1
|
Huynh QDT, Phan TTT, Liu TW, Duong TLT, Hsu SJ, Kuo CC, Chu MH, Wang YH, Nguyen TV, Shen YA, Fan YJ, Nguyen DK, Vo TH, Lee CK. Cytotoxicity-guided isolation of elatostemanosides I-VI from Elatostema tenuicaudatum W. T. Wang and their cytotoxic activities. RSC Adv 2025; 15:10639-10652. [PMID: 40190632 PMCID: PMC11970508 DOI: 10.1039/d4ra09007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/09/2025] [Indexed: 04/09/2025] Open
Abstract
Elatostema tenuicaudatum W. T. Wang, a medicinal plant traditionally utilized in herbal remedies, was explored for its cytotoxic properties. Bioassay-guided fractionation led to the discovery of six novel compounds, designated as elatostemanosides I-VI, with their structures elucidated through advanced spectroscopic methods and DP4+ analysis. Among these, compounds 2, 5, and 6 demonstrated moderate cytotoxicity against the human liver cancer cell line HepG2, exhibiting IC50 values of 18.2 ± 2.1, 32.1 ± 0.4, and 57.6 ± 1.3 µM, respectively. Notably, compound 6 also displayed significant activity against the human breast cancer cell line HCC1806, with an IC50 value of 35.4 ± 0.3 µM. Mechanistic studies revealed these compounds induced apoptosis by modulating the Bax/Bcl-2 ratio. Furthermore, structure-activity relationship (SAR) analysis underscored the importance of specific functional groups in mediating cytotoxic effects.
Collapse
Affiliation(s)
- Quoc-Dung Tran Huynh
- Ph. D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
- Institute of Pharmaceutical Education and Research, Binh Duong University Thu Dau Mot 820000 Binh Duong Vietnam
| | - Thuy-Tien Thi Phan
- Institute of Pharmaceutical Education and Research, Binh Duong University Thu Dau Mot 820000 Binh Duong Vietnam
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei 11031 Taiwan
| | - Ta-Wei Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
| | - Truc-Ly Thi Duong
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy Can Tho 900000 Vietnam
| | - Su-Jung Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
- Institute of Fisheries Science, National Taiwan University Taipei 106 Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes Miaoli County 35053 Taiwan
| | - Man-Hsiu Chu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
| | - Yun-Han Wang
- Ph. D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Thanh-Vu Nguyen
- Biotechnology Center of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University Taipei 110301 Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University Taipei 110301 Taiwan
- International Master/Ph. D. Program in Medicine, College of Medicine, Taipei Medical University Taipei 110301 Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University Taipei 11031 Taiwan
- International PhD Program for Biomedical Engineering, Taipei Medical University Taipei 110301 Taiwan
| | - Dang-Khoa Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh 700000 Vietnam
| | - Thanh-Hoa Vo
- University of Health Sciences, Vietnam National University Ho Chi Minh City Ho Chi Minh 700000 Vietnam
- Center for Discovery and Development of Healthcare Product, Vietnam National University Ho Chi Minh City Ho Chi Minh 700000 Vietnam
| | - Ching-Kuo Lee
- Ph. D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
- Department of Chemistry, Chung Yuan Christian University Zhongli District Taoyuan 32023 Taiwan
| |
Collapse
|
2
|
Ruan C, Huang X, Li K, Fang L, Li H, Zheng D, Zheng M. Antimicrobial activity and applications in PMMA of a novel benzpyrole derivant/iodocuprate hybrid (TMBI) 2(Cu 2I 4). Bioorg Chem 2025; 156:108165. [PMID: 39874906 DOI: 10.1016/j.bioorg.2025.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/30/2025]
Abstract
Among individuals who wear removable dentures, there is a significant likelihood, reaching up to 70 %, of experiencing a condition known as denture-induced stomatitis. To address this issue, a commonly used method involves soaking dentures in denture cleansers to eliminate microorganisms. However, the prolonged use of this cleaning method has resulted in the emergence of drug resistance. Composite antibacterial nanomaterials possess excellent chemical, physical, and antibacterial properties, not only allowing the individual components to function but sometimes also leading to synergistic effects that enhance antibacterial performance. In this study, we have successfully synthesized a new benzpyrole derivant/iodocuprate bio-nanomaterial, (TMBI)2(Cu2I4) (TMBI = 1,1,2,3-Tetramethyl-1H-benzo[e]indolium cation), that demonstrates remarkable resistance to Candida albicans, Streptococcus mutans, and dental plaque biofilm.It can effectively clean the surfaces of denture bases by removing Candida albicans, Streptococcus mutans, and dental plaque biofilm. Prolonged immersion in this material does not significantly affect the common mechanical properties of polymethyl methacrylate (PMMA) denture bases. At effective antibacterial concentrations, this nanomaterial (TMBI)2(Cu2I4) demonstrates no residual cytotoxicity on PMMA denture bases after immersion and maintains excellent hemocompatibility. These findings indicate that (TMBI)2(Cu2I4) has the potential to be a promising denture cleanser.
