1
|
Mažerik J, Gondáš E, Dohál M, Smieško L, Jošková M, Fraňová S, Šutovská M. Targeting TMEM16A ion channels suppresses airway hyperreactivity, inflammation, and remodeling in an experimental Guinea pig asthma model. J Pharmacol Sci 2024; 156:239-246. [PMID: 39608849 DOI: 10.1016/j.jphs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Calcium (Ca2+)-activated chloride (Cl-) channels, such as TMEM16A, are inferred to be involved in asthma. Therefore, the present study investigated the therapeutic potential of TMEM16A inhibition in a guinea pig model of ovalbumin (OVA)-induced allergic asthma. Guinea pigs were treated with a specific blocker, CaCCinh-A01 (10 μM), administered via inhalation. A significant reduction in cough reflex sensitivity and specific airway resistance was observed in animals treated with CaCCinh-A01, highlighting its potential to improve airway function. Despite a reduction in ciliary beating frequency (CBF), CaCCinh-A01 reduced airway mucus viscosity by decreasing the production of mucin-5AC (MUC5AC). The nonspecific reduction in the Th1/Th2 cytokine spectrum following CaCCinh-A01 treatment indicated the suppression of airway inflammation. Additionally, markers associated with airway remodeling were diminished, suggesting that CaCCinh-A01 may counteract structural changes in airway tissues. Therefore, inhibition appears to mitigate the pathological aspects of asthma, including airway hyperresponsiveness, inflammation, and remodeling. However, further studies are required to comprehensively evaluate the potential of TMEM16A as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Jozef Mažerik
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia.
| | - Eduard Gondáš
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Matúš Dohál
- Biomedical Centre, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4C, Martin, Slovakia
| | - Lukáš Smieško
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Marta Jošková
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Soňa Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Martina Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| |
Collapse
|
2
|
Kim H, Shim WS, Oh U. Anoctamin 1, a multi-modal player in pain and itch. Cell Calcium 2024; 123:102924. [PMID: 38964236 DOI: 10.1016/j.ceca.2024.102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.
Collapse
Affiliation(s)
- Hyungsup Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Dubaissi E, Hilton EN, Lilley S, Collins R, Holt C, March P, Danahay H, Gosling M, Grencis RK, Roberts IS, Thornton DJ. The Tmem16a chloride channel is required for mucin maturation after secretion from goblet-like cells in the Xenopus tropicalis tadpole skin. Sci Rep 2024; 14:25555. [PMID: 39461969 PMCID: PMC11514049 DOI: 10.1038/s41598-024-76482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The TMEM16A chloride channel is proposed as a therapeutic target in cystic fibrosis, where activation of this ion channel might restore airway surface hydration and mitigate respiratory symptoms. While TMEM16A is associated with increased mucin production under stimulated or pro-inflammatory conditions, its role in baseline mucin production, secretion and/or maturation is less well understood. Here, we use the Xenopus tadpole skin mucociliary surface as a model of human upper airway epithelium to study Tmem16a function in mucus production. We found that Xenopus tropicalis Tmem16a is present at the apical membrane surface of tadpole skin small secretory cells that express canonical markers of mammalian "goblet cells" such as Foxa1 and spdef. X. tropicalis Tmem16a functions as a voltage-gated, calcium-activated chloride channel when transfected into mammalian cells in culture. Depletion of Tmem16a from the tadpole skin results in dysregulated mucin maturation post-secretion, with secreted mucins having a disrupted molecular size distribution and altered morphology assessed by sucrose gradient centrifugation and electron microscopy, respectively. Our results show that in the Xenopus tadpole skin, Tmem16a is necessary for normal mucus barrier formation and demonstrate the utility of this model system to discover new biology relevant to human mucosal biology in health and disease.
Collapse
Affiliation(s)
- Eamon Dubaissi
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Emma N Hilton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Lilley
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Richard Collins
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charlotte Holt
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Peter March
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Henry Danahay
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Martin Gosling
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Richard K Grencis
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - David J Thornton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Li S, Guo X, Liu H, Chen Y, Wan H, Kang X, Qin J, Guo S. Ursolic acid, an inhibitor of TMEM16A, co-loaded with cisplatin in hydrogel drug delivery system for multi-targeted therapy of lung cancer. Int J Biol Macromol 2024; 277:134587. [PMID: 39122079 DOI: 10.1016/j.ijbiomac.2024.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The efficacy of single chemotherapy drugs in cancer treatment is often limited. Combining administration targeting multiple targets has emerged as an effective strategy to improve cancer treatment. Ursolic acid, a triterpenoid compound in various natural foods, was identified as a novel inhibitor of lung cancer specific target TMEM16A. The IC50 of ursolic acid on the whole-cell current of TMEM16A was 13.85 ± 1.64 μM. Molecular dynamics simulations and site-directed mutagenesis experiments indicated the binding sites of ursolic acid on TMEM16A as L381, R535, E623, and C625. Ursolic acid significantly inhibited the proliferation and migration of LA795 cells, while promoting cancer cell apoptosis. Mechanistic studies revealed that ursolic acid inhibited lung cancer through the MAPK and EMT pathways, and induced DNA and membrane damage. Next, a degradable and self-repairing hydrogel drug-loading system was designed to enhance the targeting effect of the ursolic acid and cisplatin drug combination. In vivo experiments showed that the hydrogel-loaded ursolic acid and cisplatin enhanced the antitumor activity and reduced the toxicity. This study presents a novel approach of multi-target combination therapy using ursolic acid and cisplatin, combined with the targeted delivery capability of the hydrogel system, which significantly improves the therapeutic efficacy in lung cancer.
