity of Essential Oils from Piper Species (Piperaceae) against Tachyzoites of Toxoplasma gondii. Metabolites 2023; 13:metabo13010095. [PMID: 36677020 PMCID: PMC9861968 DOI: 10.3390/metabo13010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Toxoplasmosis is a tropical and neglected disease caused by the parasitic protozoa Toxplasma gondii. Conventional treatment with sulfadiazine and pyrimethamine plus folinic acid, has some drawbacks, such as inefficacy in the chronic phase, toxic side effects, and potential cases of resistance have been observed. In this study, the activity of essential oils (EOs) from three Piper species and their main constituents, including α-Pinene (Piper lindbergii and P. cernuum), β-Pinene (P. cernuum), and dillapiole (P. aduncum), were evaluated against tachyzoites of T. gondii. α-Pinene was more active [(IC50 0.3265 (0.2958 to 0.3604) μg/mL)] against tachyzoites than P. lindbergii EO [0.8387 (0.6492 to 1.084) μg/mL]. Both α-Pinene and P. lindbergii EO exhibited low cytotoxicity against NHDF cells, with CC50 41.37 (37.64 to 45.09) µg/mL and 83.80 (75.42 to 91.34) µg/mL, respectively, suggesting they could be of potential use against toxoplasmosis.
Collapse
Affiliation(s)
- Adalberto Alves Pereira Filho
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (A.A.P.F.); (M.J.K.); (É.S.M.-D.)
| | - Mariana Maciel Cunha
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Mariana Alves Stanton
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Lydia Fumiko Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Massuo Jorge Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Correspondence: (A.A.P.F.); (M.J.K.); (É.S.M.-D.)
| | - Érica S. Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (A.A.P.F.); (M.J.K.); (É.S.M.-D.)
| |
Collapse
|
5
|
dos Santos DB, Lemos JA, Miranda SEM, Di Filippo LD, Duarte JL, Ferreira LAM, Barros ALB, Oliveira AEMFM. Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment. Pharmaceutics 2022; 14:2339. [PMID: 36365157 PMCID: PMC9695113 DOI: 10.3390/pharmaceutics14112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/28/2023] Open
Abstract
Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.
Collapse
Affiliation(s)
- Darline B. dos Santos
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| | - Janaina A. Lemos
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sued E. M. Miranda
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leonardo D. Di Filippo
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Lucas A. M. Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andre L. B. Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anna E. M. F. M. Oliveira
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| |
Collapse
|
6
|
Involvement of a neutrophil-mast cell axis in the effects of Piper malacophyllum (C. PESL) C. DC extract and its isolated compounds in a mouse model of dysmenorrhoea. Inflammopharmacology 2022; 30:2489-2504. [PMID: 35867292 DOI: 10.1007/s10787-022-01032-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
Abstract
The effects of Piper malacophyllum (C. Pesl) C. DC extracts and its isolated compounds were analysed in a mouse model of primary dysmenorrhoea (PD). Female Swiss mice (6-8 weeks old) on proestrus were intraperitoneally treated with estradiol benzoate for 3 days, to induce PD. Twenty-four hours later, animals were treated 24 h later with vehicle, plant extract, gibbilimbol B, 4,6-dimethoxy-5-E-phenylbutenolide, mixture of 4,6-dimethoxy-5-E-phenylbutenolide and 4,6-dimethoxy-5-Z-phenylbutenolide, or ibuprofen. One hour later, oxytocin was injected and the numbers of abdominal writhing were counted. Then, mice were euthanized and uteri were collected for morphometrical and histological analyses. The effects of P. malacophyllum in inflammation were investigated in mouse peritoneal neutrophils culture stimulated with LPS or fMLP (chemotaxis and mediator release). Finally, uterus contractile and relaxing responses were assessed. Similar to ibuprofen, P. malacophyllum extract and isolated compounds reduced abdominal writhing in mice with PD. Histology indicated a marked neutrophil and mast cell infiltrate in the uterus of PD animals which was attenuated by the extract. The compounds and the extract reduced neutrophil chemotaxis and inflammatory mediator release by these cells. Reduced TNF levels were also observed in uteri of PD mice treated with P. malacophyllum. The extract did not affect spontaneous uterine contractions nor those induced by carbachol or KCl. However, it caused relaxation of oxytocin-induced uterine contraction, an effect blunted by H1 receptor antagonist. Overall the results indicate that P. malacophyllum may represent interesting natural tools for reliving PD symptoms, reducing the triad of pain, inflammation and spasmodic uterus behaviour.
