1
|
Thompson KI, Schneider CJ, Rocha-Hidalgo J, Jeyaram S, Mata-Centeno B, Furtado E, Vachhani S, Pérez-Edgar K, Perlman SB. Constructing the "Family Personality": Can Family Functioning Be Linked to Parent-Child Interpersonal Neural Synchronization? J Pers 2025; 93:755-766. [PMID: 39248009 PMCID: PMC11890187 DOI: 10.1111/jopy.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Early child development occurs within an interactive environment, initially dominated by parents or caregivers, and is heavily influenced by the dynamics of this social context. The current study probed the neurobiology of "family personality", or family functioning, in the context of parent-child dyadic interaction using a two-person neuroimaging modality. METHODS One hundred and five parent-child dyads (child mean age 5 years 4 months) were recruited. Functional near-infrared spectroscopy (fNIRS) hyperscanning was employed to measure neural synchrony while dyads completed a mildly stressful interactive task. Family functioning was measured through the Family Adaptability and Cohesion Scale IV (FACES-IV). RESULTS Synchrony during stress was significantly greater than synchrony during both baseline and recovery conditions for all dyads. A significant interaction between neural synchrony in each task condition and familial balanced flexibility was found, such that higher levels of balanced flexibility were associated with greater changes in frontal cortex neural synchrony as dyads progressed through the three task conditions. DISCUSSION Parent-child dyads from families who display heightened levels of balanced flexibility are also more flexible in their engagement of neural synchrony when shifting between social conditions. This is one of the first studies to utilize a two-person imaging modality to explore the links between family functioning and interbrain synchrony between parents and their children.
Collapse
Affiliation(s)
- Khalil I. Thompson
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Clayton J. Schneider
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | | | - Shri Jeyaram
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Bedilia Mata-Centeno
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Emily Furtado
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Shreeja Vachhani
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Koraly Pérez-Edgar
- Department of Psychology, Pennsylvania State University, State College, Pennsylvania
| | - Susan B. Perlman
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
2
|
Feng X, Xu X, Meng Z, Jiang J, Pei M, Zheng Y, Lu C. A Rapid Cortical Learning Process Supporting Students' Knowledge Construction During Real Classroom Teaching. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416610. [PMID: 39921272 PMCID: PMC12079370 DOI: 10.1002/advs.202416610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Classroom teaching is essential for cognitive development and cultural evolution, yet its neurocognitive mechanisms remain unclear. Here, this is explored in a university graduate course by combining wearable functional near-infrared spectroscopy (fNIRS) and machine learning models. The results show that blended teaching involving both students' recalling and teachers' lecturing leads to better learning outcomes than lecturing alone. Moreover, during the same lecturing phase, blended teaching induces knowledge construction in the middle frontal cortex (MFC), while lecturing alone induces knowledge representation in the right temporoparietal junction (TPJ), with the former significantly correlating with the final learning outcomes. Additionally, the MFC's construction begins during earlier recalling but is significantly facilitated by later lecturing. Finally, when teacher's TPJ activity precedes that of students' MFC, significant teacher-student neural synchronization is observed during lecturing of blended teaching and is correlated with learning outcomes. These findings suggest that, in the real classroom teaching, the MFC serves as a hub of a rapid cortical learning process, supporting knowledge construction through a projection from the teacher's TPJ.
Collapse
Affiliation(s)
- Xiaodan Feng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Xinran Xu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Zhaonan Meng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Jiahao Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Miao Pei
- Center for Teacher Education ResearchBeijing Normal UniversityBeijing100875China
| | - Yonghe Zheng
- Research Institute of Science EducationBeijing Normal UniversityBeijing100875China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| |
Collapse
|
3
|
Rosen ML, Li A, Mikkelsen CA, Aslin RN. Neural hyperscanning in caregiver-child dyads: A paradigm for studying the long-term effects of facilitated vs. disrupted attention on working memory and executive functioning in young children. DEVELOPMENTAL REVIEW 2025; 75:101170. [PMID: 39802123 PMCID: PMC11720965 DOI: 10.1016/j.dr.2024.101170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Parent-child interactions shape children's cognitive outcomes such that caregivers can guide attention and facilitate learning opportunities. These interactions provide infants and toddlers with rich, naturalistic experiences that engage complex cognitive functions and lay the groundwork for the development of mature executive functions. Although most caregivers seek to engage children optimally, they can unintentionally impede this developmental process by being under-engaged or intrusive. When caregivers are under engaged, children do not have the proper scaffolding to know what to attend to in a complex environment. When parents are intrusive, they inadvertently disrupt the child's attention and direct learning to information that the parent deems important, but the child may find uninteresting or irrelevant. This disruption can impede the learning process even if the child's behavior does not appear to be negatively affected during the unfolding parent-child interaction. Understanding the moment-to-moment neural basis of these processes is critical to uncover the role that caregivers play in the development of attention and learning, which in turn impacts the development of working memory and executive function. Simultaneous brain recording, called hyperscanning, is a burgeoning method that measures brain synchrony across parent-child dyads when engaged in a shared task. In this opinion piece, we first review existing literature that highlights the important role caregivers play in guiding attention and learning in infants and toddlers and how these interactions contribute to the development of working memory and executive function in young children. Next, we review the existing literature using hyperscanning and dual eye tracking paradigms to uncover the patterning of interactions when caregivers guide attention in a manner that either matches the expectations of the child or over- or under-directs the child's attention. We provide best-practices for employing hyperscanning techniques to uncover how caregivers optimally engage infant and toddlers' attention in the moment, and how children's developing memory of these patterns of interaction build their executive function abilities, both with their caregivers and with other adults and children.
Collapse
Affiliation(s)
- Maya L Rosen
- Smith College, Program in Neuroscience, 44 College Lane, Northampton, MA 01073, USA
| | - Annabelle Li
- Smith College, Program in Neuroscience, 44 College Lane, Northampton, MA 01073, USA
| | | | - Richard N Aslin
- Child Study Center, Yale School of Medicine, 230 S Frontage Rd, New Haven, CT 06519, USA
- Department of Psychology, Yale University, 100 College St, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Chen Y, Zhao Y, Deng X. Mindful bridge: Brief mindfulness practices alter negative emotion transmission and cooperative performance in parent-adolescent dynamics. Appl Psychol Health Well Being 2025; 17:e70002. [PMID: 39895149 DOI: 10.1111/aphw.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
Parent-adolescent emotion transmission is crucial for adolescents' psychological development. Parental negative emotions could impair parent-adolescent interaction and relationships. Brief mindfulness practices (BMPs) are effective for improving emotional regulation and reducing negative emotions. However, few studies explored the effects of BMP on parent-adolescent negative emotion transmission. This study used the hyperscanning technique to examine the differences in the change of emotional states, cooperative performance, and interbrain synchrony (IBS) between the BMP group (20 parent-adolescent dyads) and the control rest (CR) group (20 parent-adolescent dyads) under induced parental negative emotions in cooperation interaction tasks. Results showed (1) decreases in negative emotions, hostility, and state anxiety in the BMP group after BMP, but only negative emotions decreased in the CR group after rest; (2) an increase in the success rate in the BMP group after BMP, but no change in the CR group after rest; and (3) decreases in IBS in the delta and theta bands in success feedback and increases in IBS in failure feedback in the BMP group after BMP, but no change in the CR group after rest. These findings suggest that BMP may mitigate parental negative emotion transmission to adolescents and promote their focused attitude toward cooperation.
Collapse
Affiliation(s)
- Yangdi Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yanhui Zhao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Xu J, Liu S, Zhu Y, Hale ME, Wang Q, Wang X, Gao MM, Wang H, Suveg C, Han ZR. Parent emotional support alters the association between parent-child interbrain synchrony and interaction quality. Child Dev 2025; 96:301-311. [PMID: 39327782 DOI: 10.1111/cdev.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Using functional near-infrared spectroscopy (fNIRS) hyperscanning methodology, this study investigated whether parent emotional support moderated the relation between parent-child interbrain synchrony and interaction quality (via behavioral observation and child-report), controlling for individual emotional distress. Eighty-eight parent-child dyads (96.6% Han ethnicity), including a school-age child between the ages of 6 and 11 (Mage = 8.07 years, SD = 1.16 years; 58.0% boys) and their parent (Mage = 39.03 years, SD = 3.54 years; 69.3% mothers), participated in a cooperative task during which brain activity was assessed. Cluster-based permutations indicated parent-child interbrain synchrony in the left and right temporoparietal junction (TPJ). Interbrain synchrony in the left TPJ positively related to parent-child interaction quality in the context of high parent emotional support, whereas the association was weaker and negative when parents demonstrated low emotional support. Findings suggest the emotional context of an interaction is critical when assessing interbrain synchrony.