Collapse
Affiliation(s)
- Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xiaomeng Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Huan Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Yanai Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory autoimmune diseases in Hebei Province, Hebei University, Baoding 071002, Hebei, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory autoimmune diseases in Hebei Province, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
5
|
Schreiber R, Ousingsawat J, Kunzelmann K. The anoctamins: Structure and function. Cell Calcium 2024; 120:102885. [PMID: 38642428 DOI: 10.1016/j.ceca.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
When activated by increase in intracellular Ca2+, anoctamins (TMEM16 proteins) operate as phospholipid scramblases and as ion channels. Anoctamin 1 (ANO1) is the Ca2+-activated epithelial anion-selective channel that is coexpressed together with the abundant scramblase ANO6 and additional intracellular anoctamins. In salivary and pancreatic glands, ANO1 is tightly packed in the apical membrane and secretes Cl-. Epithelia of airways and gut use cystic fibrosis transmembrane conductance regulator (CFTR) as an apical Cl- exit pathway while ANO1 supports Cl- secretion mainly by facilitating activation of luminal CFTR and basolateral K+ channels. Under healthy conditions ANO1 modulates intracellular Ca2+ signals by tethering the endoplasmic reticulum, and except of glands its direct secretory contribution as Cl- channel might be small, compared to CFTR. In the kidneys ANO1 supports proximal tubular acid secretion and protein reabsorption and probably helps to excrete HCO3-in the collecting duct epithelium. However, under pathological conditions as in polycystic kidney disease, ANO1 is strongly upregulated and may cause enhanced proliferation and cyst growth. Under pathological condition, ANO1 and ANO6 are upregulated and operate as secretory channel/phospholipid scramblases, partly by supporting Ca2+-dependent processes. Much less is known about the role of other epithelial anoctamins whose potential functions are discussed in this review.
Collapse
Affiliation(s)
- Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany.
| |
Collapse
|
6
|
Ousingsawat J, Centeio R, Reyne N, McCarron A, Cmielewski P, Schreiber R, diStefano G, Römermann D, Seidler U, Donnelley M, Kunzelmann K. Inhibition of mucus secretion by niclosamide and benzbromarone in airways and intestine. Sci Rep 2024; 14:1464. [PMID: 38233410 PMCID: PMC10794189 DOI: 10.1038/s41598-024-51397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
The Ca2+ activated Cl- channel TMEM16A (anoctamin 1; ANO1) is expressed in secretory epithelial cells of airways and intestine. Previous studies provided evidence for a role of ANO1 in mucus secretion. In the present study we investigated the effects of the two ANO1-inhibitors niclosamide (Niclo) and benzbromarone (Benz) in vitro and in vivo in mouse models for cystic fibrosis (CF) and asthma. In human CF airway epithelial cells (CFBE), Ca2+ increase and activation of ANO1 by adenosine triphosphate (ATP) or ionomycin was strongly inhibited by 200 nM Niclo and 1 µM Benz. In asthmatic mice airway mucus secretion was inhibited by intratracheal instillation of Niclo or Benz. In homozygous F508del-cftr mice, intestinal mucus secretion and infiltration by CD45-positive cells was inhibited by intraperitoneal injection of Niclo (13 mg/kg/day for 7 days). In homozygous F508del-cftr rats intestinal mucus secretion was inhibited by oral application of Benz (5 mg/kg/day for 60 days). Taken together, well tolerated therapeutic concentrations of niclosamide and benzbromarone corresponding to plasma levels of treated patients, inhibit ANO1 and intracellular Ca2+ signals and may therefore be useful in inhibiting mucus hypersecretion and mucus obstruction in airways and intestine of patients suffering from asthma and CF, respectively.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| | - Nicole Reyne
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Alexandra McCarron
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Patricia Cmielewski
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| | - Gabriella diStefano
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Dorothee Römermann
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Martin Donnelley
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Singh P, Li FJ, Dsouza K, Stephens CT, Zheng H, Kumar A, Dransfield MT, Antony VB. Low dose cadmium exposure regulates miR-381-ANO1 interaction in airway epithelial cells. Sci Rep 2024; 14:246. [PMID: 38168913 PMCID: PMC10762153 DOI: 10.1038/s41598-023-50471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death worldwide. Cigarette smoke which has approximately 2-3 µg of Cadmium (Cd) per cigarette contributes to the environmental exposure and development and severity of COPD. With the lack of a cadmium elimination mechanism in humans, the contribution of cadmium induced stress to lung epithelial cells remains unclear. Studies on cadmium responsive miRNAs suggest regulation of target genes with an emphasis on the critical role of miRNA-mRNA interaction for cellular homeostasis. Mir-381, the target miRNA in this study is negatively regulated by cadmium in airway epithelial cells. miR-381 is reported to also regulate ANO1 (Anoctamin 1) expression negatively and in this study low dose cadmium exposure to airway epithelial cells was observed to upregulate ANO1 mRNA expression via mir-381 inhibition. ANO1 which is a Ca2+-activated chloride channel has multiple effects on cellular functions such as proliferation, mucus hypersecretion and fibroblast differentiation in inflamed airways in chronic respiratory diseases. In vitro studies with cadmium at a high concentration range of 100-500 µM is reported to activate chloride channel, ANO1. The secretory epithelial cells are regulated by chloride channels like CFTR, ANO1 and SLC26A9. We examined "ever" smokers with COPD (n = 13) lung tissue sections compared to "never" smoker without COPD (n = 9). We found that "ever" smokers with COPD had higher ANO1 expression. Using mir-381 mimic to inhibit ANO1, we demonstrate here that ANO1 expression is significantly (p < 0.001) downregulated in COPD derived airway epithelial cells exposed to cadmium. Exposure to environmental cadmium contributes significantly to ANO1 expression.
Collapse
Affiliation(s)
- Pooja Singh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fu Jun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Dsouza
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Crystal T Stephens
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huaxiu Zheng
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhishek Kumar
- UAB Superfund Center Advisory Board, Gainesville, FL, United States
| | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Pongkorpsakol P, Yimnual C, Satianrapapong W, Worakajit N, Kaewin S, Saetang P, Rukachaisirikul V, Muanprasat C. Discovery of Fungus-Derived Nornidulin as a Novel TMEM16A Inhibitor: A Potential Therapy to Inhibit Mucus Secretion in Asthma. J Exp Pharmacol 2023; 15:449-466. [PMID: 38026233 PMCID: PMC10657771 DOI: 10.2147/jep.s427594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Inhibition of Ca2+-activated transmembrane protein 16A (TMEM16A) Cl- channels has been proposed to alleviate mucus secretion in asthma. In this study, we identified a novel class of TMEM16A inhibitors from natural sources in airway epithelial Calu-3 cells and determine anti-asthmatic efficacy of the most potent candidate in a mouse model of asthma. Methods For electrophysiological analyses, IL-4-primed Calu-3 cell monolayers were mounted in Ussing chamber and treated with various fungus-derived depsidones prior to the addition of UTP, ionomycin, thapsigargin, or Eact to stimulate TMEM16A Cl- current. Ca2+-induced mucus secretion in Calu-3 cell monolayers was assessed by determining MUC5AC protein remaining in the cells using immunofluorescence staining. OVA-induced female BALB/c mice was used as an animal model of asthma. After the course of induction, cellular and mucus components in bronchoalveolar lavage were analyzed. Lungs were fixed and undergone with H&E and PAS staining for the evaluation of airway inflammation and mucus production, respectively. Results The screening of fungus-derived depsidones revealed that nornidulin completely abolished the UTP-activated TMEM16A current in Calu-3 cell monolayers with the IC50 and a maximal effect being at ~0.8 µM and 10 µM, respectively. Neither cell viability nor barrier function was affected by nornidulin. Mechanistically, nornidulin (10 µM) suppressed Cl- currents induced by ionomycin (a Ca2+-specific ionophore), thapsigargin (an inhibitor of the endoplasmic reticulum Ca2+ ATPase), and Eact (a putative TMEM16A activator) without interfering with intracellular Ca2+ ([Ca2+]i) levels. These results suggest that nornidulin exerts its effect without changing [Ca2+]i, possibly through direct effect on TMEM16A. Interestingly, nornidulin (at 10 µM) reduced Ca2+-dependent mucus release in the Calu-3 cell monolayers. In addition, nornidulin (20 mg/kg) inhibited bronchoalveolar mucus secretion without impeding airway inflammation in ovalbumin-induced asthmatic mice. Discussion and Conclusion Our study revealed that nornidulin is a novel TMEM16A inhibitor that suppresses mucus secretion without compromising immunologic activity. Further development of nornidulin may provide a new remedy for asthma or other diseases associated with allergic mucus hypersecretion without causing opportunistic infections.
