1
|
Magryś A, Pawlik M. Postbiotic Fractions of Probiotics Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG Show Immune-Modulating Effects. Cells 2023; 12:2538. [PMID: 37947616 PMCID: PMC10648844 DOI: 10.3390/cells12212538] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Probiotic bacteria belonging to Lactobacillus spp. are important producers of bioactive molecules, known as postbiotics, that play essential roles in the immunological support of the intestinal mucosa. In this study, the system of co-culture of intestinal epithelial cells with macrophage cells in vitro was used to study the potential effect of postbiotic fractions of L. rhamonosus and L. plantarum on the modulation of the immune response induced by pro-inflammatory stimuli. This study's results revealed that the presence of probiotic bacterial components on the mucosal surface in the early and late stage of inflammatory conditions is based on cellular interactions that control inflammation and consequent damage to the intestinal epithelium. In our studies, heat killed fractions of probiotic bacteria and their extracted proteins showed a beneficial effect on controlling inflammation, regardless of the strain tested, consequently protecting intestinal barrier damage. In conclusion, the presented results emphasize that the fractions of probiotic bacteria of L. plantarum and L. rhamnosus may play a significant role in the regulation of LPS-mediated cytotoxic activity in intestinal epithelial cells. The fractions of probiotic strains of L. rhamnosus and L. plantarum showed the potential to suppress inflammation, effectively activating the anti-inflammatory cytokine IL-10 and modulating the IL-18-related response.
Collapse
Affiliation(s)
- Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | | |
Collapse
|
2
|
Seo MJ, Won SM, Kwon MJ, Song JH, Lee EB, Cho JH, Park KW, Yoon JH. Screening of lactic acid bacteria with anti-adipogenic effect and potential probiotic properties from grains. Sci Rep 2023; 13:11022. [PMID: 37419937 PMCID: PMC10329024 DOI: 10.1038/s41598-023-36961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
A total of 187 lactic acid bacteria were isolated from four types of grains collected in South Korea. The bacterial strains were assigned as members of Levilactobacillus brevis, Latilactobacillus curvatus, Lactiplantibacillus plantarum, Lactococcus taiwanensis, Pediococcus pentosaceus, and Weissella paramesenteroides based on the closest similarity using 16S rRNA gene sequence analysis. The strains belonging to the same species were analyzed using RAPD-PCR, and one or two among strains showing the same band pattern were selected. Finally, 25 representative strains were selected for further functional study. Inhibitory effects of lipid accumulation were observed in the strains tested. Pediococcus pentosaceus K28, Levilactobacillus brevis RP21 and Lactiplantibacillus plantarum RP12 significantly reduced lipid accumulation and did not show cytotoxicity in C3H10T1/2 cells at treatment of 1-200 μg/mL. The three LAB strains decreased significantly expression of six adipogenic marker genes, PPARγ, C/EBPα, CD36, LPL, FAS and ACC, in C3H10T1/2 adipocytes. The three strains survived under strong acidity and bile salt conditions. The three strains showed adhesion to Caco-2 cells similar to a reference strain LGG. The resistance of the three strains to several antibiotics was also assessed. Strains RP12 and K28 were confirmed not to produce harmful enzymes based on API ZYM kit results. Based on these results, strains K28, RP21 and RP12 isolated from grains had the ability to inhibit adipogenesis in adipocytes and potentially be useful as probiotics.
Collapse
Affiliation(s)
- Min Ju Seo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Sung-Min Won
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Min Ju Kwon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Ji Hyeon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Eun Bee Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jun Hyeong Cho
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
4
|
Probiotic Molecules That Inhibit Inflammatory Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Consumption of probiotics for health purposes has increased vastly in the past few decades, and yet the scientific evidence to support health benefits from probiotics is only beginning to emerge. As more probiotics are studied, we are beginning to understand the mechanisms of action by which they benefit human health, as well as to identify the bacterial molecules responsible for these benefits. A new era of therapeutics is on the horizon in which purified molecules from probiotics will be used to prevent and treat diseases. In this review, we summarize the active molecules from probiotic bacteria that have been shown to affect innate and adaptive immunity and have health benefits in experimental settings. We focus particularly on the cellular and molecular mechanisms of the probiotic Bacillus subtilis and its active molecule, exopolysaccharide (ESPBs).
Collapse
|
5
|
Kaur H, Ali SA. Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct 2022; 13:7423-7447. [DOI: 10.1039/d2fo00911k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consumption of probiotics as a useful functional food improves the host's wellbeing, and, when paired with prebiotics (indigestible dietary fibre/carbohydrate), often benefits the host through anaerobic fermentation.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Kiliç A, Harb H. Editorial: The Role of the Microbiome in Regulating T-Cell Response in Asthma and Food Allergy. Front Immunol 2021; 12:782720. [PMID: 34721443 PMCID: PMC8551824 DOI: 10.3389/fimmu.2021.782720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ayşe Kiliç
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Hani Harb
- Laboratory of Psychoneuroimmunology, Institute for Psychosomatic and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
7
|
The Conditioned Medium of Lactobacillus rhamnoides GG Regulates Microglia/Macrophage Polarization and Improves Functional Recovery after Spinal Cord Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3376496. [PMID: 34337004 PMCID: PMC8289592 DOI: 10.1155/2021/3376496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Lactobacillus rhamnoides, a human intestinal colonizer, can act through various pathways to induce microglia/macrophages to produce cytokines and to polarize microglia/macrophages to different phenotypes to reduce the inflammatory response. In this article, we evaluated the treatment potential of the Lactobacillus rhamnoides GG conditioned medium (LGG-CM) in rat model with SCI (acute spinal cord injury), including functional, neurophysiological, and histological outcomes and the underlying neuroprotective mechanisms. In our experiment, LGG-CM (30 mg/kg) was injected directly into the injury site in rats immediately after SCI. Measured by the BBB scale (Basso, Beattie, and Bresnahan locomotor rating scale) and inclined plane test, rats in the LGG-CM-treated group showed better locomotor scores. Moreover, compared to the vehicle treatment group, LGG-CM increased the mRNA level of the M2 marker (CD206), and decreased that of the M1 marker (iNOS). Western blot assays showed that LGG-CM-treated SCI rats had a higher grayscale ratio of p65 and a lower ratio of p-IκBα/IκBα. Our study shows that local injection of LGG-CM after acute SCI can inhibit inflammatory responses and improve motor function recovery. These effects may be related with the inhibition to the NF-κB (The nuclear factor-kappa B) signal pathway which leads to M2 microglia/macrophage polarization.