Collapse
Affiliation(s)
- Chenglu Ruan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350004, China; Department of Stomatology, Sanming Integrated Medicine Hospital, Sanming, Fujian, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Xuanhao Huang
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Ke Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lijuan Fang
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Haohong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350004, China.
| | - Ming Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350004, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China.
| |
Collapse
|
3
|
Ashitha KT, Lakshmi S, Anjali S, Krishna A, Prakash V, Anbumani S, Priya S, Somappa SB. Design and discovery of carboxamide-based pyrazole conjugates with multifaceted potential against Triple-Negative Breast cancer MDA-MB-231 cells. Bioorg Med Chem Lett 2024; 113:129960. [PMID: 39265894 DOI: 10.1016/j.bmcl.2024.129960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
We report the design, synthesis, and validation of carboxamide-based pyrazole and isoxazole conjugates with a multifaceted activity against Breast Cancer Cell Line MDA-MB-231. The study established that amongst the series, N-(3,5-bis(trifluoromethyl)benzyl)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazole-5-carboxamide (5g) exhibits the highest potency in inhibiting Breast Cancer Cell Line MDA-MB-231 with an IC50 value of 15.08 ± 0.04 µM. The MDA-MB-231 cells, upon treatment with compound 5g, exhibited characteristic apoptotic specific activities such as nuclear fragmentation, phosphatidylserine translocation to the outer plasma membrane, release of lactate dehydrogenase (LDH), and upregulation of caspase 3 and caspase 9 activities. Also, the modulation of pro and antiapoptotic proteins in 5g treated MDA-MB-231 cells was revealed by membrane array analysis. More importantly, the combination of paclitaxel and compound 5g has exhibited improved activity by several folds via their synergistic effects.
Collapse
Affiliation(s)
- K T Ashitha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Lakshmi
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Anjali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Krishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ved Prakash
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Priya
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Abbas AA, Farghaly TA, Dawood KM. Recent advances on anticancer and antimicrobial activities of directly-fluorinated five-membered heterocycles and their benzo-fused systems. RSC Adv 2024; 14:19752-19779. [PMID: 38899036 PMCID: PMC11185950 DOI: 10.1039/d4ra01387e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Due to the importance of the fluorinated heterocycles as main components of marketed drugs where 20% of the anticancer and antibiotic drugs contain fluorine atoms, this review describes the reported five-membered heterocycles and their benzo-fused systems having directly connected fluorine atom(s). The in vivo and in vitro anticancer and antimicrobial activities of these fluorinated heterocycles are well reported. Some fluorinated heterocycles were found to be lead structures for drug design developments where their activities were almost equal to or exceeded the potency of the reference drugs. In most cases, the fluorine-containing heterocycles showed promising safety index via their reduced cytotoxicity in non-cancerous cell lines. SAR study assigned that fluorinated heterocycles having various electron-donating or electron-withdrawing substituents significantly affected the anticancer and antimicrobial activities.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah Saudi Arabia
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556
| |
Collapse
|
5
|
Mohan S, Krishnan L, Madhusoodanan N, Sobha A, Jalaja R, Kumaran A, Vankadari N, Purushothaman J, Somappa SB. Linker-Based Pharmacophoric Design and Semisynthesis of Labdane Conjugates Active against Multi-Faceted Inflammatory Targets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6389-6401. [PMID: 38494644 DOI: 10.1021/acs.jafc.3c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Prolonged inflammation leads to the genesis of various inflammatory diseases such as atherosclerosis, cancer, inflammatory bowel disease, Alzheimer's, etc. The uncontrolled inflammatory response is characterized by the excessive release of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1alpha (IL-1α), and inflammatory enzymes such as cyclooxygenase-2 (COX-2). Hence, the downregulation of these inflammatory mediators is an active therapy to control aberrant inflammation and tissue damage. To address this, herein, we