Collapse
Affiliation(s)
- Jianjie Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Sihan Liu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yuhao Zhu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Molly E Hale
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Qiandong Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xinni Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Mengyu Miranda Gao
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Hui Wang
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Cynthia Suveg
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Zhuo Rachel Han
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Roche EC, Redcay E, Romeo RR. Caregiver-child neural synchrony: Magic, mirage, or developmental mechanism? Dev Cogn Neurosci 2025; 71:101482. [PMID: 39693894 PMCID: PMC11720112 DOI: 10.1016/j.dcn.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Young children transition in and out of synchronous states with their caregivers across physiology, behavior, and brain activity, but what do these synchronous periods mean? One body of two-brain studies using functional near-infrared spectroscopy (fNIRS) finds that individual, family, and moment-to-moment behavioral and contextual factors are associated with caregiver-child neural synchrony, while another body of literature finds that neural synchrony is associated with positive child outcomes. Taken together, it is tempting to conclude that caregiver-child neural synchrony may act as a foundational developmental mechanism linking children's experiences to their healthy development, but many questions remain. In this review, we synthesize recent findings and open questions from caregiver-child studies using fNIRS, which is uniquely well suited for use with caregivers and children, but also laden with unique constraints. Throughout, we highlight open questions alongside best practices for optimizing two-brain fNIRS to examine hypothesized developmental mechanisms. We particularly emphasize the need to consider immediate and global stressors as context for interpretation of neural synchrony findings, and the need for full inclusion of socioeconomically and racially diverse families in future studies.
Collapse
Affiliation(s)
- Ellen C Roche
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| | - Elizabeth Redcay
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| | - Rachel R Romeo
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| |
Collapse
|
7
|
Eulau K, Hirsh-Pasek K. From behavioral synchrony to language and beyond. Front Integr Neurosci 2024; 18:1488977. [PMID: 39723335 PMCID: PMC11668775 DOI: 10.3389/fnint.2024.1488977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024] Open
Abstract
Decades of research on joint attention, coordinated joint engagement, and social contingency identify caregiver-child interaction in infancy as a foundation for language. These patterns of early behavioral synchrony contribute to the structure and connectivity of the brain in the temporoparietal regions typically associated with language skills. Thus, children attune to their communication partner and subsequently build cognitive skills directly relating to comprehension and production of language, literacy skills, and beyond. This has yielded marked interest in measuring this contingent, synchronous social behavior neurally. Neurological measures of early social interactions between caregiver and child have become a hotbed for research. In this paper, we review that research and suggest that these early neural couplings between adults and children lay the foundation for a broader cognitive system that includes attention, problem solving, and executive function skills. This review describes the role of behavioral synchrony in language development, asks what the relationship is between neural synchrony and language growth, and how neural synchrony may play a role in the development of a broader cognitive system founded in a socially-gated brain. We address the known neural correlates of these processes with an emphasis on work that examines the tight temporal contingency between communicative partners during these rich social interactions, with a focus on EEG and fNIRS and brief survey of MRI and MEG.
Collapse
Affiliation(s)
- Katherine Eulau
- Temple Infant and Child Laboratory, Temple University, Philadelphia, PA, United States
| | - Kathy Hirsh-Pasek
- Temple Infant and Child Laboratory, Temple University, Philadelphia, PA, United States
- The Brookings Institution, Washington, DC, United States
| |
Collapse
|
8
|
Li Y, Halleck TQ, Evans L, Bassuk PB, de la Paz L, Demir-Lira ÖE. Eye of the beholder: Neural synchrony of dynamically changing relations between parent praise and child affect. Dev Sci 2024; 27:e13541. [PMID: 38958643 DOI: 10.1111/desc.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024]
Abstract
In this study, we aimed to determine the role of parental praise and child affect in the neural processes underlying parent-child interactions, utilizing functional near-infrared spectroscopy (fNIRS) hyperscanning. We characterized the dynamic changes in interpersonal neural synchrony (INS) between parents and children (4-6 years old, n = 40 dyads) during a cognitively challenging task. We then examined how changes in parent-child INS are influenced by parental feedback and child affect. Parent-child INS showed a quadratic change over time, indicating a decelerated decline during the interaction period. The relationship of parental praise, in the form of positive feedback, to change in INS was contingent upon the child's positive affect during the task. The highest levels of INS were observed when praise was present and child affect was positive. The left temporo-parietal regions of the child and the right dorsolateral prefrontal and right temporo-parietal regions of the parent demonstrated the strongest INS. The dynamic change in INS during the interaction was associated with children's independent performance on a standardized test of visuospatial processing. This research, leveraging fNIRS hyperscanning, elucidates the neural dynamics underlying the interaction between parent praise and child positive affect, thereby contributing to our broader understanding of parent-child dynamics. RESEARCH HIGHLIGHTS: The level of interpersonal neural synchrony between parents and children dynamically varies during a cognitively challenging (tangram) task. The left temporo-parietal regions of the child and the right dorsolateral prefrontal and right temporo-parietal regions of the parent demonstrate the strongest parent-child neural synchrony. The relationship between parental praise (positive feedback) and parent-child neural synchrony is contingent upon child positive affect during the task. Change in parent-child neural synchrony relates to children's performance on an independent visuospatial processing measure.
Collapse
Affiliation(s)
- Ying Li
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Talia Q Halleck
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Laura Evans
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Paras Bhagwat Bassuk
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Leiana de la Paz
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Ö Ece Demir-Lira
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Pawluski JL. The parental brain, perinatal mental illness, and treatment: A review of key structural and functional changes. Semin Perinatol 2024; 48:151951. [PMID: 39030131 DOI: 10.1016/j.semperi.2024.151951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The transition to parenthood is perhaps the only time in adult life when the brain changes to such a significant degree in such a short period, particularly in birthing parents. It is also a time when there is an increased risk of developing a mental illness, which may be due, in part, to the increased neuroplasticity. Thus, we must develop interventions and treatments that support parents and promote parental brain health. This review will highlight key findings from current research on how human brain structure and function are modified with 1) the transition to parenthood, 2) parenting stress and perinatal mental illness, and 3) treatments aimed at promoting perinatal mental health. The focus will be on birthing parents and mothers, but brain changes in non-birthing parents will also be discussed. Improvements in our understanding of the parental brain, in health and with illness, will promote the well-being of generations to come.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
10
|
Wang LS, Chang YC, Liou S, Weng MH, Chen DY, Kung CC. When "more for others, less for self" leads to co-benefits: A tri-MRI dyad-hyperscanning study. Psychophysiology 2024; 61:e14560. [PMID: 38469655 DOI: 10.1111/psyp.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Unselfishness is admired, especially when collaborations between groups of various scales are urgently needed. However, its neural mechanisms remain elusive. In a tri-MRI dyad-hyperscanning experiment involving 26 groups, each containing 4 participants as two rotating pairs in a coordination game, we sought to achieve reciprocity, or "winning in turn by the two interacting players," as the precursor to unselfishness. Due to its critical role in social processing, the right temporal-parietal junction (rTPJ) was the seed for both time domain (connectivity) and frequency domain (i.e., coherence) analyses. For the former, negative connectivity between the rTPJ and the mentalizing network areas (e.g., the right inferior parietal lobule, rIPL) was identified, and such connectivity was further negatively correlated with the individual's final gain, supporting our task design that "rewarded" the reciprocal participants. For the latter, cerebral coherences of the rTPJs emerged between the interacting pairs (i.e., within-group interacting pairs), and the coupling between the rTPJ and the right superior temporal gyrus (rSTG) between the players who were not interacting with each other (i.e., within-group noninteracting pairs). These coherences reinforce the hypotheses that the rTPJ-rTPJ coupling tracks the collaboration processes and the rTPJ-rSTG coupling for the emergence of decontextualized shared meaning. Our results underpin two social roles (inferring others' behavior and interpreting social outcomes) subserved by the rTPJ-related network and highlight its interaction with other-self/other-concerning brain areas in reaching co-benefits among unselfish players.