Collapse
|
8
|
Zheng D, Wang Z, Sui L, Xu Y, Wang L, Qiao X, Cui W, Jiang Y, Zhou H, Tang L, Li Y. Lactobacillus johnsonii activates porcine monocyte derived dendritic cells maturation to modulate Th cellular immune response. Cytokine 2021; 144:155581. [PMID: 34029942 DOI: 10.1016/j.cyto.2021.155581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/02/2023]
Abstract
Lactobacilli are abundant in the intestinal tract where they constantly regulate immune system via interacting with a great diversity of immune cells, such as dendritic cells (DCs). Notably, DCs are powerful antigen-presenting cells and they are capable of initiating primary immune responses. In this study, we studied the effects of Lactobacillus johnsonii (L. johnsonii) and Lactobacillus johnsonii cell-free supernatant (L. johnsonii-CFS) on the activation of porcine monocyte-derived dendritic cells (MoDCs) and their regulation of Th cellular immune responses in vitro. The MoDCs generated from porcine peripheral blood monocytes were stimulated by L. johnsonii and L. johnsonii-CFS, respectively. Pre-incubation with L. johnsonii increased expression of CD172a, CD80, major histocompatibility complex class II (MHCII) in MoDCs, and enhanced the ability of MoDCs to induce the proliferation of CD4+ T cell, while pre-incubation with L. johnsonii-CFS merely upregulated the expression of MHCII. Analysis of the cytokines showed that L. johnsonii stimulated up-regulation of Th1-type cytokines (IL-12p40, IFN-γ, TNF-α), pro-inflammatory cytokine IL-1β, chemokine CCL20, and Treg-type / anti-inflammatory cytokines IL-10 in MoDCs. Notably, a high production of IL-10 was observed in the MoDCs treated with L. johnsonii-CFS, indicating L. johnsonii-CFS exerted anti-inflammatory effects. Furthermore, L. johnsonii induced up-regulation of TLR2 and TLR6, but L. johnsonii-CFS not. Moreover, MoDCs stimulated by L. johnsonii mainly promoted T cell differentiate into Th1/Th2/Treg cells and plays an important role in improving the balance between Th1/Th2/Treg-type cells, whereas MoDCs stimulated by L. johnsonii-CFS mainly directed T cell to Th2/Treg subset polarization. In conclusion, L. johnsonii and L. johnsonii-CFS exhibited the ability of modulating innate immunity by regulating immunological functions of MoDCs in vitro, suggesting their potential ability to use as microecological preparations and medicines.
Collapse
Affiliation(s)
- Dianzhong Zheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhaorui Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ling Sui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Han Zhou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| |
Collapse
|
9
|
Sohn KH, Baek MG, Choi SM, Bae B, Kim RY, Kim YC, Kim HY, Yi H, Kang HR. Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma. J Microbiol Biotechnol 2020; 30:1819-1826. [PMID: 33046682 PMCID: PMC9728179 DOI: 10.4014/jmb.2009.09019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13- overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.
Collapse
Affiliation(s)
- Kyoung-Hee Sohn
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea,Division of Pulmonology, Allergy and Critical Care, Department of Internal Medicine, Kyung Hee University Medical Center, Seoul 0447, Republic of Korea
| | - Min-gyung Baek
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Mi Choi
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Ruth Yuldam Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Young-Chan Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Hye-Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea,Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Hana Yi
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea,School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea,Corresponding authors H.Yi Phone: +82-2-3290-5644 Fax: +82-2-940-2849 E-mail:
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 0882, Republic of Korea,H-R.Kang Phone: 82-2-2072-0820 Fax: 82-2-742-3291 E-mail:
| |
Collapse
|
10
|
Lactobacillus rhamnosus GG soluble mediators ameliorate early life stress-induced visceral hypersensitivity and changes in spinal cord gene expression. Neuronal Signal 2020; 4:NS20200007. [PMID: 33343931 PMCID: PMC7726314 DOI: 10.1042/ns20200007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Visceral hypersensitivity is a hallmark of many functional and stress-related gastrointestinal disorders, and there is growing evidence that the gut microbiota may play a role in its pathophysiology. It has previously been shown that early life stress-induced visceral sensitivity is reduced by various probiotic strains of bacteria (including Lactobacillus rhamnosus GG (LGG)) alone or in combination with prebiotic fibres in rat models. However, the exact mechanisms underpinning such effects remain unresolved. Here, we investigated if soluble mediators derived from LGG can mimic the bacteria's effects on visceral hypersensitivity and the microbiota-gut-brain axis. Rats were exposed to maternal separation (MS) from postnatal days 2-12. From weaning onwards both non-separated (NS) and MS offspring were provided drinking water with or without supplementation of standardized preparations of the LGG soluble mediators (LSM). Our results show that MS led to increased visceral sensitivity and exaggerated corticosterone plasma levels following restraint stress in adulthood, and both of these effects were ameliorated through LSM supplementation. Differential regulation of various genes in the spinal cord of MS versus NS rats was observed, 41 of which were reversed by LSM supplementation. At the microbiota composition level MS led to changes in beta diversity and abundance of specific bacteria including parabacteroides, which were ameliorated by LSM. These findings support probiotic soluble mediators as potential interventions in the reduction of symptoms of visceral hypersensitivity.
Collapse
|
11
|
Lactococcus lactis subsp. Cremoris C60 restores T Cell Population in Small Intestinal Lamina Propria in Aged Interleukin-18 Deficient Mice. Nutrients 2020; 12:nu12113287. [PMID: 33121026 PMCID: PMC7693701 DOI: 10.3390/nu12113287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Lactic acid bacteria (LAB), a major commensal bacterium in the small intestine, are well known beneficial bacteria which promote establishment of gut-centric immunity, such as anti-inflammation and anti-infection. In this report, we show that a LAB strain Lactococcus lactis subsp. Cremoris C60 possess an ability to activate antigen presenting cells, such as dendritic cells (DCs), and intestinal T cells which possibly support to maintain healthy intestinal immunological environment in aging process. We found that CD4+ T cells in the small intestine are dramatically decreased in aged Interleukin-18 knock out (IL-18KO) mice, associated with the impairment of IFN-γ production in the CD4+ T cells, especially in small intestinal lamina propria (LP). Surprisingly, heat killed-C60 (HK-C60) diet completely recovered the CD4+ T cells population and activity in SI-LP and over activated the population in Peyer's patches (PPs) of IL-18KO mice. The HK-C60 diet was effective approach not only to restore the number of cells, but also to recover IFN-γ production in the CD4+ T cell population in the small intestine of IL-18-deficient mice. As a possible cause in the age-associated impairment of CD4+ T cells activity in IL-18KO mice, we found that the immunological activity was downregulated in the IL-18-deficient DCs. The cytokines production and cellular activation markers expression were downregulated in the IL-18-deficient bone marrow derived dendritic cells (BMDCs) at the basal level, however, both activities were highly upregulated in HK-C60 stimulation as compared to those of WT cells. Antigen uptake was also attenuated in the IL-18-deficient BMDCs, and it was significantly enhanced in the cells as compared to WT cells in HK-60 stimulation. An in vitro antigen presentation assay showed that IFN-γ production in the CD4+ T cells was significantly enhanced in the culture of IL-18-deficient BMDCs compared with WT cells in the presence of HK-C60. Thus, we conclude that HK-C60 diet possesses an ability to restore T cells impairment in the small intestine of IL-18-deficient environment. In addition, the positive effect is based on the immunological modification of DCs function which directory influences into the promotion of effector CD4+ T cells generation in the small intestine.
