1
|
Wang HZ, Hayles EH, Fiander M, Sinn JK, Osborn DA. Probiotics in infants for prevention of allergic disease. Cochrane Database Syst Rev 2025; 6:CD006475. [PMID: 40511642 PMCID: PMC12163975 DOI: 10.1002/14651858.cd006475.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
RATIONALE This is an update of a Cochrane review first published in 2007. Allergic disease and food allergy are prevalent, and contribute to a significant burden of disease on the individual, their family and the healthcare system. Probiotics are live bacteria that colonise the gastrointestinal tract, and have been studied in many clinical trials for preventing allergic conditions. OBJECTIVES To evaluate the benefits and harms of a probiotic, or a probiotic with added prebiotic ('synbiotic'), compared with control (placebo or no treatment) for preventing allergic diseases (asthma, eczema, allergic rhinitis) and dietary allergies in infants by two years of age. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and trial registries in December 2023. We reviewed the reference lists of studies selected for inclusion in this review, and systematic reviews on similar topics. We manually searched conference abstracts. ELIGIBILITY CRITERIA We included randomised controlled trials that compared a probiotic to a control, or a probiotic added to a prebiotic ('synbiotic'). We included enterally fed infants in the first six months of life without clinical evidence of allergic disease. We included probiotics added to human milk or infant formula, added in the manufacturing process or given separately. OUTCOMES Infant incidence by two years of age and childhood incidence (up to 10 years of age or up to the age of latest report between 2 and 10 years) of specific allergic diseases, including: asthma, eczema, allergic rhinitis, immunoglobulin E (IgE)-mediated food allergy, IgE-mediated cow's milk protein allergy. Events of anaphylaxis and potential harms including adverse effects, harms or infection with probiotic bacteria. RISK OF BIAS We used the Cochrane RoB 2 tool to assess bias in the studies. SYNTHESIS METHODS We used the random-effects (Mantel-Haenszel) model for meta-analysis where possible. Where this was not possible due to the nature of the data, we synthesised and interpreted individual studies separately. We used GRADE to assess the certainty of evidence for each outcome. INCLUDED STUDIES We included 24 studies (7077 mother-infant pairs). The studies were conducted in many parts of the world, including the USA, Europe, South Korea, Japan, Singapore and Australia, with most being conducted in Europe. Studies were published between 2001 and 2020. As some studies measured outcomes such as eczema using different criteria, we made assumptions to allow us to combine data. SYNTHESIS OF RESULTS Probiotics may result in little to no difference in asthma (risk ratio (RR) 0.96, 95% confidence interval (CI) 0.65 to 1.44; 4 studies, 954 participants; low-certainty evidence), allergic rhinitis (RR 0.89, 95% CI 0.45 to 1.77; 5 studies, 1045 participants; low-certainty evidence) and IgE-mediated cow's milk protein allergy (RR 0.99, 95% CI 0.82 to 1.20; 4 studies, 259 participants; low-certainty evidence) by two years of age. Probiotics may result in a slight reduction in eczema by two years of age (RR 0.87, 95% CI 0.78 to 0.97; 18 studies, 3494 participants; low-certainty evidence); however, sensitivity analysis of the studies at low risk of bias showed little or no difference in eczema by two years of age (RR 0.86, 95% CI 0.69 to 1.07; 4 studies, 892 participants). Probiotic supplementation may have little to no effect on the incidence of food allergy by two years, but the evidence is very uncertain (RR 1.12, 95% CI 0.57 to 2.20; 3 studies, 857 participants; very low-certainty evidence). The evidence is very uncertain about the effect of synbiotics on eczema by two years of age (RR 0.88, 95% CI 0.52 to 1.47; 3 studies, 1235 participants; very low-certainty evidence). Synbiotics may result in little to no difference in food allergy by two years of age (RR 1.06, 95% CI 0.55 to 2.07; 1 study, 223 participants; low-certainty evidence). There were no data for the effect of synbiotics on asthma, allergic rhinitis and IgE-mediated cow's milk protein allergy by two years of age. Probiotic or synbiotic supplementation may result in little to no difference in potential harms including adverse effects, harms or infection with probiotic bacteria at any point during the study intervention by two years of age. There were no serious adverse events related to probiotics or synbiotics reported. We had some concerns about risk of bias for most studies, with only a few judged at low risk of bias. Some studies had a high risk of bias due to unclear randomisation, missing data and lack of prespecified intentions. Estimates were often imprecise, with wide CIs due to limited events. The limited data prevented subgroup analyses on infant risk factors and feeding methods for outcomes other than the effect of probiotics on eczema. Only three studies assessed synbiotic supplementation, leaving their role in allergic disease prevention uncertain. The included studies were mainly in high-income countries in many different areas of the world, but may have limited applicability to other regions. AUTHORS' CONCLUSIONS There is insufficient evidence to make conclusions about the effect of probiotics and synbiotics on preventing the development of allergic diseases by two years of age and during childhood up to 10 years of age. Although there were no serious adverse events reported for the use of probiotics in infants, incorporating probiotics and synbiotics into routine practice requires further information to support their use. FUNDING This Cochrane review had no dedicated funding. REGISTRATION Protocol (2007) available via https://doi.org/10.1002/14651858.CD006475. Original review (2007) available via https://doi.org/10.1002/14651858.CD006475.pub2.
Collapse
Affiliation(s)
- Hang Zhen Wang
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Elizabeth H Hayles
- Department of Neonatology, Royal North Shore Hospital, The University of Sydney, St Leonards, Australia
| | | | - John Kh Sinn
- Department of Neonatology, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie University, Sydney, Australia
| | - David A Osborn
- Central Clinical School, School of Medicine, The University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Varlas VN, Bohîlțea LC, Suciu N. The Influences of Oral Probiotics on the Immunometabolic Response During Pregnancy and Lactation: A Systematic Review. Nutrients 2025; 17:1535. [PMID: 40362845 PMCID: PMC12073199 DOI: 10.3390/nu17091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES In recent years, due to the emergence of antimicrobial resistance, probiotics have been increasingly used during pregnancy and lactation with real maternal-fetal benefits. Probiotic intervention, especially multi-strain probiotics, due to their anti-inflammatory, metabolic, and immunomodulatory actions, can be performed prophylactically and therapeutically with promising results regarding maternal, fetal, and neonatal health. The administration of probiotics can modulate the maternal microbiome, regulate microflora imbalance in various conditions (overweight/obesity, gestational diabetes mellitus (GDM), preeclampsia, allergic diseases), and influence several reactions such as modulating the non-specific cellular immune system, metabolic processes, and inhibition of pathogens. This study aimed to analyze, based on available data, how the administration of probiotic supplements to women during pregnancy can modify immunometabolic responses to microbial dysbiosis to limit weight gain and the risk of obesity, to improve glucose homeostasis and reduce the risk of GDM, to prevent preeclampsia and its effects on maternal-fetal outcomes, and to reduce rates of atopic eczema and allergic diseases in infants. METHODS We performed a systematic search in MEDLINE/PubMed to identify studies that have investigated the effects of probiotic intervention on the immunometabolic response in pregnancy and lactation, especially in women with diabetes, overweight/obesity, preeclampsia, and allergic conditions. RESULTS Fifty-six RCT studies, totaling 15,044 women, matched the inclusion criteria, of which eight were for interventions on the immune response, twenty on allergic conditions, seven on obesity and excess weight gain in pregnancy, and twenty-one on GDM. CONCLUSIONS Due to the heterogeneous structure and the size of the samples, the methodologies, formulations, moment of initiation, and study durations, future research is needed to establish their effectiveness and safety in pregnancy and lactation regarding maternal-fetal health and outcomes in childhood and adult life.