present the rational design and synthesis of novel phytochemical entities (NPCEs) through strategic linker-based molecular hybridization of aromatic/heteroaromatic fragments with the labdane dialdehyde, isolated from the medicinally and nutritionally significant rhizomes of the plant Curcuma amada. To validate the anti-inflammatory potential, we employed a comprehensive in vitro study assessing its inhibitory effect on the COX-2 enzyme and other inflammatory mediators, viz., NO, TNF-α, IL-6, and IL-1α, in bacterial lipopolysaccharide-stimulated macrophages, as well as in-silico molecular modeling studies targeting the inflammation regulator COX-2 enzyme. Among the synthesized novel compounds, 5f exhibited the highest anti-inflammatory potential by inhibiting the COX-2 enzyme (IC50 = 17.67 ± 0.89 μM), with a 4-fold increased activity relative to the standard drug indomethacin (IC50 = 67.16 ± 0.17 μM). 5f also significantly reduced the levels of LPS-induced NO, TNF-α, IL-6, and IL-1α, much better than the positive control. Molecular mechanistic studies revealed that 5f suppressed the expression of COX-2 and pro-inflammatory cytokine release dose-dependently, which was associated with the inhibition of the NF-κB signaling pathway. This infers that the labdane derivative 5f is a promising lead candidate as an anti-inflammatory agent to further explore its therapeutic landscape.
Collapse
Affiliation(s)
- Sangeetha Mohan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Lekshmy Krishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Nithya Madhusoodanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anjali Sobha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Renjitha Jalaja
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Alaganandam Kumaran
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Jayamurthy Purushothaman
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
6
|
Abonia R, García AC, Hurtado EA, Jaramillo-Gómez LM, Insuasty B, Quiroga J, Nogueras M, Cobo J. Cascade Synthesis of New Indole-Containing Pentacyclic Scaffolds Mediated by Aryl and Iminyl Radicals. Chem Asian J 2024:e202301111. [PMID: 38217883 DOI: 10.1002/asia.202301111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
A five-step approach, starting from simple 1,5-disubstituted indoles, has been implemented for the synthesis of diversely substituted indole-pyrido-indene pentacyclic compounds up to 54 % yield via domino radical-mediated processes in the presence of the radical reagents DLP/TTMSS and AIBN/TTMSS. Reactions proceeded with diverse key starting radical cyano-precursors strategically synthesized which were subsequently transformed into the target pentacyclic compounds through an aryl/iminyl radical-mediated domino reactions sequence. In addition to the routine spectroscopic techniques, the structure of radical precursors, as well as, the target pentacyclic products were unequivocally established by single crystal X-ray diffraction, confirming the effectiveness of the proposed synthetic sequence.
Collapse
Affiliation(s)
- Rodrigo Abonia
- Department of Chemistry, Universidad del Valle, A. A. 25360, Cali, Colombia
| | - Andres C García
- Department of Chemistry, Universidad del Valle, A. A. 25360, Cali, Colombia
| | - Eduin A Hurtado
- Department of Chemistry, Universidad del Valle, A. A. 25360, Cali, Colombia
| | | | - Braulio Insuasty
- Department of Chemistry, Universidad del Valle, A. A. 25360, Cali, Colombia
| | - Jairo Quiroga
- Department of Chemistry, Universidad del Valle, A. A. 25360, Cali, Colombia
| | - Manuel Nogueras
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071, Jaén, Spain
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071, Jaén, Spain
| |
Collapse
|
7
|
Han Z, Zhu B, Zang Y, Zhang C, Dong XQ, Huang H, Sun J. Primary activation of para-quinone methides by chiral phosphoric acid for enantioselective construction of tetraarylmethanes. Chem Sci 2024; 15:720-725. [PMID: 38179542 PMCID: PMC10763553 DOI: 10.1039/d3sc05014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024] Open
Abstract
Demonstrated here is an asymmetric nucleophilic addition via primary activation of para-quinone methides (p-QMs) based on a chiral phosphoric acid catalytic system. In sharp contrast to previous CPA-based bifunctional activation processes that all required the nucleophiles to have an effective hydrogen bond donor unit (e.g., OH, NH), here no such unit is required in the nucleophile. N-protected indole nucleophiles were successfully utilized for the synthesis of chiral tetraarylmethanes with high efficiency and enantioselectivity under mild conditions. Therefore, this protocol significantly expanded the scope of asymmetric transformations of p-QMs.