Collapse
Affiliation(s)
- Le-Si Wang
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Yi-Cing Chang
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Shyhnan Liou
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Ming-Hung Weng
- Department of Economics, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Der-Yow Chen
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| | - Chun-Chia Kung
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| |
Collapse
|
11
|
Zhang M, Yin Z, Zhang X, Zhang H, Bao M, Xuan B. Neural mechanisms distinguishing two types of cooperative problem-solving approaches: An fNIRS hyperscanning study. Neuroimage 2024; 291:120587. [PMID: 38548038 DOI: 10.1016/j.neuroimage.2024.120587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Collaborative cooperation (CC) and division of labor cooperation (DLC) are two prevalent forms of cooperative problem-solving approaches in daily life. Despite extensive research on the neural mechanisms underlying cooperative problem-solving approaches, a notable gap exists between the neural processes that support CC and DLC. The present study utilized a functional near-infrared spectroscopy (fNIRS) hyperscanning technique along with a classic cooperative tangram puzzle task to investigate the neural mechanisms engaged by both friends and stranger dyads during CC versus DLC. The key findings of this study were as follows: (1) Dyads exhibited superior behavioral performance in the DLC task than in the CC task. The CC task bolstered intra-brain functional connectivity and inter-brain synchrony (IBS) in regions linked to the mirror neuron system (MNS), spatial perception (SP) and cognitive control. (2) Friend dyads showed stronger IBS in brain regions associated with the MNS than stranger dyads. (3) Perspective-taking predicted not only dyads' behavioral performance in the CC task but also their IBS in brain regions associated with SP during the DLC task. Taken together, these findings elucidate the divergent behavioral performance and neural connection patterns between the two cooperative problem-solving approaches. This study provides novel insights into the various neurocognitive processes underlying flexible coordination strategies in real-world cooperative contexts.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Psychology, Shanghai Normal University, 100, Guilin Road, Shanghai 200234, China
| | - Zijun Yin
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Xue Zhang
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Hui Zhang
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Mingjing Bao
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Bin Xuan
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China.
| |
Collapse
|
12
|
Réveillé C, Vergotte G, Perrey S, Bosselut G. Using interbrain synchrony to study teamwork: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105593. [PMID: 38373643 DOI: 10.1016/j.neubiorev.2024.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
It has been proposed that interbrain synchrony (IBS) may help to elucidate the neural mechanisms underpinning teamwork. As hyperscanning studies have provided abundant findings on IBS in team environments, the current review aims to synthesize the findings of hyperscanning studies in a way that is relevant to the teamwork research. A systematic review was conducted. Included studies were classified according to the IPO (i.e. input, process, output) model of teamwork. Three multi-level meta-analyses were performed to quantify the associations between IBS and the three IPO variables. The methodology followed PRISMA guidelines and the protocol was pre-registered (https://osf.io/7h8sa/). Of the 229 studies, 41 were included, representing 1326 teams. The three meta-analyses found statistically significant positive effects, indicating a positive association between IBS and the three IPO teamwork variables. This study provides evidence that IBS is a relevant measure of the teamwork process and argues for the continued use of IBS to study teamwork.
Collapse
Affiliation(s)
- Coralie Réveillé
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France.
| | - Grégoire Vergotte
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| | - Grégoire Bosselut
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| |
Collapse
|
13
|
Li Y, Wu S, Xu J, Wang H, Zhu Q, Shi W, Fang Y, Jiang F, Tong S, Zhang Y, Guo X. Interbrain substrates of role switching during mother-child interaction. Hum Brain Mapp 2024; 45:e26672. [PMID: 38549429 PMCID: PMC10979116 DOI: 10.1002/hbm.26672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Mother-child interaction is highly dynamic and reciprocal. Switching roles in these back-and-forth interactions serves as a crucial feature of reciprocal behaviors while the underlying neural entrainment is still not well-studied. Here, we designed a role-controlled cooperative task with dual EEG recording to explore how differently two brains interact when mothers and children hold different roles. When children were actors and mothers were observers, mother-child interbrain synchrony emerged primarily within the theta oscillations and the frontal lobe, which highly correlated with children's attachment to their mothers (self-reported by mothers). When their roles were reversed, this synchrony was shifted to the alpha oscillations and the central area and associated with mothers' perception of their relationship with their children. The results suggested an observer-actor neural alignment within the actor's oscillations, which was related to the actor-toward-observer emotional bonding. Our findings contribute to the understanding of how interbrain synchrony is established and dynamically changed during mother-child reciprocal interaction.
Collapse
Affiliation(s)
- Yamin Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Saishuang Wu
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Jiayang Xu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Haiwa Wang
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Qi Zhu
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Wen Shi
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yue Fang
- China Welfare Institute NurseryShanghaiChina
| | - Fan Jiang
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Shanbao Tong
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yunting Zhang
- Child Health Advocacy InstituteNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoli Guo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
14
|
Papoutselou E, Harrison S, Mai G, Buck B, Patil N, Wiggins I, Hartley D. Investigating mother-child inter-brain synchrony in a naturalistic paradigm: A functional near infrared spectroscopy (fNIRS) hyperscanning study. Eur J Neurosci 2024; 59:1386-1403. [PMID: 38155106 DOI: 10.1111/ejn.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Successful social interactions between mothers and children are hypothesised to play a significant role in a child's social, cognitive and language development. Earlier research has confirmed, through structured experimental paradigms, that these interactions could be underpinned by coordinated neural activity. Nevertheless, the extent of neural synchrony during real-life, ecologically valid interactions between mothers and their children remains largely unexplored. In this study, we investigated mother-child inter-brain synchrony using a naturalistic free-play paradigm. We also examined the relationship between neural synchrony, verbal communication patterns and personality traits to further understand the underpinnings of brain synchrony. Twelve children aged between 3 and 5 years old and their mothers participated in this study. Neural synchrony in mother-child dyads were measured bilaterally over frontal and temporal areas using functional Near Infra-red Spectroscopy (fNIRS) whilst the dyads were asked to play with child-friendly toys together (interactive condition) and separately (independent condition). Communication patterns were captured via video recordings and conversational turns were coded. Compared to the independent condition, mother-child dyads showed increased neural synchrony in the interactive condition across the prefrontal cortex and temporo-parietal junction. There was no significant relationship found between neural synchrony and turn-taking and between neural synchrony and the personality traits of each member of the dyad. Overall, we demonstrate the feasibility of measuring inter-brain synchrony between mothers and children in a naturalistic environment. These findings can inform future study designs to assess inter-brain synchrony between parents and pre-lingual children and/or children with communication needs.
Collapse
Affiliation(s)
- Efstratia Papoutselou
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Samantha Harrison
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Guangting Mai
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Bryony Buck
- Hearing Sciences - Scottish Section, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nikita Patil
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian Wiggins
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Douglas Hartley
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
15
|
Zhao Q, Zhao W, Lu C, Du H, Chi P. Interpersonal neural synchronization during social interactions in close relationships: A systematic review and meta-analysis of fNIRS hyperscanning studies. Neurosci Biobehav Rev 2024; 158:105565. [PMID: 38295965 DOI: 10.1016/j.neubiorev.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
In recent years, researchers have used hyperscanning techniques to explore how brains interact during various human activities. These studies have revealed a phenomenon called interpersonal neural synchronization (INS), but little research has focused on the overall effect of INS in close relationships. To address this gap, this study aims to synthesize and analyze the existing literature on INS during social interactions in close relationships. We conducted a meta-analysis of 17 functional near-infrared spectroscopy (fNIRS) hyperscanning studies involving 1149 dyads participants, including romantic couples and parent-child dyads. The results revealed robust and consistent INS in the frontal, temporal, and parietal regions of the brain and found similar INS patterns in couples and parent-child studies, providing solid empirical evidence for the attachment theory. Moreover, the age of children and brain areas were significant predictors of the effect size in parent-child research. The developmental stage of children and the mismatched development of brain structures might be the crucial factors for the difference in neural performance in social and cognitive behaviors in parent-child dyads.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China
| | - Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing 210097, Jiangsu, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hongfei Du
- Department of Psychology, Beijing Normal University at Zhuhai, Zhuhai 519087, Guangdong, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, China.
| | - Peilian Chi
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China.
| |
Collapse
|
16
|
Liu Q, Zhu S, Zhou X, Liu F, Becker B, Kendrick KM, Zhao W. Mothers and fathers show different neural synchrony with their children during shared experiences. Neuroimage 2024; 288:120529. [PMID: 38301879 DOI: 10.1016/j.neuroimage.2024.120529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Parent-child shared experiences has an important influence on social development in children although contributions of mothers and fathers may differ. Neural synchronicity occurs between mothers and fathers and their children during social interactions but it is unclear whether they differ in this respect. We used data from simultaneous fNIRS hyperscanning in mothers (n = 33) and fathers (n = 29) and their children (3-4 years) to determine different patterns and strengths of neural synchronization in the frontal cortex during co-viewing of videos or free-play. Mothers showed greater synchrony with child than fathers during passive viewing of videos and the synchronization was positively associated with video complexity and negatively associated with parental stress. During play interactions, mothers showed more controlling behaviors over their child and greater evidence for joint gaze and joint imitation play with child whereas fathers spent more time gazing at other things. In addition, different aspects of child communication promoted neural synchrony between mothers and fathers and child during active play interactions. Overall, our findings indicate greater neural and behavioral synchrony between mothers than fathers and young children during passive or active shared experiences, although for both it was weakened by parental distress and child difficulty.