Collapse
|
12
|
Cheng R, Xu T, Zhang Y, Wang F, Zhao L, Jiang Y, He F. Lactobacillus rhamnosus GG and Bifidobacterium bifidum TMC3115 Can Affect Development of Hippocampal Neurons Cultured In Vitro in a Strain-Dependent Manner. Probiotics Antimicrob Proteins 2020; 12:589-599. [PMID: 31286435 DOI: 10.1007/s12602-019-09571-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study examined whether Lactobacillus rhamnosus GG (LGG) and Bifidobacterium bifidum TMC3115 (TMC3115) could morphologically or physiologically influence hippocampal neuronal development in vitro. Hippocampal neurons cultured in vitro were exposed to live or heat-inactivated LGG or TMC3115 for either 6 or 24 h. Neuronal morphological changes and drebrin (DRB) and synaptophysin (SYP) protein levels were monitored using immunofluorescence. And the levels of DRB, SYP, and brain-derived neurotrophic factor (BDNF), and cAMP-response element binding protein (CREB) mRNA were detected using RT-PCR. The BDNF, CREB, and phosphorylated-CREB (P-CREB) protein levels were detected by extraction-enzyme-linked immunosorbent assay (ELISA) or Western blot assays. Heat-inactivated LGG and TMC3115 could enhance neuron viability, DRB and SYP protein levels, and BDNF mRNA level were significantly altered after exposure to the tested bacteria with 6 h or 24 h. There were no significant differences in neuronal morphology or DRB, SYP, or CREB mRNA levels among the groups following bacterial exposure. However, following exposure of live TMC3115 for 24 h, the neuronal BDNF and P-CREB protein levels were both significantly up-regulated as detected by western blot assays. These results demonstrated that LGG and TMC3115 could affect neuronal viability, along with hippocampal synaptic and functional development, in a strain-dependent manner, which may also be closely associated with the physiological and culture conditions of each strain. Up-regulated P-CREB may be one of the underlying mechanisms by which the bacteria, especially neurons following exposure of live TMC3115 for 24 h, are able to regulate neuronal BDNF protein production.
Collapse
Affiliation(s)
- Ruyue Cheng
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Tong Xu
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Yujie Zhang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Feng Wang
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Linsen Zhao
- Hebei Inatural Biotech Co. Ltd., Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yugang Jiang
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China.
| | - Fang He
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Lactic acid bacteria secrete toll like receptor 2 stimulating and macrophage immunomodulating bioactive factors. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Macrophage Polarization Induced by Probiotic Bacteria: a Concise Review. Probiotics Antimicrob Proteins 2019; 12:798-808. [DOI: 10.1007/s12602-019-09612-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Wang Q, Sun Q, Qi R, Wang J, Qiu X, Liu Z, Huang J. Effects of Lactobacillus plantarum on the intestinal morphology, intestinal barrier function and microbiota composition of suckling piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:1908-1918. [PMID: 31498508 DOI: 10.1111/jpn.13198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023]
Abstract
This study investigated the effect of Lactobacillus plantarum strain 299v on gut health in suckling piglets. Sixty newborn piglets were assigned to control and probiotic treatments, with three litters per treatment (ten piglets/litter). From days 1 to 20 of life, piglets were orally administered a placebo of 0.1% peptone or 1.0 × 1010 CFU L. plantarum 299v daily. Six piglets per treatment were sacrificed on day 20, and intestinal tissues (including duodenum, jejunum, ileum and colon) and the intestinal contents from colon segments were collected. The results demonstrated that piglets treated with L. plantarum 299v had a lower diarrhoea incidence than the controls. L. plantarum 299v administration significantly increased the ratio of the villus height to the crypt depth in the jejunum and ileum, as well as the mRNA expression of jejunal occludin and ileal zonula occludens 1 (ZO-1). The L. plantarum treatment also increased the mRNA abundance of porcine β-defensin 2 (pBD2) and pBD3 in the jejunum and ileum and of toll-like receptors (TLRs), such as TLR2, TLR4, TLR6 and TLR9 in the ileum, and significantly upregulated the mRNA abundances of ileal pBD1 and colonic TLR4. Additionally, the L. plantarum 299v treatment significantly changed the structure of the colonic microbiota, as evidenced by the obvious increases in the relative abundances of the phyla Firmicutes and Actinobacteria and of the genus Lactobacillus. Our findings indicate that L. plantarum 299v facilitates the gut health of suckling piglets, probably by improving the intestinal morphology and intestinal barrier function and by modifying the structure of the gut microbiota.
Collapse
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Chongqing, China.,College of Animal Science, Southwest University, Chongqing, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| |
Collapse
|
16
|
Nunes CF, Nogueira JS, Vianna PHO, Ciambarella BT, Rodrigues PM, Miranda KR, Lobo LA, Domingues RMCP, Busch M, Atella GC, Vale AM, Bellio M, Nóbrega A, Canto FB, Fucs R. Probiotic treatment during neonatal age provides optimal protection against experimental asthma through the modulation of microbiota and T cells. Int Immunol 2019; 30:155-169. [PMID: 29420746 DOI: 10.1093/intimm/dxy011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of allergic diseases, which increased to epidemic proportions in developed countries over the last few decades, has been correlated with altered gut microbiota colonization. Although probiotics may play a critical role in the restoration of gut homeostasis, their efficiency in the control of allergy is controversial. Here, we aimed to investigate the effects of probiotic treatment initiated at neonatal or adult ages on the suppression of experimental ovalbumin (OVA)-induced asthma. Neonatal or adult mice were orally treated with probiotic bacteria and subjected to OVA-induced allergy. Asthma-like symptoms, microbiota composition and frequencies of the total CD4+ T lymphocytes and CD4+Foxp3+ regulatory T (Treg) cells were evaluated in both groups. Probiotic administration to neonates, but not to adults, was necessary and sufficient for the absolute prevention of experimental allergen-induced sensitization. The neonatally acquired tolerance, transferrable to probiotic-untreated adult recipients by splenic cells from tolerant donors, was associated with modulation of gut bacterial composition, augmented levels of cecum butyrate and selective accumulation of Treg cells in the airways. Our findings reveal that a cross-talk between a healthy microbiota and qualitative features inherent to neonatal T cells, especially in the Treg cell subset, might support the beneficial effect of perinatal exposure to probiotic bacteria on the development of long-term tolerance to allergens.