Collapse
Affiliation(s)
- Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Biao Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Yu Zang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Chaoshen Zhang
- Shenzhen Bay Laboratory Shenzhen 518132 China
- Shenzhen Research Institute, HKUST No. 9 Yuexing 1st Rd Shenzhen 518057 China
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
- Shenzhen Research Institute, HKUST No. 9 Yuexing 1st Rd Shenzhen 518057 China
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| |
Collapse
|
8
|
Song M, Hua Y, Liu Y, Xiao X, Yu H, Deng X. Design, Synthesis, and Antimicrobial Activity Evaluation of Ciprofloxacin-Indole Hybrids. Molecules 2023; 28:6325. [PMID: 37687154 PMCID: PMC10488977 DOI: 10.3390/molecules28176325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
With the overuse and misuse of antimicrobial drugs, antibacterial resistance is becoming a critical global health problem. New antibacterial agents are effective measures for overcoming the crisis of drug resistance. In this paper, a novel set of ciprofloxacin-indole/acetophenone hybrids was designed, synthesized, and structurally elucidated with the help of NMR and high-resolution mass spectrometry. The in vitro antibacterial activities of these hybrids against gram-positive and gram-negative pathogens, including four multidrug-resistant clinical isolates, were evaluated and compared with those of the parent drug ciprofloxacin (CIP). All the target compounds (MIC = 0.0625-32 μg/mL) exhibited excellent inhibitory activity against the strains tested. Among them, 3a (MIC = 0.25-8 μg/mL) showed comparable or slightly less potent activity than CIP. The most active hybrid, 8b (MIC = 0.0626-1 μg/mL), showed equal or higher activity than CIP. Moreover, compound 8b showed superior bactericidal capability to CIP, with undetectably low resistance frequencies. Furthermore, molecular docking studies conducted showed that 8b and CIP had a similar binding mode to DNA gyrase (Staphylocouccus aureus). Thus, hybrids 3a and 8b could act as a platform for further investigations.
Collapse
Affiliation(s)
- Mingxia Song
- Affiliated Hospital of Jinggangshan University, Ji’an 343000, China; (M.S.)
- Health Science Center, Jinggangshan University, Ji’an 343009, China
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| | - Yi Hua
- Health Science Center, Jinggangshan University, Ji’an 343009, China
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| | - Yuxin Liu
- Affiliated Hospital of Jinggangshan University, Ji’an 343000, China; (M.S.)
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| | - Xunli Xiao
- Affiliated Hospital of Jinggangshan University, Ji’an 343000, China; (M.S.)
| | - Haihong Yu
- Health Science Center, Jinggangshan University, Ji’an 343009, China
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| | - Xianqing Deng
- Affiliated Hospital of Jinggangshan University, Ji’an 343000, China; (M.S.)
- Health Science Center, Jinggangshan University, Ji’an 343009, China
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
9
|
Durugappa B, C S A, Doddamani SV, Somappa SB. DBU-Catalyzed Diastereo/Regioselective Access to Highly Substituted Spiro-oxetane Oxindoles via Ring Annulation of Isatins and Allenoates. J Org Chem 2023. [PMID: 37363866 DOI: 10.1021/acs.joc.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A facile and efficient method for the diastereo/regioselective synthesis of highly functionalized spiro-oxetane oxindoles has been described. The 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-catalyzed reaction proceeds via spiro-annulation of isatins and allenoates. The reaction is compatible with a wide range of isatins containing electron-donating groups (EDGs) and electron-withdrawing groups (EWGs) with various allenoates affording the corresponding products in acceptable yields. It is noteworthy that this is the first protocol for constructing structurally diverse motifs of highly functionalized spiro-oxetane oxindoles of pharmaceutical relevance.
