1
|
Demırel N, Demır M. Docetaxel associated myositis. J Chemother 2025:1-6. [PMID: 40395000 DOI: 10.1080/1120009x.2025.2505806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 05/22/2025]
Abstract
INTRODUCTİON Docetaxel is a microtubule inhibitor in the taxane group and it is a semisynthetic analogue of paclitaxel. It binds to β-tubulin subunits with high affinity, preventing the depolymerization of microtubules during metaphase. Myalgia has been frequently described as a docetaxel-related side effect. However, myositis is a rare side effect of docetaxel. CASE REPORT A 64-year-old female patient with a right breast mass was diagnosed with invasive breast cancer. The tumor was 100% and 60% positive for estrogen and progesterone receptor, respectively and human epidermal growth factor receptor 2 (HER-2) was positive. There was not any distant metastasis in screening. It was clinically staged as T4N0M0 (stage 3B). Treatment was started with neoadjuvant chemotherapy (CT) as docetaxel plus trastuzumab (TR) plus pertuzumab. The patient applied to the outpatient clinic with muscle pain and weakness which started a few days after the second CT cycle. MANAGEMENT & OUTCOME The neurological physical exam was normal except that the muscle strength was 1/5 in the lower extremities with tense swelling. Joint pain or skin lesions were absent. Laboratory results revealed creatine kinase (CK) 4389 U/L. The patient was hospitalized with the diagnosis of myositis/myopathy due to these findings. Autoimmune markers were in normal range. The lower extremity magnetic resonance imaging (MRI) showed intense edema. The patient underwent a muscle biopsy. These findings were compatible with drug-associated necrotizing myopathy. DİSCUSSİON Docetaxel-related myositis is a rare complication and clinicians should be aware of this adverse event in patients with suspicious symptoms and with comorbidities.
Collapse
Affiliation(s)
- Nadide Demırel
- Department of Medical Oncology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Metin Demır
- Department of Medical Oncology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
2
|
Merino-Vico A, Kocyigit M, Frazzei G, Landman L, Boon L, van Leeuwen EM, Lundberg IE, van der Kooi AJ, Raaphorst J, van Hamburg JP, Tas SW. Modulating IL-21-driven B cell responses in idiopathic inflammatory myopathies via inhibition of the JAK/STAT pathway. Arthritis Res Ther 2025; 27:76. [PMID: 40170058 PMCID: PMC11963324 DOI: 10.1186/s13075-025-03547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Idiopathic inflammatory myopathies (IIM) are autoimmune disorders characterized by muscle inflammation and autoreactive B cell responses. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway is essential for B cell functions, making it a promising therapeutic target. This study explores the potential of tofacitinib, a JAK1/JAK3 inhibitor, to modulate B cell activity in IIM. METHODS Peripheral B cell populations from dermatomyositis (DM), anti-synthetase syndrome (ASyS) and overlap myositis (OM) patients were analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMC) or sorted memory B cells were cultured with tofacitinib and stimulated with combinations of CD40, IL-21, IL-2, BAFF and CpG. B cell proliferation, differentiation and (auto)antibody, cytokine/chemokine production were assessed by flow cytometry, Luminex, and ELISA/ELiA assays. RESULTS The IIM peripheral B cell compartment had elevated transitional and naive B cells, with reduced Bmem frequencies compared to healthy donors. Tofacitinib significantly inhibited CD40/IL-21-induced B cell proliferation, plasmablast formation and function in PBMC and B cell-only cultures across all IIM subgroups, predominantly affecting the IL-21-induced differentiation and antibody production. Remarkably, tofacitinib reduced the levels of anti-Jo1 autoantibodies, as well as of CXCL10 and CXCL13 in ASyS memory B cell cultures. CONCLUSIONS These findings highlight the B cell involvement in IIM, evidenced by altered peripheral B cell composition in active disease and the effective inhibition of essential B cell responses, including proliferation, differentiation, and (auto)antibody production, by tofacitinib in vitro. This positions the JAK/STAT pathway as a promising new therapeutic target to modulate B cell activity in IIM.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Merve Kocyigit
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lisa Landman
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ester M van Leeuwen
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Laboratory Medicine, Laboratory Specialized Diagnostics and Research, Section Medical Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Rheumatology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Anneke J van der Kooi
