1
|
Huang Y, Jiang C, Zhu J, Lin L, Mao M, Yin T, Cai G. Expansion of effector memory Vδ2 neg γδ T cells associates with cytomegalovirus reactivation in allogeneic stem cell transplant recipients. Front Immunol 2024; 15:1397483. [PMID: 38915409 PMCID: PMC11194311 DOI: 10.3389/fimmu.2024.1397483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background Cytomegalovirus (CMV) reactivation is a significant concern following allogeneic stem cell transplantation. While previous research has highlighted the anti-CMV reactivation effect of γδ T cells in immunocompromised transplant patients, their characterization in recipients at high risk of CMV reactivation remains limited. Methods This study focused on D+/R+ recipients (where both donor and recipient are CMV seropositive) at high risk of CMV reactivation. We analyzed 28 patients who experienced CMV recurrence within 100 days post-allogeneic hematopoietic stem cell transplantation, along with 36 matched recipients who did not experience CMV recurrence. Clinical data from both groups were compared, and risk factors for CMV reactivation were identified. Additionally, CMV viral load was measured, and flow cytometric analysis was conducted to assess changes in peripheral blood γδ T cell proportions, subpopulation distribution, and differentiation status. We also analyzed the CDR3 repertoire of the TCR δ chain in different γδ T cell subsets. Functional analysis was performed by measuring the lysis of CMV-infected cells upon stimulation. Results CMV reactivation post-transplantation was associated with acute graft-versus-host disease (aGvHD) and reactivation of non-CMV herpesviruses. Notably, CMV reactivation led to sustained expansion of γδ T cells, primarily within the Vδ2neg γδ T cell subpopulation, with a trend toward differentiation from Naive to effector memory cells. Analysis of the δ chain CDR3 repertoire revealed a delay in the reconstitution of clonal diversity in Vδ2neg γδ T cells following CMV reactivation, while Vδ2pos T cells remained unaffected. Upon stimulation with CMV-infected MRC5 cells, the Vδ2neg γδ T cell subpopulation emerged as the primary effector cell group producing IFN-γ and capable of lysing CMV-infected cells. Moreover, our findings suggest that NKG2D is not necessary involved in Vδ2neg γδ T cell-mediated anti-CMV cytotoxicity. Conclusion This study provides novel insights into the role of γδ T cells in the immune response to CMV reactivation in transplantation recipients at high risk of CMV infection. Specifically, the Vδ2neg γδ T cell subpopulation appears to be closely associated with CMV reactivation, underscoring their potential role in controlling infection and reflecting CMV reactivation in HSCT patients.
Collapse
Affiliation(s)
- Yiwen Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Jiacheng Zhu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Minjing Mao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| |
Collapse
|
2
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Rousselière A, Delbos L, Bressollette C, Berthaume M, Charreau B. Mapping and Characterization of HCMV-Specific Unconventional HLA-E-Restricted CD8 T Cell Populations and Associated NK and T Cell Responses Using HLA/Peptide Tetramers and Spectral Flow Cytometry. Int J Mol Sci 2021; 23:263. [PMID: 35008688 PMCID: PMC8745070 DOI: 10.3390/ijms23010263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
HCMV drives complex and multiple cellular immune responses, which causes a persistent immune imprint in hosts. This study aimed to achieve both a quantitative determination of the frequency for various anti-HCMV immune cell subsets, including CD8 T, γδT, NK cells, and a qualitative analysis of their phenotype. To map the various anti-HCMV cellular responses, we used a combination of three HLApeptide tetramer complexes (HLA-EVMAPRTLIL, HLA-EVMAPRSLLL, and HLA-A2NLVPMVATV) and antibodies for 18 surface markers (CD3, CD4, CD8, CD16, CD19, CD45RA, CD56, CD57, CD158, NKG2A, NKG2C, CCR7, TCRγδ, TCRγδ2, CX3CR1, KLRG1, 2B4, and PD-1) in a 20-color spectral flow cytometry analysis. This immunostaining protocol was applied to PBMCs isolated from HCMV- and HCMV+ individuals. Our workflow allows the efficient determination of events featuring HCMV infection such as CD4/CD8 ratio, CD8 inflation and differentiation, HCMV peptide-specific HLA-EUL40 and HLA-A2pp65CD8 T cells, and expansion of γδT and NK subsets including δ2-γT and memory-like NKG2C+CD57+ NK cells. Each subset can be further characterized by the expression of 2B4, PD-1, KLRG1, CD45RA, CCR7, CD158, and NKG2A to achieve a fine-tuned mapping of HCMV immune responses. This assay should be useful for the analysis and monitoring of T-and NK cell responses to HCMV infection or vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Béatrice Charreau
- INSERM, Center for Research in Transplantation and Translational Immunology, Nantes Université, UMR 1064, CHU Nantes, F-44000 Nantes, France; (A.R.); (L.D.); (C.B.); (M.B.)