Collapse
Affiliation(s)
- Caroline Fraga Nunes
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunobiologia, Instituto de Biologia - Universidade Federal Fluminense, Niterói - RJ, Brazil
| | - Jeane S Nogueira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunobiologia, Instituto de Biologia - Universidade Federal Fluminense, Niterói - RJ, Brazil
| | - Pedro Henrique Oliveira Vianna
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Karla Rodrigues Miranda
- Faculdade de Farmácia - Universidade Federal do Rio de Janeiro, Rio de Janeiro/Campus Macaé, Macaé - RJ, Brazil
| | - Leandro Araújo Lobo
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Goés (IMPG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | | | - Mileane Busch
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro - RJ, Brazil
| | - Georgia Correa Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro - RJ, Brazil
| | - André Macedo Vale
- Laboratório de Imunorreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Maria Bellio
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio B Canto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunobiologia, Instituto de Biologia - Universidade Federal Fluminense, Niterói - RJ, Brazil
| | - Rita Fucs
- Departamento de Imunobiologia, Instituto de Biologia - Universidade Federal Fluminense, Niterói - RJ, Brazil
| |
Collapse
|
17
|
Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, Gong Z, Zeng Q, Wei Y, Yang W, Zeng Z, He X, Huang SH, Cao H. A Novel Postbiotic From Lactobacillus rhamnosus GG With a Beneficial Effect on Intestinal Barrier Function. Front Microbiol 2019; 10:477. [PMID: 30923519 PMCID: PMC6426789 DOI: 10.3389/fmicb.2019.00477] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
It has long been known that probiotics can be used to maintain intestinal homeostasis and treat a number of gastrointestinal disorders, but the underlying mechanism has remained obscure. Recently, increasing evidence supports the notion that certain probiotic-derived components, such as bacteriocins, lipoteichoic acids, surface layer protein and secreted protein, have a similar protective role on intestinal barrier function as that of live probiotics. These bioactive components have been named 'postbiotics' in the most recent publications. We previously found that the Lactobacillus rhamnosus GG (LGG) culture supernatant is able to accelerate the maturation of neonatal intestinal defense and prevent neonatal rats from oral Escherichia coli K1 infection. However, the identity of the bioactive constituents has not yet been determined. In this study, using liquid chromatography-tandem mass spectrometry analysis, we identified a novel secreted protein (named HM0539 here) involved in the beneficial effect of LGG culture supernatant. HM0539 was recombinated, purified, and applied for exploring its potential bioactivity in vitro and in vivo. Our results showed that HM0539 exhibits a potent protective effect on the intestinal barrier, as reflected by enhancing intestinal mucin expression and preventing against lipopolysaccharide (LPS)- or tumor necrosis factor α (TNF-α)-induced intestinal barrier injury, including downregulation of intestinal mucin (MUC2), zonula occludens-1 (ZO-1) and disruption of the intestinal integrity. Using a neonatal rat model of E. coli K1 infection via the oral route, we verified that HM0539 is sufficient to promote development of neonatal intestinal defense and prevent against E. coli K1 pathogenesis. Moreover, we further extended the role of HM0539 and found it has potential to prevent dextran sulfate sodium (DSS)-induced colitis as well as LPS/D-galactosamine-induced bacterial translocation and liver injury. In conclusion, we identified a novel LGG postbiotic HM0539 which exerts a protective effect on intestinal barrier function. Our findings indicated that HM0539 has potential to become a useful agent for prevention and treatment of intestinal barrier dysfunction- related diseases.
Collapse
Affiliation(s)
- Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tongtong Hu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liting Liu
- Department of Medical Microbiology and Immunology, Dali University, Dali, China
| | - Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Wei
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weijun Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhijie Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Ludwig IS, Broere F, Manurung S, Lambers TT, van der Zee R, van Eden W. Lactobacillus rhamnosus GG-Derived Soluble Mediators Modulate Adaptive Immune Cells. Front Immunol 2018; 9:1546. [PMID: 30042761 PMCID: PMC6048560 DOI: 10.3389/fimmu.2018.01546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Probiotics and probiotic-related nutritional interventions have been described to have beneficial effects on immune homeostasis and gut health. In previous studies, Lactobacillus rhamnosus GG (LGG) soluble mediators (LSM) have been demonstrated to exert beneficial effects in preclinical models of allergic sensitization, bacterial infection, and intestinal barrier function. In the context of allergic diseases, differentiation of dendritic cells (DCs) and their interactions with T cell populations are crucial for driving tolerogenic responses. In this study, we set out to evaluate whether these LSM can modulate DC maturation and have an impact on prompting protective and/or tolerogenic T cell responses. Monocytes were isolated from PBMC of healthy blood donors and cultured in the presence of GM-CSF, IL-4, and LSM or unconditioned bacterial culture medium control (UCM) during 6 days to induce DC differentiation. Subsequently, these DCs were matured in the presence of TNF-α for 1 day and analyzed for their phenotype and ability to induce autologous T cell activation and differentiation to model recall antigens. After 7 days of co-culture, T cells were analyzed for activation and differentiation by flow cytometry of intracellular cytokines (IFN-γ, IL-2, IL-10, and IL-17A), activation markers (CD25), and Foxp3+ expression. LSM did not alter DC numbers or maturation status. However, these DCs did show improved capacity to induce a T cell response as shown by increased IL-2 and IFN-γ producing T cell populations upon stimulation with recall antigens. These enhanced recall responses coincided with enhanced Foxp3+ expression that was not observed when T cells were cultured in the presence of UCM-treated DCs. By contrast, the number of activated T cells (determined by CD25 expression) was only slightly increased. In conclusion, this study reveals that LSM can influence adaptive immune responses as shown by the modulation of DC functionality. These mechanisms might contribute to previous observed effects in animal models in vivo. Altogether, these results suggest that LSM may provide an alternative to live probiotics in case life bacteria may not be used because of health conditions, although further clinical testing is needed.