Collapse
|
7
|
Varela MT, Amaral M, Romanelli MM, de Castro Levatti EV, Tempone AG, Fernandes JPS. Optimization of physicochemical properties is a strategy to improve drug-likeness associated with activity: novel active and selective compounds against Trypanosoma cruzi. Eur J Pharm Sci 2022; 171:106114. [PMID: 34986415 DOI: 10.1016/j.ejps.2021.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/03/2022]
Abstract
Trypanosoma cruzi is the causing agent of Chagas disease, a parasitic infection without efficient treatment for chronic patients. Despite the efforts, no new drugs have been approved for this disease in the last 60 years. Molecular modifications based on a natural product led to the development of a series of compounds (LINS03 series) with promising antitrypanosomal activity, however previous chemometric analysis revealed a significant impact of excessive lipophilicity and low aqueous solubility on potency of amine and amide derivatives. Therefore, this work reports different modifications in the core structure to achieve adequate balance of the physicochemical properties along with biological activity. A set of 34 analogues were designed considering predicted properties related to lipophilicity/hydrosolubility and synthesized to assess their activity and selective toxicity towards the parasite. Results showed that this strategy contributed to improve the drug-likeness of the series while considerable impacts on potency were observed. The rational analysis of the obtained data led to the identification of seven active piperazine amides (28-34, IC50 8.7 to 35.3 µM against intracellular amastigotes), devoid of significant cytotoxicity to mammalian cells. The addition of water-solubilizing groups and privileged substructures such as piperazines improved the physicochemical properties and overall drug-likeness of these compounds, increased potency and maintained selectivity towards the parasite. The obtained results brought important structure-activity relationship (SAR) data and new lead structures for further modifications were identified to achieve improved antitrypanosoma compounds.
Collapse
Affiliation(s)
- Marina T Varela
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema SP, Brazil
| | - Maiara Amaral
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Maiara M Romanelli
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-000 São Paulo SP, Brazil
| | - Erica V de Castro Levatti
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-000 São Paulo SP, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-000 São Paulo SP, Brazil
| | - João Paulo S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema SP, Brazil.
| |
Collapse
|
8
|
Peixoto JF, Ramos YJ, de Lima Moreira D, Alves CR, Gonçalves-Oliveira LF. Potential of Piper spp. as a source of new compounds for the leishmaniases treatment. Parasitol Res 2021; 120:2731-2747. [PMID: 34245362 DOI: 10.1007/s00436-021-07199-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Current treatment guidelines for leishmaniasis is based on chemotherapy with drugs that show a set of limitations such as high cost, toxicity, difficult route of administration, and lack of efficacy in endemic areas. In this context, phytopharmaceutical products and herbal medicines emerge as promising alternatives for developing new treatment against leishmaniasis. This review discusses the perspectives of leishmaniasis treatment based on natural products and phytotherapy highlighting the Piper genus, especially P. aduncun and P. mollicomum Kunth covering the period of 1998 to 2020. Leishmanicidal activity of pure compounds of Piper spp. [3-(3,4,5-trimethoxyphenyl) propanoic acid, 3-chlorosintenpyridone, 2'-hydroxy-3',4',6'-trimethoxy-chalcone, cardamonin, conocarpan, cubebin, eupomatenoid, flavokavain B, ( +)-(7R,8S)-epoxy-5,6-didehydrokavain, N-[7-(3',4'-methylenedioxypheny l-2(E),4(E)-heptadienoyl-pyrrolidine, N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl-pyrrolidine, piperovatine, pellitorine, and piplartine (piperlongumine)] were proved against the promastigote and amastigote forms of parasite related with cutaneous (L. (L.) amazonensis, L. (V.) braziliensis, and L. (V.) guyanensis) and visceral (L. (L.) donovani, L. (L.) chagasi, and L. (L.) infantum). We also discussed the perspective of leishmaniasis treatment, considering the potential synergism between different promising species of Piper, presenting some interesting interaction possibilities for future studies between plants. Finally, the necessary steps for technological development of phytomedicines and herbal medicines with the desirable quality requirements for medicines are highlighted. The data presented here highlight the use of Piper spp. as source of pharmacological compounds that can lead to effective, safe, and inexpensive treatments for leishmaniasis.