| |
Collapse
|
4
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
5
|
Mihelson N, McGavern DB. Viral Control of Glioblastoma. Viruses 2021; 13:v13071264. [PMID: 34209584 PMCID: PMC8310222 DOI: 10.3390/v13071264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a universally lethal cancer of the central nervous system. Patients with GBM have a median survival of 14 months and a 5-year survival of less than 5%, a grim statistic that has remained unchanged over the last 50 years. GBM is intransigent for a variety of reasons. The immune system has a difficult time mounting a response against glioblastomas because they reside in the brain (an immunologically dampened compartment) and generate few neoantigens relative to other cancers. Glioblastomas inhabit the brain like sand in the grass and display a high degree of intra- and inter-tumoral heterogeneity, impeding efforts to therapeutically target a single pathway. Of all potential therapeutic strategies to date, virotherapy offers the greatest chance of counteracting each of the obstacles mounted by GBM. Virotherapy can xenogenize a tumor that is deft at behaving like “self”, triggering adaptive immune recognition in an otherwise immunologically quiet compartment. Viruses can also directly lyse tumor cells, creating damage and further stimulating secondary immune reactions that are detrimental to tumor growth. In this review, we summarize the basic immune mechanisms underpinning GBM immune evasion and the recent successes achieved using virotherapies.
Collapse
|
6
|
Ariyanto IA, Lee S, Estiasari R, Edmands J, Bela B, Soebandrio A, Price P. Understanding the effects of CMV on γδ T-cell populations in HIV patients starting antiretroviral therapy. Clin Immunol 2021; 226:108696. [PMID: 33621667 DOI: 10.1016/j.clim.2021.108696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/17/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Cytomegalovirus (CMV) affects γδ T-cell profiles in healthy individuals and transplant recipients, but the effects of HIV and CMV have not been distinguished in HIV patients. CMV-seropositive Indonesian HIV patients (n = 40) were studied before ART and after six months, alongside healthy controls (n = 20). 50% of patients started ART with detectable CMV DNA. Proportions of Vδ2- γδ T-cells were high in patients and declined on ART, whilst proportions of Vδ2+ γδ T-cells were uniformly low, and correlated inversely with levels of CMV DNA and CMV-reactive antibody. Residual Vδ2+ cells were enriched for markers of terminal differentiation, but this did not associate with CMV metrics. Patients with CMV DNA at baseline showed a direct correlation between CMV reactive-antibody and CD8+ γδ T-cells. Our data are consistent with a role for CMV in the depletion of Vδ2+ γδ T-cells in HIV patients beginning ART, with no consistent evidence of a role for CMV in γδ T-cell activation or differentiation.
Collapse
Affiliation(s)
- Ibnu A Ariyanto
- Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Silvia Lee
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Australia; School of Pharmacy & Biomedical Science, Curtin University, Perth, Australia
| | - Riwanti Estiasari
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Jeanne Edmands
- School of Pharmacy & Biomedical Science, Curtin University, Perth, Australia
| | - Budiman Bela
- Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Patricia Price
- Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; School of Pharmacy & Biomedical Science, Curtin University, Perth, Australia.
| |
Collapse
|
7
|
Clark BL, Thomas PG. A Cell for the Ages: Human γδ T Cells across the Lifespan. Int J Mol Sci 2020; 21:E8903. [PMID: 33255339 PMCID: PMC7727649 DOI: 10.3390/ijms21238903] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
The complexity of the human immune system is exacerbated by age-related changes to immune cell functionality. Many of these age-related effects remain undescribed or driven by mechanisms that are poorly understood. γδ T cells, while considered an adaptive subset based on immunological ontogeny, retain both innate-like and adaptive-like characteristics. This T cell population is small but mighty, and has been implicated in both homeostatic and disease-induced immunity within tissues and throughout the periphery. In this review, we outline what is known about the effect of age on human peripheral γδ T cells, and call attention to areas of the field where further research is needed.