Collapse
Affiliation(s)
- Irene S. Ludwig
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | | | - Tim T. Lambers
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, Netherlands
| | - Ruurd van der Zee
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Wu J, Yang K, Wu W, Tang Q, Zhong Y, Gross G, Lambers TT, van Tol EAF, Cai W. Soluble Mediators From Lactobacillus rhamnosus Gorbach-Goldin Support Intestinal Barrier Function in Rats After Massive Small-Bowel Resection. JPEN J Parenter Enteral Nutr 2018; 42:1026-1034. [PMID: 30133842 DOI: 10.1002/jpen.1044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal barrier plays an essential role in maintaining gastrointestinal health. This study aimed to explore the effects of a soluble mediator preparation derived from Lactobacillus rhamnosus Gorbach-Goldin (LGG) on intestinal barrier function in a rat model of short bowel syndrome (SBS). METHODS Six-week-old male Sprague-Dawley rats underwent 80% small-bowel resection (SBR) and then were supplemented with water (SBS), 5 × 108 colony-forming unit viable LGG (SBS+LGG), or the LGG soluble mediators (SBS+LSM) in an equivalent dose to LGG by intragastric gavage daily from day 2 throughout day 14 after operation. Rats that underwent bowel transection and reanastomosis were used as the sham group. Body weight, ileum histology, intestinal permeability and bacterial translocation, inflammatory cytokines, and tight junction protein expressions of ileum were evaluated. RESULTS Animals undergoing SBR showed higher intestinal permeability and decreased expression of tight junction proteins in the ileum than sham group. Both SBS+LGG and SBS+LSM groups had reduced bacterial translocation and intestinal permeability as compared with the SBS group, with lower levels of serum endotoxin and tumor necrotizing factor alpha in ileum tissues. Moreover, the SBS+LSM group showed better body weight gain, lower endotoxin and FD-40 levels, and higher expressions of claudin-1 and claudin-4 in ileum than the SBS+LGG group. CONCLUSION Enteral supplementation of LSMs or viable LGG can ameliorate intestinal barrier disruption in a rat model of SBS. The LSM preparation not only mimicked biological effects of viable LGG but also was revealed to be more effective in reducing inflammation and supporting intestinal barrier function.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Clinical Nutrition, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Kefeng Yang
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Wu
- Department of Pediatric Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingya Tang
- Department of Clinical Nutrition, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yan Zhong
- Mead Johnson Pediatric Nutrition Institute, Shanghai, China
| | - Gabriele Gross
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Tim T Lambers
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Eric A F van Tol
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pediatric Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Effect of Lactobacillus rhamnosus on the response of Galleria mellonella against Staphylococcus aureus and Escherichia coli infections. Arch Microbiol 2017; 200:383-389. [DOI: 10.1007/s00203-017-1441-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/09/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023]
|
21
|
Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense. Sci Rep 2017; 7:43305. [PMID: 28262688 PMCID: PMC5338013 DOI: 10.1038/srep43305] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/12/2017] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to determine whether Lactobacillus rhamnosus GG culture supernatant (LCS) has a preventive effect against gut-derived systemic neonatal Escherichia coli (E. coli) K1 infection. The preventive effects were evaluated in human colonic carcinoma cell line Caco-2 and neonatal rat models. Our in vitro results showed that LCS could block adhesion, invasion and translocation of E. coli K1 to Caco-2 monolayer via up-regulating mucin production and maintaining intestinal integrity. In vivo experiments revealed that pre-treatment with LCS significantly decrease susceptibility of neonatal rats to oral E. coli K1 infection as reflected by reduced bacterial intestinal colonization, translocation, dissemination and systemic infections. Further, we found that LCS treated neonatal rats have higher intestinal expressions of Ki67, MUC2, ZO-1, IgA, mucin and lower barrier permeability than those in untreated rats. These results indicated that LCS could enhance neonatal resistance to systemic E. coli K1 infection via promoting maturation of neonatal intestinal defense. In conclusions, our findings suggested that LCS has a prophylactic effect against systemic E. coli K1 infection in neonates. Future studies aimed at identifying the specific active ingredients in LCS will be helpful in developing effective pharmacological strategies for preventing neonatal E. coli K1 infection.
Collapse
|
22
|
de Boer A, van de Worp WRPH, Hageman GJ, Bast A. The effect of dietary components on inflammatory lung diseases - a literature review. Int J Food Sci Nutr 2017; 68:771-787. [PMID: 28276906 DOI: 10.1080/09637486.2017.1288199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anti-inflammatory treatment in chronic inflammatory lung diseases usually involves glucocorticosteroids. With patients suffering from serious side effects or becoming resistant, specific nutrients, that are suggested to positively influence disease progression, can be considered as new treatment options. The dietary inflammatory index is used to calculate effects of dietary components on inflammation and lung function to identify most potent dietary components, based on 162 articles. The positive effects of n-3 PUFAs and vitamin E on lung function can at least partially be explained by their anti-inflammatory effect. Many other dietary components showed only small or no effects on inflammation and/or lung function, although the number of weighted studies was often too small for a reliable assessment. Optimal beneficial dietary elements might reduce the required amounts of anti-inflammatory treatments, thereby decreasing both side effects and development of resistance as to improve quality of life of patients suffering from chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Alie de Boer
- a Faculty of Humanities and Sciences , Food Claims Centre Venlo, Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| | - Wouter R P H van de Worp
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Geja J Hageman
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Aalt Bast
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands.,c Faculty of Humanities and Sciences , Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| |
Collapse
|
23
|
Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by TLR2 in mice. Sci Rep 2016; 6:36083. [PMID: 27786292 PMCID: PMC5081535 DOI: 10.1038/srep36083] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
The fibroblast cell line of 3T3-L1 was used as a cell model for screening and evaluating the feasibility of probiotic components in improving animal lipid metabolisms. The extracts from 12 Lactobacillus strains caused significantly reduced triacylglycerol (TAG) accumulation but with severe inflammation induction in 3T3-L1 adipocytes. Interestingly, exopolysaccharides (EPS) from LGG (Lactobacillus rhamnosus GG) significantly decreased the TAG accumulation without any inflammation. The anti-obesity effect of EPS was confirmed in high-fat-diets feeding mice. Fat pads of mice injected with EPS (50 mg/kg) every two days for two weeks were significantly reduced with much smaller adipocytes, compared with the counterparts. The levels of TAG and cholesterol ester in liver, as well as serum TAG, were decreased in EPS injected mice. In addition, down-regulated inflammation was observed in adipose tissue and liver. Interestingly, the expression of TLR2 in adipose tissue and 3T3-L1 cells was significantly increased by EPS addition. Moreover, the reverse of TAG accumulation in TLR2 knockdown 3T3-L1 in the presence of EPS confirmed that the inhibition effect of EPS on adipogenesis was mediated by TLR2. EPS from LGG has the potential for therapeutic development to intervene lipid metabolic disorders in mammals.