Collapse
Affiliation(s)
- Juliana Figueiredo Peixoto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ygor Jessé Ramos
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Davyson de Lima Moreira
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Filipe Gonçalves-Oliveira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Valéria Amorim L, de Lima Moreira D, Muálem de Moraes Alves M, Jessé Ramos Y, Pereira Costa Sobrinho E, Arcanjo DDR, Rodrigues de Araújo A, de Souza de Almeida Leite JR, das Chagas Pereira de Andrade F, Mendes AN, Aécio de Amorim Carvalho F. Anti-Leishmania activity of extracts from Piper cabralanum C.DC. (Piperaceae). ACTA ACUST UNITED AC 2021; 76:229-241. [PMID: 33660490 DOI: 10.1515/znc-2020-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
Species of Piperaceae are known by biological properties, including antiparasitic such as leishmanicidal, antimalarial and in the treatment of schistosomiasis. The aim of this work was to evaluate the antileishmania activity, cytotoxic effect, and macrophage activation patterns of the methanol (MeOH), hexane (HEX), dichloromethane (DCM) and ethyl acetate (EtOAc) extract fractions from the leaves of Piper cabralanum C.DC. The MeOH, HEX and DCM fractions inhibited Leishmanina amazonensis promastigote-like forms growth with a half maximal inhibitory concentration (IC50) of 144.54, 59.92, and 64.87 μg/mL, respectively. The EtOAc fraction did not show any relevant activity. The half maximal cytotoxic concentration (CC50) for macrophages were determined as 370.70, 83.99, 113.68 and 607 μg/mL for the MeOH, HEX and DCM fractions, respectively. The macrophage infectivity was concentration-dependent, especially for HEX and DCM. MeOH, HEX and DCM fractions showed activity against L. amazonensis with low cytotoxicity to murine macrophages and lowering infectivity by the parasite. Our results provide support for in vivo studies related to a potential application of P. cabralanum extract and fractions as a promising natural resource in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Layane Valéria Amorim
- Antileishmania Activity Laboratory, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Davyson de Lima Moreira
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Ygor Jessé Ramos
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Daniel Dias Rufino Arcanjo
- Department of Biophysics and Physiology, Laboratory of Funcional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Alyne Rodrigues de Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, Piauí, Brazil
| | | | | | - Anderson Nogueira Mendes
- Department of Biophysics and Physiology, Laboratory of Innovation on Science and Technology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | |
Collapse
|
10
|
Vega Gomez MC, Rolón M, Coronel C, Pereira Carneiro JN, Lucas dos Santos AT, Almeida-Bezerra JW, Almeida de Menezes S, Everson da Silva L, Melo Coutinho HD, do Amaral W, Ribeiro-Filho J, Bezerra Morais-Braga MF. Antiparasitic effect of essential oils obtained from two species of Piper L. native to the Atlantic forest. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Maynard LD, Slinn HL, Glassmire AE, Matarrita-Carranza B, Dodson CD, Nguyen TT, Burroughs MJ, Dyer LA, Jeffrey CS, Whitehead SR. Secondary metabolites in a neotropical shrub: spatiotemporal allocation and role in fruit defense and dispersal. Ecology 2020; 101:e03192. [PMID: 32892339 DOI: 10.1002/ecy.3192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 11/07/2022]
Abstract
Deciphering the ecological roles of plant secondary metabolites requires integrative studies that assess both the allocation patterns of compounds and their bioactivity in ecological interactions. Secondary metabolites have been primarily studied in leaves, but many are unique to fruits and can have numerous potential roles in interactions with both mutualists (seed dispersers) and antagonists (pathogens and predators). We described 10 alkenylphenol compounds from the plant species Piper sancti-felicis (Piperaceae), quantified their patterns of intraplant allocation across tissues and fruit development, and examined their ecological role in fruit interactions. We found that unripe and ripe fruit pulp