Collapse
Affiliation(s)
- Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011132 Bucharest, Romania
| | - Laurențiu-Camil Bohîlțea
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania;
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania;
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania
| |
Collapse
|
3
|
Wang L, Xu L. The impact of prebiotics, probiotics and synbiotics on the prevention and treatment of atopic dermatitis in children: an umbrella meta-analysis. Front Pediatr 2025; 13:1498965. [PMID: 40191649 PMCID: PMC11968740 DOI: 10.3389/fped.2025.1498965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Background Studies have suggested that the administration of prebiotics, probiotics and synbiotics (pre-, pro-, and synbiotics) may potentially decrease the incidence of atopic dermatitis (AD) and alleviate its severity in children; however, recent studies have yielded inconclusive findings. Objective This umbrella meta-analysis aimed to comprehensively assess the effect of pre-, pro-, and synbiotics on AD among children. Methods A systematic search was carried out in the PubMed and Scopus databases up to April 2024 to identify relevant meta-analyses. Relative risks (RR) and weighted mean differences (WMD) along with their 95% confidence intervals (CI) were pooled using a random effects model to evaluate the impacts on both the incidence of AD and its severity, as assessed by the Scoring Atopic Dermatitis (SCORAD) index. Results This umbrella meta-analysis included 38 meta-analyses, with 127,150 participants. The analysis suggested that intervention with pre-, pro-, and synbiotics significantly reduced the incidence of AD (RR = 0.74, 95% CI: 0.70-0.79), which was confirmed by subgroup analyses. The treatment significantly reduced SCORAD score (WMD = -3.75, 95% CI: -5.08 to -2.42). In subgroup analysis, multi-strain probiotics, Lactobacillus, synbiotics, and pre-, pro-, and synbiotics mixtures were found to significantly decrease the SCORAD score, while, Bifidobacterium and prebiotics alone did not show a significant effect on the SCORAD score. The treatment resulted in a significant decrease in SCORAD score among children with moderate to severe AD, but not in subjects with mild AD. Conclusions Probiotics and synbiotics could be promising interventions to reduce the risk of developing AD and alleviate its severity in children.
Collapse
Affiliation(s)
| | - Lijuan Xu
- Department of Dermatology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Abbaszadeh SH, Hosseini SRA, Mahmoodpoor A, Yousefi M, Lotfi-Dizaji L, Mameghani ME. Investigating the Role of Probiotics in Modulating T Cells and the Immune Response: A Systematic Review. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
|
5
|
Tas GG, Sati L. Probiotic Lactobacillus rhamnosus species: considerations for female reproduction and offspring health. J Assist Reprod Genet 2024; 41:2585-2605. [PMID: 39172320 PMCID: PMC11535107 DOI: 10.1007/s10815-024-03230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Lactobacillus rhamnosus is a type of bacteria known as a probiotic and is often used to support the health of the digestive system and vaginal flora. This type of bacteria has an important role, showing positive effects on female reproductive biology, particularly by maintaining the balance of microorganisms in the vagina, reducing the risk of infection, and strengthening the immune system to support maternal health during pregnancy. There are also studies showing that these probiotics prevent maternal obesity and gestational diabetes. Consuming probiotics containing Lactobacillus rhamnosus strains may support the intestinal health of breastfeeding mothers, but they may also contribute to the health of offspring. Therefore, this review focuses on the current available data for examining the effects of Lactobacillus rhamnosus strains on female reproductive biology and offspring health. A systematic search was conducted in the PubMed and Web of Science databases from inception to May 2024. The search strategy was performed using keywords and MeSH (Medical Subject Headings) terms. Inconsistent ratings were resolved through discussion. This review is strengthened by multiple aspects of the methodological approach. The systematic search strategy, conducted by two independent reviewers, enabled the identification and evaluation of all relevant literature. Although there is a limited number of studies with high heterogeneity, current literature highlights the important contribution of Lactobacillus rhamnosus probiotics in enhancing female reproductive health and fertility. Furthermore, the probiotic bacteria in breast milk may also support the intestinal health of newborn, strengthen the immune system, and protect them against diseases at later ages.
Collapse
Affiliation(s)
- Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
6
|
Lim JJ, Liu MH, Chew FT. Dietary Interventions in Atopic Dermatitis: A Comprehensive Scoping Review and Analysis. Int Arch Allergy Immunol 2024; 185:545-589. [PMID: 38442688 PMCID: PMC11151999 DOI: 10.1159/000535903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND This scoping review aims to critically assess gaps in the current literature on atopic dermatitis (AD) by evaluating the overall effectiveness of dietary interventions. Through a comprehensive analysis that follows the Preferred Reporting Item for Systematic Review and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines, we conducted a thorough search on the Web of Science database in May 2023 using specific search strategies to identify all relevant studies on the research topic. SUMMARY A total of 104 full-text articles were included for review. Our synthesis identified seven notable categories of dietary interventions for AD, showcasing the diversity of interventions utilized. This includes vitamin supplementation, probiotic and prebiotic supplementation, dietary fat, biological compounds, foods from natural sources, major nutrients, and diet-related approaches. Further analyses stratified by targeted populations revealed a predominant focus on pediatrics, particularly in probiotic supplementation, and on adults, with an emphasis on vitamin D and E supplementation. KEY MESSAGES Despite most dietary interventions demonstrating overall effectiveness in improving AD severity and its subjective symptoms, several significant gaps were identified. There was a scarcity of studies on adults and whole-diet interventions, a prevalence of short-term interventions, heterogeneity in study outcomes, designs, and population, occasional disparity between statistical significance and clinical relevance, and a lack of a comprehensive multidisciplinary approach. Nonetheless, these findings offer valuable insights for future AD research, guiding additional evidence-driven dietary interventions and informing healthcare professionals, researchers, and individuals, advancing both understanding and management of AD.
Collapse
Affiliation(s)
- Jun Jie Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Mei Hui Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Zhang W, Jia Q, Han M, Zhang X, Guo L, Sun S, Yin W, Bo C, Han R, Sai L. Bifidobacteria in disease: from head to toe. Folia Microbiol (Praha) 2024; 69:1-15. [PMID: 37644256 DOI: 10.1007/s12223-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bifidobacteria as a strictly anaerobic gram-positive bacteria, is widely distributed in the intestine, vagina and oral cavity, and is one of the first gut flora to colonize the early stages of life. Intestinal flora is closely related to health, and dysbiosis of intestinal flora, especially Bifidobacteria, has been found in a variety of diseases. Numerous studies have shown that in addition to maintaining intestinal homeostasis, Bifidobacteria may be involved in diseases covering all parts of the body, including the nervous system, respiratory system, genitourinary system and so on. This review collects evidence for the variation of Bifidobacteria in typical diseases among various systems, provides mild and effective therapeutic options for those diseases that are difficult to cure, and moves Bifidobacteria from basic research to further clinical applications.