Collapse
Affiliation(s)
- Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chantapol Yimnual
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | | | - Nichakorn Worakajit
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suchada Kaewin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Praphatsorn Saetang
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
9
|
Figueiredo IAD, Ferreira SRD, Fernandes JM, Silva BA, Vasconcelos LHC, Cavalcante FA. A review of the pathophysiology and the role of ion channels on bronchial asthma. Front Pharmacol 2023; 14:1236550. [PMID: 37841931 PMCID: PMC10568497 DOI: 10.3389/fphar.2023.1236550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Asthma is one of the main non-communicable chronic diseases and affects a huge portion of the population. It is a multifactorial disease, classified into several phenotypes, being the allergic the most frequent. The pathophysiological mechanism of asthma involves a Th2-type immune response, with high concentrations of allergen-specific immunoglobulin E, eosinophilia, hyperreactivity and airway remodeling. These mechanisms are orchestrated by intracellular signaling from effector cells, such as lymphocytes and eosinophils. Ion channels play a fundamental role in maintaining the inflammatory response on asthma. In particular, transient receptor potential (TRP), stock-operated Ca2+ channels (SOCs), Ca2+-activated K+ channels (IKCa and BKCa), calcium-activated chloride channel (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR), piezo-type mechanosensitive ion channel component 1 (PIEZO1) and purinergic P2X receptor (P2X). The recognition of the participation of these channels in the pathological process of asthma is important, as they become pharmacological targets for the discovery of new drugs and/or pharmacological tools that effectively help the pharmacotherapeutic follow-up of this disease, as well as the more specific mechanisms involved in worsening asthma.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sarah Rebeca Dantas Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jayne Muniz Fernandes
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Luiz Henrique César Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
10
|
Kunzelmann K, Ousingsawat J, Kraus A, Park JH, Marquardt T, Schreiber R, Buchholz B. Pathogenic Relationships in Cystic Fibrosis and Renal Diseases: CFTR, SLC26A9 and Anoctamins. Int J Mol Sci 2023; 24:13278. [PMID: 37686084 PMCID: PMC10487509 DOI: 10.3390/ijms241713278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| | - Julien H. Park
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Björn Buchholz
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| |
Collapse
|
11
|
Kimura Y, Shinoda M, Shinkai M, Kaneko T. Solithromycin inhibits IL-13-induced goblet cell hyperplasia and MUC5AC, CLCA1, and ANO1 in human bronchial epithelial cells. PeerJ 2023; 11:e14695. [PMID: 36684665 PMCID: PMC9854378 DOI: 10.7717/peerj.14695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Solithromycin is a novel fluoroketolide antibiotic belonging to the class of macrolide antibiotics. Activation of the interleukin (IL)-13 receptor leads to STAT6 activation and subsequent induction of SAM pointed domain containing ETS transcription factor (SPDEF), chloride channel accessory 1 (CLCA1), and anoctamin-1 (ANO1), all of which are associated with the induction of MUC5AC. We examined the effects of solithromycin on mucin production led by IL-13 signaling. Normal human bronchial epithelial cells were grown at the air-liquid interface with IL-13 with/without solithromycin for 14 days. Histochemical analysis was performed using hematoxylin and eosin staining and MUC5AC immunostaining. MUC5AC, SPDEF, CLCA1, and ANO1 mRNA expressions were examined using real-time polymerase chain reaction. Western blot analysis was performed to assess CLCA1 and ANO1 proteins, and phosphorylation of STAT6 and ERK. Solithromycin attenuated IL-13 induction of goblet cell hyperplasia and MUC5AC, CLCA1 and ANO1 mRNA and protein expression induced by IL-13, but had no effect on the phosphorylation of STAT6 and ERK. Our results indicate that solithromycin could attenuate goblet cell hyperplasia and MUC5AC induced by IL-13 through inhibition of CLCA1 and ANO1 mRNA and protein expression. However, much more information is required to clarify the molecular mechanisms underlying the inhibition of CLCA1 and ANO1 by solithromycin.
