1
|
Sato S, Yanagida N, Nagakura KI, Takahashi K, Borres MP, Ebisawa M. Evaluating clinical importance of sensitization to Ara h 6 quantitively in Japanese children. World Allergy Organ J 2024; 17:101001. [PMID: 39640895 PMCID: PMC11617720 DOI: 10.1016/j.waojou.2024.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background The clinical importance of sensitization to Arachis hypogaea 6 (Ara h 6) in Japanese children remains unelucidated. We aimed to quantitatively evaluate the clinical importance of sensitization to Ara h 6 in managing peanut allergy in Japanese children. Methods We retrospectively analyzed the data of children with or without symptoms induced by an oral food challenge or home dosing of up to 3 g of peanuts. The specific immunoglobulin E (sIgE) levels against peanuts, Ara h 2, and Ara h 6 were quantified using an ImmunoCAP assay. Results We examined 273 patients aged 4.6-9.8 years (median 6.3); 189 (69%) were male, 187 (68%) had allergies to peanuts, and 43 (16%) had anaphylactic reactions to peanuts. Ara h 6 and Ara h 2 co-sensitization was observed in 224 patients (82%). Ara h 6-sIgE levels were significantly associated with the probability of allergic reactions and anaphylaxis. The 95% probability of allergic reactions to peanuts was obtained at 44.5 kUA/L of Ara h 6-sIgE, but the 95% probability of anaphylaxis could not be calculated. A combination of Ara h 6 and Ara h 2 could not improve diagnostic accuracy for allergic reactions and anaphylaxis to peanuts. Conclusion Sensitization to Ara h 6 played an important role in managing peanut allergy in Japanese children, and sIgE levels provided valuable predictive information for allergic reactions to peanuts. However, the measurement of Ara h 6 did not improve the diagnostic accuracy of anaphylaxis, and Ara h 2 alone might be sufficient for clinical evaluation in peanut allergy.
Collapse
Affiliation(s)
- Sakura Sato
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Kanagawa, Japan
- Course of Allergy and Clinical Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Noriyuki Yanagida
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Kanagawa, Japan
| | - Ken-ichi Nagakura
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Kanagawa, Japan
| | - Kyohei Takahashi
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Kanagawa, Japan
| | - Magnus P. Borres
- Thermo Fisher Scientific, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Motohiro Ebisawa
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Kanagawa, Japan
- Course of Allergy and Clinical Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Marini-Rapoport O, Fernández-Quintero ML, Keswani T, Zong G, Shim J, Pedersen LC, Mueller GA, Patil SU. Defining the cross-reactivity between peanut allergens Ara h 2 and Ara h 6 using monoclonal antibodies. Clin Exp Immunol 2024; 216:25-35. [PMID: 38346116 PMCID: PMC10929694 DOI: 10.1093/cei/uxae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In peanut allergy, Arachis hypogaea 2 (Ara h 2) and Arachis hypogaea 6 (Ara h 6) are two clinically relevant peanut allergens with known structural and sequence homology and demonstrated cross-reactivity. We have previously utilized X-ray crystallography and epitope binning to define the epitopes on Ara h 2. We aimed to quantitatively characterize the cross-reactivity between Ara h 2 and Ara h 6 on a molecular level using human monoclonal antibodies (mAbs) and structural characterization of allergenic epitopes. We utilized mAbs cloned from Ara h 2 positive single B cells isolated from peanut-allergic, oral immunotherapy-treated patients to quantitatively analyze cross-reactivity between recombinant Ara h 2 (rAra h 2) and Ara h 6 (rAra h 6) proteins using biolayer interferometry and indirect inhibitory ELISA. Molecular dynamics simulations assessed time-dependent motions and interactions in the antibody-antigen complexes. Three epitopes-conformational epitopes 1.1 and 3, and the sequential epitope KRELRNL/KRELMNL-are conserved between Ara h 2 and Ara h 6, while two more conformational and three sequential epitopes are not. Overall, mAb affinity was significantly lower to rAra h 6 than it was to rAra h 2. This difference in affinity was primarily due to increased dissociation of the antibodies from rAra h 6, a phenomenon explained by the higher conformational flexibility of the Ara h 6-antibody complexes in comparison to Ara h 2-antibody complexes. Our results further elucidate the cross-reactivity of peanut 2S albumins on a molecular level and support the clinical immunodominance of Ara h 2.