Collapse
Affiliation(s)
- Basavaraja Durugappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athira C S
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Siddalingeshwar V Doddamani
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Antibacterial natural products from microbial and fungal sources: a decade of advances. Mol Divers 2023; 27:517-541. [PMID: 35301633 DOI: 10.1007/s11030-022-10417-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
Throughout the ages the world has witnessed the outbreak of many infectious diseases. Emerging microbial diseases pose a serious threat to public health. Increasing resistance of microorganisms towards the existing drugs makes them ineffective. In fact, anti-microbial resistance is declared as one of the top public health threats by WHO. Hence, there is an urge for the discovery of novel antimicrobial drugs to combat with this challenge. Structural diversity and unique pharmacological effects make natural products a prime source of novel drugs. Staggeringly, in spite of its extensive biodiversity, a prominent portion of microorganism species remains unexplored for the identification of bioactives. Microorganisms are a predominant source of new chemical entities and there are remarkable number of antimicrobial drugs developed from it. In this review, we discuss the contributions of microorganism based natural products as effective antibacterial agents, studied during the period of 2010-2020. The review encompasses over 140 structures which are either natural products or semi-synthetic derivatives of microbial natural products. 65 of them are identified as newly discovered natural products. All the compounds discussed herein, have exhibited promising efficacy against various bacterial strains.
Collapse
|
11
|
D B, C S A, D SV, T AK, Somappa SB. Multicomponent Synthesis of Spiro-dihydropyridine Oxindoles via Cascade Spiro-cyclization of Knoevenagel/Aza-Michael Adducts. J Org Chem 2022; 87:13556-13563. [PMID: 36194438 DOI: 10.1021/acs.joc.2c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient, straightforward, and one-pot synthesis of biologically relevant spiro-dihydropyridine oxindoles was described via readily available isatin, malononitrile, allenoate, and amines. The metal/organocatalyst-free, Et3N-mediated reaction proceeds via cascade spiro-cyclization of in situ generated Knoevenagel/aza-Michael adducts. The reaction has great flexibility over electron-rich and electron-poor substituents affording desired products in good to excellent yields. We have also demonstrated the selected spiro-dihydropyridines for late-stage diversification into new spiro-dihydropyridine hybrids of pharmaceutical relevance.
Collapse
Affiliation(s)
- Basavaraja D
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| | - Athira C S
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| | - Siddalingeshwar V D
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| | - Ashitha K T
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| | - Sasidhar B Somappa
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| |
Collapse
|
12
|
Ethylbenzene Hydroperoxide: An efficient oxidizing agent for diastereoselective synthesis of Spiroepoxy oxindoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Mathada BS, Somappa SB. An insight into the recent developments in anti-infective potential of indole and associated hybrids. J Mol Struct 2022; 1261:132808. [PMID: 35291692 PMCID: PMC8913251 DOI: 10.1016/j.molstruc.2022.132808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Prevention, accurate diagnosis, and effective treatment of infections are the main challenges in the overall management of infectious diseases. The best example is the ongoing SARs-COV-2(COVID-19) pandemic; the entire world is extremely worried about at present. Interestingly, heterocyclic moieties provide an ideal scaffold on which suitable pharmacophores can be designed to construct novel drugs. Indoles are amongst the most essential class of heteroaromatics in medicinal chemistry, which are ubiquitous across natural sources. The aforesaid derivatives have become invaluable scaffolds because of their wide spectrum therapeutic applications. Therefore, many researchers are focused on the design and synthesis of indole and associated hybrids of biological relevance. Hence, in the present review, we concisely discuss the indole containing natural sources, marketed drugs, clinical candidates, and their biological activities like antibacterial, antifungal, anti-TB, antiviral, antimalarial, and anti-leishmanial activities. The structure-activity relationships study of indole derivatives is also presented for a better understanding of the identified structures. The literature data presented for the anti-infective agents herein covers largely for the last twelve years.