Collapse
Affiliation(s)
- Brandi L. Clark
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Kaminski H, Marsères G, Cosentino A, Guerville F, Pitard V, Fournié JJ, Merville P, Déchanet-Merville J, Couzi L. Understanding human γδ T cell biology toward a better management of cytomegalovirus infection. Immunol Rev 2020; 298:264-288. [PMID: 33091199 DOI: 10.1111/imr.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
Cytomegalovirus (CMV) infection is responsible for significant morbidity and mortality in immunocompromised patients, namely solid organ and hematopoietic cell transplant recipients, and can induce congenital infection in neonates. There is currently an unmet need for new management and treatment strategies. Establishment of an anti-CMV immune response is critical in order to control CMV infection. The two main human T cells involved in HCMV-specific response are αβ and non-Vγ9Vδ2 T cells that belong to γδ T cell compartment. CMV-induced non-Vγ9Vδ2 T cells harbor a specific clonal expansion and a phenotypic signature, and display effector functions against CMV. So far, only two main molecular mechanisms underlying CMV sensing have been identified. Non-Vγ9Vδ2 T cells can be activated either by stress-induced surface expression of the γδT cell receptor (TCR) ligand annexin A2, or by a multimolecular stress signature composed of the γδTCR ligand endothelial protein C receptor and co-stimulatory signals such as the ICAM-1-LFA-1 axis. All this basic knowledge can be harnessed to improve the clinical management of CMV infection in at-risk patients. In particular, non-Vγ9Vδ2 T cell monitoring could help better stratify the risk of infection and move forward a personalized medicine. Moreover, recent advances in cell therapy protocols open the way for a non-Vγ9Vδ2 T cell therapy in immunocompromised patients.
Collapse
Affiliation(s)
- Hannah Kaminski
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel Marsères
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Anaïs Cosentino
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Florent Guerville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,CHU Bordeaux, Pôle de gérontologie, Bordeaux, Bordeaux, France
| | - Vincent Pitard
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Merville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Lionel Couzi
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
9
|
Abstract
Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.
Collapse
Affiliation(s)
- Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Koshika Yadava
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Headington, Oxford OX3 7LE, United Kingdom;
| |
Collapse
|
10
|
Dantzler KW, de la Parte L, Jagannathan P. Emerging role of γδ T cells in vaccine-mediated protection from infectious diseases. Clin Transl Immunology 2019; 8:e1072. [PMID: 31485329 PMCID: PMC6712516 DOI: 10.1002/cti2.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023] Open
Abstract
γδ T cells are fascinating cells that bridge the innate and adaptive immune systems. They have long been known to proliferate rapidly following infection; however, the identity of the specific γδ T cell subsets proliferating and the role of this expansion in protection from disease have only been explored more recently. Several recent studies have investigated γδ T‐cell responses to vaccines targeting infections such as Mycobacterium, Plasmodium and influenza, and studies in animal models have provided further insight into the association of these responses with improved clinical outcomes. In this review, we examine the evidence for a role for γδ T cells in vaccine‐induced protection against various bacterial, protozoan and viral infections. We further discuss results suggesting potential mechanisms for protection, including cytokine‐mediated direct and indirect killing of infected cells, and highlight remaining open questions in the field. Finally, building on current efforts to integrate strategies targeting γδ T cells into immunotherapies for cancer, we discuss potential approaches to improve vaccines for infectious diseases by inducing γδ T‐cell activation and cytotoxicity.