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joost Raaphorst
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Wang Y, Li Q, Lv X, Liu D, Huang J, An Q, Zhang J, Ju B, Hu N, Mo L, Feng X, Pu D, Hao Z, Luo J, He L. Peripheral Th17/Treg imbalance in Chinese patients with untreated antisynthetase syndrome associated interstitial lung disease. Int Immunopharmacol 2024; 138:112403. [PMID: 38936056 DOI: 10.1016/j.intimp.2024.112403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024]
Abstract
Interstitial lung disease (ILD) is a common and fatal manifestation of antisynthetase syndrome (ASS). The aim of this study was to provide new insight into investigate peripheral blood lymphocytes, CD4+ T cells, cytokine levels and their relation to the clinical profile of untreated patients with ASS-ILD. The retrospective study population included thirty patients diagnosed with ASS-ILD and 30 healthy controls (HCs). Baseline clinical and laboratory data were collected for all subjects, including peripheral blood lymphocyte, CD4+ T cell subsets measured by flow cytometry, and serum cytokine levels measured by multiple microsphere flow immunofluorescence. Their correlations with clinical and laboratory findings were analyzed by Pearson's or Spearman's correlation analysis. In addition, the Benjamini-Hochberg method was used for multiple correction to adjust the p-values. Patients with ASS-ILD had lower CD8+ T cells, higher proportion of Th17 cells and Th17/Treg ratio than HCs. Serum cytokine levels (IL-1β, IL-6, IL-12, IL-17, IL-8, IL-2, IL-4, IL-10, TNF-α and IFN-γ) were higher in patients with ASS-ILD than HCs. Moreover, Th17/Treg ratio was negatively correlated with diffusing capacity of carbon monoxide (DLCO)%. Our study demonstrated abnormalities of immune disturbances in patients with ASS-ILD, characterized by decreased CD8+ T cells and an increased Th17/Treg ratio, due to an increase in the Th17 cells. These abnormalities may be the immunological mechanism underlying the development of ILD in ASS.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qian Li
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xiaohong Lv
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Di Liu
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Jing Huang
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qi An
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Jing Zhang
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Bomiao Ju
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Nan Hu
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Lingfei Mo
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xiuyuan Feng
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Dan Pu
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Zhiming Hao
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Jing Luo
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| | - Lan He
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
4
|
Zhai X, Wu W, Zeng S, Miao Y. Advance in the mechanism and clinical research of myalgia in long COVID. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:142-164. [PMID: 39310121 PMCID: PMC11411160 DOI: 10.62347/txvo6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mortality rates of coronavirus disease 2019 (COVID-19) have significantly decreased. However, a variable proportion of patients exhibit persistent prolonged symptoms of COVID-19 infection (long COVID). This virus primarily attacks respiratory system, but numerous individuals complain persistent skeletal muscle pain or worsening pre-existing muscle pain post COVID-19, which severely affects the quality of life and recovery. Currently, there is limited research on the skeletal muscle pain in long COVID. In this brief review, we review potential pathological mechanisms of skeletal muscle pain in long COVID, and summarize the various auxiliary examinations and treatments for skeletal muscle pain in long COVID. We consider abnormal activation of inflammatory response, myopathy, and neurological damages as pivotal pathological mechanisms of skeletal muscle pain in long COVID. A comprehensive examination is significantly important in order to work out effective treatment plans and relieve skeletal muscle pain. So far, rehabilitation interventions for myalgia in long COVID contain but are not limited to drug, nutraceutical therapy, gut microbiome-targeted therapy, interventional therapy and strength training. Our study provides a potential mechanism reference for clinical researches, highlighting the importance of comprehensive approach and management of skeletal muscle pain in long COVID. The relief of skeletal muscle pain will accelerate rehabilitation process, improve activities of daily living and enhance the quality of life, promoting individuals return to society with profound significance.