Collapse
Affiliation(s)
- Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Siyu Zhu
- School of Sport Training, Chengdu Sport University, Chengdu, 610041, PR China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, PR China
| | - Fang Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, 999077, PR China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, 523808, PR China.
| |
Collapse
|
17
|
Alonso A, McDorman SA, Romeo RR. How parent-child brain-to-brain synchrony can inform the study of child development. CHILD DEVELOPMENT PERSPECTIVES 2024; 18:26-35. [PMID: 39421441 PMCID: PMC11486517 DOI: 10.1111/cdep.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
It is well established that parent-child dyadic synchrony (e.g., mutual emotions, behaviors) can support development across cognitive and socioemotional domains. The advent of simultaneous two-brain hyperscanning (i.e., neuroimaging techniques to measure the brain activity of two individuals at the same time) allows further insight into dyadic neural synchrony. In this article, we review 16 recent studies of naturalistic, parent-child brain-to-brain synchrony, finding relations with the nature of interactions (collaborative versus competitive, parent versus stranger), proximal social cues (gaze, affect, touch, reciprocity), child-level variables (irritability, self-regulation), and environmental factors (parental stress, family cohesion, adversity). We then discuss how neural synchrony may provide a biological mechanism for refining broader theories on developmental benefits of dyadic synchrony. We also highlight critical areas for future study, including examining synchrony trajectories longitudinally, including more diverse participants and interaction contexts, and studying caregivers beyond mothers (e.g., other family members, teachers). We conclude that neural synchrony is an exciting and important window into understanding how caregiver-child dyadic synchrony supports children's social and cognitive development.
Collapse
Affiliation(s)
- Angelica Alonso
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park
| | - S Alexa McDorman
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park
| | - Rachel R Romeo
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park
| |
Collapse
|
18
|
Kungl MT, Gabler S, White LO, Spangler G, Vrticka P. Precursors and Effects of Self-reported Parental Reflective Functioning: Links to Parental Attachment Representations and Behavioral Sensitivity. Child Psychiatry Hum Dev 2024:10.1007/s10578-023-01654-2. [PMID: 38326634 DOI: 10.1007/s10578-023-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 02/09/2024]
Abstract
Parental reflective functioning is thought to provide a missing link between caregivers' own attachment histories and their ensuing parenting behaviors. The current study sought to extend research on this association involving 115 parents, both mothers and fathers, of 5-to-6-year-old preschoolers using the German version of the Parental Reflective Functioning Questionnaire (PRFQ). Our study was the first to combine Adult Attachment Interview classifications of parental attachment, behavioral observations of parental sensitivity and PRFQ ratings while drawing on a sizable father subsample. We found theoretically consistent significant relations between all measures, while our results particularly highlighted the role of dismissing attachment for decreases in parenting quality on both cognitive and behavioral levels as the dismissing status differentially affected specific components of self-reported parental reflective functioning and observed sensitivity. Interestingly, these patterns were largely comparable in mothers and fathers. Exploratory mediation analyses further suggested that decreased parental reflective functioning may partially mediate the relationship between parents' dismissing attachment and decreased parental sensitivity. Thus, for prevention and intervention programs targeting parental sensitivity and thus children's long term healthy mental development, the interplay between parental reflective functioning and parents' own attachment history emerges as a key mechanism. Finally, our study served as a further validation of the PRFQ given the caveat that the pre-mentalizing subscale may need further revision in the German version.
Collapse
Affiliation(s)
- Melanie T Kungl
- Department of Developmental Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Naegelsbachstrasse 49a, 91052, Erlangen, Germany.
| | - Sandra Gabler
- Department of Developmental Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Naegelsbachstrasse 49a, 91052, Erlangen, Germany
| | - Lars O White
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
- Berlin Psychological University, Am Köllnischen Park 2, 10179, Berlin, Germany
| | - Gottfried Spangler
- Department of Developmental Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Naegelsbachstrasse 49a, 91052, Erlangen, Germany
| | - Pascal Vrticka
- Department of Psychology, Centre for Brain Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany
| |
Collapse
|
19
|
Liu S, Han ZR, Xu J, Wang Q, Gao MM, Weng X, Qin S, Rubin KH. Parenting links to parent-child interbrain synchrony: a real-time fNIRS hyperscanning study. Cereb Cortex 2024; 34:bhad533. [PMID: 38220574 DOI: 10.1093/cercor/bhad533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
Parent-child interaction is crucial for children's cognitive and affective development. While bio-synchrony models propose that parenting influences interbrain synchrony during interpersonal interaction, the brain-to-brain mechanisms underlying real-time parent-child interactions remain largely understudied. Using functional near-infrared spectroscopy, we investigated interbrain synchrony in 88 parent-child dyads (Mage children = 8.07, 42.0% girls) during a collaborative task (the Etch-a-Sketch, a joint drawing task). Our findings revealed increased interbrain synchrony in the dorsolateral prefrontal cortex and temporo-parietal areas during interactive, collaborative sessions compared to non-interactive, resting sessions. Linear regression analysis demonstrated that interbrain synchrony in the left temporoparietal junction was associated with enhanced dyadic collaboration, shared positive affect, parental autonomy support, and parental emotional warmth. These associations remained significant after controlling for demographic variables including child age, child gender, and parent gender. Additionally, differences between fathers and mothers were observed. These results highlight the significant association between brain-to-brain synchrony in parent-child dyads, the quality of the parent-child relationship, and supportive parenting behaviors. Interbrain synchrony may serve as a neurobiological marker of real-time parent-child interaction, potentially underscoring the pivotal role of supportive parenting in shaping these interbrain synchrony mechanisms.
Collapse
Affiliation(s)
- Sihan Liu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Zhuo Rachel Han
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Jianjie Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Qiandong Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Mengyu Miranda Gao
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Xiaofang Weng
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Kenneth H Rubin
- University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
20
|
Zhang J, Wang Y, Mao Y, Leong C, Yuan Z. Shared Minds, Shared Feedback: tracing the influence of parental feedback on shared neural patterns. Cereb Cortex 2024; 34:bhad489. [PMID: 38163444 DOI: 10.1093/cercor/bhad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Parental feedback affects children in multiple ways. However, little is known about how children, family, and feedback types affect parental feedback neural mechanisms. The current study used functional near-infrared spectroscopy-based hyperscanning to observe 47 mother-daughter pairs's (mean age of mothers: 35.95 ± 3.99 yr old; mean age of daughters: 6.97 ± 0.75 yr old) brain synchronization in a jigsaw game under various conditions. Between parental negative feedback and praise conditions, mother-daughter brain in supramarginal gyrus, left dorsolateral prefrontal cortex, right inferior frontal gyrus, and right primary somatic (S1) differed. When criticized, conformity family-communication-patterned families had much worse brain synchronization in S1, left dorsolateral prefrontal cortex, and right Wernicke's region than conversational families. Resilient children had better mother-child supramarginal gyrus synchronicity under negative feedback. This study supports the importance of studying children's neurological development in nurturing environments to assess their psychological development.
Collapse
Affiliation(s)
- Juan Zhang
- Faculty of Education, University of Macau, Avenida da Universidade, Taipa, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Yihui Wang
- Faculty of Education, University of Macau, Avenida da Universidade, Taipa, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Yidi Mao
- Faculty of Education, University of Macau, Avenida da Universidade, Taipa, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Chantat Leong
- Centre for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| |
Collapse
|
21
|
Liu Z, Lu K, Hao N, Wang Y. Cognitive Reappraisal and Expressive Suppression Evoke Distinct Neural Connections during Interpersonal Emotion Regulation. J Neurosci 2023; 43:8456-8471. [PMID: 37852791 PMCID: PMC10711701 DOI: 10.1523/jneurosci.0954-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Interpersonal emotion regulation is the dynamic process where the regulator aims to change the target's emotional state, which is presumed to engage three neural systems: cognitive control (i.e., dorsal and ventral lateral PFC, etc.), empathy/social cognition (i.e., dorsal premotor regions, temporal-parietal junction, etc.), and affective response (i.e., insula, amygdala, etc.). This study aimed to identify the underlying neural correlate (especially the interpersonal one), of interpersonal emotion regulation based on two typical strategies (cognitive appraisal, expressive suppression). Thirty-four female dyads (friends) were randomly assigned into two strategy groups, with one assigned as the target and the other as the regulator to downregulate the target's negative emotions using two strategies. A functional near-infrared spectroscopy system was used to simultaneously measure participants' neural activity. Results showed that these two strategies could successfully downregulate the targets' negative emotions. Both strategies evoked intrapersonal and interpersonal neural couplings between the cognitive control, social cognition, and mirror neuron systems (e.g., PFC, temporal-parietal junction, premotor cortex, etc.), whereas cognitive reappraisal (vs expressive suppression) evoked a broader pattern. Further, cognitive reappraisal involved increased interpersonal brain synchronization between the prefrontal and temporal areas at the sharing stage, whereas expressive suppression evoked increased interpersonal brain synchronization associated with the PFC at the regulation stage. These findings indicate that intrapersonal and interpersonal neural couplings associated with regions within the abovementioned systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing, underlie interpersonal emotion regulation based on cognitive reappraisal or expressive suppression.SIGNIFICANCE STATEMENT As significant as intrapersonal emotion regulation, interpersonal emotion regulation subserves parent-child, couple, and leader-follower relationships. Despite enormous growth in research on intrapersonal emotion regulation, the field lacks insight into the neural correlates underpinning interpersonal emotion regulation. This study aimed to probe the underlying neural correlates of interpersonal emotion regulation using a multibrain neuroimaging (i.e., hyperscanning) based on functional near-infrared spectroscopy. Results showed that both cognitive reappraisal and expressive suppression strategies successfully downregulated the target's negative emotions. More importantly, they evoked intrapersonal and interpersonal neural couplings associated with regions within the cognitive control, social cognition, and mirror neuron systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing. These findings deepen our understanding of the neural correlates underpinning interpersonal emotion regulation.