Collapse
Affiliation(s)
| | - Sasidhar B Somappa
- Organic Chemistry Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Cu(OAc)2 catalyzed aerobic oxidative 2-aryl-3-acylquinoline synthesis via aza-Michael addition and aldol condensation of α,β-unsaturated ketones and 2‑aminobenzyl alcohols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Solid acid-catalyzed one-pot multi-step cascade reaction: Multicomponent synthesis of indol-3-yl acetates and indol-3-yl acetamides in water. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Ni C, Chen G, Li X, Zhao H, Yu L. Synthesis and application of indole esters derivatives containing acrylamide group as antifouling agents. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Wu G, Li T, Liu F, Zhao Y, Ma S, Tang S, Xie X, She X. Thiourea catalyzed 1,6-conjugate addition of indoles to para-quinone methides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Jalaja R, Leela SG, Mohan S, Nair MS, Gopalan RK, Somappa SB. Anti-hyperlipidemic potential of natural product based labdane-pyrroles via inhibition of cholesterol and triglycerides synthesis. Bioorg Chem 2021; 108:104664. [PMID: 33550071 DOI: 10.1016/j.bioorg.2021.104664] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
Hyperlipidemia is the clinical condition where blood has an increased level of lipids, such as cholesterol and triglycerides. Therefore controlling hyperlipidemia is considered to be a protective strategy to treat many associated diseases. Thus, a novel natural product derived pyrrole, and pyrazole-(E)-Labda-8(17),12-diene-15,16-dial conjugates with cholesterol and triglycerides synthesis inhibition potential was designed through scaffold hopping approach and synthesized via one-pot selective cycloaddition. Amongst the tested hybrids, 3i exhibited excellent activity against triglyceride and cholesterol synthesis with the percentage inhibition of 71.73 ± 0.78 and 68.61 ± 1.19, which is comparable to the positive controls fenofibrate and atorvastatin, respectively. Compounds 3j and 3k also exhibited the considerable potential of promising leads. The HMG CoA reductase inhibitory activity of the compounds was consistent with that of inhibitory activity of cholesterol synthesis. Compound 3i showed the highest inhibitory potential (78.61 ± 2.80) percentage of suppression, which was comparable to that of the positive control pravastatin (78.05 ± 5.4). Favourably, none of the compounds showed cytotoxicity (HepG2) in the concentration ranging from 0.5 to 100 μM.
Collapse
Affiliation(s)
- Renjitha Jalaja
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shyni G Leela
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India
| | - Sangeetha Mohan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mangalam S Nair
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Raghu K Gopalan
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Song F, Li Z, Bian Y, Huo X, Fang J, Shao L, Zhou M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch Pharm (Weinheim) 2020; 353:e2000143. [PMID: 32667714 DOI: 10.1002/ardp.202000143] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The emergence and worldwide spread of drug-resistant bacteria have already posed a serious threat to human life, creating the urgent need to develop potent and novel antibacterial drug candidates with high efficacy. Indole and isatin (indole-2,3-dione) present a wide structural and mechanistic diversity, so their derivatives possess various pharmacological properties and occupy a salient place in the development of new drugs. Indole/isatin-containing hybrids, which demonstrate a promising activity against a panel of clinically important Gram-positive and Gram-negative bacteria, are privileged scaffolds for the discovery of novel antibacterial candidates. This review, covering articles published between January 2015 and May 2020, focuses on the development and structure-activity relationship (SAR) of indole/isatin-containing hybrids with potential application for fighting bacterial infections, to facilitate further rational design of novel drug candidates.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China.,School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Linlin Shao
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
20
|
Patil RC, Patil UP, Jagdale AA, Shinde SK, Patil SS. Ash of pomegranate peels (APP): A bio-waste heterogeneous catalyst for sustainable synthesis of α,α′-bis(substituted benzylidine)cycloalkanones and 2-arylidene-1-tetralones. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04160-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Khan I, Sharma A, Kamboj P, Maity B, Tyagi V. Base‐Mediated Reductive Coupling of Indole‐3‐tosylhydrazone with Thiols/Boronic Acids: Facile Synthesis of 3‐(phenylthio)methyl/benzyl Indole Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.201903863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Imran Khan
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| | - Aanchal Sharma
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| | - Priya Kamboj
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| | - Banibrata Maity
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| |
Collapse
|
22
|
Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1132-1148. [DOI: 10.1080/21691401.2019.1573824] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zarei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Song M, Wang S, Wang Z, Fu Z, Zhou S, Cheng H, Liang Z, Deng X. Synthesis, antimicrobial and cytotoxic activities, and molecular docking studies of N-arylsulfonylindoles containing an aminoguanidine, a semicarbazide, and a thiosemicarbazide moiety. Eur J Med Chem 2019; 166:108-118. [DOI: 10.1016/j.ejmech.2019.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/19/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023]
|
24
|
Hikawa H, Kotaki F, Kikkawa S, Azumaya I. Gold(III)-Catalyzed Decarboxylative C3-Benzylation of Indole-3-carboxylic Acids with Benzylic Alcohols in Water. J Org Chem 2019; 84:1972-1979. [PMID: 30672696 DOI: 10.1021/acs.joc.8b02947] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A strategy for the gold(III)-catalyzed decarboxylative coupling reaction of indole-3-carboxylic acids with benzylic alcohols has been developed. This cascade reaction is devised as a straightforward and efficient synthetic route for 3-benzylindoles in moderate to excellent yields (50-93%). A Hammett study of the protodecarboxylation gives a negative ρ value, suggesting that there is a buildup of positive charge on the indole ring in the transition state. Furthermore, comparison of initial rates in H2O and in D2O reveals an observed kinetic solvent isotope effect (KSIE = 2.7). This simple protocol, which affords the desired products with CO2 and water as the coproducts, can be achieved under mild conditions without the need for base or other additives in water.