Collapse
|
24
|
Ren C, Zhang Q, de Haan BJ, Zhang H, Faas MM, de Vos P. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation. Sci Rep 2016; 6:34561. [PMID: 27708357 PMCID: PMC5052581 DOI: 10.1038/srep34561] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023] Open
Abstract
Although many lactic acid bacteria (LAB) influence the consumer’s immune status it is not completely understood how this is established. Bacteria-host interactions between bacterial cell-wall components and toll-like receptors (TLRs) have been suggested to play an essential role. Here we investigated the interaction between LABs with reported health effects and TLRs. By using cell-lines expressing single or combination of TLRs, we show that LABs can signal via TLR-dependent and independent pathways. The strains only stimulated and did not inhibit TLRs. We found that several strains such as L. plantarum CCFM634, L. plantarum CCFM734, L. fermentum CCFM381, L. acidophilus CCFM137, and S. thermophilus CCFM218 stimulated TLR2/TLR6. TLR2/TLR6 is essential in immune regulatory processes and of interest for prevention of diseases. Specificity of the TLR2/TLR6 stimulation was confirmed with blocking antibodies. Immunomodulatory properties of LABs were also studied by assessing IL-10 and IL-6 secretion patterns in bacteria-stimulated THP1-derived macrophages, which confirmed species and strain specific effects of the LABs. With this study we provide novel insight in LAB specific host-microbe interactions. Our data demonstrates that interactions between pattern recognition receptors such as TLRs is species and strain specific and underpins the importance of selecting specific strains for promoting specific health effects.
Collapse
Affiliation(s)
- Chengcheng Ren
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qiuxiang Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
25
|
Johansson MA, Björkander S, Mata Forsberg M, Qazi KR, Salvany Celades M, Bittmann J, Eberl M, Sverremark-Ekström E. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells. Front Immunol 2016; 7:273. [PMID: 27462316 PMCID: PMC4939411 DOI: 10.3389/fimmu.2016.00273] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation.
Collapse
Affiliation(s)
- Maria A Johansson
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Sophia Björkander
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Manuel Mata Forsberg
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Khaleda Rahman Qazi
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Maria Salvany Celades
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Julia Bittmann
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Eva Sverremark-Ekström
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
26
|
Beristain-Bauza S, Mani-López E, Palou E, López-Malo A. Antimicrobial activity and physical properties of protein films added with cell-free supernatant of Lactobacillus rhamnosus. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Zhang X, Zheng T, Sang L, Apisa L, Zhao H, Fu F, Wang Q, Wang Y, Zheng Q. Otitis media induced by peptidoglycan-polysaccharide (PGPS) in TLR2-deficient (Tlr2(-/-)) mice for developing drug therapy. INFECTION GENETICS AND EVOLUTION 2015; 35:194-203. [PMID: 26296608 DOI: 10.1016/j.meegid.2015.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Toll like receptor 2 (TLR2) signaling can regulate the pathogenesis of otitis media (OM). However, the precise role of TLR2 signaling in OM has not been clarified due to the lack of an optimal animal model. Peptidoglycan-polysaccharide (PGPS) of the bacterial cell wall can induce inflammation by activating the TLR2 signaling. This study aimed at examining the pathogenic characteristics of OM induced by PGPS in Tlr2(-/-) mice, and the potential therapeutic effect of sodium aescinate (SA) in this model. METHODS Wild-type (WT) and Tlr2(-/-) mice were inoculated with streptococcal PGPS into their middle ears (MEs) and treated intravenously with vehicle or SA daily beginning at 3days prior to PGPS for 6 consecutive days. The pathologic changes of individual mice were evaluated longitudinally. RESULTS In comparison with WT mice, Tlr2(-/-) mice were susceptible to PGPS-induced OM. Tlr2(-/-) mice displayed greater hearing loss, tympanic membrane damage, ME mucosal thickening, longer inflammation state, cilia and goblet cell loss. SA-treatment decreased neutrophil infiltration, modulated TLR2-related gene expression and improved ciliary organization. CONCLUSIONS PGPS induced a relatively stable OM in Tlr2(-/-) mice, providing a new model for OM research. Treatment with SA mitigated the pathogenic damage in the ME and may be valuable for intervention of OM.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China; Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tihua Zheng
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Lu Sang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Luke Apisa
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hongchun Zhao
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou 256600, Shandong, PR China
| | - Fenghua Fu
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai 264003, Shandong, PR China
| | - Qingzhu Wang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yanfei Wang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou 256600, Shandong, PR China.
| | - Qingyin Zheng
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China; Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
28
|
Blankestijn MA, Boyle RJ, Gore R, Hawrylowicz C, Jarvis D, Knulst AC, Wardlaw AJ. Developments in the field of allergy in 2013 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2015; 44:1436-57. [PMID: 25346287 DOI: 10.1111/cea.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2013 was another exciting year for allergy in general and Clinical and Experimental Allergy in particular. In the field of asthma and rhinitis, there continued to be a focus on heterogeneity and phenotypes with increasing use of biostatistical techniques to determine clusters of similar populations. Obesity- and aspirin-associated disease are intriguing associations with asthma which were explored in a number of papers. We published a number of excellent papers on mechanisms of airway inflammation and how this relates to physiology, pathology, genetics and biomarkers in both human and experimental model systems. In terms of mechanisms, there is less on individual cell types in allergic disease at the moment, but the immunology of allergic disease continued to fascinate our authors. Another area that was popular both in the mechanisms and in the epidemiology sections was early life events and how these lead to allergic disease, with an increasing focus on the role of the microbiome and how this influences immune tolerance. In the clinical allergy section, oral immunotherapy for food allergy is clearly a major topic of interest at the moment as was in vitro testing to distinguish between sensitization and allergic disease. There was less on inhalant allergy this year, but a good representation from the drug allergy community including some interesting work on non-IgE-mediated mechanisms. In the allergen section, important new allergens continue to be discovered, but the major focus as in the last couple of years was on working out how component-resolved approaches can improve diagnosis and management of food and venom allergy.
Collapse
Affiliation(s)
- M A Blankestijn
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Microbiome and Asthma: What Have Experimental Models Already Taught Us? J Immunol Res 2015; 2015:614758. [PMID: 26266269 PMCID: PMC4525458 DOI: 10.1155/2015/614758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic inflammatory disease that imposes a substantial burden on patients, their families, and the community. Although many aspects of the pathogenesis of classical allergic asthma are well known by the scientific community, other points are not yet understood. Experimental asthma models, particularly murine models, have been used for over 100 years in order to better understand the immunopathology of asthma. It has been shown that human microbiome is an important component in the development of the immune system. Furthermore, the occurrence of many inflammatory diseases is influenced by the presence of microbes. Again, experimental models of asthma have helped researchers to understand the relationship between the microbiome and respiratory inflammation. In this review, we discuss the evolution of murine models of asthma and approach the major studies involving the microbiome and asthma.