Collapse
Affiliation(s)
- Zixin Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Yanmei Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Shanghai, 200335, China
| |
Collapse
|
22
|
Lu H, Wang X, Zhang Y, Huang P, Xing C, Zhang M, Zhu X. Increased interbrain synchronization and neural efficiency of the frontal cortex to enhance human coordinative behavior: A combined hyper-tES and fNIRS study. Neuroimage 2023; 282:120385. [PMID: 37832708 DOI: 10.1016/j.neuroimage.2023.120385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Coordination is crucial for individuals to achieve common goals; however, the causal relationship between coordination behavior and neural activity has not yet been explored. Interbrain synchronization (IBS) and neural efficiency in cortical areas associated with the mirror neuron system (MNS) are considered two potential brain mechanisms. In the present study, we attempted to clarify how the two mechanisms facilitate coordination using hypertranscranial electrical stimulation (hyper-tES). A total of 124 healthy young adults were randomly divided into three groups (the hyper-tACS, hyper-tDCS and sham groups) and underwent modulation of the right inferior frontal gyrus (IFG) during functional near-infrared spectroscopy (fNIRS). Increased IBS of the PFC or neural efficiency of the right IFG (related to the MNS) was accompanied by greater coordination behavior; IBS had longer-lasting effects on behavior. Our findings highlight the importance of IBS and neural efficiency of the frontal cortex for coordination and suggest potential interventions to improve coordination in different temporal windows.
Collapse
Affiliation(s)
- Hongliang Lu
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China
| | - Xinlu Wang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China
| | - Yajuan Zhang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China
| | - Peng Huang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China
| | - Chen Xing
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China.
| | - Mingming Zhang
- Department of Psychology, College of Education, Shanghai Normal University, Shanghai 200233, China.
| | - Xia Zhu
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China.
| |
Collapse
|
23
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
24
|
Nguyen T, Flaten E, Trainor LJ, Novembre G. Early social communication through music: State of the art and future perspectives. Dev Cogn Neurosci 2023; 63:101279. [PMID: 37515832 PMCID: PMC10407289 DOI: 10.1016/j.dcn.2023.101279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
A growing body of research shows that the universal capacity for music perception and production emerges early in development. Possibly building on this predisposition, caregivers around the world often communicate with infants using songs or speech entailing song-like characteristics. This suggests that music might be one of the earliest developing and most accessible forms of interpersonal communication, providing a platform for studying early communicative behavior. However, little research has examined music in truly communicative contexts. The current work aims to facilitate the development of experimental approaches that rely on dynamic and naturalistic social interactions. We first review two longstanding lines of research that examine musical interactions by focusing either on the caregiver or the infant. These include defining the acoustic and non-acoustic features that characterize infant-directed (ID) music, as well as behavioral and neurophysiological research examining infants' processing of musical timing and pitch. Next, we review recent studies looking at early musical interactions holistically. This research focuses on how caregivers and infants interact using music to achieve co-regulation, mutual engagement, and increase affiliation and prosocial behavior. We conclude by discussing methodological, technological, and analytical advances that might empower a comprehensive study of musical communication in early childhood.
Collapse
Affiliation(s)
- Trinh Nguyen
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy.
| | - Erica Flaten
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Canada
| | - Laurel J Trainor
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Canada; McMaster Institute for Music and the Mind, McMaster University, Hamilton, Canada; Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
25
|
Kikuchi Y, Tanioka K, Hiroyasu T, Hiwa S. Interpersonal brain synchronization during face-to-face economic exchange between acquainted dyads. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad007. [PMID: 38596234 PMCID: PMC10913825 DOI: 10.1093/oons/kvad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 04/11/2024]
Abstract
Interpersonal brain synchronization (IBS) has been observed during social interactions and involves various factors, such as familiarity with the partner and type of social activity. A previous study has shown that face-to-face (FF) interactions in pairs of strangers increase IBS. However, it is unclear whether this can be observed when the nature of the interacting partners is different. Herein, we aimed to extend these findings to pairs of acquaintances. Neural activity in the frontal and temporal regions was recorded using functional near-infrared spectroscopy hyperscanning. Participants played an ultimatum game that required virtual economic exchange in two experimental settings: face-to-face and face-blocked conditions. Random pair analysis confirmed whether IBS was induced by social interaction. Contrary to the aforementioned study, our results did not show any cooperative behavior or task-induced IBS increase. Conversely, the random pair analysis results revealed that the pair-specific IBS was significant only in the task condition at the left and right superior frontal, middle frontal, orbital superior frontal, right superior temporal, precentral and postcentral gyri. Our results tentatively suggested that FF interaction in acquainted pairs did not increase IBS and supported the idea that IBS is affected by 'with whom we interact and how'.
Collapse
Affiliation(s)
- Yuto Kikuchi
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto610-0394, Japan
| | - Kensuke Tanioka
- Department of Biomedical Sciences and Informatics, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Tomoyuki Hiroyasu
- Department of Biomedical Sciences and Informatics, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Satoru Hiwa
- Department of Biomedical Sciences and Informatics, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
26
|
Zhang D, Zhang S, Lei Z, Li Y, Li X, Gu R. Why people engage in corrupt collaboration: an observation at the multi-brain level. Cereb Cortex 2023; 33:8465-8476. [PMID: 37083271 PMCID: PMC10786094 DOI: 10.1093/cercor/bhad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Recent studies suggest that corrupt collaboration (i.e. acquiring private benefits with joint immoral acts) represents a dilemma between the honesty and reciprocity norms. In this study, we asked pairs of participants (labeled as A and B) to individually toss a coin and report their outcomes; their collective benefit could be maximized by dishonestly reporting (a corrupt behavior). As expected, the likelihood of corrupt behavior was high; this probability was negatively correlated with player A's moral judgment ability but positively correlated with player B's empathic concern (EC). Functional near-infrared spectroscopy data revealed that the brain-to-brain synchronization in the right dorsolateral prefrontal cortex was associated with fewer corrupt behaviors, and that it mediated the relationship between player A's moral judgment ability and corrupt collaboration. Meanwhile, the right temporal-parietal junction synchronization was associated with more corrupt behaviors, and that it mediated the relationship between player B's EC and corrupt collaboration. The roles of these 2 regions are interpreted according to the influence of the honesty and reciprocity norms on corrupt collaboration. In our opinion, these findings provide insight into the underlying mechanisms and modulating factors of corrupt collaboration.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- China Center for Behavioral Economics and Finance & School of Economics, Southwestern University of Finance and Economics, Chengdu 611130, China
| | - Shen Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhen Lei
- China Center for Behavioral Economics and Finance & School of Economics, Southwestern University of Finance and Economics, Chengdu 611130, China
| | - Yiwei Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Xianchun Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Zhang Q, Liu Z, Qian H, Hu Y, Gao X. Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study. Brain Sci 2023; 13:brainsci13040600. [PMID: 37190565 DOI: 10.3390/brainsci13040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Elderly people tend not to compete with others, and if they do, the mechanism behind the competition is not clear. In this study, groups of elderly couples and matched cross-sex controls were recruited to perform a competitive button-pressing task, while their brain signals were simultaneously collected using functional near-infrared spectroscopy (fNIRS) hyperscanning. Several fundamental observations were made. First, controls showed attenuated interpersonal competition across task processes, but couples held the competition with each other. Second, couples demonstrated increased inter-brain synchronization (IBS) between the middle temporal cortex and the temporoparietal junction across task processes. Third, Granger causality analysis in couples revealed significant differences between the directions (i.e., from men to women, and from women to men) in the first half of the competitive task, whereas there was no significant difference in the second half. Finally, the groups of couples and controls could be successfully discriminated against based on IBS by using a machine-learning approach. In sum, these findings indicate that elderly couples can maintain interpersonal competition, and such maintenance might be associated with changes in the IBS of the mentalizing system. It suggests the possible positive impact of long-term spouse relationships on interpersonal interactions, both behaviorally and neurally, in terms of competition.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Zhennan Liu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Haoyue Qian
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200234, China
| | - Yinying Hu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Xiangping Gao
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
28
|
Morgan JK, Santosa H, Conner KK, Fridley RM, Forbes EE, Iyengar S, Joseph HM, Huppert TJ. Mother-child neural synchronization is time linked to mother-child positive affective state matching. Soc Cogn Affect Neurosci 2023; 18:nsad001. [PMID: 36715078 PMCID: PMC9976748 DOI: 10.1093/scan/nsad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
In the first years of life, in which self-regulation occurs via external means, mother-child synchronization of positive affect (PA) facilitates regulation of child homeostatic systems. Mother-child affective synchrony may contribute to mother-child synchronization of neural systems, but limited research has explored this possibility. Participants were 41 healthy mother-child dyads (56% girls; Mage = 24.76 months; s.d. = 8.77 months, Range = 10-42 months). Mothers' and children's brain activities were assessed simultaneously using near-infrared spectroscopy while engaging in dyadic play. Mother and child PA during play were coded separately to characterize periods in which mothers and children (i) matched on high PA, (ii) matched on low/no PA or (iii) showed a mismatch in PA. Models evaluated moment-to-moment correlations between affective matching and neural synchrony in mother-child dyads. Greater positive affective synchrony, in which mother and child showed similarly high levels of PA but not similarly low levels of PA, was related to greater synchrony in medial and lateral frontal and temporoparietal regions. Age moderated associations between mother and child neural activities but only during moments of high PA state matching. Positive, synchronous mother-child interactions may foster greater neural responding in affective and social regions important for self-regulation and interpersonal bonds.