had the highest concentrations and diversity of alkenylphenols, followed by flowers; leaves and seeds had only a few compounds at detectable concentrations. We observed a nonlinear pattern of alkenylphenol allocation across fruit development, increasing as flowers developed into unripe pulp then decreasing as pulp ripened. This pattern is consistent with the hypothesis that alkenylphenols function to defend fruits from pre-dispersal antagonists and are allocated based on the contribution of the tissue to the plant's fitness, but could also be explained by non-adaptive constraints. To assess the impacts of alkenylphenols in interactions with antagonists and mutualists, we performed fungal bioassays, field observations, and vertebrate feeding experiments. In fungal bioassays, we found that alkenylphenols had a negative effect on the growth of most fungal taxa. In field observations, nocturnal dispersers (bats) removed the majority of infructescences, and diurnal dispersers (birds) removed a larger proportion of unripe infructescences. In feeding experiments, bats exhibited an aversion to alkenylphenols, but birds did not. This observed behavior in bats, combined with our results showing a decrease in alkenylphenols during ripening, suggests that alkenylphenols in fruits represent a trade-off (defending against pathogens but reducing disperser preference). These results provide insight into the ecological significance of a little studied class of secondary metabolites in seed dispersal and fruit defense. More generally, documenting intraplant spatiotemporal allocation patterns in angiosperms and examining mechanisms behind these patterns with ecological experiments is likely to further our understanding of the evolutionary ecology of plant chemical traits.
Collapse
Affiliation(s)
- Lauren D Maynard
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Heather L Slinn
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | - Craig D Dodson
- Department of Chemistry, Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Nevada, 89557, USA
| | | | - Megan J Burroughs
- Department of Chemistry, Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Nevada, 89557, USA
| | - Lee A Dyer
- Department of Biology, University of Nevada, Reno, Nevada, 89557, USA
| | - Christopher S Jeffrey
- Department of Chemistry, Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Nevada, 89557, USA
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
12
|
Waller SB, Cleff MB, Ripoll MK, Meireles MCA, Varela MT, Fernandes JPDS. Benzylidene-carbonyl compounds are active against itraconazole-susceptible and itraconazole-resistant Sporothrix brasiliensis. Folia Microbiol (Praha) 2020; 65:1033-1038. [PMID: 32821987 DOI: 10.1007/s12223-020-00814-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Abstract
We evaluated the antifungal activity of benzylidene-carbonyl compounds (LINS03) based on the structure of gibbilimbol from Piper malacophyllum Linn. Five analogues (1-5) were synthetized following a classic aldol condensation between an aromatic aldehyde and a ketone, under basic conditions. These were tested against itraconazole-susceptible (n = 3) and itraconazole-resistant (n = 5) isolates of Sporothrix brasiliensis by M38-A2 guidelines of CLSI. All of them were fungistatic (MIC ranged of 0.11-0.22 mg/mL (1); 0.08-0.17 mg/mL (2); 0.05-0.1 mg/mL (3); 0.04-0.33 mg/mL (4); and 0.04-0.3 mg/mL (5)), highlighting compounds 2 and 3. As fungicidal, compounds 1 and 2 were highlighted (MFC ranged of 0.22-0.89 mg/mL and 0.08-1.35 mg/mL, respectively), compared with the remaining (0.77-> 3.08 mg/mL (3); 0.08-> 2.6 mg/mL (4); and 0.59-> 2.37 mg/mL (5)). The inhibitory activity was related to the benzylidene-carbonyl, whereas the phenol group and the low chain homolog seems to contribute to some extent to the fungicidal effect. Compound 2 highlighted due to the considerable fungistatic and fungicidal activities, including itraconazole-resistant Sporothrix brasiliensis. These findings support the potential usefulness of benzylidene-carbonyl compounds as promising prototypes for the development of antifungal against sporotrichosis by Sporothrix brasiliensis, including against itraconazole-resistant isolates.