Collapse
Affiliation(s)
- Orlee Marini-Rapoport
- Harvard University, Cambridge, MA, USA
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | - Tarun Keswani
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Guangning Zong
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jane Shim
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Lars C Pedersen
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sarita U Patil
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
3
|
He XR, Yang Y, Chen YX, Kang S, Li FJ, Li DX, Liu QM, Chen GX, Chen XM, Liu GM. Immunoglobulin E Epitope Mapping and Structure-Allergenicity Relationship Analysis of Crab Allergen Scy p 9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37931089 DOI: 10.1021/acs.jafc.3c04970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Filamin C is an allergen of Scylla paramamosain (Scy p 9), and six IgE linear epitopes of the allergenic predominant region had previously been validated. However, the IgE epitope and structure-allergenicity relationship of Scy p 9 are unclear. In this study, a hydrophobic bond was found to be an important factor of conformation maintaining. The critical amino acids in the six predicted conformational epitopes were mutated, and the IgE-binding capacity and surface hydrophobicity of four mutants (E216A, T270A, Y699A, and V704A) were reduced compared to Scy p 9. Ten linear epitopes were verified with synthetic peptides, among which L-AA187-205 had the strongest IgE-binding capacity. In addition, IgE epitopes were mapped in the protruding surface of the tertiary structure, which were conducive to binding with IgE and exhibited high conservation among filamin genes. Overall, these data provided a basis for IgE epitope mapping and structure-allergenicity relationship of Scy p 9.
Collapse
Affiliation(s)
- Xin-Rong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, Fujian 361024, China
| | - Ye-Xin Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Shuai Kang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fa-Jie Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Dong-Xiao Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Mei Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
4
|
Castenmiller C, Nagy NA, Kroon PZ, Auger L, Desgagnés R, Martel C, Mirande L, Morel B, Roberge J, Stordeur V, Tropper G, Vézina LP, van Ree R, Gomord V, de Jong EC. A novel peanut allergy immunotherapy: Plant-based enveloped Ara h 2 Bioparticles activate dendritic cells and polarize T cell responses to Th1. World Allergy Organ J 2023; 16:100839. [PMID: 38020282 PMCID: PMC10679945 DOI: 10.1016/j.waojou.2023.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction As the only market-authorized allergen immunotherapy (AIT) for peanut allergy is accompanied by a high risk of side effects and mainly induces robust desensitization without sustained efficacy, novel treatment options are required. Peanut-specific plant-derived eBioparticles (eBPs) surface expressing Ara h 2 at high density have been shown to be very hypoallergenic. Here, we assessed the dendritic cell (DC)-activating and T cell polarization capacity of these peanut-specific eBPs. Methods Route and kinetics of eBP uptake were studied by (imaging) flow cytometry using monocyte-derived DCs incubated with fluorescently-labelled Ara h 2 eBPs or natural Ara h 2 (nAra h 2) in the presence or absence of inhibitors that block pathways involved in macropinocytosis, phagocytosis, and/or receptor-mediated uptake. DC activation was monitored by flow cytometry (maturation marker expression) and ELISA (cytokine production). T cell polarization was assessed by co-culturing DCs exposed to Ara h 2 eBPs or nAra h 2 with naïve CD4+ T cells, followed by flow cytometry assessment of intracellular IFNγ+ (Th1) and IL-13+ (Th2), and CD25+CD127-Foxp3+ regulatory T cells (Tregs). The suppressive activity of Tregs was tested using a suppressor assay. Results Ara h 2 eBPs were taken up by DCs through actin-dependent pathways. They activated DCs demonstrated by an induced expression of CD83 and CD86, and production of TNFα, IL-6, and IL-10. eBP-treated DCs polarized naïve CD4+ T cells towards Th1 cells, while reducing Th2 cell development. Furthermore, eBP-treated DCs induced reduced the frequency of Foxp3+ Tregs but did not significantly affect T cell IL-10 production or T cells with suppressive capacity. In contrast, DC activation and Th1 cell polarization were not observed for nAra h 2. Conclusion Ara h 2 eBPs activate DCs that subsequently promote Th1 cell polarization and reduce Th2 cell polarization. These characteristics mark Ara h 2 eBPs as a promising novel candidate for peanut AIT.