Collapse
Affiliation(s)
- Judith K Morgan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hendrik Santosa
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kaetlyn K Conner
- University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Rachel M Fridley
- University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Heather M Joseph
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Theodore J Huppert
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
29
|
Ham GX, Lim KE, Augustine GJ, Leong V. Synchrony in parent-offspring social interactions across development: A cross-species review of rodents and humans. J Neuroendocrinol 2023:e13241. [PMID: 36929715 DOI: 10.1111/jne.13241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
In humans, parent-child neural synchrony has been shown to support early communication, social attunement and learning. Further, some animal species (including rodents and bats) are now known to share neural synchrony during certain forms of social behaviour. However, very little is known about the developmental origins and sequelae of neural synchrony, and whether this neural mechanism might play a causal role in the control of social and communicative behaviour across species. Rodent models are optimal for exploring such questions of causality, with a plethora of tools available for both disruption/induction (optogenetics) and even mechanistic dissection of synchrony-induction pathways (in vivo electrical or optical recording of neural activity). However, before the benefits of rodent models for advancing research on parent-infant synchrony can be realised, it is first important to address a gap in understanding the forms of parent-pup synchrony that occur during rodent development, and how these social relationships evolve over time. Accordingly, this review seeks to identify parent-pup social behaviours that could potentially drive or facilitate synchrony and to discuss key differences or limitations when comparing mouse to human models of parent-infant synchrony. Uniquely, our review will focus on parent-pup dyadic social behaviours that have particular analogies to the human context, including instrumental, social interactive and vocal communicative behaviours. This review is intended to serve as a primer on the study of neurobehavioral synchrony across human and rodent dyadic developmental models.
Collapse
Affiliation(s)
- Gao Xiang Ham
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong China School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kai En Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Lee Kong China School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Victoria Leong
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Pediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Abstract
This introduction aims to set out the potential as well as some of the pitfalls of the newly emerging area of the Social Neuroscience of Human Attachment (SoNeAt). To organize and interconnect the burgeoning empirical studies in this line of research, including those in this special issue, we outline a programmatic framework including an extension of our conceptual proposals NAMA and NAMDA to guide future research. We hope that this special issue will act as a stimulus for redoubling our efforts advancing the newly emerging SoNeAt area bridging attachment theory and social neuroscience.
Collapse
Affiliation(s)
- Lars White
- Department of Child and Adolescent Psychiatry, University of Leipzig, Leipzig, Germany
| | - Melanie Kungl
- Department of Psychology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
| | - Pascal Vrticka
- Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
31
|
Liu Y, Li J, Wang Q, Li Y. The specificity, situational modulations, and behavioral correlates of parent-child neural synchrony. Front Hum Neurosci 2022; 16:1000826. [PMID: 36438636 PMCID: PMC9682019 DOI: 10.3389/fnhum.2022.1000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2023] Open
Abstract
In recent years, aiming to uncover the neural mechanism of parent-child interaction and link it to the children's social development, a newly developed index, namely, parent-child inter-brain neural synchronization (INS) has attracted growing interest. Existing studies have mainly focused on three aspects of the INS; these are the specificity of the INS (i.e., stronger INS for parent-child dyads than stranger-child dyads), the situational modulations of the INS (i.e., how the valence of the situation or the types of interaction modulate INS), and the associations between the INS and the state-like behavioral tendencies or trait-like individual features of the parents and children. This review summarizes the existing findings in line with these three topics and provides preliminary suggestions to promote parent-child INS. In the meanwhile, the inconsistent findings and unstudied questions were discussed, opening new avenues for future studies.
Collapse
|
32
|
Hu Y, Zhu M, Liu Y, Wang Z, Cheng X, Pan Y, Hu Y. Musical Meter Induces Interbrain Synchronization during Interpersonal Coordination. eNeuro 2022; 9:ENEURO.0504-21.2022. [PMID: 36280287 PMCID: PMC9616439 DOI: 10.1523/eneuro.0504-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Music induces people to coordinate with one another. Here, we conduct two experiments to examine the underlying mechanism of the interbrain synchronization (IBS) that is induced by interpersonal coordination when people are exposed to musical beat and meter. In experiment 1, brain signals at the frontal cortex were recorded simultaneously from two participants of a dyad by using functional near-infrared spectroscopy (fNIRS) hyperscanning, while each tapped their fingers to aural feedback from their partner (coordination task) or from themselves (independence task) with and without the musical meter. The results showed enhanced IBS at the left-middle frontal cortex in case of the coordination task with musical beat and meter. The IBS was significantly correlated with the participants performance in terms of coordination. In experiment 2, we further examined the IBS while the participants coordinated their behaviors in various metrical contexts, such as strong and weak meters (i.e., high/low loudness of acoustically accenting beats). The results showed that strong meters elicited higher IBS at the middle frontal cortex than weak meters. These findings reveal that the musical beat and meter can affect brain-to-brain coupling in action coordination between people, and provide insights into the interbrain mechanism underlying the effects of music on cooperation.