Collapse
Affiliation(s)
- Yasuhiro Kimura
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masahiro Shinoda
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Shinagawa, Tokyo, Japan
| | - Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Shinagawa, Tokyo, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
12
|
Danahay H, Lilley S, Adley K, Charlton H, Fox R, Gosling M. Niclosamide does not modulate airway epithelial function through blocking of the calcium activated chloride channel, TMEM16A. Front Pharmacol 2023; 14:1142342. [PMID: 36950016 PMCID: PMC10025480 DOI: 10.3389/fphar.2023.1142342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Niclosamide and benzbromarone have been described as inhibitors of the calcium activated chloride channel, TMEM16A, and on this basis have been considered and tested as clinical candidates for the treatment of airway diseases. However, both compounds have previously demonstrated activity on a range of additional biological targets and it is unclear from the literature to what extent any activity on TMEM16A may contribute to efficacy in these models of airway disease. The aim of the present study was therefore to examine the pharmacology and selectivity of these clinical candidates together with a structurally unrelated TMEM16A blocker, Ani9, in a range of functional assays to better appreciate the putative role of TMEM16A in the regulation of both epithelial ion transport and the development of an airway epithelial mucus secretory phenoptype. Benzbromarone and Ani9 both attenuated recombinant TMEM16A activity in patch clamp studies, whereas in contrast, niclosamide induced a paradoxical potentiation of the TMEM16A-mediated current. Niclosamide and benzbromarone were also demonstrated to attenuate receptor-dependent increases in intracellular Ca2+ levels ([Ca2+]i) which likely contributed to their concomitant attenuation of the Ca2+-stimulated short-circuit current responses of FRT-TMEM16A and primary human bronchial epithelial (HBE) cells. In contrast, Ani9 attenuated the Ca2+-stimulated short-circuit current responses of both cell systems without influencing [Ca2+]i which supports a true channel blocking mechanism for this compound. Additional studies using HBE cells revealed effects of both niclosamide and benzbromarone on global ion transport processes (absorptive and secretory) as well as signs of toxicity (elevated LDH levels, loss of transepithelial resistance) that were not shared by Ani9. Ani9 also failed to influence the IL-13 induced differentiation of HBE towards a goblet cell rich, mucus hypersecreting epithelium, whereas niclosamide and benzbromarone attenuated numbers of both goblet and multiciliated cells, that would be consistent with cellular toxicity. Together these data challenge the description of niclosamide as a TMEM16A blocker and illustrate a range of off-target effects of both niclosamide and benzbromarone which may contribute to the reported activity in models of airway function.
Collapse
Affiliation(s)
- Henry Danahay
- Enterprise Therapeutics Ltd., Brighton, United Kingdom
- *Correspondence: Henry Danahay,
| | - Sarah Lilley
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Kathryn Adley
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Holly Charlton
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Roy Fox
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | |
Collapse
|
13
|
Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res 2022; 38:18. [PMID: 35778730 PMCID: PMC9247923 DOI: 10.1186/s42826-022-00128-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - S Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - D Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
14
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
15
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
16
|
Ousingsawat J, Centeio R, Cabrita I, Talbi K, Zimmer O, Graf M, Göpferich A, Schreiber R, Kunzelmann K. Airway Delivery of Hydrogel-Encapsulated Niclosamide for the Treatment of Inflammatory Airway Disease. Int J Mol Sci 2022; 23:1085. [PMID: 35163010 PMCID: PMC8835663 DOI: 10.3390/ijms23031085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Inês Cabrita
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Khaoula Talbi
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany; (O.Z.); (M.G.); (A.G.)
| | - Moritz Graf
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany; (O.Z.); (M.G.); (A.G.)
| | - Achim Göpferich
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany; (O.Z.); (M.G.); (A.G.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| |
Collapse
|
17
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
18
|
Bai W, Liu M, Xiao Q. The diverse roles of TMEM16A Ca 2+-activated Cl - channels in inflammation. J Adv Res 2021; 33:53-68. [PMID: 34603778 PMCID: PMC8463915 DOI: 10.1016/j.jare.2021.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transmembrane protein 16A (TMEM16A) Ca2+-activated Cl- channels have diverse physiological functions, such as epithelial secretion of Cl- and fluid and sensation of pain. Recent studies have demonstrated that TMEM16A contributes to the pathogenesis of infectious and non-infectious inflammatory diseases. However, the role of TMEM16A in inflammation has not been clearly elucidated. Aim of review In this review, we aimed to provide comprehensive information regarding the roles of TMEM16A in inflammation by summarizing the mechanisms underlying TMEM16A expression and activation under inflammatory conditions, in addition to exploring the diverse inflammatory signaling pathways activated by TMEM16A. This review attempts to develop the idea that TMEM16A plays a diverse role in inflammatory processes and contributes to inflammatory diseases in a cellular environment-dependent manner. Key scientific concepts of review Multiple inflammatory mediators, including cytokines (e.g., interleukin (IL)-4, IL-13, IL-6), histamine, bradykinin, and ATP/UTP, as well as bacterial and viral infections, promote TMEM16A expression and/or activity under inflammatory conditions. In addition, TMEM16A activates diverse inflammatory signaling pathways, including the IP3R-mediated Ca2+ signaling pathway, the NF-κB signaling pathway, and the ERK signaling pathway, and contributes to the pathogenesis of many inflammatory diseases. These diseases include airway inflammatory diseases, lipopolysaccharide-induced intestinal epithelial barrier dysfunction, acute pancreatitis, and steatohepatitis. TMEM16A also plays multiple roles in inflammatory processes by increasing vascular permeability and leukocyte adhesion, promoting inflammatory cytokine release, and sensing inflammation-induced pain. Furthermore, TMEM16A plays its diverse pathological roles in different inflammatory diseases depending on the disease severity, proliferating status of the cells, and its interacting partners. We herein propose cellular environment-dependent mechanisms that explain the diverse roles of TMEM16A in inflammation.
Collapse
Affiliation(s)
- Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
19
|
Mucus Release and Airway Constriction by TMEM16A May Worsen Pathology in Inflammatory Lung Disease. Int J Mol Sci 2021; 22:ijms22157852. [PMID: 34360618 PMCID: PMC8346050 DOI: 10.3390/ijms22157852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Activation of the Ca2+ activated Cl− channel TMEM16A is proposed as a treatment in inflammatory airway disease. It is assumed that activation of TMEM16A will induce electrolyte secretion, and thus reduce airway mucus plugging and improve mucociliary clearance. A benefit of activation of TMEM16A was shown in vitro and in studies in sheep, but others reported an increase in mucus production and airway contraction by activation of TMEM16A. We analyzed expression of TMEM16A in healthy and inflamed human and mouse airways and examined the consequences of activation or inhibition of TMEM16A in asthmatic mice. TMEM16A was found to be upregulated in the lungs of patients with asthma or cystic fibrosis, as well as in the airways of asthmatic mice. Activation or potentiation of TMEM16A by the compounds Eact or brevenal, respectively, induced acute mucus release from airway goblet cells and induced bronchoconstriction in mice in vivo. In contrast, niclosamide, an inhibitor of TMEM16A, blocked mucus production and mucus secretion in vivo and in vitro. Treatment of airway epithelial cells with niclosamide strongly inhibited expression of the essential transcription factor of Th2-dependent inflammation and goblet cell differentiation, SAM pointed domain-containing ETS-like factor (SPDEF). Activation of TMEM16A in people with inflammatory airway diseases is likely to induce mucus secretion along with airway constriction. In contrast, inhibitors of TMEM16A may suppress pulmonary Th2 inflammation, goblet cell metaplasia, mucus production, and bronchoconstriction, partially by inhibiting expression of SPDEF.