Collapse
Affiliation(s)
- Charlotte Castenmiller
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal Zion Kroon
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Esther Christina de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Simonin EM, Babasyan S, Tarsillo J, Wagner B. IgE+ plasmablasts predict the onset of clinical allergy. Front Immunol 2023; 14:1104609. [PMID: 36817463 PMCID: PMC9932261 DOI: 10.3389/fimmu.2023.1104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction IgE+ plasmablasts develop following allergen exposure and B cell activation. They secrete IgE and therefore are directly linked to maintain the mechanisms of IgE-mediated allergies. Here, we show that the presence of IgE+ plasmablasts in peripheral blood not only coincides with clinical allergy, but also predicts the upcoming development of clinical disease. Methods Using an equine model of naturally occurring allergy, we compared the timing of allergen exposure, arrival of IgE+ plasmablasts in peripheral blood, and onset of clinical disease. Results We found that IgE+ plasmablasts predict the development of clinical allergy by at least 3 weeks and can be measured directly by flow cytometry or by IgE secretion following in vitro culture. We also compared the IgE secretion by IgE+ plasmablasts with total plasma IgE concentrations and found that while IgE secretion consistently correlates with clinical allergy, total plasma IgE does not. Discussion Together, we describe IgE+ plasmablasts as a reliable and sensitive predictive biomarker of allergic disease development.
Collapse
Affiliation(s)
| | | | - Justine Tarsillo
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
6
|
Skypala IJ, Hunter H, Krishna MT, Rey-Garcia H, Till SJ, du Toit G, Angier E, Baker S, Stoenchev KV, Luyt DK. BSACI guideline for the diagnosis and management of pollen food syndrome in the UK. Clin Exp Allergy 2022; 52:1018-1034. [PMID: 35975576 DOI: 10.1111/cea.14208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Pollen food syndrome (PFS) is a highly prevalent food allergy affecting pollen-sensitized children and adults. Sufferers experience allergic symptoms when consuming raw plant foods, due to the homology between the pollen allergens and unstable proteins in these foods. The triggers involved can vary depending on the pollen sensitization, which in turn is affected by geographical location. The British Society of Allergy and Clinical Immunology (BSACI) Standards of Care Committee (SOCC) identified a need to develop a guideline for the diagnosis and management of PFS in the United Kingdom (UK). Guidelines produced by the BSACI use either the GRADE or SIGN methodology; due to a lack of high-quality evidence these recommendations were formulated using the SIGN guidelines, which is acknowledged to be less robust than the GRADE approach. The correct diagnosis of PFS ensures the avoidance of a misdiagnosis of a primary peanut or tree nut allergy or confusion with another plant food allergy to non-specific lipid transfer proteins. The characteristic foods involved, and rapid-onset oropharyngeal symptoms, mean PFS can often be diagnosed from the clinical history alone. However, reactions involving tree nuts, peanuts and soya milk or severe/atypical reactions to fruits and vegetables may require additional diagnostic tests. Management is through the exclusion of known trigger foods, which may appear to be simple, but is highly problematic if coupled with a pre-existing food allergy or for individuals following a vegetarian/vegan diet. Immunotherapy to pollens is not an effective treatment for PFS, and although oral or sublingual immunotherapy to foods seems more promising, large, controlled studies are needed. The typically mild symptoms of PFS can lead to an erroneous perception that this condition is always easily managed, but severe reactions can occur, and anxiety about the onset of symptoms to new foods can have a profound effect on quality of life.