Collapse
Affiliation(s)
- Stefanie Bressan Waller
- Department of Veterinary Clinics, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
- Department of Preventive Veterinary, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| | - Marlete Brum Cleff
- Department of Veterinary Clinics, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Márcia Kutscher Ripoll
- Department of Preventive Veterinary, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Mário Carlos Araújo Meireles
- Department of Preventive Veterinary, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Marina Themoteo Varela
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, 09913-030, Brazil
| | - João Paulo Dos S Fernandes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, 09913-030, Brazil
| |
Collapse
|
13
|
Varela MT, Fernandes JPS. Natural Products: Key Prototypes to Drug Discovery Against Neglected Diseases Caused by Trypanosomatids. Curr Med Chem 2020; 27:2133-2146. [PMID: 29714138 DOI: 10.2174/0929867325666180501102450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Neglected tropical diseases are a group of infections caused by microorganisms and viruses that affect mainly poor regions of the world. In addition, most available drugs are associated with long periods of treatment and high toxicity which limits the application and patient compliance. Investment in research and development is not seen as an attractive deal by the pharmaceutical industry since the final product must ideally be cheap, not returning the amount invested. Natural products have always been an important source for bioactive compounds and are advantageous over synthetic compounds when considering the unique structural variety and biological activities. On the other hand, isolation difficulties and low yields, environmental impact and high cost usually limit their application as drug per se. OBJECTIVE In this review, the use of natural products as prototypes for the semi-synthesis or total synthesis, as well as natural products as promising hits is covered, specifically regarding compounds with activities against trypanosomatids such as Trypanosoma spp. and Leishmania spp. METHODS Selected reports from literature with this approach were retrieved. CONCLUSION As summary, it can be concluded that natural products are an underestimated source for designing novel agents against these parasites.
Collapse
Affiliation(s)
- Marina Themoteo Varela
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema-SP, Brazil
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema-SP, Brazil
| |
Collapse
|
14
|
Morais TR, Costa-Silva TA, Ferreira DD, Novais BJ, Torrecilhas ACT, Tempone AG, Lago JHG. Antitrypanosomal activity and effect in plasma membrane permeability of (−)-bornyl p-coumarate isolated from Piper cernuum (Piperaceae). Bioorg Chem 2019; 89:103001. [DOI: 10.1016/j.bioorg.2019.103001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 01/04/2023]
|
15
|
Varela MT, Costa-Silva TA, Lago JHG, Tempone AG, Fernandes JPS. Evaluation of the antitrypanosoma activity and SAR study of novel LINS03 derivatives. Bioorg Chem 2019; 89:102996. [PMID: 31132603 DOI: 10.1016/j.bioorg.2019.102996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/25/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022]
Abstract
Chagas' disease is a parasitic infection caused by Trypanosoma cruzi that is still treated by old and toxic drugs. In the search for novel alternatives, natural sources are an important source for new drug prototypes against T. cruzi to further structural exploitation. A set of natural-based compounds (LINS03) was designed, showing promising antitrypanosoma activity and low cytotoxicity to host cells. In this paper, nine novel LINS03 derivatives were evaluated against T. cruzi trypomastigotes and amastigotes. The selectivity was assessed through cytotoxicity assays using NCTC mammalian cells and calculating the CC50/IC50 ratio. The results showed that compounds 2d and 4c are noteworthy, due their high activity against amastigotes (IC50 13.9 and 5.8 µM) and low cytotoxicity (CC50 107.7 µM and >200 µM, respectively). These compounds did not showed alteration on plasma membrane permeability in a Sytox green model. SAR analysis suggested an ideal balance between hydrosolubility and lipophilicity is necessary to improve the activity, and that insertion of a meta-substituent is detrimental to the activity of the amine derivatives but not to the neutral derivatives, suggesting different mechanisms of actions. The results presented herein are valuable for designing novel compounds with improved activity and selectivity to be applied in future studies.