Collapse
|
11
|
Generation, maintenance and tissue distribution of T cell responses to human cytomegalovirus in lytic and latent infection. Med Microbiol Immunol 2019; 208:375-389. [PMID: 30895366 PMCID: PMC6647459 DOI: 10.1007/s00430-019-00598-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Understanding how the T cell memory response directed towards human cytomegalovirus (HCMV) develops and changes over time while the virus persists is important. Whilst HCMV primary infection and periodic reactivation is well controlled by T cell responses in healthy people, when the immune system is compromised such as post-transplantation, during pregnancy, or underdeveloped such as in new-born infants and children, CMV disease can be a significant problem. In older people, HCMV infection is associated with increased risk of mortality and despite overt disease rarely being seen there are increases in HCMV-DNA in urine of older people suggesting that there is a change in the efficacy of the T cell response following lifelong infection. Therefore, understanding whether phenomenon such as “memory inflation” of the immune response is occurring in humans and if this is detrimental to the overall health of individuals would enable the development of appropriate treatment strategies for the future. In this review, we present the evidence available from human studies regarding the development and maintenance of memory CD8 + and CD4 + T cell responses to HCMV. We conclude that there is only limited evidence supportive of “memory inflation” occurring in humans and that future studies need to investigate immune cells from a broad range of human tissue sites to fully understand the nature of HCMV T cell memory responses to lytic and latent infection.
Collapse
|
12
|
Waters S, Brook E, Lee S, Estiasari R, Ariyanto I, Price P. HIV patients, healthy aging and transplant recipients can reveal the hidden footprints of CMV. Clin Immunol 2017; 187:107-112. [PMID: 29108855 DOI: 10.1016/j.clim.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/24/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
Cytomegalovirus (CMV) is a β-herpesvirus. Latent infections are common in all populations. However age-associated increases in levels of CMV-reactive antibody are testament to repeated reactivations and periods of viral replication. CMV has been associated with several diseases of aging, including vasculopathy and neurocognitive impairment. These conditions occur at a younger age in persons with particularly high burdens of CMV - transplant recipients and people living with HIV. Here we define the "clinical footprints" as immunopathologies triggered by CMV that develop over many years. A high burden of CMV also drives accumulation of multifunctional terminally-differentiated αβ T-cells, a novel population of Vδ2- γδ T-cells, and a population of CD56lo NK cells lacking a key regulatory molecule. An understanding of these "immunological footprints" of CMV may reveal how they collectively promote the "clinical footprints" of the virus. This is explored here in transplant recipients, HIV patients and healthy aging.
Collapse
Affiliation(s)
- Shelley Waters
- School of Biomedical Science, Curtin University, Bentley, Australia
| | - Emily Brook
- School of Biomedical Science, Curtin University, Bentley, Australia
| | - Silvia Lee
- School of Biomedical Science, Curtin University, Bentley, Australia; Department of Microbiology, Pathwest Laboratory Medicine, Fiona Stanley Hospital, Australia
| | - Riwanti Estiasari
- Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ibnu Ariyanto
- Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Patricia Price
- School of Biomedical Science, Curtin University, Bentley, Australia; Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| |
Collapse
|
13
|
Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Front Immunol 2017; 8:982. [PMID: 28861086 PMCID: PMC5559470 DOI: 10.3389/fimmu.2017.00982] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Owing to its memory and plasticity, the immune system (IS) is capable of recording all the immunological experiences and stimuli it was exposed to. The combination of type, dose, intensity, and temporal sequence of antigenic stimuli that each individual is exposed to has been named “immunobiography.” This immunological history induces a lifelong continuous adaptation of the IS, which is responsible for the capability to mount strong, weak or no response to specific antigens, thus determining the large heterogeneity of immunological responses. In the last years, it is becoming clear that memory is not solely a feature of adaptive immunity, as it has been observed that also innate immune cells are provided with a sort of memory, dubbed “trained immunity.” In this review, we discuss the main characteristics of trained immunity as a possible contributor to inflammaging within the perspective of immunobiography, with particular attention to the phenotypic changes of the cell populations known to be involved in trained immunity. In conclusion, immunobiography emerges as a pervasive and comprehensive concept that could help in understanding and interpret the individual heterogeneity of immune responses (to infections and vaccinations) that becomes particularly evident at old age and could affect immunosenescence and inflammaging.