Collapse
Affiliation(s)
- Isabel J Skypala
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK.,Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College, London, UK
| | - Hannah Hunter
- Department of Allergy, Guys & St Thomas NHS Foundation Trust, London, UK.,Kings College, London, UK
| | - Mamidipudi Thirumala Krishna
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Helena Rey-Garcia
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK
| | - Stephen J Till
- Department of Allergy, Guys & St Thomas NHS Foundation Trust, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - George du Toit
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,Children's Allergy Service, Evelina Children's Hospital, Guy's and St. Thomas's NHS Foundation Trust, London, UK.,Department Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| | - Elizabeth Angier
- Primary Care, Population Science and Medical Education, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Kostadin V Stoenchev
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK
| | | |
Collapse
|
7
|
Hazebrouck S, Canon N, Dreskin SC. The Effector Function of Allergens. FRONTIERS IN ALLERGY 2022; 3:818732. [PMID: 35386644 PMCID: PMC8974742 DOI: 10.3389/falgy.2022.818732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 01/29/2023] Open
Abstract
Allergens are antigens that generate an IgE response (sensitization) in susceptible individuals. The allergenicity of an allergen can be thought of in terms of its ability to sensitize as well as its ability to cross-link IgE/IgE receptor complexes on mast cells and basophils leading to release of preformed and newly formed mediators (effector activity). The identity of the allergens responsible for sensitization may be different from those that elicit an allergic response. Effector activity is determined by (1) the amount of specific IgE (sIgE) and in some circumstances the ratio of sIgE to total IgE, (2) the number of high affinity receptors for IgE (FcεR1) on the cell surface, (3) the affinity of binding of sIgE for its epitope and, in a polyclonal response, the collective avidity, (4) the number and spatial relationships of IgE binding epitopes on the allergen and (5) the presence of IgG that can bind to allergen and either block binding of sIgE and/or activate low affinity IgG receptors that activate intracellular inhibitory pathways. This review will discuss these important immunologic and physical properties that contribute to the effector activity of allergens.
Collapse
Affiliation(s)
- Stéphane Hazebrouck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Nicole Canon
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Stephen C. Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
8
|
He XR, Yang Y, Kang S, Chen YX, Zheng PY, Chen GX, Chen XM, Cao MJ, Jin T, Liu GM. Crystal Structure Analysis and IgE Epitope Mapping of Allergic Predominant Region in Scylla paramamosain Filamin C, Scy p 9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1282-1292. [PMID: 35040643 DOI: 10.1021/acs.jafc.1c07922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamin C (FLN c) is a novel allergen in shellfish. In this study, FLN c from Scylla paramamosain was divided into three regions for recombinant expression based on the number of domains and amino acids. Using dot blot and basophil activation tests, the allergic predominant region of FLN c was determined to be 336-531 amino acid positions (named FLN c-M). It was confirmed that by X-ray diffraction, the crystal structure of FLN c-M with immunoglobulin-like folding at a resolution of 1.7 Å was obtained. The monomer was a barrel structure composed of 16 β-strands and 2 α-helices. Three conformational epitopes were predicted, six linear epitopes were verified by serological test, and they were positioned on the crystal structure of FLN c-M. For the first time, the crystal structure of the allergic predominant region of FLN c was determined, and it provided an accurate template for the localization of IgE epitopes.