Collapse
Affiliation(s)
- Xiuyun Zhai
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Weijun Wu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Siliang Zeng
- Department of Rehabilitation Therapy, School of Health, Shanghai Normal University Tianhua CollegeNo. 1661, North Shengxin Road, Shanghai 201815, China
| | - Yun Miao
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda UniversityNo. 2727, Jinhai Road, Shanghai 201209, China
| |
Collapse
|
5
|
Chen Y, Liu H, Luo Z, Zhang J, Dong M, Yin G, Xie Q. ASM is a therapeutic target in dermatomyositis by regulating the differentiation of naive CD4 + T cells into Th17 and Treg subsets. Skelet Muscle 2024; 14:16. [PMID: 39026344 PMCID: PMC11256435 DOI: 10.1186/s13395-024-00347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND This study aims to investigate the involvement of acid sphingomyelinase (ASM) in the pathology of dermatomyositis (DM), making it a potential therapeutic target for DM. METHODS Patients with DM and healthy controls (HCs) were included to assess the serum level and activity of ASM, and to explore the associations between ASM and clinical indicators. Subsequently, a myositis mouse model was established using ASM gene knockout and wild-type mice to study the significant role of ASM in the pathology and to assess the treatment effect of amitriptyline, an ASM inhibitor. Additionally, we investigated the potential treatment mechanism by targeting ASM both in vivo and in vitro. RESULTS A total of 58 DM patients along with 30 HCs were included. The ASM levels were found to be significantly higher in DM patients compared to HCs, with median (quartile) values of 2.63 (1.80-4.94) ng/mL and 1.64 (1.47-1.96) ng/mL respectively. The activity of ASM in the serum of DM patients was significantly higher than that in HCs. Furthermore, the serum levels of ASM showed correlations with disease activity and muscle enzyme levels. Knockout of ASM or treatment with amitriptyline improved the severity of the disease, rebalanced the CD4 T cell subsets Th17 and Treg, and reduced the production of their secreted cytokines. Subsequent investigations revealed that targeting ASM could regulate the expression of relevant transcription factors and key regulatory proteins. CONCLUSION ASM is involved in the pathology of DM by regulating the differentiation of naive CD4 + T cells and can be a potential treatment target.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Min Dong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Geng Yin
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China.
| |
Collapse
|
6
|
Cappelletti C, Brugnoni R, Bonanno S, Andreetta F, Salerno F, Canioni E, Vattemi GNA, Tonin P, Mantegazza R, Maggi L. Toll-like receptors and IL-7 as potential biomarkers for immune-mediated necrotizing myopathies. Eur J Immunol 2023; 53:e2250326. [PMID: 37562045 DOI: 10.1002/eji.202250326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
We aimed to verify whether the immune system may represent a source of potential biomarkers for the stratification of immune-mediated necrotizing myopathies (IMNMs) subtypes. A group of 22 patients diagnosed with IMNM [7 with autoantibodies against signal recognition particle (SRP) and 15 against 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR)] and 12 controls were included. A significant preponderance of M1 macrophages was observed in both SRP+ and HMGCR+ muscle samples (p < 0.0001 in SRP+ and p = 0.0316 for HMGCR+ ), with higher values for SRP+ (p = 0.01). Despite the significant increase observed in the expression of TLR4 and all endosomal Toll-like receptors (TLRs) at protein level in IMNM muscle tissue, only TLR7 has been shown considerably upregulated compared to controls at transcript level (p = 0.0026), whereas TLR9 was even decreased (p = 0.0223). Within IMNM subgroups, TLR4 (p = 0.0116) mRNA was significantly increased in SRP+ compared to HMGCR+ patients. Within IMNM group, only IL-7 was differentially expressed between SRP+ and HMGCR+ patients, with higher values in SRP+ patients (p = 0.0468). Overall, innate immunity represents a key player in pathological mechanisms of IMNM. TLR4 and the inflammatory cytokine IL-7 represent potential immune biomarkers able to differentiate between SRP+ and HMGCR+ patients.