Collapse
Affiliation(s)
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Ageing and latent CMV infection impact on maturation, differentiation and exhaustion profiles of T-cell receptor gammadelta T-cells. Sci Rep 2017; 7:5509. [PMID: 28710491 PMCID: PMC5511140 DOI: 10.1038/s41598-017-05849-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
Ageing is a broad cellular process, largely affecting the immune system, especially T-lymphocytes. Additionally to immunosenescence alone, cytomegalovirus (CMV) infection is thought to have major impacts on T-cell subset composition and exhaustion. These impacts have been studied extensively in TCRαβ+ T-cells, with reduction in naive, increase in effector (memory) subsets and shifts in CD4/CD8-ratios, in conjunction with morbidity and mortality in elderly. Effects of both ageing and CMV on the TCRγδ+ T-cell compartment remain largely elusive. In the current study we investigated Vγ- and Vδ-usage, maturation, differentiation and exhaustion marker profiles of both CD4 and CD8 double-negative (DN) and CD8+TCRγδ+ T-cells in 157 individuals, age range 20–95. We observed a progressive decrease in absolute numbers of total TCRγδ+ T-cells in blood, affecting the predominant Vγ9/Vδ2 population. Aged TCRγδ+ T-cells appeared to shift from naive to more (late-stage) effector phenotypes, which appeared more prominent in case of persistent CMV infections. In addition, we found effects of both ageing and CMV on the absolute counts of exhausted TCRγδ+ T-cells. Collectively, our data show a clear impact of ageing and CMV persistence on DN and CD8+TCRγδ+ T-cells, similar to what has been reported in CD8+TCRαβ+ T-cells, indicating that they undergo similar ageing processes.
Collapse
|
15
|
Souquette A, Frere J, Smithey M, Sauce D, Thomas PG. A constant companion: immune recognition and response to cytomegalovirus with aging and implications for immune fitness. GeroScience 2017. [PMID: 28647907 DOI: 10.1007/s11357-017-9982-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Approximately 50% of individuals aged 6-49 years in the United States are infected with cytomegalovirus (CMV), with seroprevalence increasing with age, reaching 85-90% by 75-80 years according to Bate et al. (Clin Infect Dis 50 (11): 1439-1447, 2010) and Pawelec et al. (Curr Opin Immunol 24:507-511, 2012). Following primary infection, CMV establishes lifelong latency with periodic reactivation. Immunocompetent hosts experience largely asymptomatic infection, but CMV can cause serious illness in immunocompromised populations, such as transplant patients and the elderly. Control of CMV requires constant immune surveillance, and recent discoveries suggest this demand alters general features of the immune system in infected individuals. Here, we review recent advances in the understanding of the immune response to CMV and the role of CMV in immune aging and fitness, while highlighting the importance of potential confounding factors that influence CMV studies. Understanding how CMV contributes to shaping "baseline" immunity has important implications for a host's ability to mount effective responses to diverse infections and vaccination.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin Frere
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Sorbonne Universités, UPMC DHU FAST, Paris, France.,Arizona Center on Aging, Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Megan Smithey
- Arizona Center on Aging, Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Delphine Sauce
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Sorbonne Universités, UPMC DHU FAST, Paris, France
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
16
|
Lee S, Affandi JS, Irish AB, Price P. Cytomegalovirus infection alters phenotypes of different γδ T-cell subsets in renal transplant recipients with long-term stable graft function. J Med Virol 2017; 89:1442-1452. [PMID: 28198539 DOI: 10.1002/jmv.24784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/03/2017] [Accepted: 01/21/2017] [Indexed: 02/03/2023]
Abstract
Cytomegalovirus (CMV) infection alters the phenotypic profiles of T-cells and NK cells in healthy and immunocompromised individuals. Here, we examined the effects of CMV infection on the phenotype and functions of γδ T-cell subsets in renal transplant recipients (RTR) stable several years after transplantation (n = 80) and healthy controls (n = 72). Differentiation status, function, and expression of HLA-DR, CD57, and LIR-1 on Vδ2- and Vδ2+ γδ T-cells were examined in peripheral blood cells using flow cytometry. Percentages of Vδ2- γδ T-cells were higher in RTR who are CMV-seropositive and correlated with CMV antibody levels. Proportions of Vδ2- γδ T-cells expressing HLA-DR, CD57, or LIR-1 were increased in CMV-seropositive RTR and healthy controls compared to their seronegative counterparts. Additionally, Vδ2- γδ T-cells were skewed towards a terminally differentiated phenotype and most expressed CD8 in individuals who were CMV-seropositive. Increased expression of LIR-1 on terminally differentiated Vδ2- γδ T-cells was associated with CMV seropositivity in RTR and controls. The presence of CMV DNA in 15 RTR was associated with higher frequencies of LIR-1+ Vδ2+ γδ T-cells and increased percentages of terminally differentiated effector memory cells in both γδ T-cell subsets. Our study further characterises the effects of CMV and transplantation on γδ T-cell phenotypes.