Collapse
Affiliation(s)
- Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences , Toho University , 2-2-1, Miyama , Funabashi , Chiba 274-8510 , Japan
| | - Fumiya Kotaki
- Faculty of Pharmaceutical Sciences , Toho University , 2-2-1, Miyama , Funabashi , Chiba 274-8510 , Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences , Toho University , 2-2-1, Miyama , Funabashi , Chiba 274-8510 , Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences , Toho University , 2-2-1, Miyama , Funabashi , Chiba 274-8510 , Japan
| |
Collapse
|
25
|
Saehlim N, Kasemsuk T, Sirion U, Saeeng R. One-Pot Approach for the Synthesis of Bis-indole-1,4-disubstituted-1,2,3-triazoles. J Org Chem 2018; 83:13233-13242. [PMID: 30298733 DOI: 10.1021/acs.joc.8b02056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new strategy for the synthesis of bis-indoletriazoles was developed using a sequential one-pot four-step procedure via I2 and H2SO4-SiO2 catalyzed Friedel-Crafts reactions of indole with aldehyde followed by N-alkylation with propargyl bromide, azidation, and copper(I)-catalyzed azide alkyne cycloaddition (CuAAC). The reaction proceeded smoothly at room temperature in a short time, and a series of bis-indoletriazoles were obtained in good to excellent yields proving the generality of this one-pot methodology.
Collapse
Affiliation(s)
- Natthiya Saehlim
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Burapha University , Sangesook , Chonburi 20131 , Thailand
| | - Teerapich Kasemsuk
- Department of Chemistry, Faculty of Science and Technology , RambhaiBarni Rajabhat University , Chanthaburi , 22000 , Thailand
| | - Uthaiwan Sirion
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Burapha University , Sangesook , Chonburi 20131 , Thailand
| | - Rungnapha Saeeng
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Burapha University , Sangesook , Chonburi 20131 , Thailand
| |
Collapse
|
26
|
|
27
|
Nosova EV, Lipunova GN, Charushin VN, Chupakhin ON. Fluorine-containing indoles: Synthesis and biological activity. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Jalaja R, Leela SG, Valmiki PK, Salfeena CTF, Ashitha KT, Krishna Rao VRD, Nair MS, Gopalan RK, Somappa SB. Discovery of Natural Product Derived Labdane Appended Triazoles as Potent Pancreatic Lipase Inhibitors. ACS Med Chem Lett 2018; 9:662-666. [PMID: 30034597 DOI: 10.1021/acsmedchemlett.8b00109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity contributes to the genesis of many metabolic disorders including dyslipidemia, coronary heart disease (CHD), nonalcoholic fatty liver, type 2 diabetes, etc. Pancreatic lipase plays a vital role in food fat digestion and absorption. Therefore, to control obesity, inhibition of pancreatic lipase is the active therapy. Thus, novel natural product derived labdane appended triazoles with pancreatic lipase inhibition potential were designed and synthesized. Among these hybrids, 6b and 6f exhibited excellent inhibitory activity (IC50 0.75 ± 0.02 μM and 0.77 ± 0.01 μM), slightly better than that of the positive control Orlistat (IC50 0.8 ± 0.03 μM). Compounds 6c, 6e, and 6g-j inhibited the PL comparable to that of positive control. Interestingly none of the compounds showed cytotoxicity (Hep G2) in the concentration range from 0.5 to 100 μM. Overall results reveal the potential of labdane appended triazoles as antiobesity agents.