Collapse
|
20
|
Yimnual C, Satitsri S, Ningsih BNS, Rukachaisirikul V, Muanprasat C. A fungus-derived purpactin A as an inhibitor of TMEM16A chloride channels and mucin secretion in airway epithelial cells. Biomed Pharmacother 2021; 139:111583. [PMID: 33901875 DOI: 10.1016/j.biopha.2021.111583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
TMEM16A is a Ca2+-activated Cl- channel involved in mucus secretion in inflamed airways and proposed as a drug target for diseases associated with mucus hypersecretion including asthma. This study aimed to identify novel inhibitors of TMEM16A-mediated Cl- secretion in airway epithelial cells from a collection of compounds isolated from fungi indigenous in Thailand and examine its potential utility in mitigating airway mucus secretion using Calu-3 cells as a study model. Screening of > 400 fungal metabolites revealed purpactin A isolated from a soil-derived fungus Penicillium aculeatum PSU-RSPG105 as an inhibitor of TMEM16A-mediated Cl- transport with an IC50 value of ~2 µM. A consistent inhibitory effect of purpactin A on TMEM16A were observed regardless of TMEM16A activators or in the presence of an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), a negative regulator of TMEM16A. In addition, purpactin A did not affect cell viability, epithelial barrier integrity and activities of membrane transport proteins essential for maintaining airway hydration including CFTR Cl- channels and apical BK K+ channels. Intriguingly, purpactin A prevented a Ca2+-induced mucin release in cytokine-treated airway cells. Taken together, purpactin A represents the first class of TMEM16A inhibitor derived from fungus, which may be beneficial for the treatment of diseases associated with mucus hypersecretion.
Collapse
Affiliation(s)
- Chantapol Yimnual
- Department of Physiology, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Baiq Nila Sari Ningsih
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand.
| |
Collapse
|
21
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
22
|
CLCA1 Regulates Airway Mucus Production and Ion Secretion Through TMEM16A. Int J Mol Sci 2021; 22:ijms22105133. [PMID: 34066250 PMCID: PMC8151571 DOI: 10.3390/ijms22105133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
TMEM16A, a Ca2+-activated chloride channel (CaCC), and its regulator, CLCA1, are associated with inflammatory airway disease and goblet cell metaplasia. CLCA1 is a secreted protein with protease activity that was demonstrated to enhance membrane expression of TMEM16A. Expression of CLCA1 is particularly enhanced in goblet cell metaplasia and is associated with various lung diseases. However, mice lacking expression of CLCA1 showed the same degree of mucous cell metaplasia and airway hyperreactivity as asthmatic wild-type mice. To gain more insight into the role of CLCA1, we applied secreted N-CLCA1, produced in vitro, to mice in vivo using intratracheal instillation. We observed no obvious upregulation of TMEM16A membrane expression by CLCA1 and no differences in ATP-induced short circuit currents (Iscs). However, intraluminal mucus accumulation was observed by treatment with N-CLCA1 that was not seen in control animals. The effects of N-CLCA1 were augmented in ovalbumin-sensitized mice. Mucus production induced by N-CLCA1 in polarized BCi-NS1 human airway epithelial cells was dependent on TMEM16A expression. IL-13 upregulated expression of CLCA1 and enhanced mucus production, however, without enhancing purinergic activation of Isc. In contrast to polarized airway epithelial cells and mouse airways, which express very low levels of TMEM16A, nonpolarized airway cells express large amounts of TMEM16A protein and show strong CaCC. The present data show an only limited contribution of TMEM16A to airway ion secretion but suggest a significant role of both CLCA1 and TMEM16A for airway mucus secretion.
Collapse
|
23
|
ANO7: Insights into topology, function, and potential applications as a biomarker and immunotherapy target. Tissue Cell 2021; 72:101546. [PMID: 33940566 DOI: 10.1016/j.tice.2021.101546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/21/2021] [Accepted: 04/11/2021] [Indexed: 01/01/2023]
Abstract
Anoctamin 7 (ANO7) is a member of the transmembrane protein TMEM16 family. It has a conservative topology similar to other members in this family, such as the typical eight-transmembrane domain, but it also has unique features. Although the ion channel role of ANO7 has been well accepted, evolutionary analyses and relevant studies suggest that ANO7 may be a multi-facet protein in function. Studies have shown that ANO7 may also function as a scramblase. ANO7 is highly expressed in prostate cancer as well as normal prostate tissues. A considerable amount of evidence has confirmed that ANO7 is associated with human physiology and pathology, particularly with the development of prostate cancer, which makes ANO7 a good candidate as a diagnostic and prognostic biomarker. In addition, ANO7 may be a potential target for prostate cancer immunotherapy. Antibody-based or T cell-mediated immunotherapies against prostate cancer by targeting ANO7 have been highly anticipated. ANO7 may also correlate with several other types of cancers or diseases, where further studies are warranted.
Collapse
|
24
|
Cabrita I, Benedetto R, Wanitchakool P, Lerias J, Centeio R, Ousingsawat J, Schreiber R, Kunzelmann K. TMEM16A Mediates Mucus Production in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2021; 64:50-58. [PMID: 33026825 DOI: 10.1165/rcmb.2019-0442oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
TMEM16A is a Ca2+-activated chloride channel that was shown to enhance production and secretion of mucus in inflamed airways. It is, however, not clear whether TMEM16A directly supports mucus production, or whether mucin and TMEM16A are upregulated independently during inflammatory airway diseases such as asthma and cystic fibrosis (CF). We examined this question using BCi-NS1 cells, a human airway basal cell line that maintains multipotent differentiation capacity, and the two human airway epithelial cell lines, Calu-3 and CFBE. The data demonstrate that exposure of airway epithelial cells to IL-8 and IL-13, two cytokines known to be enhanced in CF and asthma, respectively, leads to an increase in mucus production. Expression of MUC5AC was fully dependent on expression of TMEM16A, as shown by siRNA knockdown of TMEM16A. In addition, different inhibitors of TMEM16A attenuated IL-13-induced mucus production. Interestingly, in CFBE cells expressing F508 delCFTR, IL-13 was unable to upregulate membrane expression of TMEM16A or Ca2+-activated whole cell currents. The regulator of TMEM16A, CLCA1, strongly augmented both Ca2+- and cAMP-activated Cl- currents in cells expressing wtCFTR but failed to augment membrane expression of TMEM16A in F508 delCFTR-expressing CFBE cells. The data confirm the functional relationship between CFTR and TMEM16A and suggest an impaired upregulation of TMEM16A by IL-13 or CLCA1 in cells expressing the most frequent CF-causing mutation F508 delCFTR.