Collapse
Affiliation(s)
- Weiliang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Limin Guo
- Rongcheng Municipal Hospital of Traditional Chinese Medicine, Rongcheng, Shandong, China
| | - Shichao Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine Doctoral candidate Class of 2022, Jinan, Shandong, China
| | - Wenhui Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ru Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
8
|
DuPont HL, Salge MMH. The Importance of a Healthy Microbiome in Pregnancy and Infancy and Microbiota Treatment to Reverse Dysbiosis for Improved Health. Antibiotics (Basel) 2023; 12:1617. [PMID: 37998819 PMCID: PMC10668833 DOI: 10.3390/antibiotics12111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The microbiome of newborn infants during the first 1000 days, influenced early on by their mothers' microbiome health, mode of delivery and breast feeding, orchestrates the education and programming of the infant's immune system and determines in large part the general health of the infant for years. METHODS PubMed was reviewed for maternal infant microbiome health and microbiota therapy in this setting with prebiotics, probiotics, vaginal seeding and fecal microbiota transplantation (FMT). RESULTS A healthy nonobese mother, vaginal delivery and strict breast feeding contribute to microbiome health in a newborn and young infant. With reduced microbiome diversity (dysbiosis) during pregnancy, cesarean delivery, prematurity, and formula feeding contribute to dysbiosis in the newborn. Microbiota therapy is an important approach to repair dysbiosis in pregnant women and their infants. Currently available probiotics can have favorable metabolic effects on mothers and infants, but these effects are variable. In research settings, reversal of infant dysbiosis can be achieved via vaginal seeding or FMT. Next generation probiotics in development should replace current probiotics and FMT. CONCLUSIONS The most critical phase of human microbiome development is in the first 2-3 years of life. Preventing and treating dysbiosis during pregnancy and early life can have a profound effect on an infant's later health.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas, Houston, TX 77030, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Kelsey Research Foundation, Houston, TX 77005, USA
| | | |
Collapse
|
9
|
Pessôa R, Clissa PB, Sanabani SS. The Interaction between the Host Genome, Epigenome, and the Gut-Skin Axis Microbiome in Atopic Dermatitis. Int J Mol Sci 2023; 24:14322. [PMID: 37762624 PMCID: PMC10532357 DOI: 10.3390/ijms241814322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that occurs in genetically predisposed individuals. It involves complex interactions among the host immune system, environmental factors (such as skin barrier dysfunction), and microbial dysbiosis. Genome-wide association studies (GWAS) have identified AD risk alleles; however, the associated environmental factors remain largely unknown. Recent evidence suggests that altered microbiota composition (dysbiosis) in the skin and gut may contribute to the pathogenesis of AD. Examples of environmental factors that contribute to skin barrier dysfunction and microbial dysbiosis in AD include allergens, irritants, pollution, and microbial exposure. Studies have reported alterations in the gut microbiome structure in patients with AD compared to control subjects, characterized by increased abundance of Clostridium difficile and decreased abundance of short-chain fatty acid (SCFA)-producing bacteria such as Bifidobacterium. SCFAs play a critical role in maintaining host health, and reduced SCFA production may lead to intestinal inflammation in AD patients. The specific mechanisms through which dysbiotic bacteria and their metabolites interact with the host genome and epigenome to cause autoimmunity in AD are still unknown. By understanding the combination of environmental factors, such as gut microbiota, the genetic and epigenetic determinants that are associated with the development of autoantibodies may help unravel the pathophysiology of the disease. This review aims to elucidate the interactions between the immune system, susceptibility genes, epigenetic factors, and the gut microbiome in the development of AD.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-002, Brazil;
| | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05508-220, Brazil
- Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil
- Laboratory of Dermatology and Immunodeficiency LIM56/03, Instituto de Medicina Tropical de Sao Paulo, Faculdade de Medicina, University of Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3º Andar, Sao Paulo 05403-000, Brazil
| |
Collapse
|
10
|
Zhang M, Zheng Y, Sun Z, Cao C, Zhao W, Liu Y, Zhang W, Zhang H. Change in the Gut Microbiome and Immunity by Lacticaseibacillus rhamnosus Probio-M9. Microbiol Spectr 2023; 11:e0360922. [PMID: 36912650 PMCID: PMC10100958 DOI: 10.1128/spectrum.03609-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
With the exploding growth of the global market for probiotics and the rapid awakening of public awareness to manage health by probiotic intervention, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients, which is due to the lack of systematic analysis based on time series multiomics data sets. In this study, we recruited 100 adults from a college in China and performed a random case-control study by using a probiotic (Lacticaseibacillus rhamnosus Probio-M9) as an intervention for 6 weeks, aiming to achieve a comprehensive evaluation and understanding of the beneficial effect of Probio-M9 consumption. By testing advanced blood immunity indicators, sequencing the gut microbiome, and profiling the gut metabolome at baseline and the end of the study, we found that although the probiotic intervention has a limited impact on the human immunity and the gut microbiome and metabolome, the associations between the immunity indicators and multiomics data were strengthened, and further analysis of the gut microbiome's genetic variations revealed inhibited generation of single nucleotide variants (SNVs) by probiotic consumption. Taken together, our findings indicated an underestimated influence of the probiotic, not on altering the microbial composition but on strengthening the association between human immunity and commensal microbes and stabilizing the genetic variations of the gut microbiome. IMPORTANCE Although the global market for probiotics is growing explosively, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients. In this study, we recruited 100 adults from a college in China and performed 6 weeks of intervention for half of the volunteers. By analyzing the time series multiomics data in this study, we found that the probiotic intervention (i) has a limited effect on human immunity or the global structure of the gut microbiome and metabolome, (ii) can largely influence the correlation of the development between multiomics data and immunity, which was not able to be discovered by conventional differential abundance analysis, and (iii) can inhibit the generation of SNVs in the gut microbiome instead of promoting it.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zheng Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Chenxia Cao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wei Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yangshuo Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
11
|
Tuniyazi M, Li S, Hu X, Fu Y, Zhang N. The Role of Early Life Microbiota Composition in the Development of Allergic Diseases. Microorganisms 2022; 10:1190. [PMID: 35744708 PMCID: PMC9227185 DOI: 10.3390/microorganisms10061190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Allergic diseases are becoming a major healthcare issue in many developed nations, where living environment and lifestyle are most predominantly distinct. Such differences include urbanized, industrialized living environments, overused hygiene products, antibiotics, stationary lifestyle, and fast-food-based diets, which tend to reduce microbial diversity and lead to impaired immune protection, which further increase the development of allergic diseases. At the same time, studies have also shown that modulating a microbiocidal community can ameliorate allergic symptoms. Therefore, in this paper, we aimed to review recent findings on the potential role of human microbiota in the gastrointestinal tract, surface of skin, and respiratory tract in the development of allergic diseases. Furthermore, we addressed a potential therapeutic or even preventive strategy for such allergic diseases by modulating human microbial composition.
Collapse
Affiliation(s)
| | | | | | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (M.T.); (S.L.); (X.H.)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (M.T.); (S.L.); (X.H.)
| |
Collapse
|
12
|
Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens 2022; 11:pathogens11060642. [PMID: 35745496 PMCID: PMC9228373 DOI: 10.3390/pathogens11060642] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent skin inflammation with a particular impact on children. Current therapies for AD are challenged by the limited armamentarium and the high heterogeneity of the disease. A novel promising therapeutic target for AD is the microbiota. Numerous studies have highlighted the involvement of the skin and gut microbiota in the pathogenesis of AD. The resident microbiota at these two epithelial tissues can modulate skin barrier functions and host immune responses, thus regulating AD progression. For example, the pathogenic roles of Staphylococcus aureus in the skin are well-established, making this bacterium an attractive target for AD treatment. Targeting the gut microbiota is another therapeutic strategy for AD. Multiple oral supplements with prebiotics, probiotics, postbiotics, and synbiotics have demonstrated promising efficacy in both AD prevention and treatment. In this review, we summarize the association of microbiota dysbiosis in both the skin and gut with AD, and the current knowledge of the functions of commensal microbiota in AD pathogenesis. Furthermore, we discuss the existing therapies in manipulating both the skin and gut commensal microbiota to prevent or treat AD. We also propose potential novel therapies based on the cutting-edge progress in this area.