Collapse
Affiliation(s)
- Renjitha Jalaja
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Shyni G. Leela
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Praveen K. Valmiki
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Chettiyan Thodi F. Salfeena
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Kizhakkan T. Ashitha
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Venkata Rao D. Krishna Rao
- CSIR - Central Institute of Medicinal and Aromatic Plants, Research Centre, Bangalore - 560065, Karnataka, India
| | - Mangalam S. Nair
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
| | - Raghu K. Gopalan
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Sasidhar B. Somappa
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| |
Collapse
|
29
|
Mohan B, Salfeena CTF, Ashitha KT, Krishnan GV, Jesmina ARS, Varghese AM, Patil SA, Kumar BNSD, Sasidhar BS. Functionalized Pyrimidines from Alkynes and Nitriles: Application towards the Synthesis of Marine Natural Product Meridianin Analogs. ChemistrySelect 2018. [DOI: 10.1002/slct.201801126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Banyangala Mohan
- Chemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Thiruvananthapuram - 695 019 Kerala India
| | - Chettiyan Thodi F. Salfeena
- Chemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Thiruvananthapuram - 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR)CSIR-NIIST Thiruvananthapuram - 695 019 Kerala India
| | - Kizhakkan T. Ashitha
- Chemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Thiruvananthapuram - 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR)CSIR-NIIST Thiruvananthapuram - 695 019 Kerala India
| | - Gopika V. Krishnan
- Agro-Processing and Technology DivisionCSIR –NIIST Thiruvananthapuram - 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR)CSIR-NIIST Thiruvananthapuram - 695 019 Kerala India
| | - Abdul Rasheed S. Jesmina
- Agro-Processing and Technology DivisionCSIR –NIIST Thiruvananthapuram - 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR)CSIR-NIIST Thiruvananthapuram - 695 019 Kerala India
| | - Angela M. Varghese
- Chemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Thiruvananthapuram - 695 019 Kerala India
| | - Siddappa A. Patil
- Centre for Nano and Material SciencesJain UniversityJain Global Campus, Kanakapura, Ramanagaram Bangalore - 562112 India
| | - Bhaskaran Nair S. Dileep Kumar
- Agro-Processing and Technology DivisionCSIR –NIIST Thiruvananthapuram - 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR)CSIR-NIIST Thiruvananthapuram - 695 019 Kerala India
| | - Balappa S. Sasidhar
- Chemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Thiruvananthapuram - 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR)CSIR-NIIST Thiruvananthapuram - 695 019 Kerala India
| |
Collapse
|
30
|
Song MX, Li SH, Peng JY, Guo TT, Xu WH, Xiong SF, Deng XQ. Synthesis and Bioactivity Evaluation of N-Arylsulfonylindole Analogs Bearing a Rhodanine Moiety as Antibacterial Agents. Molecules 2017; 22:molecules22060970. [PMID: 28613234 PMCID: PMC6152656 DOI: 10.3390/molecules22060970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/18/2022] Open
Abstract
Due to the rapidly growing bacterial resistance to antibiotics and the scarcity of novel agents under development, bacterial infections are still a pressing global problem, making new types of antibacterial agents, which are effective both alone and in combination with traditional antibiotics, urgently needed. In this paper, seven series of N-arylsulfonylindole analogs 5–11 bearing rhodanine moieties were synthesized, characterized, and evaluated for antibacterial activity. According to the in vitro antimicrobial results, half of the synthesized compounds showed potent inhibition against four Gram-positive bacteria, with MIC values in the range of 0.5–8 µg/mL. For multidrug-resistant strains, compounds 6a and 6c were the most potent, with MIC values of 0.5 µg/mL, having comparable activity to gatifloxacin, moxiflocaxin and norfloxacin and being 128-fold more potent than oxacillin (MIC = 64 µg/mL) and 64-fold more active than penicillin (MIC = 32 µg/mL) against Staphylococcus aureusATCC 43300.
Collapse
Affiliation(s)
- Ming-Xia Song
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Song-Hui Li
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Jiao-Yang Peng
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Ting-Ting Guo
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Wen-Hui Xu
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Shao-Feng Xiong
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Xian-Qing Deng
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| |
Collapse
|