Collapse
Affiliation(s)
- Cristina Cappelletti
- U.O. Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit., Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Brugnoni
- U.O. Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit., Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Bonanno
- U.O. Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit., Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Andreetta
- U.O. Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit., Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Salerno
- U.O. Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit., Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Canioni
- U.O. Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit., Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gaetano Nicola Alfio Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Renato Mantegazza
- U.O. Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit., Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Maggi
- U.O. Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit., Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
7
|
Gandolfi S, Pileyre B, Drouot L, Dubus I, Auquit-Auckbur I, Martinet J. Stromal vascular fraction in the treatment of myositis. Cell Death Discov 2023; 9:346. [PMID: 37726262 PMCID: PMC10509179 DOI: 10.1038/s41420-023-01605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Muscle regeneration is a physiological process that converts satellite cells into mature myotubes under the influence of an inflammatory environment progressively replaced by an anti-inflammatory environment, with precise crosstalk between immune and muscular cells. If the succession of these phases is disturbed, the immune system can sometimes become auto-reactive, leading to chronic muscular inflammatory diseases, such as myositis. The triggers of these autoimmune myopathies remain mostly unknown, but the main mechanisms of pathogenesis are partially understood. They involve chronic inflammation, which could be associated with an auto-reactive immune response, and gradually with a decrease in the regenerative capacities of the muscle, leading to its degeneration, fibrosis and vascular architecture deterioration. Immunosuppressive treatments can block the first part of the process, but sometimes muscle remains weakened, or even still deteriorates, due to the exhaustion of its capacities. For patients refractory to immunosuppressive therapies, mesenchymal stem cells have shown interesting effects but their use is limited by their availability. Stromal vascular fraction, which can easily be extracted from adipose tissue, has shown good tolerance and possible therapeutic benefits in several degenerative and autoimmune diseases. However, despite the increasing use of stromal vascular fraction, the therapeutically active components within this heterogeneous cellular product are ill-defined and the mechanisms by which this therapy might be active remain insufficiently understood. We review herein the current knowledge on the mechanisms of action of stromal vascular fraction and hypothesise on how it could potentially respond to some of the unmet treatment needs of refractory myositis.
Collapse
Affiliation(s)
- S Gandolfi
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
- Toulouse University Hospital, Department of Plastic and Reconstructive Surgery, F-31000, Toulouse, France
| | - B Pileyre
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- Centre Henri Becquerel, Department of Pharmacy, F-76000, Rouen, France.
| | - L Drouot
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Dubus
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Auquit-Auckbur
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Plastic, Reconstructive and Hand Surgery, F-76000, Rouen, France
| | - J Martinet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
8
|
Sinha PR, Mallick N, Sahu RL. Orthopedic Manifestations and Post-COVID-19 Infection. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S665-S668. [PMID: 37654265 PMCID: PMC10466592 DOI: 10.4103/jpbs.jpbs_88_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 09/02/2023] Open
Abstract
Background It's been widely reported that the new coronavirus has adverse effects on the musculoskeletal system. The primary goal of this study is to establish the frequency of musculoskeletal complaintswith extended COVID syndrome. This retrospective cohort research examined the occurrence of musculoskeletal problems in patients with chronic COVID-19 syndrome. Material and Methods About 100 COVID-19patients tested positive, of which 27 (27.0%) had a minimum of one orthopedic impairment. Results Patients with orthopedic conditions were significantly younger than those without (53.7 years vs. 58.1 years, p = 0.003), and their incidence was significantly higher in obese than non-obese patients (p = 0.022). Conclusion Furthermore, patients with diabetes had significantly more orthopedic symptoms than those with cardiac or pulmonary complications. According to our research, patients who are obese or diabetic have a higher probability of experiencing musculoskeletal symptoms when infected with COVID-19. Additionally, analysis is needed to determine whether these orthopedic conditions persist during active disease and post-infection.
Collapse
Affiliation(s)
- Priti R. Sinha
- Department of Orthopaedics, GS Medical College and Hospital, Pilkhuwa, Hapur, Uttar Pradesh, India
| | - Nitin Mallick
- Department of Orthopaedics, Santosh Medical College, Ghaziabad, Uttar Pradesh, India
| | - Ramjee L. Sahu
- Department of Orthopaedics, Saraswati Institute of Medical Sciences, Pilkhuwa, Hapur, Uttar Pradesh, India
| |
Collapse
|
9
|
Khuu S, Fernandez JW, Handsfield GG. Delayed skeletal muscle repair following inflammatory damage in simulated agent-based models of muscle regeneration. PLoS Comput Biol 2023; 19:e1011042. [PMID: 37023170 PMCID: PMC10128985 DOI: 10.1371/journal.pcbi.1011042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/25/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Healthy skeletal muscle undergoes repair in response to mechanically localised strains during activities such as exercise. The ability of cells to transduce the external stimuli into a cascade of cell signalling responses is important to the process of muscle repair and regeneration. In chronic myopathies such as Duchenne muscular dystrophy and inflammatory myopathies, muscle is often subject to chronic necrosis and inflammation that perturbs tissue homeostasis and leads to non-localised, widespread damage across the tissue. Here we present an agent-based model that simulates muscle repair in response to both localised eccentric contractions similar to what would be experienced during exercise, and non-localised widespread inflammatory damage that is present in chronic disease. Computational modelling of muscle repair allows for in silico exploration of phenomena related to muscle disease. In our model, widespread inflammation led to delayed clearance of tissue damage, and delayed repair for recovery of initial fibril counts at all damage levels. Macrophage recruitment was delayed and significantly higher in widespread compared to localised damage. At higher damage percentages of 10%, widespread damage led to impaired muscle regeneration and changes in muscle geometry that represented alterations commonly observed in chronic myopathies, such as fibrosis. This computational work offers insight into the progression and aetiology of inflammatory muscle diseases, and suggests a focus on the muscle regeneration cascade in understanding the progression of muscle damage in inflammatory myopathies.