Collapse
|
13
|
de Andrade PDSMA, Maria e Silva J, Carregaro V, Sacramento LA, Roberti LR, Aragon DC, Carmona F, Roxo-Junior P. Efficacy of Probiotics in Children and Adolescents With Atopic Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Study. Front Nutr 2022; 8:833666. [PMID: 35155534 PMCID: PMC8826069 DOI: 10.3389/fnut.2021.833666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
ObjectiveTo evaluate the clinical efficacy of a mixture of probiotics (Lactobacillus and Bifidobacterium) in children and adolescents with atopic dermatitis (AD) and the effects on sensitization, inflammation, and immunological tolerance.MethodsIn this double-blind, randomized, placebo-controlled clinical trial, we enrolled 60 patients aged between 6 months and 19 years with mild, moderate, or severe AD, according to the criteria proposed by Hanifin and Rajka. Patients were stratified to receive one gram per day of probiotics or placebo for 6 months. The primary outcome was a decrease in SCORing Atopic Dermatitis (SCORAD). Secondary outcomes were to assess the role of probiotics on the use of topical and oral medicines (standard treatment), serum IgE levels, skin prick test (SPT), and tolerogenic and inflammatory cytokines. Background therapy was maintained.ResultsForty patients completed the study (24 probiotics, 16 placebo). After treatment for six months, the clinical response was significantly better in the probiotics group; the SCORAD decreased [mean difference (MD) 27.69 percentage points; 95% confidence interval (CI), 2.44–52.94], even after adjustment for co-variables (MD 32.33 percentage points; 95%CI, 5.52–59.13), especially from the third month of treatment on. The reduction of the SCORAD in probiotic group persisted for three more months after the treatment had been discontinued, even after adjustment for co-variables (MD 14.24 percentage points; 95%CI, 0.78–27.70). Patients in the probiotics group required topical immunosuppressant less frequently at 6 and 9 months. No significant changes were found for IgE levels, SPT and cytokines.ConclusionsChildren and adolescents with AD presented a significant clinical response after 6 months with a mixture of probiotics (Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus paracasei, and Bifidobacterium lactis. However, this clinical benefit is related to treatment duration. Probiotics should be considered as an adjuvant treatment for AD.
Collapse
Affiliation(s)
| | - Jorgete Maria e Silva
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vanessa Carregaro
- Department of Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Laís Amorim Sacramento
- Department of Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | | | - Davi Casale Aragon
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fabio Carmona
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pérsio Roxo-Junior
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- *Correspondence: Pérsio Roxo-Junior
| |
Collapse
|
14
|
CAMPOS-ESPINOZA F, CASTAÑO-AGUDELO J, RODRIGUEZ-LLAMAZARES S. Polysaccharides systems for probiotic bacteria microencapsulation: mini review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.95121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Cuinat C, Stinson SE, Ward WE, Comelli EM. Maternal Intake of Probiotics to Program Offspring Health. Curr Nutr Rep 2022; 11:537-562. [PMID: 35986890 PMCID: PMC9750916 DOI: 10.1007/s13668-022-00429-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Probiotics intake may be considered beneficial by prospective and pregnant mothers, but their effects on offspring development are incompletely understood. The purpose of this review was to examine recent pre-clinical and clinical studies to understand how maternal probiotics exposure affects offspring health outcomes. RECENT FINDINGS Effects were investigated in the context of supporting offspring growth, intestinal health, and gut microbiota, preventing allergic diseases, supporting neurodevelopment, and preventing metabolic disorders in pre-clinical and clinical studies. Most human studies focused on infancy outcomes, whereas pre-clinical studies also examined outcomes at adolescence and young adulthood. While still understudied, both pre-clinical and clinical studies propose epigenetic modifications as an underlying mechanism. Optimal timing of intervention remains unclear. Administration of selected probiotics to mothers has programming potential for sustaining life-long health of offspring. Administration protocols, specific windows of susceptibility, and individual-specific responses need to be further studied.
Collapse
Affiliation(s)
- Céline Cuinat
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Sara E. Stinson
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Wendy E. Ward
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.411793.90000 0004 1936 9318Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON Canada
| | - Elena M. Comelli
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.411793.90000 0004 1936 9318Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON Canada ,grid.17063.330000 0001 2157 2938Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
16
|
Tramper‐Stranders G, Ambrożej D, Arcolaci A, Atanaskovic‐Markovic M, Boccabella C, Bonini M, Karavelia A, Mingomataj E, O' Mahony L, Sokolowska M, Untersmayr E, Feleszko W. Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy 2021; 76:3276-3291. [PMID: 34390006 DOI: 10.1111/all.15046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Microbiota composition and associated metabolic activities are essential for the education and development of a healthy immune system. Microbial dysbiosis, caused by risk factors such as diet, birth mode, or early infant antimicrobial therapy, is associated with the inception of allergic diseases. In turn, allergic diseases increase the risk for irrational use of antimicrobial therapy. Microbial therapies, such as probiotics, have been studied in the prevention and treatment of allergic diseases, but evidence remains limited due to studies with high heterogeneity, strain-dependent effectiveness, and variable outcome measures. In this review, we sketch the relation of microbiota with allergic diseases, the overuse and rationale for the use of antimicrobial agents in allergic diseases, and current knowledge concerning the use of bacterial products in allergic diseases. We urgently recommend 1) limiting antibiotic therapy in pregnancy and early childhood as a method contributing to the reduction of the allergy epidemic in children and 2) restricting antibiotic therapy in exacerbations and chronic treatment of allergic diseases, mainly concerning asthma and atopic dermatitis. Future research should be aimed at antibiotic stewardship implementation strategies and biomarker-guided therapy, discerning those patients that might benefit from antibiotic therapy.
Collapse
Affiliation(s)
- Gerdien Tramper‐Stranders
- Department of Pediatrics Franciscus Gasthuis & Vlietland Rotterdam the Netherlands
- Department of Neonatology Erasmus Medical CenterSophia Children's Hospital Rotterdam the Netherlands
| | - Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
- Doctoral School Medical University of Warsaw Warsaw Poland
| | - Alessandra Arcolaci
- Immunology Unit University of Verona and General Hospital Borgo Roma Hospital Verona Italy
| | | | - Cristina Boccabella
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
| | - Matteo Bonini
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
- National Heart and Lung Institute (NHLI) Imperial College London London UK
| | - Aspasia Karavelia
- Department of Ear‐Nose‐Throat surgery General Hospital of Kozani Kozani Greece
| | - Ervin Mingomataj
- Department of Allergology & Clinical Immunology ‘Mother Theresa’ School of Medicine Tirana Albania
| | - Liam O' Mahony
- Departments of Medicine and Microbiology APC Microbiome IrelandNational University of Ireland Cork Ireland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Zurich Switzerland
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
| | | |
Collapse
|
17
|
Fanfaret IS, Boda D, Ion LM, Hosseyni D, Leru P, Ali S, Corcea S, Bumbacea R. Probiotics and prebiotics in atopic dermatitis: Pros and cons (Review). Exp Ther Med 2021; 22:1376. [PMID: 34650624 PMCID: PMC8506923 DOI: 10.3892/etm.2021.10811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) represents a chronic inflammatory skin condition in which the skin barrier is impaired; thus, the permeability is increased. Hence, there is a greater risk of allergic sensitization, as well as a higher pH and lower protection against resident microbes. Since this condition is currently increasing among children, it requires further study, as little is known regarding the pathogenesis that makes the skin prone to chronic relapsing inflammation. Trying to standardize the data regarding the use of prebiotics and probiotics in AD, we encountered tremendous variability in the literature data. Literature abounds in conflicting data: studies regarding prophylactic and therapeutic applications, different types of strains and dosages, applications in young children up to 5 years of age and above, usage of probiotics alone, prebiotics alone or synbiotics combined. There are also conflicting data regarding the outcome of these studies; some confirming a positive effect of prebiotics, probiotics or synbiotics and some showing no efficacy at all. The articles were divided into those assessing probiotics or prebiotics alone and a combination of the two, with studies showing a positive effect and studies proving no efficacy at all. We tried to critically analyze those articles showing weak and strong points. In summary, the most studied probiotics were the strains of Lactobacilli and Bifidobacteria. The Severity Scoring of Atopic Dermatitis (SCORAD) index was used to measure the efficacy of the treatment. Most studies compared their results with a placebo group and the efficacy when seen in moderate to severe forms of AD in patients with other allergic diseases present. However, the results are difficult to interpret, as in many studies the authors suggest that the disease may have a tendency to improve in time in some groups of patients.