Collapse
Affiliation(s)
- Xin-Rong He
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Yang Yang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361000, China
| | - Shuai Kang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Ye-Xin Chen
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Pei-Yi Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230000, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Mei Chen
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Min-Jie Cao
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230000, China
| | - Guang-Ming Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| |
Collapse
|
9
|
Ehlers AM, Hartog Jager CF, Knulst AC, Otten HG. Distinction between peanut allergy and tolerance by characterization of B cell receptor repertoires. Allergy 2021; 76:2753-2764. [PMID: 33969502 PMCID: PMC8453529 DOI: 10.1111/all.14897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
Background Specific IgE against a peanut 2S albumin (Ara h 2 or 6) is the best predictor of clinically relevant peanut sensitization. However, sIgE levels of peanut allergic and those of peanut sensitized but tolerant patients partly overlap, highlighting the need for improved diagnostics to prevent incorrect diagnosis and consequently unnecessary food restrictions. Thus, we sought to explore differences in V(D)J gene transcripts coding for peanut 2S albumin‐specific monoclonal antibodies (mAbs) from allergic and sensitized but tolerant donors. Methods 2S albumin‐binding B‐cells were single‐cell sorted from peripheral blood of peanut allergic (n=6) and tolerant (n=6) donors sensitized to Ara h2 and/or 6 (≥ 0.1 kU/l) and non‐atopic controls (n=5). h 2 and/or 6 (≥ 0.1 kU/l). Corresponding h heavy and light chain gene transcripts were heterologously expressed as mAbs and tested for specificity to native Ara h2 and 6. HCDR3 sequence motifs were identified by Levenshtein distances and hierarchically clustering. Results The frequency of 2S albumin‐binding B cells was increased in allergic (median: 0.01%) compared to tolerant (median: 0.006%) and non‐atopic donors (median: 0.0015%, p = 0.008). The majority of mAbs (74%, 29/39) bound specifically to Ara h 2 and/or 6. Non‐specific mAbs (9/10) were mainly derived from non‐atopic controls. In allergic donors, 89% of heavy chain gene transcripts consisted of VH3 family genes, compared with only 54% in sensitized but tolerant and 63% of non‐atopic donors. Additionally, certain HCDR3 sequence motifs were associated with allergy (n = 4) or tolerance (n = 3) upon hierarchical clustering of their Levenshtein distances. Conclusions Peanut allergy is associated with dominant VH3 family gene usage and certain public antibody sequences (HCDR3 motifs).
Collapse
Affiliation(s)
- Anna M. Ehlers
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
- Department of Dermatology/Allergology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Constance F. Hartog Jager
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
- Department of Dermatology/Allergology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - André C. Knulst
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
- Department of Dermatology/Allergology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Henny G. Otten
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| |
Collapse
|
10
|
Brand HK, Schreurs MWJ, Emons JAM, Gerth van Wijk R, de Groot H, Arends NJT. Peanut components measured by ISAC: comparison with ImmunoCap and clinical relevance in peanut allergic children. Clin Mol Allergy 2021; 19:14. [PMID: 34372856 PMCID: PMC8353733 DOI: 10.1186/s12948-021-00153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background Specific IgE (sIgE) against the peanut component Arachis hypogaea (Ara h) 2 has been shown to be the most important allergen to discriminate between peanut allergy and peanut tolerance. Several studies determined sIgE cut off values for Ara h 2, determined by singleplex measurements. However, cut off values for Ara h 2 from multiplex arrays are less well defined. The aim of this study was to evaluate the correlation between Ara h 2 sIgE determined by singleplex versus multiplex measurements and to assess the diagnostic value of the different peanut components included in Immuno Solid-phase Allergen Chip (ISAC) multiplex analysis in children with a suspected peanut allergy. Methods In this retrospective study we analyzed Ara h 2 sIgE values with singleplex Fluorescence Enzyme Immunoassay (FEIA, ImmunoCap) and multiplex microarray (ISAC) measurements in 117 children with a suspected peanut allergy. Also, other peanut components measured by ISAC were analyzed. Double blinded placebo controlled oral food challenges were used as golden standard. Results Among all studied peanut components FEIA Ara h 2 sIgE showed the highest area under the curve (AUC, 0.922), followed by ISAC Ara h 6 and Ara h 2 sIgE with AUCs of respectively 0.906 and 0.902. Best cut off values to diagnose peanut allergy were 4.40 kU/l for FEIA Ara h 2 sIgE and, 7.43 ISU and 8.13 ISU for respectively Ara h 2 and Ara h 6 sIgE in ISAC microarray. Ara h 2 sIgE determined in FEIA and ISAC showed a good correlation (r = 0.88; p < 0.01). Conclusion Ara h 6 and Ara h 2 sIgE in multiplex ISAC are both good predictors of clinical peanut allergy in Dutch children, and their performance is comparable to the use of Ara h 2 in singleplex FEIA. The simultaneous measurement of different peanut components using ISAC is an advantage and clinically useful to detect peanut allergic children that are Ara h 2 negative but sensitized to other peanut proteins such as Ara h 6.