Collapse
Affiliation(s)
- Silvia Lee
- Biomedical Science, Curtin University, Bentley, Australia.,Department of Microbiology, Royal Perth Hospital, Perth, Australia
| | | | - Ashley B Irish
- Medicine & Pharmacology, University of Western Australia, Nedlands, Australia.,Department of Nephrology, Fiona Stanley Hospital, Murdoch, Australia
| | - Patricia Price
- Biomedical Science, Curtin University, Bentley, Australia.,Medicine & Pharmacology, University of Western Australia, Nedlands, Australia
| |
Collapse
|
17
|
Davey MS, Willcox CR, Joyce SP, Ladell K, Kasatskaya SA, McLaren JE, Hunter S, Salim M, Mohammed F, Price DA, Chudakov DM, Willcox BE. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat Commun 2017; 8:14760. [PMID: 28248310 PMCID: PMC5337994 DOI: 10.1038/ncomms14760] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
γδ T cells are considered to be innate-like lymphocytes that respond rapidly to stress without clonal selection and differentiation. Here we use next-generation sequencing to probe how this paradigm relates to human Vδ2neg T cells, implicated in responses to viral infection and cancer. The prevalent Vδ1 T cell receptor (TCR) repertoire is private and initially unfocused in cord blood, typically becoming strongly focused on a few high-frequency clonotypes by adulthood. Clonal expansions have differentiated from a naive to effector phenotype associated with CD27 downregulation, retaining proliferative capacity and TCR sensitivity, displaying increased cytotoxic markers and altered homing capabilities, and remaining relatively stable over time. Contrastingly, Vδ2+ T cells express semi-invariant TCRs, which are present at birth and shared between individuals. Human Vδ1+ T cells have therefore evolved a distinct biology from the Vδ2+ subset, involving a central, personalized role for the γδ TCR in directing a highly adaptive yet unconventional form of immune surveillance. γδ T cells are generally considered innate-like lymphocytes. Here the authors sequence human γδ T cell receptors (TCR) to show focusing of the private Vδ1 TCR repertoire, suggesting that, unlike Vδ2 T cells, the Vδ1 T cell compartment has adaptive attributes.
Collapse
Affiliation(s)
- Martin S Davey
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stephen P Joyce
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Stuart Hunter
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mahboob Salim
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
18
|
Khairallah C, Déchanet-Merville J, Capone M. γδ T Cell-Mediated Immunity to Cytomegalovirus Infection. Front Immunol 2017; 8:105. [PMID: 28232834 PMCID: PMC5298998 DOI: 10.3389/fimmu.2017.00105] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
γδ T lymphocytes are unconventional immune cells, which have both innate- and adaptive-like features allowing them to respond to a wide spectrum of pathogens. For many years, we and others have reported on the role of these cells in the immune response to human cytomegalovirus in transplant patients, pregnant women, neonates, immunodeficient children, and healthy people. Indeed, and as described for CD8+ T cells, CMV infection leaves a specific imprint on the γδ T cell compartment: (i) driving a long-lasting expansion of oligoclonal γδ T cells in the blood of seropositive individuals, (ii) inducing their differentiation into effector/memory cells expressing a TEMRA phenotype, and (iii) enhancing their antiviral effector functions (i.e., cytotoxicity and IFNγ production). Recently, two studies using murine CMV (MCMV) have corroborated and extended these observations. In particular, they have illustrated the ability of adoptively transferred MCMV-induced γδ T cells to protect immune-deficient mice against virus-induced death. In vivo, expansion of γδ T cells is associated with the clearance of CMV infection as well as with reduced cancer occurrence or leukemia relapse risk in kidney transplant patients and allogeneic stem cell recipients, respectively. Taken together, all these studies show that γδ T cells are important immune effectors against CMV and cancer, which are life-threatening diseases affecting transplant recipients. The ability of CMV-induced γδ T cells to act independently of other immune cells opens the door to the development of novel cellular immunotherapies that could be particularly beneficial for immunocompromised transplant recipients.