Collapse
Affiliation(s)
| | - Daniel Boda
- Dermatology Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Pediatrics Department, 'Ponderas' Academic Hospital, 014142 Bucharest, Romania
| | - Laura Mihaela Ion
- Pediatrics Department, 'Ponderas' Academic Hospital, 014142 Bucharest, Romania
| | - Daniela Hosseyni
- Public Health Department, Harvard T.H. Chan School of Public Health, ECPE, PPCR Program, Boston, MA 02115, USA
| | - Poliana Leru
- Internal Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Selda Ali
- Allergy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Allergy Department, 'Dr. Carol Davila' Clinical Nephrology Hospital, 010731 Bucharest, Romania
| | - Sabina Corcea
- Allergy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Roxana Bumbacea
- Allergy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Allergy Department, 'Dr. Carol Davila' Clinical Nephrology Hospital, 010731 Bucharest, Romania
| |
Collapse
|
18
|
Fang Z, Li L, Zhang H, Zhao J, Lu W, Chen W. Gut Microbiota, Probiotics, and Their Interactions in Prevention and Treatment of Atopic Dermatitis: A Review. Front Immunol 2021; 12:720393. [PMID: 34335634 PMCID: PMC8317022 DOI: 10.3389/fimmu.2021.720393] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD) is a public health concern and is increasing in prevalence in urban areas. Recent advances in sequencing technology have demonstrated that the development of AD not only associate with the skin microbiome but gut microbiota. Gut microbiota plays an important role in allergic diseases including AD. The hypothesis of the “gut-skin” axis has been proposed and the cross-talk mechanism between them has been gradually demonstrated in the research. Probiotics contribute to the improvement of the intestinal environment, the balance of immune responses, regulation of metabolic activity. Most studies suggest that probiotic supplements may be an alternative for the prevention and treatment of AD. This study aimed to discuss the effects of probiotics on the clinical manifestation of AD based on gut microbial alterations. Here we reviewed the gut microbial alteration in patients with AD, the association between gut microbiota, epidermal barrier, and toll-like receptors, and the interaction of probiotics and gut microbiota. The potential mechanisms of probiotics on alleviating AD via upregulation of epidermal barrier and regulation of immune signaling had been discussed, and their possible effective substances on AD had been explored. This provides the supports for targeting gut microbiota to attenuate AD.
Collapse
Affiliation(s)
- Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lingzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research, Institute Wuxi Branch, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Hossein-Khannazer N, Zian Z, Bakkach J, Kamali AN, Hosseinzadeh R, Anka AU, Yazdani R, Azizi G. Features and roles of T helper 22 cells in immunological diseases and malignancies. Scand J Immunol 2021; 93:e13030. [PMID: 33576072 DOI: 10.1111/sji.13030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
T helper 22 (Th22) cell populations are a newly identified subset of CD4+ T cells that primarily mediate biological effects on the epithelial barrier through interleukin (IL)-22. Although, new studies showed that both Th22 and IL-22 are closely associated with the pathogenesis of inflammatory, autoimmune and allergic disease as well as malignancies. In this review, we aim to describe the development and characteristics of Th22 cells as well as their roles in the immunopathogenesis of immune-related disorders and cancer.
Collapse
Affiliation(s)
- Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Joaira Bakkach
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co, Alborz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
20
|
Sun M, Luo J, Liu H, Xi Y, Lin Q. Can Mixed Strains of Lactobacillus and Bifidobacterium Reduce Eczema in Infants under Three Years of Age? A Meta-Analysis. Nutrients 2021; 13:nu13051461. [PMID: 33923096 PMCID: PMC8145948 DOI: 10.3390/nu13051461] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Whether early supplementation of probiotics to improve intestinal flora can effectively prevent eczema remains a controversial issue. We aimed to investigate the effect of a mixed strain of Lactobacillus and Bifidobacterium on eczema in infants under three years old at present; (2) Methods: We searched the databases of PubMed, Web of Science, and Cochrane Library, as well as National Knowledge Infrastructure (CNKI), WeiPu (VIP), and WanFang Data (WanFang) for randomized controlled trials (RCTs) of probiotics in the prevention of eczema in infants without language restriction. The main outcome was eczema incidence, while adverse events during the intervention constituted the secondary outcome. The random-/fixed-effects model was utilized to calculate the combined relative risk (RR) and 95% confidence interval (CI). The methodological quality of the study was evaluated using the Cochrane "bias risk" tool. According to the initial intervention time, subgroup analysis was carried out, follow-up time, family history, etc.; (3) Results: Nine articles were selected (2093 infants). The Lactobacillus and Bifidobacterium mixed strain could prevent eczema in infants under three years of age compared to the placebo (RR = 0.60; I2 = 67%; p < 0.001). Subgroup analysis revealed that the mixture of two probiotic strains had preventive effects on both infants with positive (RR = 0.53; I2 = 52%; p < 0.001) and negative (RR = 0.69; I2 = 62%; p = 0.02) family history; The follow-up time for ≤12 months (RR = 0.65; I2 = 12%; p = 0.01) and 12-24 months (RR = 0.60; I2 = 79%; p = 0.003), daily dose of probiotics ≤ 1 × 109 and > 1 × 109 colony forming units all can be effective (p < 0.01); Compared with the intervention of infants alone (RR = 0.63; I2 = 63%; p = 0.29), the effect of probiotics mixture at the beginning of pregnancy was more significant (RR = 0.59; I2 = 71%; p < 0.001); Except for the mixture of Lactobacillus rhamnosusGG (LGG) and Bifidobacterium longum (B. longum) (p = 0.18), other subgroups of intervention group can play a preventive effect (p < 0.05); (4) Conclusions: The mixed strain of Lactobacillus and Bifidobacterium can effectively reduce the incidence of eczema in infants under three years old. However, further research is needed to fully understand the exact mechanism of their effect on infant eczema.
Collapse
Affiliation(s)
| | | | | | | | - Qian Lin
- Correspondence: ; Tel.: +86-0731-82650291
| |
Collapse
|
21
|
Lopez-Santamarina A, Gonzalez EG, Lamas A, Mondragon ADC, Regal P, Miranda JM. Probiotics as a Possible Strategy for the Prevention and Treatment of Allergies. A Narrative Review. Foods 2021; 10:foods10040701. [PMID: 33806092 PMCID: PMC8064452 DOI: 10.3390/foods10040701] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Allergies are an increasing global public health concern, especially for children and people living in urban environments. Allergies impair the quality of life of those who suffer from them, and for this reason, alternatives for the treatment of allergic diseases or reduction in their symptoms are being sought. The main objective of this study was to compile the studies carried out on probiotics as a possible therapy for allergies. The most studied allergies on which probiotics have been shown to have a beneficial effect are rhinitis, asthma, and atopic dermatitis. Most studies have studied the administration of Lactobacillus and Bifidobacterium spp. in children and have shown beneficial effects, such as a reduction in hyperreactivity and inflammation caused by allergens and a decrease in cytokine release, among other beneficial effects. In the case of children, no clear beneficial effects were found in several studies, and the potential risk from the use of some opportunistic bacteria, such as probiotics, seems controversial. In the studies that reported beneficial results, these effects were found to make allergy symptoms less aggressive, thus reducing morbidity in allergy sufferers. The different effects of the same probiotic bacteria on different patients seem to reinforce the idea that the efficacy of probiotics is dependent on the microbial species or strain, its derived metabolites and byproducts, and the gut microbiota eubiosis of the patient. This study is relevant in the context of allergic diseases, as it provides a broader understanding of new alternatives for the treatment of allergies, both in children, who are the main sufferers, and adults, showing that probiotics, in some cases, reduce the symptoms and severity of such diseases.