Collapse
Affiliation(s)
- Inês Cabrita
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Roberta Benedetto
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | | | - Joana Lerias
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | | | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Dual role of Ca 2+-activated Cl - channel transmembrane member 16A in lipopolysaccharide-induced intestinal epithelial barrier dysfunction in vitro. Cell Death Dis 2020; 11:404. [PMID: 32472021 PMCID: PMC7260209 DOI: 10.1038/s41419-020-2614-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Dysfunction of intestinal epithelial Cl− currents and channels have previously been reported in inflammatory intestinal diseases. However, the expression and function of the newly identified Ca2+-activated Cl− channel transmembrane member 16A (TMEM16A) in the intestinal epithelium is unclear. In this study, we investigated the effects of TMEM16A on intestinal epithelial barrier function in vitro. Intestinal epithelial barrier dysfunction was modeled by lipopolysaccharide (LPS)-induced cell damage in intestinal epithelial IEC-6 cells and the effects of TMEM16A knockdown and overexpression on cell apoptosis and tight junctions were studied. Corresponding mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence analysis, respectively. TMEM16A expression was significantly increased by LPS, possibly via a process involving the transcription factor nuclear factor-κB and both Th1 and Th2 cytokines. Low- and high-dose LPS dysregulated tight junctions (high-myosin light-chain kinase expression) and cell apoptosis-dependent cell barrier dysfunction, respectively. TMEM16A aggravated cell barrier dysfunction in IEC-6 cells pretreated with low-dose LPS by activating ERK1/MLCK signaling pathways, but protected against cell barrier dysfunction by activating ERK/Bcl-2/Bax signaling pathways in IEC-6 cells pretreated with high-dose LPS. We concluded that TMEM16A played a dual role in LPS-induced epithelial dysfunction in vitro. The present results indicated the complex regulatory mechanisms and targeting of TMEM16A may provide potential treatment strategies for intestinal epithelial barrier damage, as well as forming the basis for future studies of the expression and function of TMEM16A in normal and inflammatory intestinal diseases in vivo.
Collapse
|
26
|
Amaral MD, Beekman JM. Activating alternative chloride channels to treat CF: Friends or Foes? J Cyst Fibros 2020; 19:11-15. [DOI: 10.1016/j.jcf.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 10/07/2019] [Indexed: 01/15/2023]
|
27
|
Wei HL, Xing Y, Zhou W, Wang XL, Zhang H, Ding J. [Establishment of an ovalbumin-induced bronchial asthma model in mice with intrauterine growth retardation]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:1223-1228. [PMID: 31874664 PMCID: PMC7389007 DOI: 10.7499/j.issn.1008-8830.2019.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To establish and evaluate an ovalbumin (OVA)-induced bronchial asthma model in mice with intrauterine growth retardation (IUGR), and to explore the molecular mechanism of relationship between IUGR and asthma. METHODS A total of 16 pregnant BALB/c female mice were divided into a low-protein diet group (n=8) and a normal-protein diet group (n=8), which were fed with low-protein (8%) diet and normal-protein (20%) diet respectively. The neonatal mice were weighed 6 hours after birth. Sixteen male neonatal mice with IUGR were randomly chosen from the low-protein diet group and enrolled in the IUGR group, and 16 male neonatal mice from the normal-protein diet group were enrolled in the control group. Blood samples were collected from the mice in both groups for testing of blood glucose. Enzyme-linked immunosorbent assay (ELISA) was used to determine serum insulin level. The mice in the control group were randomized into a control + PBS group and a control + OVA group (n=8 each). The mice in the IUGR group were randomized into an IUGR + PBS group and an IUGR + OVA group (n=8 each). Six-week-old mice in the control + OVA and IUGR + OVA groups were subjected to intraperitoneal injection of 2 mg/mL OVA for sensitization and aerosol inhalation of 1% OVA for challenge. Mice in the control + PBS group and the IUGR + PBS group were treated with an equivalent amount of PBS. ELISA was used to determine serum IgE level in the mice in each group. Bronchoalveolar lavage fluid (BLF) was collected from the mice in each group for cell counting. The lung tissue of the mice in each group was stained with hematoxylin and eosin to observe pathological changes. RESULTS The body weight at 6 hours after birth was significantly lower for neonatal mice in the low-protein diet group compared with those in the normal-protein diet group (P<0.01). The IUGR group had a significantly lower serum insulin level than the control group (P<0.01). The IUGR + PBS group had a significantly lower IgE level than the control + PBS group (P<0.01). Compared with the control + PBS and IUGR + PBS groups, the control + OVA and IUGR + OVA groups had a significantly increased IgE level, and the IgE level was significantly higher in the IUGR + OVA group than in the control + OVA group (P<0.01). Compared with the control + PBS and IUGR + PBS groups, the control + OVA and IUGR + OVA groups had significantly increased counts of leukocytes, eosinophils, lymphocytes, and macrophages in the BLF (P<0.01). The pulmonary alveoli of OVA-induced IUGR mice showed massive inflammatory cell infiltration and damage of intercellular continuity. Meanwhile, airway epithelial cell proliferation, bronchial wall thickening, bronchial lumen narrowing, and massive inflammatory cell infiltration around the bronchi and the vascular wall were observed. CONCLUSIONS An OVA-induced bronchial asthma model has been successfully established in the mice with IUGR induced by low-protein diet, which provides a basis for further study of the molecular mechanism of relationship between IUGR and airway inflammation.