Collapse
Affiliation(s)
- Yinying Hu
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Min Zhu
- College of Emergency Management, Nanjing Tech University, Nanjing 211816, China
| | - Yang Liu
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Zixuan Wang
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
33
|
Köster M, Torréns MG, Kärtner J, Itakura S, Cavalcante L, Kanngiesser P. Parental teaching behavior in diverse cultural contexts. EVOL HUM BEHAV 2022. [DOI: 10.1016/j.evolhumbehav.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Lu H, Zhang Y, Huang P, Zhang Y, Cheng S, Zhu X. Transcranial Electrical Stimulation Offers the Possibility of Improving Teamwork Among Military Pilots: A Review. Front Neurosci 2022; 16:931265. [PMID: 35911997 PMCID: PMC9327643 DOI: 10.3389/fnins.2022.931265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Effective teamwork among military pilots is key to successful mission completion. The underlying neural mechanism of teamwork is thought to be inter-brain synchronization (IBS). IBS could also be explained as an incidental phenomenon of cooperative behavior, but the causality between IBS and cooperative behavior could be clarified by directly producing IBS through extra external stimuli applied to functional brain regions. As a non-invasive technology for altering brain function, transcranial electrical stimulation might have the potential to explore whether top-down enhancement of the synchronization of multiple brains can change cooperative behavioral performance among members of a team. This review focuses on the characteristic features of teamwork among military pilots and variations in neuroimaging obtained by hyper-scanning. Furthermore, we discuss the possibility that transcranial electrical stimulation could be used to improve teamwork among military pilots, try to provide a feasible design for doing so, and emphasize crucial aspects to be addressed by future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Zhu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| |
Collapse
|
35
|
Morimoto S, Minagawa Y. Effects of Hemodynamic Differences on the Assessment of Inter-Brain Synchrony Between Adults and Infants. Front Psychol 2022; 13:873796. [PMID: 35719520 PMCID: PMC9205639 DOI: 10.3389/fpsyg.2022.873796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
The simultaneous recording of brain activity in two or more people, termed hyperscanning, is an emerging field of research investigating the neural basis of social interaction. Hyperscanning studies of adult-infant dyads (e.g., parent and infant) have great potential to provide insights into how social functions develop. In particular, taking advantage of functional near-infrared spectroscopy (fNIRS) for its spatial resolution and invulnerability to motion artifacts, adult-infant fNIRS may play a major role in this field. However, there remains a problem in analyzing hyperscanning data between adult and young populations. Namely, there are intrinsic differences in hemodynamic time latencies depending on age, and the peak latency of the hemodynamic response function (HRF) is longer in younger populations. Despite this fact, the effects of such differences on quantified synchrony have not yet been examined. Consequently, the present study investigated the influence of intrinsic hemodynamic differences on wavelet coherence for assessing brain synchrony, and further examined the statistical removal of these effects through simulation experiments. First, we assumed a social signal model, where one counterpart of the dyad (e.g., infant) sends a social signal to the other (e.g., parent), which eventually results in simultaneous brain activation. Based on this model, simulated fNIRS activation sequences were synthesized by convolving boxcar event sequences with HRFs. We set two conditions for the event: synchronized and asynchronized event conditions. We also modeled the HRFs of adults and infants by referring to previous studies. After preprocessing with additional statistical processing, we calculated the wavelet coherence for each synthesized fNIRS activation sequence pair. The simulation results showed that the wavelet coherence in the synchronized event condition was attenuated for the combination of different HRFs. We also confirmed that prewhitening via an autoregressive filter could recover the attenuation of wavelet coherence in the 0.03-0.1 Hz frequency band, which was regarded as being associated with synchronous neural activity. Our results showed that variability in hemodynamics affected the analysis of inter-brain synchrony, and that the application of prewhitening is critical for such evaluations between adult and young populations.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Keio University Global Research Institute, Keio University, Tokyo, Japan
| | | |
Collapse
|
36
|
Turk E, Endevelt-Shapira Y, Feldman R, van den Heuvel MI, Levy J. Brains in Sync: Practical Guideline for Parent-Infant EEG During Natural Interaction. Front Psychol 2022; 13:833112. [PMID: 35572249 PMCID: PMC9093685 DOI: 10.3389/fpsyg.2022.833112] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Parent-infant EEG is a novel hyperscanning paradigm to measure social interaction simultaneously in the brains of parents and infants. The number of studies using parent-infant dual-EEG as a theoretical framework to measure brain-to-brain synchrony during interaction is rapidly growing, while the methodology for measuring synchrony is not yet uniform. While adult dual-EEG methodology is quickly improving, open databases, tutorials, and methodological validations for dual-EEG with infants are largely missing. In this practical guide, we provide a step-by-step manual on how to implement and run parent-infant EEG paradigms in a neurodevelopmental laboratory in naturalistic settings (e.g., free interactions). Next, we highlight insights on the variety of choices that can be made during (pre)processing dual-EEG data, including recommendations on interpersonal neural coupling metrics and interpretations of the results. Moreover, we provide an exemplar dataset of two mother-infant dyads during free interactions ("free play") that may serve as practice material. Instead of providing a critical note, we would like to move the field of parent-infant EEG forward and be transparent about the challenges that come along with the exciting opportunity to study the development of our social brain within the naturalistic context of dual-EEG.
Collapse
Affiliation(s)
- Elise Turk
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Netherlands
| | - Yaara Endevelt-Shapira
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Reichman University, Herzliya, Israel
| | - Ruth Feldman
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Reichman University, Herzliya, Israel
| | | | - Jonathan Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Reichman University, Herzliya, Israel.,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
37
|
Zhou S, Zhang Y, Fu Y, Wu L, Li X, Zhu N, Li D, Zhang M. The Effect of Task Performance and Partnership on Interpersonal Brain Synchrony during Cooperation. Brain Sci 2022; 12:brainsci12050635. [PMID: 35625021 PMCID: PMC9139361 DOI: 10.3390/brainsci12050635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Interpersonal brain synchrony (IBS) during cooperation has not been systematically investigated. To address this research gap, this study assessed neural synchrony during a cooperative jigsaw puzzle solving task using functional near-infrared spectroscopy (fNIRS)-based hyperscanning. IBS was measured for successful and failed tasks in 31 dyads in which the partners were familiar or unknown to each other. No significant difference in IBS was observed between the different types of cooperative partnership; however, stronger IBS within regions of the pars triangularis Broca’s area, right frontopolar cortex, and right temporoparietal junction was observed during task success. These results highlight the effect of better task performance on cooperative IBS for the first time and further extend understanding of the neural basis of cooperation.
Collapse
Affiliation(s)
- Shujin Zhou
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Yuxuan Zhang
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Yiwen Fu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Lingling Wu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Xiaodie Li
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Ningning Zhu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Dan Li
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Mingming Zhang
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
- College of Marxism, Kashgar Vocational and Technical College, Kashgar, Xinjiang 844000, China
- Correspondence: ; Tel.: +86-137-7669-9751
| |
Collapse
|
38
|
Turk E, Vroomen J, Fonken Y, Levy J, van den Heuvel MI. In sync with your child: The potential of parent-child electroencephalography in developmental research. Dev Psychobiol 2022; 64:e22221. [PMID: 35312051 DOI: 10.1002/dev.22221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Healthy interaction between parent and child is foundational for the child's socioemotional development. Recently, an innovative paradigm shift in electroencephalography (EEG) research has enabled the simultaneous measurement of neural activity in caregiver and child. This dual-EEG or hyperscanning approach, termed parent-child dual-EEG, combines the strength of both behavioral observations and EEG methods. In this review, we aim to inform on the potential of dual-EEG in parents and children (0-6 years) for developmental researchers. We first provide a general overview of the dual-EEG technique and continue by reviewing the first empirical work on the emerging field of parent-child dual-EEG, discussing the limited but fascinating findings on parent-child brain-to-behavior and brain-to-brain synchrony. We then continue by providing an overview of dual-EEG analysis techniques, including the technical challenges and solutions one may encounter. We finish by discussing the potential of parent-child dual-EEG for the future of developmental research. The analysis of multiple EEG data is technical and challenging, but when performed well, parent-child EEG may transform the way we understand how caregiver and child connect on a neurobiological level. Importantly, studying objective physiological measures of parent-child interactions could lead to the identification of novel brain-to-brain synchrony markers of interaction quality.
Collapse
Affiliation(s)
- Elise Turk
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jean Vroomen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Yvonne Fonken
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jonathan Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya (IDC), Herzliya, Israel.,Department of Neuroscience and Biomedical Engineering, Aalto University, Aalto, Finland
| | | |
Collapse
|
39
|
DEEP: A dual EEG pipeline for developmental hyperscanning studies. Dev Cogn Neurosci 2022; 54:101104. [PMID: 35367895 PMCID: PMC8980555 DOI: 10.1016/j.dcn.2022.101104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022] Open
Abstract
Cutting-edge hyperscanning methods led to a paradigm shift in social neuroscience. It allowed researchers to measure dynamic mutual alignment of neural processes between two or more individuals in naturalistic contexts. The ever-growing interest in hyperscanning research calls for the development of transparent and validated data analysis methods to further advance the field. We have developed and tested a dual electroencephalography (EEG) analysis pipeline, namely DEEP. Following the preprocessing of the data, DEEP allows users to calculate Phase Locking Values (PLVs) and cross-frequency PLVs as indices of inter-brain phase alignment of dyads as well as time-frequency responses and EEG power for each participant. The pipeline also includes scripts to control for spurious correlations. Our goal is to contribute to open and reproducible science practices by making DEEP publicly available together with an example mother-infant EEG hyperscanning dataset.