Collapse
|
22
|
Davoodvandi A, Marzban H, Goleij P, Sahebkar A, Morshedi K, Rezaei S, Mahjoubin-Tehran M, Tarrahimofrad H, Hamblin MR, Mirzaei H. Effects of therapeutic probiotics on modulation of microRNAs. Cell Commun Signal 2021; 19:4. [PMID: 33430873 PMCID: PMC7798223 DOI: 10.1186/s12964-020-00668-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Probiotics are beneficial bacteria that exist within the human gut, and which are also present in different food products and supplements. They have been investigated for some decades, due to their potential beneficial impact on human health. Probiotics compete with pathogenic microorganisms for adhesion sites within the gut, to antagonize them or to regulate the host immune response resulting in preventive and therapeutic effects. Therefore, dysbiosis, defined as an impairment in the gut microbiota, could play a role in various pathological conditions, such as lactose intolerance, gastrointestinal and urogenital infections, various cancers, cystic fibrosis, allergies, inflammatory bowel disease, and can also be caused by antibiotic side effects. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate gene expression in a post-transcriptional manner. miRNAs are biochemical biomarkers that play an important role in almost all cellular signaling pathways in many healthy and disease states. For the first time, the present review summarizes current evidence suggesting that the beneficial properties of probiotics could be explained based on the pivotal role of miRNAs. Video Abstract.
Collapse
Affiliation(s)
| | - Havva Marzban
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology,Sana Institute of Higher Education, Sari, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114 USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Eslami M, Bahar A, Keikha M, Karbalaei M, Kobyliak NM, Yousefi B. Probiotics function and modulation of the immune system in allergic diseases. Allergol Immunopathol (Madr) 2020; 48:771-788. [PMID: 32763025 DOI: 10.1016/j.aller.2020.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Allergic diseases have been a global problem over the past few decades. The effect of allergic diseases on healthcare systems and society is generally remarkable and is considered as one of the most common causes of chronic and hospitalized disease. The functional ability of probiotics to modulate the innate/acquired immune system leads to the initiation of mucosal/systemic immune responses. Gut microbiota plays a beneficial role in food digestion, development of the immune system, control/growth of the intestinal epithelial cells and their differentiation. Prescribing probiotics causes a significant change in the intestinal microflora and modulates cytokine secretion, including networks of genes, TLRs, signaling molecules and increased intestinal IgA responses. The modulation of the Th1/Th2 balance is done by probiotics, which suppress Th2 responses with shifts to Th1 and thereby prevent allergies. In general, probiotics are associated with a decrease in inflammation by increasing butyrate production and induction of tolerance with an increase in the ratio of cytokines such as IL-4, IL-10/IFN-γ, Treg/TGF-β, reducing serum eosinophil levels and the expression of metalloproteinase-9 which contribute to the improvement of the allergic disease's symptoms. Finally, it can be said that the therapeutic approach to immunotherapy and the reduction of the risk of side effects in the treatment of allergic diseases is the first priority of treatment and the final approach that completes the first priority in maintaining the condition and sustainability of the tolerance along with the recovery of the individual.
Collapse
Affiliation(s)
- M Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - A Bahar
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - M Keikha
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - N M Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - B Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The skin is home to a diverse milieu of bacteria, fungi, viruses, bacteriophages, and archaeal communities. The application of culture-independent approaches has revolutionized the characterization of the skin microbiome and have revealed a previously underappreciated phylogenetic and functional granularity of skin-associated microbes in both health and disease states. RECENT FINDINGS The physiology of a given skin-niche drives the site-specific differences in bacterial phyla composition of healthy skin. Changes in the skin microbiome have consistently been associated with atopic dermatitis. In particular, Staphylococcus aureus overgrowth with concomitant decline in Staphylococcus epidermidis is a general feature associated with atopic dermatitis and is not restricted to eczematous lesions. Changes in fungal species are now also being described. Changes in the composition and metabolic activity of the gut microbiota are associated with skin health. SUMMARY We are now beginning to appreciate the intimate and intricate interactions between microbes and skin health. Multiple studies are currently focused on the manipulation of the skin or gut microbiome to explore their therapeutic potential in the prevention and treatment of skin inflammation.
Collapse
|
25
|
Peroni DG, Nuzzi G, Trambusti I, Di Cicco ME, Comberiati P. Microbiome Composition and Its Impact on the Development of Allergic Diseases. Front Immunol 2020; 11:700. [PMID: 32391012 PMCID: PMC7191078 DOI: 10.3389/fimmu.2020.00700] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Allergic diseases, such as food allergy (FA), atopic dermatitis (AD), and asthma, are heterogeneous inflammatory immune-mediated disorders that currently constitute a public health issue in many developed countries worldwide. The significant increase in the prevalence of allergic diseases reported over the last few years has closely paralleled substantial environmental changes both on a macro and micro scale, which have led to reduced microbial exposure in early life and perturbation of the human microbiome composition. Increasing evidence shows that early life interactions between the human microbiome and the immune cells play a pivotal role in the development of the immune system. Therefore, the process of early colonization by a “healthy” microbiome is emerging as a key determinant of life-long health. In stark contrast, the perturbation of such a process, which results in changes in the host-microbiome biodiversity and metabolic activities, has been associated with greater susceptibility to immune-mediated disorders later in life, including allergic diseases. Here, we outline recent findings on the potential contribution of the microbiome in the gastrointestinal tract, skin, and airways to the development of FA, AD, and asthma. Furthermore, we address how the modulation of the microbiome composition in these different body districts could be a potential strategy for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Diego G Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Giulia Nuzzi
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Irene Trambusti
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Maria Elisa Di Cicco
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy.,Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
26
|
Bawany F, Beck LA, Järvinen KM. Halting the March: Primary Prevention of Atopic Dermatitis and Food Allergies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:860-875. [PMID: 32147139 PMCID: PMC7355223 DOI: 10.1016/j.jaip.2019.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin conditions, affecting 15% to 30% of children and 2% to 10% of adults. Population-based studies suggest that having AD is associated with subsequent development of other atopic diseases, in what is known as the "atopic march." We will provide an overview of studies that investigate primary prevention strategies for the first 2 diseases in the march, namely, AD and food allergies (FA). These strategies include emollients, breastfeeding, microbial exposures, probiotics, vitamin D and UV light, water hardness, and immunotherapy. Some studies, including randomized controlled trials on emollients and microbial supplementation, have found encouraging results; however, the evidence remains limited and contradictory. With regard to breastfeeding, microbial and lifestyle exposures, vitamin D and UV light, water hardness, and immunotherapy, the lack of randomized controlled trials makes it difficult to draw definitive conclusions. Current American Academy of Pediatrics guidelines support the idea that breastfeeding for 3 to 4 months can decrease AD incidence in children less than 2 years old. Recommendations regarding a direct relationship between breastfeeding on FA, however, cannot be made because of insufficient data. Regarding microbial supplementation, most guidelines do not recommend probiotics or prebiotics for the purpose of preventing allergic diseases because of limited evidence. Before definitive conclusions can be made regarding these interventions, more well-designed, longitudinal, and randomized controlled trials, particularly in at-risk populations, are required.
Collapse
Affiliation(s)
- Fatima Bawany
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY.