Collapse
Affiliation(s)
- Marina T Varela
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema, SP, Brazil
| | - Thais A Costa-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, 09210-580 Santo André, SP, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, 09210-580 Santo André, SP, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-000 São Paulo, SP, Brazil.
| | - João Paulo S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema, SP, Brazil.
| |
Collapse
|
16
|
Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M, Tumer TB, Monzote Fidalgo L, Martorell M, Setzer WN. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019; 24:E1364. [PMID: 30959974 PMCID: PMC6479398 DOI: 10.3390/molecules24071364] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022] Open
Abstract
Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Rabin Gyawali
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Salam A Ibrahim
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Jovana Rajkovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia.
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Tariq Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan 35198-99951, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Elif Turkdonmez
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), 25 Lincoln Close, GL20 5TY Tewkesbury, UK.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Lianet Monzote Fidalgo
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, VIII-Bio Bio Region, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
| |
Collapse
|
17
|
Active Essential Oils and Their Components in Use against Neglected Diseases and Arboviruses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6587150. [PMID: 30881596 PMCID: PMC6387720 DOI: 10.1155/2019/6587150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
The term neglected diseases refers to a group of infections caused by various classes of pathogens, including protozoa, viruses, bacteria, and helminths, most often affecting impoverished populations without adequate sanitation living in close contact with infectious vectors and domestic animals. The fact that these diseases were historically not considered priorities for pharmaceutical companies made the available treatments options obsolete, precarious, outdated, and in some cases nonexistent. The use of plants for medicinal, religious, and cosmetic purposes has a history dating back to the emergence of humanity. One of the principal fractions of chemical substances found in plants are essential oils (EOs). EOs consist of a mixture of volatile and hydrophobic secondary metabolites with marked odors, composed primarily of terpenes and phenylpropanoids. They have great commercial value and were widely used in traditional medicine, by phytotherapy practitioners, and in public health services for the treatment of several conditions, including neglected diseases. In addition to the recognized cytoprotective and antioxidative activities of many of these compounds, larvicidal, insecticidal, and antiparasitic activities have been associated with the induction of oxidative stress in parasites, increasing levels of nitric oxide in the infected host, reducing parasite resistance to reactive oxygen species, and increasing lipid peroxidation, ultimately leading to serious damage to cell membranes. The hydrophobicity of these compounds also allows them to cross the membranes of parasites as well as the blood-brain barrier, collaborating in combat at the second stage of several of these infections. Based on these considerations, the aim of this review was to present an update of the potential of EOs, their fractions, and their chemical constituents, against some neglected diseases, including American and African trypanosomiasis, leishmaniasis, and arboviruses, specially dengue.
Collapse
|
18
|
Trefzger OS, das Neves AR, Barbosa NV, Carvalho DB, Pereira IC, Perdomo RT, Matos MFC, Yoshida NC, Kato MJ, de Albuquerque S, Arruda CCP, Baroni ACM. Design, synthesis and antitrypanosomatid activities of 3,5-diaryl-isoxazole analogues based on neolignans veraguensin, grandisin and machilin G. Chem Biol Drug Des 2018; 93:313-324. [DOI: 10.1111/cbdd.13417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Ozildéia S. Trefzger
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Amarith R. das Neves
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
- Laboratorio de Parasitologia Humana; INBIO - Instituto de Biologia; Universidade Federal do Mato Grosso do Sul; Campo Grande MS Brazil
| | - Natália V. Barbosa
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
- Laboratorio de Parasitologia Humana; INBIO - Instituto de Biologia; Universidade Federal do Mato Grosso do Sul; Campo Grande MS Brazil
| | - Diego B. Carvalho
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Indiara C. Pereira
- Laboratorio de Biologia Molecular e Cultura de Celulas; FACFAN - Faculdade de Ciências Farmacêuticas; Alimentos e Nutricao; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Renata T. Perdomo