Collapse
Affiliation(s)
- Hong-Ling Wei
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | | | | | | | | | | |
Collapse
|
28
|
Simões FB, Quaresma MC, Clarke LA, Silva IA, Pankonien I, Railean V, Kmit A, Amaral MD. TMEM16A chloride channel does not drive mucus production. Life Sci Alliance 2019; 2:2/6/e201900462. [PMID: 31732694 PMCID: PMC6859295 DOI: 10.26508/lsa.201900462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023] Open
Abstract
Despite being essential for airway hydration, TMEM16A is not required for mucus (MUC5AC) production. Cell proliferation is the main driver for TMEM16A up-regulation during inflammation. Airway mucus obstruction is the main cause of morbidity in cystic fibrosis, a disease caused by mutations in the CFTR Cl− channel. Activation of non-CFTR Cl− channels such as TMEM16A can likely compensate for defective CFTR. However, TMEM16A was recently described as a key driver in mucus production/secretion. Here, we have examined whether indeed there is a causal relationship between TMEM16A and MUC5AC production, the main component of respiratory mucus. Our data show that TMEM16A and MUC5AC are inversely correlated during differentiation of human airway cells. Furthermore, we show for the first time that the IL-4–induced TMEM16A up-regulation is proliferation-dependent, which is supported by the correlation found between TMEM16A and Ki-67 proliferation marker during wound healing. Consistently, the notch signaling activator DLL4 increases MUC5AC levels without inducing changes neither in TMEM16A nor in Ki-67 expression. Moreover, TMEM16A inhibition decreased airway surface liquid height. Altogether, our findings demonstrate that up-regulation of TMEM16A and MUC5AC is only circumstantial under cell proliferation, but with no causal relationship between them. Thus, although essential for airway hydration, TMEM16A is not required for MUC5AC production.
Collapse
Affiliation(s)
- Filipa B Simões
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Iris Al Silva
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Arthur Kmit
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
29
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments in the field of allergy in 2017 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2019; 48:1606-1621. [PMID: 30489681 DOI: 10.1111/cea.13318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this article, we described the development in the field of allergy as described by Clinical and Experimental Allergy in 2017. Experimental models of allergic disease, basic mechanisms, clinical mechanisms, allergens, asthma and rhinitis and clinical allergy are all covered.
Collapse
Affiliation(s)
- G Roberts
- Faculty of Medicine, Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - B Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
30
|
Cabrita I, Benedetto R, Schreiber R, Kunzelmann K. Niclosamide repurposed for the treatment of inflammatory airway disease. JCI Insight 2019; 4:128414. [PMID: 31391337 DOI: 10.1172/jci.insight.128414] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
Inflammatory airway diseases, such as asthma, cystic fibrosis (CF), and chronic obstructive pulmonary disease (COPD), are characterized by mucus hypersecretion and airway plugging. In both CF and asthma, enhanced expression of the Ca2+-activated Cl- channel TMEM16A is detected in mucus-producing club/goblet cells and airway smooth muscle. TMEM16A contributes to mucus hypersecretion and bronchoconstriction, which are both inhibited by blockers of TMEM16A, such as niflumic acid. Here we demonstrate that the FDA-approved drug niclosamide, a potent inhibitor of TMEM16A identified by high-throughput screening, is an inhibitor of both TMEM16A and TMEM16F. In asthmatic mice, niclosamide reduced mucus production and secretion, as well as bronchoconstriction, and showed additional antiinflammatory effects. Using transgenic asthmatic mice, we found evidence that TMEM16A and TMEM16F are required for normal mucus production/secretion, which may be due to their effects on intracellular Ca2+ signaling. TMEM16A and TMEM16F support exocytic release of mucus and inflammatory mediators, both of which are blocked by niclosamide. Thus, inhibition of mucus and cytokine release, bronchorelaxation, and reported antibacterial effects make niclosamide a potentially suitable drug for the treatment of inflammatory airway diseases, such as CF, asthma, and COPD.
Collapse
|
31
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
32
|
Kunzelmann K, Ousingsawat J, Cabrita I, Doušová T, Bähr A, Janda M, Schreiber R, Benedetto R. TMEM16A in Cystic Fibrosis: Activating or Inhibiting? Front Pharmacol 2019; 10:3. [PMID: 30761000 PMCID: PMC6362895 DOI: 10.3389/fphar.2019.00003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
The inflammatory airway disease cystic fibrosis (CF) is characterized by airway obstruction due to mucus hypersecretion, airway plugging, and bronchoconstriction. The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is dysfunctional in CF, leading to defects in epithelial transport. Although CF pathogenesis is still disputed, activation of alternative Cl- channels is assumed to improve lung function in CF. Two suitable non-CFTR Cl- channels are present in the airway epithelium, the Ca2+ activated channel TMEM16A and SLC26A9. Activation of these channels is thought to be feasible to improve hydration of the airway mucus and to increase mucociliary clearance. Interestingly, both channels are upregulated during inflammatory lung disease. They are assumed to support fluid secretion, necessary to hydrate excess mucus and to maintain mucus clearance. During inflammation, however, TMEM16A is upregulated particularly in mucus producing cells, with only little expression in ciliated cells. Recently it was shown that knockout of TMEM16A in ciliated cells strongly compromises Cl- conductance and attenuated mucus secretion, but does not lead to a CF-like lung disease and airway plugging. Along this line, activation of TMEM16A by denufosol, a stable purinergic ligand, failed to demonstrate any benefit to CF patients in earlier studies. It rather induced adverse effects such as cough. A number of studies suggest that TMEM16A is essential for mucus secretion and possibly also for mucus production. Evidence is now provided for a crucial role of TMEM16A in fusion of mucus-filled granules with the apical plasma membrane and cellular exocytosis. This is probably due to local Ca2+ signals facilitated by TMEM16A. Taken together, TMEM16A supports fluid secretion by ciliated airway epithelial cells, but also maintains excessive mucus secretion during inflammatory airway disease. Because TMEM16A also supports airway smooth muscle contraction, inhibition rather than activation of TMEM16A might be the appropriate treatment for CF lung disease, asthma and COPD. As a number of FDA-approved and well-tolerated drugs have been shown to inhibit TMEM16A, evaluation in clinical trials appears timely.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | | | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Tereza Doušová
- Department of Pediatrics, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Innere Medizin I, Klinikum Rechts der Isar der TU München, München, Germany
| | - Melanie Janda
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Benedetto R, Cabrita I, Schreiber R, Kunzelmann K. TMEM16A is indispensable for basal mucus secretion in airways and intestine. FASEB J 2018; 33:4502-4512. [PMID: 30586313 DOI: 10.1096/fj.201801333rrr] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transmembrane member 16A (TMEM16A) is the Ca2+-activated chloride channel in airways and intestine. It has been associated with goblet cell metaplasia, as expression of TMEM16A is strongly up-regulated in cystic fibrosis and asthma during mucus hypersecretion. However, the possible role of TMEM16A for mucus production or mucus secretion remains obscure, and whether TMEM16A controls the function of intestinal goblet cells is entirely unknown. Basal mucus secretion in lungs occurs through low levels of ATP in the airway surface liquid. Here, we report for the first time that TMEM16A is essential for basal secretion of mucus in airways and intestine. Airway-ciliated and intestinal epithelial-specific knockout of TMEM16A ( TMEM16Aflox/floxFoxJ1, TMEM16Aflox/floxVil1) leads to accumulation of mucus in airway club (Clara) cells and intestinal goblet cells, respectively. Acute ATP-induced mucus secretion by airway club cells is inhibited when TMEM16A is knocked out in ciliated cells, possibly as a result of compromised release of prosecretory cytokines. Knockdown or inhibition of TMEM16A in human Calu3 airway epithelial cells indicates compromised IL-8 release. In intestinal goblet cells lacking expression of TMEM16A, mucus accumulates as a result of compromised ATP-induced secretion. In contrast, cholinergic mucus secretion by compound exocytosis is independent of TMEM16A. The data demonstrate a previously unrecognized role of TMEM16A for membrane exocytosis and describe a novel, ATP-driven pathway for intestinal mucus secretion. We conclude that ATP-dependent mucus secretion in both airways and intestine requires TMEM16A. The present results may form the basis for a novel, therapeutic approach for the treatment of mucus hypersecretion in inflammatory airway and intestinal disease.-Benedetto, R., Cabrita, I., Schreiber, R., Kunzelmann, K. TMEM16A is indispensable for basal mucus secretion in airways and intestine.