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology & Center for Food Allergy, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
27
|
Lactobacillus fermentum CECT5716 Supplementation in Rats during Pregnancy and Lactation Impacts Maternal and Offspring Lipid Profile, Immune System and Microbiota. Cells 2020; 9:cells9030575. [PMID: 32121244 PMCID: PMC7140451 DOI: 10.3390/cells9030575] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics have shown potential for their use in early life. This study aimed to investigate whether the administration of Lactobacillus fermentum CECT5716 during pregnancy and lactation periods impacts maternal and offspring plasma lipid profile, immune system and microbiota. Rats were supplemented with the probiotic during gestation and two weeks of lactation. After supplementation, although the microbiota composition was not affected, the probiotic strain was detected in all cecal contents of dams and in some of their pups. Dams showed reduced proportion of T cytotoxic cells in the mesenteric lymph nodes, modulation of intestinal cytokines (IL-10 and IL-12) and changes in plasma fatty acids (20:0, 22:0, 20:5 n-3, and 18:3 n-6). Pups showed changes in immunoglobulins (intestinal IgA and plasmatic IgG2a and IgG2c) and fatty acid profile (17:0, 22:0, and 18:2 n-6). Overall, Lactobacillus fermentum CECT5716 supplementation contributed to beneficially modulating the immune system of the mother and its offspring.
Collapse
|
28
|
Nakajima A, Habu S, Kasai M, Okumura K, Ishikawa D, Shibuya T, Kobayashi O, Osada T, Ohkusa T, Watanabe S, Nagahara A. Impact of maternal dietary gut microbial metabolites on an offspring's systemic immune response in mouse models. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:33-38. [PMID: 32328398 PMCID: PMC7162694 DOI: 10.12938/bmfh.19-013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
The gut microbiota has a great impact on the host immune systems. Recent evidence suggests that the maternal gut microbiota affects the immune systems of offspring. Metabolites produced by
the gut microbiota play crucial roles in the immune system. Previous studies have also revealed that metabolites such as short-chain fatty acids (SCFAs) and the aryl hydrocarbon receptor
(AhR) ligands are involved in host health and diseases. Great progress has been made in understanding the roles of diet-derived SCFAs in the offspring’s immune system. The findings to date
raise the possibility that maternal dietary soluble fiber intake may play a role in the development of the offspring’s systemic immune response. In this review, we summarize the present
knowledge and discuss future therapeutic possibilities for using dietary soluble fiber intake against inflammatory diseases.
Collapse
Affiliation(s)
- Akihito Nakajima
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sonoko Habu
- Atopic Research Center, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masataka Kasai
- Atopic Research Center, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopic Research Center, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Dai Ishikawa
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Osamu Kobayashi
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taro Osada
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
29
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments in the field of allergy in 2017 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2019; 48:1606-1621. [PMID: 30489681 DOI: 10.1111/cea.13318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this article, we described the development in the field of allergy as described by Clinical and Experimental Allergy in 2017. Experimental models of allergic disease, basic mechanisms, clinical mechanisms, allergens, asthma and rhinitis and clinical allergy are all covered.
Collapse
Affiliation(s)
- G Roberts
- Faculty of Medicine, Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - B Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
30
|
Fang Z, Li L, Liu X, Lu W, Zhao J, Zhang H, Chen W. Strain-specific ameliorating effect of Bifidobacterium longum on atopic dermatitis in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
31
|
Mills S, Lane JA, Smith GJ, Grimaldi KA, Ross RP, Stanton C. Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients 2019; 11:E1468. [PMID: 31252674 PMCID: PMC6683087 DOI: 10.3390/nu11071468] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Modulation of the human gut microbiota through probiotics, prebiotics and dietary fibre are recognised strategies to improve health and prevent disease. Yet we are only beginning to understand the impact of these interventions on the gut microbiota and the physiological consequences for the human host, thus forging the way towards evidence-based scientific validation. However, in many studies a percentage of participants can be defined as 'non-responders' and scientists are beginning to unravel what differentiates these from 'responders;' and it is now clear that an individual's baseline microbiota can influence an individual's response. Thus, microbiome composition can potentially serve as a biomarker to predict responsiveness to interventions, diets and dietary components enabling greater opportunities for its use towards disease prevention and health promotion. In Part I of this two-part review, we reviewed the current state of the science in terms of the gut microbiota and the role of diet and dietary components in shaping it and subsequent consequences for human health. In Part II, we examine the efficacy of gut-microbiota modulating therapies at different life stages and their potential to aid in the management of undernutrition and overnutrition. Given the significance of an individual's gut microbiota, we investigate the feasibility of microbiome testing and we discuss guidelines for evaluating the scientific validity of evidence for providing personalised microbiome-based dietary advice. Overall, this review highlights the potential value of the microbiome to prevent disease and maintain or promote health and in doing so, paves the pathway towards commercialisation.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Jonathan A Lane
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - Graeme J Smith
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Fermoy P61 C996, Co Cork, Ireland.
| |
Collapse
|
32
|
Cutting Edge: Probiotics and Fecal Microbiota Transplantation in Immunomodulation. J Immunol Res 2019; 2019:1603758. [PMID: 31143780 PMCID: PMC6501133 DOI: 10.1155/2019/1603758] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics are commensal or nonpathogenic microbes that confer beneficial effects on the host through several mechanisms such as competitive exclusion, antibacterial effects, and modulation of immune responses. Some probiotics have been found to regulate immune responses via immune regulatory mechanisms. T regulatory (Treg) cells, T helper cell balances, dendritic cells, macrophages, B cells, and natural killer (NK) cells can be considered as the most determinant dysregulated mediators in immunomodulatory status. Recently, fecal microbiota transplantation (FMT) has been defined as the transfer of distal gut microbial communities from a healthy individual to a patient's intestinal tract to cure some immune disorders (mainly inflammatory bowel diseases). The aim of this review was followed through the recent literature survey on immunomodulatory effects and mechanisms of probiotics and FMT and also efficacy and safety of probiotics and FMT in clinical trials and applications.
Collapse
|
33
|
Swartwout B, Luo XM. Implications of Probiotics on the Maternal-Neonatal Interface: Gut Microbiota, Immunomodulation, and Autoimmunity. Front Immunol 2018; 9:2840. [PMID: 30559747 PMCID: PMC6286978 DOI: 10.3389/fimmu.2018.02840] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Probiotics are being investigated for the treatment of autoimmune disease by re-balancing dysbiosis induced changes in the immune system. Pregnancy is a health concern surrounding autoimmune disease, both for the mother and her child. Probiotics for maternity are emerging on the market and have gained significant momentum in the literature. Thus far, evidence supports that probiotics alter the structure of the normal microbiota and the microbiota changes significantly during pregnancy. The interaction between probiotics-induced changes and normal changes during pregnancy is poorly understood. Furthermore, there is emerging evidence that the maternal gut microbiota influences the microbiota of offspring, leading to questions on how maternal probiotics may influence the health of neonates. Underpinning the development and balance of the immune system, the microbiota, especially that of the gut, is significantly important, and dysbiosis is an agent of immune dysregulation and autoimmunity. However, few studies exist on the implications of maternal probiotics for the outcome of pregnancy in autoimmune disease. Is it helpful or harmful for mother with autoimmune disease to take probiotics, and would this be protective or pathogenic for her child? Controversy surrounds whether probiotics administered maternally or during infancy are healthful for allergic disease, and their use for autoimmunity is relatively unexplored. This review aims to discuss the use of maternal probiotics in health and autoimmune disease and to investigate their immunomodulatory properties.