- Laboratorio de Biologia Molecular e Cultura de Celulas; FACFAN - Faculdade de Ciências Farmacêuticas; Alimentos e Nutricao; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Maria F. C. Matos
- Laboratorio de Biologia Molecular e Cultura de Celulas; FACFAN - Faculdade de Ciências Farmacêuticas; Alimentos e Nutricao; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Nidia C. Yoshida
- Instituto de Química; Universidade Federal do Mato Grosso do Sul, UFMS; Campo Grande MS Brazil
| | - Massuo J. Kato
- Institute of Chemistry; University of São Paulo; São Paulo SP Brazil
| | - Sérgio de Albuquerque
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas; Faculdade de Ciências Farmacêuticas de Ribeirão Preto; USP; Ribeirão Preto SP Brazil
| | - Carla C. P. Arruda
- Laboratorio de Parasitologia Humana; INBIO - Instituto de Biologia; Universidade Federal do Mato Grosso do Sul; Campo Grande MS Brazil
| | - Adriano C. M. Baroni
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| |
Collapse
|
19
|
Vasconcelos CI, Varela MT, Torrecilhas AC, Fernandes JPS. Pyrazinoates as antiparasitic agents against Trypanosoma cruzi. Arch Pharm (Weinheim) 2018; 351:e1800190. [PMID: 30298951 DOI: 10.1002/ardp.201800190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/09/2022]
Abstract
This work reports a repurposing study of pyrazinoic acid (1) and methyl (2), ethyl (3) and 2-chloroethyl (4) ester derivatives with antimycobacterial activity, in assays against Trypanosoma cruzi. The compounds and benznidazole, the standard antitrypanosoma drug, were evaluated in concentrations ranging from 100 to 6.25 μg/mL. The results showed that compounds 2 and 3 (EC50 = 182 and 447 μM) significantly reduced the infection rate of the parasite into the mammalian cells at 100 μg/mL (p < 0.05) in a similar way to benznidazole. In addition, all the compounds also significantly reduced the number of intracellular parasites (compound 1 at 50 μg/mL, and compounds 2-4 at 100 μg/mL, p < 0.05) in comparison to the control. Compounds 1 and 2 were more effective than benznidazole at 50 μg/mL (p < 0.001). Moreover, compounds 1-4 did not show significant cytotoxicity against THP-1, J774, and HeLa cells (>1000 μM), indicating that they possess considerable selectivity against the parasites. This report represents the first study of such compounds against T. cruzi, indicating the potential of pyrazinoates as antiparasitic agents.
Collapse
Affiliation(s)
- Camilla I Vasconcelos
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Marina T Varela
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Ana C Torrecilhas
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
20
|
Varela MT, Romaneli MM, Lima ML, Borborema SET, Tempone AG, Fernandes JPS. Antiparasitic activity of new gibbilimbol analogues and SAR analysis through efficiency and statistical methods. Eur J Pharm Sci 2018; 122:31-41. [PMID: 29935351 DOI: 10.1016/j.ejps.2018.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 01/22/2023]
Abstract
Chagas' disease and leishmaniasis are parasitic infections enrolled among the neglected tropical diseases, which urge for new treatments. In the search for new chemical entities as prototypes, gibbilimbols A/B have shown antiparasitic activity against Trypanosoma cruzi and Leishmania infantum, and then a set of analogues (LINS03 series) of this natural product were synthesized and evaluated in vitro against the parasites. In the present paper we reported five new compounds with activity against these protozoan parasites, and quite low cytotoxicity. Moreover, the interference of plasma membrane permeability of these analogues were also evaluated. We found that [(4-methoxyphenyl)methyl]octylamine (4) was noteworthy due to its high activity against the amastigote form of both parasites (IC50 1.3-5.8 μM) and good selectivity index. In order to unveil the SAR for this chemotype, we also presented a group efficiency analysis and PCA and HCA study, which indicated that the methoxyl provides good activity with lower cytotoxicity to mammalian cells. The results from SAR analyses suggest different mechanisms of action between the neutral and basic compounds. In summary, the analogues represent important activity against these parasites and must be prototypes for further exploitation.
Collapse
Affiliation(s)
- Marina T Varela
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema, SP, Brazil
| | - Maiara M Romaneli
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 355, 01246-000 São Paulo, SP, Brazil
| | - Marta L Lima
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 355, 01246-000 São Paulo, SP, Brazil; Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar 470, 05403-000 São Paulo, SP, Brazil
| | - Samanta E T Borborema
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 355, 01246-000 São Paulo, SP, Brazil
| | - Andre G Tempone
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 355, 01246-000 São Paulo, SP, Brazil
| | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema, SP, Brazil.
| |
Collapse
|