Collapse
Affiliation(s)
- Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Clarithromycin suppresses IL-13-induced goblet cell metaplasia via the TMEM16A-dependent pathway in guinea pig airway epithelial cells. Respir Investig 2018; 57:79-88. [PMID: 30393041 DOI: 10.1016/j.resinv.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Transmembrane protein 16A (TMEM16A) is associated with mucus secretion and ion transport in asthma. Clarithromycin (CAM) is reported to inhibit IL-13-induced goblet cell metaplasia. However, the effect of CAM on TMEM16A function and expression remains unclear. METHODS Tracheal epithelial cells from guinea pigs were cultured for ~14 days at an air-liquid interface in medium containing IL-13 (10 ng/ml) in the absence or presence of CAM (20 µg/ml) or a TMEM16A inhibitor, T16Ainh-A01 (10 µg/ml). Electrophysiological studies were performed by Ussing׳s short-circuit technique. The cells were used for immunofluorescence staining with antibodies against TMEM16A, MUC5AC, and α-tubulin. The cells were also examined by transmission electron microscopy. TMEM16A protein levels in the cell lysates were determined by ELISA. For the in vivo study, guinea pigs were treated intratracheally with IL-13 in the absence or presence of CAM or T16Ainh-A01. RESULTS CAM decreased the MUC5AC-positive cells and reduced TMEM16A expression in them and increased the α-tubulin-positive cells. CAM inhibited TMEM16A protein levels in a dose-dependent manner, and decreased UTP-induced Cl ion transport. In cells treated with IL-13 for 24 h, TMEM16A appeared prior to MUC5AC protein expression, and was inhibited by CAM. In the in vivo study, CAM inhibited IL-13-induced goblet cell metaplasia and TMEM16A expression. The inhibitory effects of CAM were similar to those of T16Ainh-A01. CONCLUSIONS CAM inhibited IL-13-induced TMEM16A expression, Cl ion transport and goblet cell metaplasia both in vitro and in vivo. CAM may thus improve airway mucociliary differentiation by attenuating TMEM16A expression in IL-13-related asthma.
Collapse
|
35
|
Xia Y, Xia L, Lou L, Jin R, Shen H, Li W. Transient Receptor Potential Channels and Chronic Airway Inflammatory Diseases: A Comprehensive Review. Lung 2018; 196:505-516. [PMID: 30094794 DOI: 10.1007/s00408-018-0145-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022]
Abstract
Chronic airway inflammatory diseases remain a major problem worldwide, such that there is a need for additional therapeutic targets and novel drugs. Transient receptor potential (TRP) channels are a group of non-selective cation channels expressed throughout the body that are regulated by various stimuli. TRP channels have been identified in numerous cell types in the respiratory tract, including sensory neurons, airway epithelial cells, airway smooth muscle cells, and fibroblasts. Different types of TRP channels induce cough in sensory neurons via the vagus nerve. Permeability and cytokine production are also regulated by TRP channels in airway epithelial cells, and these channels also contribute to the modulation of bronchoconstriction. TRP channels may cooperate with other TRP channels, or act in concert with calcium-dependent potassium channels and calcium-activated chloride channel. Hence, TRP channels could be the potential therapeutic targets for chronic airway inflammatory diseases. In this review, we aim to discuss the expression profiles and physiological functions of TRP channels in the airway, and the roles they play in chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Lexin Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lingyun Lou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Rui Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
36
|
Kim HJ, Nam YR, Nam JH. Flos Magnoliae Inhibits Chloride Secretion via ANO1 Inhibition in Calu-3 Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1079-1092. [PMID: 29976084 DOI: 10.1142/s0192415x18500568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flos Magnoliae (FM, Chinese name: Xin-yi) is an oriental medicinal herb commonly used for symptomatic relief from allergic rhinitis, sinusitis, and headache, including in traditional Chinese and Korean medicine formulations. FM inhibits histamine release from mast cells and cytokine secretion from T cells. However, the mechanism of action of FM on the anoctamin-1 (ANO1) ion channel, which is responsible for nasal hypersecretion in allergic rhinitis, has not been elucidated. Therefore, in this study, we investigated the effect of a 30% ethanolic extract of FM (FMEtOH) and its chemical constituents on ANO1 activity. We used high-performance liquid chromatography analysis to identify five major chemical constituents of FMEtOH: vanillic acid, tiliroside, eudesmin, magnolin, and fargesin. Using a conventional whole-cell patch clamp method, we found that FMEtOH (30, 100, and 300[Formula: see text][Formula: see text]g/mL) and its chemical constituent tiliroside inhibited ANO1 activity in ANO1-overexpressing HEK293T cells. In addition, we found that the treatment of the airway epithelial cell line Calu-3 with interleukin 4 significantly increased Ca[Formula: see text] activated Cl[Formula: see text] current (ICaCC), but not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride current (ICFTR). FMEtOH and tiliroside specifically inhibited ICaCC. Thus, in this study, we identified a novel mechanism underlying the alleviation of allergic rhinitis by FMEtOH. Our results indicate that FMEtOH and its chemical constituent tiliroside are promising and potent agents for the prevention and treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Hyun Jong Kim
- 1 Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.,2 Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea
| | - Yu Ran Nam
- 1 Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.,2 Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea
| | - Joo Hyun Nam
- 1 Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.,2 Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea
| |
Collapse
|