Collapse
Affiliation(s)
- Stephanie Khuu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Justin W Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Geoffrey G Handsfield
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Ríos-Rivera RA, Vilá LM. Coexistent Relapsing Polychondritis and Clinically Amyopathic Dermatomyositis: A Rare Association of Autoimmune Disorders. Case Rep Rheumatol 2023; 2023:3719502. [PMID: 37082027 PMCID: PMC10113061 DOI: 10.1155/2023/3719502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Relapsing polychondritis (RPC) is an uncommon autoimmune systemic disease characterized by recurrent inflammation of the cartilage tissue. It can occur alone or in association with other autoimmune diseases, vasculitis, or hematologic disorders. However, the association of RPC with dermatomyositis is extremely rare. Herein, we present a case of a 38-year-old man who developed concurrent RPC and clinically amyopathic dermatomyositis (CADM) manifested by auricular chondritis, nasal chondritis, polyarthritis, gottron papules, fingertip papules, skin biopsy consistent with dermatomyositis, and positive antimelanoma differentiation-associated gene 5 (MDA5) antibodies. RPC features resolved with corticosteroids, but CADM manifestations were resistant to corticosteroids, cyclophosphamide, azathioprine, and hydroxychloroquine. Subsequent therapy with rituximab was effective to control CADM manifestations. This case highlights the importance of recognizing CADM as part of the autoimmune diseases linked with RPC and maintaining a high level of awareness to initiate effective therapy to avoid the long-term complications associated with these conditions.
Collapse
Affiliation(s)
- Rafael A. Ríos-Rivera
- Division of Rheumatology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Luis M. Vilá
- Division of Rheumatology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
11
|
Liu X, Yao S, Pan M, Cai Y, Shentu W, Cai W, Yu H. Two-dimensional speckle tracking echocardiography demonstrates improved myocardial function after intravenous infusion of bone marrow mesenchymal stem in the X-Linked muscular dystrophy mice. BMC Cardiovasc Disord 2022; 22:461. [PMID: 36329408 PMCID: PMC9635191 DOI: 10.1186/s12872-022-02886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) are commonly used in regenerative medicine. However, it is not clear whether transplantation of BMSCs can improve cardiac function of the X-Linked Muscular Dystrophy Mice (mdx) and how to detect it. We aimed to investigate the role of speckle tracking echocardiography (STE) in detecting cardiac function of the BMSCs-transplanted mdx in comparison with the untreated mdx. Methods The experimental mice were divided into the BMSCs-transplanted mdx, untreated mdx, and control mice groups (n = 6 per group). The BMSCs were transplanted via tail vein injections into a subset of mdx at 20 weeks of age. After four weeks, the cardiac functional parameters of all the mice in the 3 groups were analyzed by echocardiography. Then, all the mice were sacrificed, and the cardiac tissues were harvested and analyzed by immunofluorescence. The serum biochemical parameters were also analyzed to determine the beneficial effects of BMSCs transplantation. Results Traditional echocardiography parameters did not show statistically significant differences after BMSCs transplantation for the three groups of mice. In comparison with the control group, mdx showed significantly lower left ventricular (LV) STE parameters in both the long-axis and short-axis LV images (P < 0.05). However, BMSCs-transplanted mdx showed improvements in several STE parameters including significant increases in a few STE parameters (P < 0.05). Immunofluorescence staining of the myocardium tissues showed statistically significant differences between the mdx and the control mice (P < 0.05), and the mdx transplanted with BMSCs demonstrated significantly improvement compared with the untreated mdx (P < 0.05). Conclusion This study demonstrated that the early reduction in the LV systolic and diastolic function in the mdx were accurately detected by STE. Furthermore, our study demonstrated that the transplantation of BMSCs significantly improved myocardial function in the mdx.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Shixiang Yao
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Yingying Cai
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weihui Shentu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenqian Cai