Collapse
|
40
|
Giannotti M, Gemignani M, Rigo P, Simonelli A, Venuti P, De Falco S. Disentangling the Effect of Sex and Caregiving Role: The Investigation of Male Same-Sex Parents as an Opportunity to Learn More About the Neural Parental Caregiving Network. Front Psychol 2022; 13:842361. [PMID: 35237218 PMCID: PMC8884537 DOI: 10.3389/fpsyg.2022.842361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michele Giannotti
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
- *Correspondence: Michele Giannotti
| | - Micol Gemignani
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| | - Paola Rigo
- Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy
| | - Alessandra Simonelli
- Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy
| | - Paola Venuti
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| | - Simona De Falco
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
41
|
Abraham E, Feldman R. The Neural Basis of Human Fatherhood: A Unique Biocultural Perspective on Plasticity of Brain and Behavior. Clin Child Fam Psychol Rev 2022; 25:93-109. [PMID: 35122559 DOI: 10.1007/s10567-022-00381-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 01/12/2023]
Abstract
With the growing involvement of fathers in childrearing and the application of neuroscientific tools to research on parenting, there is a need to understand how a father's brain and neurohormonal systems accommodate the transition to parenthood and how such neurobiological changes impact children's mental health, sociality, and family functioning. In this paper, we present a theoretical model on the human father's brain and the neural adaptations that take place when fathers assume an involved role. The neurobiology of fatherhood shows great variability across individuals, societies, and cultures and is shaped to a great extent by bottom-up caregiving experiences and the amount of childrearing responsibilities. Mechanisms of mother-father coparental brain coordination and hormonal correlates of paternal behavior are detailed. Adaptations in the father's brain during pregnancy and across the postpartum year carry long-term implications for children's emotion regulation, stress management, and symptom formation. We propose a new conceptual model of HEALthy Father Brain that describes how a father's brain serves as a source of resilience in the context of family adversity and its capacity to "heal", protect, and foster social brain maturation and functionality in family members via paternal sensitivity, attunement, and support, which, in turn, promote child development and healthy family functioning. Father's brain provides a unique model on neural plasticity as sustained by committed acts of caregiving, thereby affording a novel perspective on the brain basis of human affiliation.
Collapse
Affiliation(s)
- Eyal Abraham
- Center for Developmental Social Neuroscience, Baruch Ivcher School of Psychology, Reichman University, 46150, Herzliya, Israel. .,Department of Psychiatry-Child and Adolescent, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, USA.
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Baruch Ivcher School of Psychology, Reichman University, 46150, Herzliya, Israel. .,Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
42
|
Ratliff EL, Kerr KL, Cosgrove KT, Simmons WK, Morris AS. The Role of Neurobiological Bases of Dyadic Emotion Regulation in the Development of Psychopathology: Cross-Brain Associations Between Parents and Children. Clin Child Fam Psychol Rev 2022; 25:5-18. [PMID: 35113318 DOI: 10.1007/s10567-022-00380-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
Daily interactions between parents and children play a large role in children's emotional development and mental health. Thus, it is important to investigate the neural mechanisms underlying this association within the context of these dyadic social interactions. We suggest that examining cross-brain associations, coordinated brain responses, among parents and children increases our understanding of patterns of social and emotion-related processes that occur during parent-child interactions, which may influence the development of child emotion regulation and psychopathology. Therefore, we extend the Parent-Child Emotion Regulation Dynamics Model (Morris et al., in: Cole and Hollenstein (eds) Dynamics of emotion regulation: A matter of time, Taylor & Francis, 2018) to include cross-brain associations involved in dyadic emotion regulation during parent-child social emotional interactions and discuss how this model can inform future research and its broader applications.
Collapse
Affiliation(s)
- Erin L Ratliff
- Department of Human Development and Family Sciences, Oklahoma State University - Tulsa, 700 N. Greenwood Ave, Tulsa, OK, 74106-0700, USA
| | - Kara L Kerr
- Department of Psychology, Oklahoma State University - Stillwater, 118 Psychology Building, Stillwater, OK, 74078, USA
| | - Kelly T Cosgrove
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA.,Department of Psychology, University of Tulsa, 800 S. Tucker Dr., Tulsa, OK, 74104, USA
| | - W Kyle Simmons
- Department of Pharmacology and Physiology, Center for Health Sciences, Oklahoma State University, 1111 W. 17th St., Tulsa, OK, 74107, USA
| | - Amanda Sheffield Morris
- Department of Human Development and Family Sciences, Oklahoma State University - Tulsa, 700 N. Greenwood Ave, Tulsa, OK, 74106-0700, USA. .,Department of Psychology, Oklahoma State University - Stillwater, 118 Psychology Building, Stillwater, OK, 74078, USA.
| |
Collapse
|
43
|
Long M, Puhlmann L, Vrtička P. Hypothalamus volume in men: Investigating associations with paternal status, self-reported caregiving beliefs, and adult attachment style. Soc Neurosci 2021; 16:639-652. [PMID: 34704890 DOI: 10.1080/17470919.2021.1997799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Most studies on mammalian caregiving and attachment focused on the mother-child relationship, particularly in humans. Yet, changing societal roles of male caregivers have highlighted the necessity for research with fathers.We examined the volume of the hypothalamus, an important subcortical brain area for caregiving and attachment, in N = 50 fathering (child age 5-6 years) and N = 45 non-fathering men using a novel technique to identify the hypothalamus in 3T MRI. We furthermore employed three self-report measures to assess interindividual differences in adult attachment style across all men and caregiving beliefs in fathers.While we did not observe any significant difference in hypothalamus volume between fathers and non-fathers or associations between hypothalamus volume and self-reported adult attachment style across all men, self-reported caregiving beliefs were positively related to total hypothalamus volume in fathers. A follow-up analysis showed that fathers' self-reported belief that a father's role is important to child development was specifically related to tuberal hypothalamus volume, while self-reported enjoyment of spending time with the child was not associated with sub-regional hypothalamus volume.Together, these findings suggest that interindividual variability in self-reported caregiving beliefs in fathers is related to brain structure, warranting further research.
Collapse
Affiliation(s)
- M Long
- Alberta Children's Hospital Research Institute, University of Calgary, Canada.,Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - L Puhlmann
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - P Vrtička
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
44
|
Carollo A, Lim M, Aryadoust V, Esposito G. Interpersonal Synchrony in the Context of Caregiver-Child Interactions: A Document Co-citation Analysis. Front Psychol 2021; 12:701824. [PMID: 34393940 PMCID: PMC8355520 DOI: 10.3389/fpsyg.2021.701824] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Social interactions accompany individuals throughout their whole lives. When examining the underlying mechanisms of social processes, dynamics of synchrony, coordination or attunement emerge between individuals at multiple levels. To identify the impactful publications that studied such mechanisms and establishing the trends that dynamically originated the available literature, the current study adopted a scientometric approach. A sample of 543 documents dated from 1971 to 2021 was derived from Scopus. Subsequently, a document co-citation analysis was conducted on 29,183 cited references to examine the patterns of co-citation among the documents. The resulting network consisted of 1,759 documents connected to each other by 5,011 links. Within the network, five major clusters were identified. The analysis of the content of the three major clusters-namely, "Behavioral synchrony," "Towards bio-behavioral synchrony," and "Neural attunement"-suggests an interest in studying attunement in social interactions at multiple levels of analysis, from behavioral to neural, by passing through the level of physiological coordination. Furthermore, although initial studies on synchrony focused mostly on parent-child interactions, new hyperscanning paradigms are allowing researchers to explore the role of biobehavioral synchrony in all social processes in a real-time and ecological fashion. Future potential pathways of research were also discussed.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Vahid Aryadoust
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
45
|
A Guide to Parent-Child fNIRS Hyperscanning Data Processing and Analysis. SENSORS 2021; 21:s21124075. [PMID: 34199222 PMCID: PMC8231828 DOI: 10.3390/s21124075] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
The use of functional near-infrared spectroscopy (fNIRS) hyperscanning during naturalistic interactions in parent–child dyads has substantially advanced our understanding of the neurobiological underpinnings of human social interaction. However, despite the rise of developmental hyperscanning studies over the last years, analysis procedures have not yet been standardized and are often individually developed by each research team. This article offers a guide on parent–child fNIRS hyperscanning data analysis in MATLAB and R. We provide an example dataset of 20 dyads assessed during a cooperative versus individual problem-solving task, with brain signal acquired using 16 channels located over bilateral frontal and temporo-parietal areas. We use MATLAB toolboxes Homer2 and SPM for fNIRS to preprocess the acquired brain signal data and suggest a standardized procedure. Next, we calculate interpersonal neural synchrony between dyads using Wavelet Transform Coherence (WTC) and illustrate how to run a random pair analysis to control for spurious correlations in the signal. We then use RStudio to estimate Generalized Linear Mixed Models (GLMM) to account for the bounded distribution of coherence values for interpersonal neural synchrony analyses. With this guide, we hope to offer advice for future parent–child fNIRS hyperscanning investigations and to enhance replicability within the field.
Collapse
|