Collapse
Affiliation(s)
| | | | - Myriam Capone
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| |
Collapse
|
19
|
Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol 2015; 12:656-68. [PMID: 25864915 PMCID: PMC4716630 DOI: 10.1038/cmi.2015.28] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
γδ T cells form an important part of adaptive immune responses against infections and malignant transformation. The molecular targets of human γδ T cell receptors (TCRs) remain largely unknown, but recent studies have confirmed the recognition of phosphorylated prenyl metabolites, lipids in complex with CD1 molecules and markers of cellular stress. All of these molecules are upregulated on various cancer types, highlighting the potential importance of the γδ T cell compartment in cancer immunosurveillance and paving the way for the use of γδ TCRs in cancer therapy. Ligand recognition by the γδ TCR often requires accessory/co-stimulatory stress molecules on both T cells and target cells; this cellular stress context therefore provides a failsafe against harmful self-reactivity. Unlike αβ T cells, γδ T cells recognise their targets irrespective of HLA haplotype and therefore offer exciting possibilities for off-the-shelf, pan-population cancer immunotherapies. Here, we present a review of known ligands of human γδ T cells and discuss the promise of harnessing these cells for cancer treatment.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Gene Expression Regulation, Neoplastic/immunology
- Hemiterpenes/immunology
- Humans
- Immunotherapy/methods
- Ligands
- Models, Molecular
- Monitoring, Immunologic
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Organophosphorus Compounds/immunology
- Phosphorylation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Mateusz Legut
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
20
|
Davis ZB, Cooley SA, Cichocki F, Felices M, Wangen R, Luo X, DeFor TE, Bryceson YT, Diamond DJ, Brunstein C, Blazar BR, Wagner JE, Weisdorf DJ, Horowitz A, Guethlein LA, Parham P, Verneris MR, Miller JS. Adaptive Natural Killer Cell and Killer Cell Immunoglobulin-Like Receptor-Expressing T Cell Responses are Induced by Cytomegalovirus and Are Associated with Protection against Cytomegalovirus Reactivation after Allogeneic Donor Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2015; 21:1653-62. [PMID: 26055301 PMCID: PMC4557961 DOI: 10.1016/j.bbmt.2015.05.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/27/2015] [Indexed: 11/26/2022]
Abstract
Cytomegalovirus (CMV) reactivates in >30% of CMV-seropositive patients after allogeneic hematopoietic cell transplantation (HCT). Previously, we reported an increase of natural killer (NK) cells expressing NKG2C, CD57, and inhibitory killer cell immunoglobulin-like receptors (KIRs) in response to CMV reactivation after HCT. These NK cells persist after the resolution of infection and display "adaptive" or memory properties. Despite these findings, the differential impact of persistent/inactive versus reactivated CMV on NK versus T cell maturation after HCT from different graft sources has not been defined. We compared the phenotype of NK and T cells from 292 recipients of allogeneic sibling (n = 118) or umbilical cord blood (UCB; n = 174) grafts based on recipient pretransplantation CMV serostatus and post-HCT CMV reactivation. This cohort was utilized to evaluate CMV-dependent increases in KIR-expressing NK cells exhibiting an adaptive phenotype (NKG2C(+)CD57(+)). Compared with CMV-seronegative recipients, those who reactivated CMV had the highest adaptive cell frequencies, whereas intermediate frequencies were observed in CMV-seropositive recipients harboring persistent/nonreplicating CMV. The same effect was observed in T cells and CD56(+) T cells. These adaptive lymphocyte subsets were increased in CMV-seropositive recipients of sibling but not UCB grafts and were correlated with lower rates of CMV reactivation (sibling 33% versus UCB 51%; P < .01). These data suggest that persistent/nonreplicating recipient CMV induces rapid production of adaptive NK and T cells from mature cells from sibling but not UCB grafts. These adaptive lymphocytes are associated with protection from CMV reactivation.