Collapse
Affiliation(s)
- H K Brand
- Department of Pediatric Pulmonology and Allergology, Emma Children's Hospital, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - M W J Schreurs
- Department of Immunology, Laboratory Medical Immunology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - J A M Emons
- Department of Pediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands
| | - R Gerth van Wijk
- Department of Internal Medicine, Section of Allergology and Clinical Immunology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - H de Groot
- Department of Allergology, Reinier de Graaf Hospital, Delft, The Netherlands
| | - N J T Arends
- Department of Pediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Apostolovic D, Marsh JT, Baumert J, Taylor SL, Westphal A, de Jongh H, Johnson P, de Jong GAH, Koppelman SJ. Purification and Initial Characterization of Ara h 7, a Peanut Allergen from the 2S Albumin Protein Family. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6318-6329. [PMID: 34037388 DOI: 10.1021/acs.jafc.1c00618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
2S albumins are important peanut allergens. Within this protein family, Ara h 2 and Ara h 6 have been described in detail, but Ara h 7 has received little attention. We now describe the first purification of Ara h 7 and its characterization. Two Ara h 7 isoforms were purified from peanuts. Mass spectrometry revealed that both the isoforms have a post-translation cleavage, a hydroxyproline modification near the N-terminus, and four disulfide bonds. The secondary structure of both Ara h 7 isoforms is highly comparable to those of Ara h 2 and Ara h 6. Both Ara h 7 isoforms bind IgE, and Ara h 7 is capable of inhibiting the binding between Ara h 2 and IgE, suggesting at least partially cross-reactive IgE epitopes. Ara h 7 was found in all main market types of peanut, at comparable levels. This suggests that Ara h 7 is a relevant allergen from the peanut 2S albumin protein family.
Collapse
Affiliation(s)
- Danijela Apostolovic
- Immunology and Allergy Division, Department of Medicine Solna, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Justin T Marsh
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Joe Baumert
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Steve L Taylor
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Adrie Westphal
- Biochemistry Dept., Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Harmen de Jongh
- ProtinConsult, Rozenstraat 19, 3702 VL Zeist, The Netherlands
| | - Phil Johnson
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Govardus A H de Jong
- Wageningen University and Research, Food and Biobased Research. PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Stef J Koppelman
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| |
Collapse
|
12
|
Dreskin SC, Koppelman SJ, Andorf S, Nadeau KC, Kalra A, Braun W, Negi SS, Chen X, Schein CH. The importance of the 2S albumins for allergenicity and cross-reactivity of peanuts, tree nuts, and sesame seeds. J Allergy Clin Immunol 2021; 147:1154-1163. [PMID: 33217410 PMCID: PMC8035160 DOI: 10.1016/j.jaci.2020.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Allergies to peanuts, tree nuts, and sesame seeds are among the most important food-related causes of anaphylaxis. Important clinical questions include: Why is there a variable occurrence of coallergy among these foods and Is this immunologically mediated? The clinical and immunologic data summarized here suggest an immunologic basis for these coallergies that is based on similarities among the 2S albumins. Data from component resolved diagnostics have highlighted the relationship between IgE binding to these allergens and the presence of IgE-mediated food allergy. Furthermore, in vitro and in vivo experiments provide strong evidence that the 2S albumins are the most important allergens in peanuts for inducing an allergic effector response. Although the 2S albumins are diverse, they have a common disulfide-linked core with similar physicochemical properties that make them prime candidates to explain much of the observed coallergy among peanuts, tree nuts, and sesame seeds. The well-established frequency of cashew and pistachio nut coallergy (64%-100%) highlights how the structural similarities among their 2S albumins may account for observed clinical cross-reactivity. A complete understanding of the physicochemical properties of the 2S albumins in peanuts, tree nuts, and sesame seeds will enhance our ability to diagnose, treat, and ultimately prevent these allergies.