Collapse
Affiliation(s)
- Brianna Swartwout
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
34
|
Lunjani N, Satitsuksanoa P, Lukasik Z, Sokolowska M, Eiwegger T, O'Mahony L. Recent developments and highlights in mechanisms of allergic diseases: Microbiome. Allergy 2018; 73:2314-2327. [PMID: 30325537 DOI: 10.1111/all.13634] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022]
Abstract
All body surfaces are exposed to a wide variety of microbes, which significantly influence immune reactivity within the host. This review provides an update on some of the critical novel findings that have been published on the influence of the microbiome on atopic dermatitis, food allergy and asthma. Microbial dysbiosis has consistently been observed in the skin, gut and lungs of patients with atopic dermatitis, food allergy and asthma, respectively, and the role of specific microbes in allergic disorders is being intensively investigated. However, many of these discoveries have yet to be translated into routine clinical practice.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- University of Cape Town; Cape Town South Africa
| | | | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - Thomas Eiwegger
- Program in Translational Medicine; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Immunology; The University of Toronto; Toronto Ontario Canada
- Division of Immunology and Allergy; Food allergy and Anaphylaxis Program; The Department of Paediatrics; The Hospital for Sick Children; Toronto Ontario Canada
| | - Liam O'Mahony
- Departments of Medicine and Microbiology; APC Microbiome Ireland; National University of Ireland; Cork Ireland
| |
Collapse
|
35
|
Immunomodulatory effects of probiotics: Can they be used to treat allergies and autoimmune diseases? Maturitas 2018; 119:25-38. [PMID: 30502748 DOI: 10.1016/j.maturitas.2018.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
As a person ages, physiological, immunological and gut microbiome changes collectively result in an array of chronic conditions. According to the 'hygiene hypothesis' the increasing prevalence of immune-mediated disorders may be related to intestinal dysbiosis, leading to immune dysfunction and associated conditions such as eczema, asthma, allergies and autoimmune diseases. Beneficial probiotic bacteria can be utilized by increasing their abundance within the gastrointestinal lumen, which in turn will modulate immune cells, such as, T helper (Th)-1, Th2, Th17, regulatory T (Treg) cells and B cells, which have direct relevance to human health and the pathogenesis of immune disorders. Here, we describe the cross-talk between probiotics and the gastrointestinal immune system, and their effects in relation to inflammatory bowel disease, multiple sclerosis, allergies and atopic dermatitis.
Collapse
|
36
|
Ahmad S, Azid NA, Boer JC, Lim J, Chen X, Plebanski M, Mohamud R. The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Front Immunol 2018; 9:2572. [PMID: 30473698 PMCID: PMC6238659 DOI: 10.3389/fimmu.2018.02572] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF) is a pleiotropic cytokine, which is thought to play a major role in the pathogenesis of inflammatory diseases, including allergy. TNF is produced at the early stage of allergen sensitization, and then continues to promote the inflammation cascade in the effector phase of allergic reactions. Consequently, anti-TNF treatment has been proposed as a potential therapeutic option. However, recent studies reveal anti-intuitive effects of TNF in the activation and proliferative expansion of immunosuppressive Tregs, tolerogenic DCs and MDSCs. This immunosuppressive effect of TNF is mediated by TNFR2, which is preferentially expressed by immunosuppressive cells. These findings redefine the role of TNF in allergic reaction, and suggest that targeting TNF-TNFR2 interaction itself may represent a novel strategy in the treatment of allergy.
Collapse
Affiliation(s)
- Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nor Azrini Azid
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jennifer C Boer
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
37
|
Rationale of Probiotic Supplementation during Pregnancy and Neonatal Period. Nutrients 2018; 10:nu10111693. [PMID: 30404227 PMCID: PMC6267579 DOI: 10.3390/nu10111693] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023] Open
Abstract
Probiotics are living microorganisms that confer a health benefit when administered in adequate amounts. It has been speculated that probiotics supplementation during pregnancy and in the neonatal period might reduce some maternal and neonatal adverse outcomes. In this narrative review, we describe the rationale behind probiotic supplementation and its possible role in preventing preterm delivery, perinatal infections, functional gastrointestinal diseases, and atopic disorders during early life.
Collapse
|
38
|
Kim BE, Leung DYM. Significance of Skin Barrier Dysfunction in Atopic Dermatitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:207-215. [PMID: 29676067 PMCID: PMC5911439 DOI: 10.4168/aair.2018.10.3.207] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
Abstract
The epidermis contains epithelial cells, immune cells, and microbes which provides a physical and functional barrier to the protection of human skin. It plays critical roles in preventing environmental allergen penetration into the human body and responsing to microbial pathogens. Atopic dermatitis (AD) is the most common, complex chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Multiple factors, including immune dysregulation, filaggrin mutations, deficiency of antimicrobial peptides, and skin dysbiosis contribute to skin barrier defects. In the initial phase of AD, treatment with moisturizers improves skin barrier function and prevents the development of AD. With the progression of AD, effective topical and systemic therapies are needed to reduce immune pathway activation and general inflammation. Targeted microbiome therapy is also being developed to correct skin dysbiosis associated with AD. Improved identification and characterization of AD phenotypes and endotypes are required to optimize the precision medicine approach to AD.
Collapse
Affiliation(s)
- Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
39
|
Zhao M, Shen C, Ma L. Treatment efficacy of probiotics on atopic dermatitis, zooming in on infants: a systematic review and meta-analysis. Int J Dermatol 2018; 57:635-641. [PMID: 29417549 DOI: 10.1111/ijd.13873] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Mutong Zhao
- Department of Dermatology; Beijing Children's Hospital; Capital Medical University; National Center for Children's Health; Beijing China
| | - Chunping Shen
- Department of Dermatology; Beijing Children's Hospital; Capital Medical University; National Center for Children's Health; Beijing China
| | - Lin Ma
- Department of Dermatology; Beijing Children's Hospital; Capital Medical University; National Center for Children's Health; Beijing China
| |
Collapse
|
40
|
|
41
|
West CE, Dzidic M, Prescott SL, Jenmalm MC. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol Int 2017; 66:529-538. [PMID: 28865967 DOI: 10.1016/j.alit.2017.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
Large-scale biodiversity loss and complex changes in social behaviors are altering human microbial ecology. This is increasingly implicated in the global rise in inflammatory diseases, most notably the "allergy epidemic" in very early life. Colonization of human ecological niches, particularly the gastrointestinal tract, is critical for normal local and systemic immune development and regulation. Disturbances in composition, diversity and timing of microbial colonization have been associated with increased allergy risk, indicating the importance of strategies to restore a dysbiotic gut microbiota in the primary prevention of allergic diseases, including the administration of probiotics, prebiotics and synbiotics. Here, we summarize and discuss findings of randomized clinical trials that have examined the effects of these microbiome-related strategies on short and long-term allergy preventative effects - including new guidelines from the World Allergy Organization which now recommend probiotics and prebiotics for allergy prevention under certain conditions. The relatively low quality evidence, limited comparative studies and large heterogeneity between studies, have collectively hampered recommendations on specific probiotic strains, specific timing and specific conditions for the most effective preventive management. At the same time the risk of using available products is low. While further research is needed before specific practice guidelines on supplement probiotics and prebiotics, it is equally important that the underlying dietary and lifestyle factors of dysbiosis are addressed at both the individual and societal levels.
Collapse
Affiliation(s)
- Christina E West
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden; inFLAME Global Network (Worldwide Universities Network), West New York, NJ, USA.
| | - Majda Dzidic
- inFLAME Global Network (Worldwide Universities Network), West New York, NJ, USA; Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
| | - Susan L Prescott
- inFLAME Global Network (Worldwide Universities Network), West New York, NJ, USA; School of Paediatrics and Child Health, University of Western Australia and Princess Margaret Hospital for Children, Perth, Australia
| | - Maria C Jenmalm
- inFLAME Global Network (Worldwide Universities Network), West New York, NJ, USA; Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|