Collapse
Affiliation(s)
- Zachary B Davis
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sarah A Cooley
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Frank Cichocki
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Martin Felices
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Rose Wangen
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Xianghua Luo
- Division of Biostatistics, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Todd E DeFor
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Claudio Brunstein
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Bruce R Blazar
- Blood and Marrow Transplant Program, Department of Pediatric, University of Minnesota, Minneapolis, Minnesota
| | - John E Wagner
- Blood and Marrow Transplant Program, Department of Pediatric, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Weisdorf
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Amir Horowitz
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Lisbeth A Guethlein
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Peter Parham
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Michael R Verneris
- Blood and Marrow Transplant Program, Department of Pediatric, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Centre for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
21
|
Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog 2015; 11:e1004481. [PMID: 25658831 PMCID: PMC4450058 DOI: 10.1371/journal.ppat.1004481] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 09/18/2014] [Indexed: 12/28/2022] Open
Abstract
Infections with cytomegalovirus (CMV) can cause severe disease in immunosuppressed patients and infected newborns. Innate as well as cellular and humoral adaptive immune effector functions contribute to the control of CMV in immunocompetent individuals. None of the innate or adaptive immune functions are essential for virus control, however. Expansion of γδ T cells has been observed during human CMV (HCMV) infection in the fetus and in transplant patients with HCMV reactivation but the protective function of γδ T cells under these conditions remains unclear. Here we show for murine CMV (MCMV) infections that mice that lack CD8 and CD4 αβ-T cells as well as B lymphocytes can control a MCMV infection that is lethal in RAG-1-/- mice lacking any T- and B-cells. γδ T cells, isolated from infected mice can kill MCMV infected target cells in vitro and, importantly, provide long-term protection in infected RAG-1-/- mice after adoptive transfer. γδ T cells in MCMV infected hosts undergo a prominent and long-lasting phenotypic change most compatible with the view that the majority of the γδ T cell population persists in an effector/memory state even after resolution of the acute phase of the infection. A clonotypically focused Vγ1 and Vγ2 repertoire was observed at later stages of the infection in the organs where MCMV persists. These findings add γδ T cells as yet another protective component to the anti-CMV immune response. Our data provide clear evidence that γδ T cells can provide an effective control mechanism of acute CMV infections, particularly when conventional adaptive immune mechanisms are insufficient or absent, like in transplant patient or in the developing immune system in utero. The findings have implications in the stem cell transplant setting, as antigen recognition by γδ T cells is not MHC-restricted and dual reactivity against CMV and tumors has been described. Cytomegalovirus is a clinically important pathogen. While infection in hosts with a functional immune system is usually asymptomatic, the virus can cause significant morbidity and mortality in individuals with an immature or suppressed immune system. The virus causes severe clinical complication in transplant recipients and congenital CMV infections are the most common infectious cause of neurological disorders in children. Multiple layers of innate and adoptive immunity are involved in the control of CMV and single deficiencies of one immune cell type can be compensated by other immune cells. Expansions of γδ T lymphocytes, which are regarded as innate-like cells with adaptive-like potential, have been shown to be associated with CMV infections in human transplant patients and neonates. Their role in protective immunity against CMV has been unclear, however. Here we show direct evidence in the murine CMV model (MCMV) that γδ T lymphocytes can provide protection against a lethal MCMV infection in the absence of any other cells of the adoptive immune system. Upon infection, γδ T lymphocytes undergo a significant expansion and a prominent and long-lasting phenotypic change. These findings have implications for the development of new cellular therapy regimens in CMV infections in the transplant setting that should be evaluated in the future.
Collapse
|