Collapse
|
30
|
Ladda B, Theparee T, Chimchang J, Tanasupawat S, Taweechotipatr M. In vitro modulation of tumor necrosis factor α production in THP-1 cells by lactic acid bacteria isolated from healthy human infants. Anaerobe 2015; 33:109-16. [PMID: 25759008 DOI: 10.1016/j.anaerobe.2015.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/28/2022]
Abstract
The human microbiota is a source of probiotics capable of modulating the host immune system. In this study, we collected fecal samples from 100 healthy infants and isolated lactic acid bacteria which were screened for immune modulating effects on tumor necrosis factor α (TNF-α) production. Cell-free culture supernatants from 26 isolates were able to decrease TNF-α production in vitro and three of the isolates were selected as candidate probiotics (MSMC39-1, MSMC39-3, MSMC57-1). These isolates were identified using 16S ribosomal DNA sequencing as Lactobacillus paracasei, Lactobacillus casei, and Weissella confusa respectively. All three isolates were acid tolerant and bile tolerant to pH 3.0 and 4% bile respectively. Preparations of cell-free culture supernatants were processed and tested, and revealed that cell-free culture supernatants of isolates L. paracasei MSMC39-1, L. casei MSMC39-3, and W. confusa MSMC57-1 decreased the production of TNF-α significantly and were heat resistant. Only L. paracasei MSMC39-1 supernatant was proteinase-K sensitive. The effects of viable bacteria, heat-killed bacteria, and sonicated bacteria were compared. The heat-killed preparations of isolate W. confusa MSMC57-1 decreased the production of TNF-α. Sonicated cell preparations did not significantly alter TNF-α production. For isolates L. paracasei MSMC39-1 and L. casei MSMC39-3, this suggests that a substance in the cell-free culture supernatant may be responsible for in vitro cytokine modulation.
Collapse
Affiliation(s)
- Boonyarut Ladda
- Molecular Biology Program, Faculty of Medicine, Srinakharinwirot University, Thailand
| | - Talent Theparee
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Thailand
| | - Juntana Chimchang
- Molecular Biology Program, Faculty of Medicine, Srinakharinwirot University, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Science, Chulalongkorn University, Thailand
| | - Malai Taweechotipatr
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Thailand.
| |
Collapse
|
31
|
Schröder PC, Li J, Wong GWK, Schaub B. The rural-urban enigma of allergy: what can we learn from studies around the world? Pediatr Allergy Immunol 2015; 26:95-102. [PMID: 25620193 DOI: 10.1111/pai.12341] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 12/27/2022]
Abstract
Childhood asthma and related allergic conditions have become the most common chronic disorders in the Western world. Many studies from around the world have demonstrated an increasing trend of asthma prevalence over the last few decades (Lancet, 368, 2004, 733). A few recent reports also suggested that childhood asthma prevalence may be showing a plateau or even a decline in few developed countries. Given the rapid changes in the prevalence over a short period of time, environmental factors are the more likely candidates explaining such trend. One of the most consistent epidemiological findings was that subjects living in the rural areas had lower prevalence of allergies when compared to those from urban areas (Clin Exp Allergy 30, 2000, 187; Pediatr Pulmonol 44, 2009, 793). Clear understanding of the mechanisms of how the environmental determinants in the rural environment may affect the early immune system resulting in lower risk of allergies and asthma will facilitate the development of future primary preventive strategies. In this study, we review recent data from around the world and explore the epidemiology and mechanistic studies that may explain the rural-urban difference of allergies.
Collapse
Affiliation(s)
- Paul C Schröder
- LMU Munich, University Children's Hospital, Munich, Germany; Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | | | | |
Collapse
|
32
|
Abstract
Microbial signals stimulate development and maintenance of the neonatal immune system. The process begins in utero, with limited exposure to microbes in the intrauterine environment, as well as maternal immune signals priming the developing immune system. After birth and initial colonization, the immune system must be able to activate against pathogens, but also achieve oral tolerance of food and resident gut microbes. Through microbial signals and appropriate nutrition, the immune system is able to achieve homeostasis. Major challenges to successful colonization and immune system regulation include abnormal microbial inoculi (cesarean section, hygiene) and antibiotics. When normal colonization is interrupted, dysbiosis occurs. This imbalance of microbes and subsequently of the immune system can result in allergic diseases, asthma, or necrotizing enterocolitis. Probiotics and probiotic-derived therapies represent an exciting avenue to replete the population of commensal microbes and to prevent the immune-mediated sequelae of dysbiosis.
Collapse
|
33
|
Wu CT, Chen PJ, Lee YT, Ko JL, Lue KH. Effects of immunomodulatory supplementation with Lactobacillus rhamnosus on airway inflammation in a mouse asthma model. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:625-635. [PMID: 25440975 DOI: 10.1016/j.jmii.2014.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/15/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Asthma is a common allergic disease. In previous studies, probiotics improved the balance of intestinal microbes, reduced inflammation, and promoted mucosal tolerance. This study investigated whether oral administrations of Lactobacillus rhamnosus GG (LGG) inhibited allergen (ovalbumin or OVA)-induced airway inflammation in a mouse asthma model. METHODS The allergy/asthma animal model in this study was sensitization with OVA. After intranasal challenge with OVA, the airway inflammation and hyper-responsiveness were determined by a Buxco system, bronchoalveolar lavage fluid analysis with Liu stain, and enzyme-linked immunosorbent assay. Histopathologic changes in the lung were detected by hematoxylin and eosin staining and immunohistochemistry staining. RESULTS Both pre- and post-treatment with LGG suppressed the airway hyper-responsiveness to methacholine and significantly decreased the number of infiltrating inflammatory cells and Th2 cytokines in bronchoalveolar lavage fluid and serum compared with the OVA-sensitized mice. In addition, LGG reduced OVA-specific IgE levels in serum. Oral LGG decreased matrix metalloproteinase 9 expression in lung tissue and inhibited inflammatory cell infiltration. CONCLUSION LGG had an anti-inflammatory effect on OVA-induced airway inflammation and might be an additional or supplementary therapy for allergic airway diseases.