Collapse
Affiliation(s)
- Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, Colo.
| | - Stef J Koppelman
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska, Lincoln, Neb
| | - Sandra Andorf
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Anjeli Kalra
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Werner Braun
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Tex; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| | - Surendra S Negi
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Tex; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| | - Xueni Chen
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Catherine H Schein
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex; Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Tex.
| |
Collapse
|
13
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments allergy in 2019 through the eyes of clinical and experimental allergy, part I mechanisms. Clin Exp Allergy 2020; 50:1294-1301. [PMID: 33283368 DOI: 10.1111/cea.13777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the first of two linked articles, we describe the development in the mechanisms underlying allergy as described by Clinical & Experimental Allergy and other journals in 2019. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Department of Pathology, Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - B Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic., Australia
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
14
|
Hemmings O, Du Toit G, Radulovic S, Lack G, Santos AF. Ara h 2 is the dominant peanut allergen despite similarities with Ara h 6. J Allergy Clin Immunol 2020; 146:621-630.e5. [PMID: 32298698 PMCID: PMC7482438 DOI: 10.1016/j.jaci.2020.03.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Arachis hypogaea 2 (Ara h 2)-specific IgE is to date the best serologic marker to diagnose peanut allergy. Ara h 6 shares approximately 60% sequence identity and multiple epitopes with Ara h 2. OBJECTIVE Our aim was to assess the diagnostic utility and relative importance of Ara h 2 and Ara h 6 in peanut allergy. METHODS A cohort 100 of children was studied. The cohort included chidren who had peanut allergy, children who were sensitized to but tolerant of peanut, and children who were neither sensitized nor allergic to peanut. Levels of specific IgE to peanut and individual allergens were quantified by using ImmunoCAP. ImmunoCAP inhibition experiments and mast cell activation tests in response to both Ara h 2 and Ara h 6 were performed. Statistical analyses were done using SPSS version 14 and Prism version 7 software. RESULTS Ara h 2-specific IgE and Ara h 6-specific IgE showed the greatest diagnostic accuracy for peanut allergy when compared with specific IgE to peanut and other peanut allergens. Most patients with peanut allergy were sensitized to both Ara h 2 and Ara h 6. Ara h 2 reduced Ara h 2-specific IgE binding more than Ara h 6 did (P < .001), whereas Ara h 6-specific IgE binding was inhibited to a similar degree by Ara h 2 and Ara h 6 (P = .432). In the mast cell activation test, Ara h 2 induced significantly greater maximal reactivity (P = .001) and a lower half maximal effective concentration (P = .002) than did Ara h 6 when testing cosensitized individuals. CONCLUSIONS Ara h 2-specific IgE and Ara h 6-specific IgE provide the greatest accuracy to diagnose peanut allergy. Ara h 2 is the dominant conglutin in peanut allergy in the United Kingdom, despite a degree of cross-reactivity with Ara h 6.
Collapse
Affiliation(s)
- Oliver Hemmings
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - George Du Toit
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom.
| |
Collapse
|
15
|
Roberts G. T cell responses, diagnosing peanut allergy and group clinic consultations. Clin Exp Allergy 2020; 49:1058-1059. [PMID: 31380601 DOI: 10.1111/cea.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| |
Collapse
|