Collapse
Affiliation(s)
- Chia-Ta Wu
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Peng-Jung Chen
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Tzu Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ko-Haung Lue
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
34
|
Kreisinger J, Cížková D, Vohánka J, Piálek J. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol 2014; 23:5048-60. [PMID: 25204516 DOI: 10.1111/mec.12909] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/26/2022]
Abstract
The effects of gastrointestinal tract microbiota (GTM) on host physiology and health have been the subject of considerable interest in recent years. While a variety of captive bred species have been used in experiments, the extent to which GTM of captive and/or inbred individuals resembles natural composition and variation in wild populations is poorly understood. Using 454 pyrosequencing, we performed 16S rDNA GTM barcoding for 30 wild house mice (Mus musculus) and wild-derived inbred strain mice belonging to two subspecies (M. m. musculus and M. m. domesticus). Sequenced individuals were selected according to a 2 × 2 experimental design: wild (14) vs. inbred origin (16) and M. m. musculus (15) vs. M. m. domesticus (15). We compared alpha diversity (i.e. number of operational taxonomic units - OTUs), beta diversity (i.e. interindividual variability) and microbiota composition across the four groups. We found no difference between M. m. musculus and M. m. domesticus subspecies, suggesting low effect of genetic differentiation between these two subspecies on GTM structure. Both inbred and wild populations showed the same level of microbial alpha and beta diversity; however, we found strong differentiation in microbiota composition between wild and inbred populations. Relative abundance of ~ 16% of OTUs differed significantly between wild and inbred individuals. As laboratory mice represent the most abundant model for studying the effects of gut microbiota on host metabolism, immunity and neurology, we suggest that the distinctness of laboratory-kept mouse microbiota, which differs from wild mouse microbiota, needs to be considered in future biomedical research.
Collapse
Affiliation(s)
- Jakub Kreisinger
- Studenec Research Facility, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic; Department of Zoology, Faculty of Science, Charles University Prague, Viničná 7, 128 44, Prague, Czech Republic; Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, I-38010, San Michele all'Adige, TN, Italy
| | | | | | | |
Collapse
|
35
|
Khailova L, Petrie B, Baird CH, Dominguez Rieg JA, Wischmeyer PE. Lactobacillus rhamnosus GG and Bifidobacterium longum attenuate lung injury and inflammatory response in experimental sepsis. PLoS One 2014; 9:e97861. [PMID: 24830455 PMCID: PMC4022641 DOI: 10.1371/journal.pone.0097861] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/25/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well explored. Objective Evaluate if Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL) treatment in a weanling mouse model of cecal ligation and puncture (CLP) peritonitis will protect against lung injury. Methods 3 week-old FVB/N mice were orally gavaged with 200 µl of either LGG, BL or sterile water (vehicle) immediately prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was evaluated by myeloperoxidase (MPO) staining. mRNA levels of IL-6, TNF-α, MyD88, TLR-4, TLR-2, NFΚB (p50/p105) and Cox-2 in the lung analyzed via real-time PCR. TNF-α and IL-6 in lung was analyzed via ELISA. Results LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-α and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of TLR-2, MyD88 and NFΚB (p50/p105) was significantly increased in septic mice compared to shams and decreased in the lung of mice receiving LGG or BL while TLR-4 levels remained unchanged. Conclusions Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis.
Collapse
Affiliation(s)
- Ludmila Khailova
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Benjamin Petrie
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Christine H. Baird
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jessica A. Dominguez Rieg
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Paul E. Wischmeyer
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Disturbed gut colonization patterns are proposed to be associated with the development of allergic disease. RECENT FINDINGS Studies using new systems biology methods confirm previous findings that early environmental exposures, for example cesarean delivery, are associated with disturbed gut colonization patterns and reduced microbial diversity. Low microbial diversity in infancy is also observed to precede onset of allergic disease. In a large population-based cohort study, probiotic consumption in pregnancy was associated with reduced risk of eczema and rhinoconjunctivitis in the child, but not asthma. The association between probiotics and rhinoconjunctivitis appeared stronger if both mother and child (from 6 months) consumed probiotics. Follow-up data from primary prevention studies with probiotics do not support a role for probiotics in asthma prevention. In meta-analyses, both prebiotics (high-risk infants only) and probiotics modestly reduce the eczema risk, but no other allergic manifestations. Their use is not generally recommended for prevention, or treatment, of allergic disease. SUMMARY Gut microbial patterns are associated with susceptibility to allergic disease, but the incomplete understanding of what constitutes a healthy gut microbiota that promotes tolerance, remains a challenge. Further understanding of gut microbial functions may pave the way for more effective allergy prevention and treatment strategies.
Collapse
Affiliation(s)
- Christina E West
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
Pfefferle PI, Renz H. Microbial exposure and onset of allergic diseases - potential prevention strategies? Allergol Int 2014; 63:3-10. [PMID: 24569150 DOI: 10.2332/allergolint.13-rai-0671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammatory diseases are a major health problem with global dimension. Particularly, the incidence of allergic diseases has been increased tremendously within the last decades. This world-wide trend clearly indicates the demand for new approaches in the investigation of early allergy development. Recent studies underlined the basic postulate of the hygiene hypothesis that early exposure to microbial stimuli plays a crucial role in the prevention of chronic inflammatory conditions in adulthood. There is ample evidence that, both, exogenous microbes and endogenous microbial communities, the human microbiota, shape the developing immune system and might be involved in prevention of pathologic pro-inflammatory trails. According to the Barker hypothesis, epidemiological studies pointed to transmaternal transmission from the mother to the offspring already in prenatal life. Experimental data from murine models support these findings. This state of the art review provides an overview on the current literature and presents new experimental concepts that point out to future application in the prevention of allergic diseases.
Collapse
Affiliation(s)
- Petra Ina Pfefferle
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics Philipps University Marburg, Biomedical Research Centre, Marburg, Germany; University of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Center for Lung Research (DZL), Marburg, Germany
| | - Harald Renz
- University of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Center for Lung Research (DZL), Marburg, Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics Philipps University Marburg, University Hospital Giessen and Marburg GmbH, Marburg, Germany
| |
Collapse
|
38
|
Huang YJ. Asthma microbiome studies and the potential for new therapeutic strategies. Curr Allergy Asthma Rep 2014; 13:453-61. [PMID: 23709178 DOI: 10.1007/s11882-013-0355-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent applications of culture-independent tools for microbiome profiling have revealed significant relationships between asthma and microbiota associated with the environment, gut, or airways. Studies of the airway microbiome in particular represent a new frontier in pulmonary research. Although these studies are relatively new, current evidence suggests the possibility of new therapeutic strategies for the treatment or prevention of asthma. In this article, recent literature on microbiota and asthma are critically reviewed, with a particular focus on studies of the airway microbiome. Perspectives are presented on how growing knowledge of relationships between the microbiome and asthma is likely to translate into improved understanding of asthma pathogenesis, its heterogeneity, and opportunities for novel treatment approaches.
Collapse
Affiliation(s)
- Yvonne J Huang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, 505 Parnassus Avenue, Box 0130, San Francisco, CA, 94143-0130, USA,
| |
Collapse
|
39
|
Jacquet A. Probiotic-derived factors: efficient treatment for allergic asthma? Clin Exp Allergy 2013; 43:268-70. [PMID: 23414533 DOI: 10.1111/cea.12078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 11/29/2022]
|
40
|
Current World Literature. Curr Opin Allergy Clin Immunol 2013. [DOI: 10.1097/aci.0b013e3283619e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|