- Heart Center, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongkui Yu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Ultrasonography, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Coudert JD, Slater N, Sooda A, Beer K, Lim EM, Boyder C, Zhang R, Mastaglia FL, Learmonth YC, Fairchild TJ, Yeap BB, Needham M. Immunoregulatory effects of testosterone supplementation combined with exercise training in men with Inclusion Body Myositis: a double-blind, placebo-controlled, cross-over trial. Clin Transl Immunology 2022; 11:e1416. [PMID: 36188123 PMCID: PMC9495304 DOI: 10.1002/cti2.1416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Sporadic Inclusion Body Myositis (IBM) is an inflammatory muscle disease affecting individuals over the age of 45, leading to progressive muscle wasting, disability and loss of independence. Histologically, IBM is characterised by immune changes including myofibres expressing major histocompatibility complex molecules and invaded by CD8+ T cells and macrophages, and by degenerative changes including protein aggregates organised in inclusion bodies, rimmed vacuoles and mitochondrial abnormalities. There is currently no cure, and regular exercise is currently the only recognised treatment effective at limiting muscle weakening, atrophy and loss of function. Testosterone exerts anti-inflammatory effects, inhibiting effector T-cell differentiation and pro-inflammatory cytokine production. Methods We conducted a double-blind, placebo-controlled, cross-over trial in men with IBM, to assess whether a personalised progressive exercise training combined with application of testosterone, reduced the inflammatory immune response associated with this disease over and above exercise alone. To assess intervention efficacy, we immunophenotyped blood immune cells by flow cytometry, and measured serum cytokines and chemokines by Luminex immunoassay. Results Testosterone supplementation resulted in modest yet significant count reduction in the classical monocyte subset as well as eosinophils. Testosterone-independent immunoregulatory effects attributed to exercise included altered proportions of some monocyte, T- and B-cell subsets, and reduced IL-12, IL-17, TNF-α, MIP-1β and sICAM-1 in spite of interindividual variability. Conclusion Overall, our findings indicate anti-inflammatory effects of exercise training in IBM patients, whilst concomitant testosterone supplementation provides some additional changes. Further studies combining testosterone and exercise would be worthwhile in larger cohorts and longer testosterone administration periods.
Collapse
Affiliation(s)
- Jerome D Coudert
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,School of Medicine University of Notre Dame Fremantle WA Australia
| | - Nataliya Slater
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia
| | - Anuradha Sooda
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia
| | - Kelly Beer
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia
| | - Ee Mun Lim
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Conchita Boyder
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Rui Zhang
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science Nedlands WA Australia
| | - Yvonne C Learmonth
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,Discipline of Exercise Science Murdoch University Murdoch WA Australia
| | - Timothy J Fairchild
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Discipline of Exercise Science Murdoch University Murdoch WA Australia
| | - Bu B Yeap
- Medical School University of Western Australia Perth WA Australia.,Department of Endocrinology and Diabetes Fiona Stanley Hospital Perth WA Australia
| | - Merrilee Needham
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,School of Medicine University of Notre Dame Fremantle WA Australia.,Department of Neurology Fiona Stanley Hospital Perth WA Australia
| |
Collapse
|
13
|
Lai Y, Zhao S, Chen B, Huang Y, Guo C, Li M, Ye B, Wang S, Zhang H, Yang N. Iron controls T helper cell pathogenicity by promoting glucose metabolism in autoimmune myopathy. Clin Transl Med 2022; 12:e999. [PMID: 35917405 PMCID: PMC9345506 DOI: 10.1002/ctm2.999] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND T helper cells in patients with autoimmune disease of idiopathic inflammatory myopathies (IIM) are characterized with the proinflammatory phenotypes. The underlying mechanisms remain unknown. METHODS RNA sequencing was performed for differential expression genes. Gene expression in CD4+ T-cells was confirmed by quantitative real-time PCR. CD4+ T-cells from IIM patients or healthy controls were evaluated for metabolic activities by Seahorse assay. Glucose uptake, T-cell proliferation and differentiation were evaluated and measured by flow cytometry. Human CD4+ T-cells treated with iron chelators or Pfkfb4 siRNA were measured for glucose metabolism, proliferation and differentiation. Signalling pathway activation was evaluated by western blot and flow cytometry. Mouse model of experimental autoimmune myositis (EAM) were induced and treated with iron chelator or rapamycin. CD4+ T-cell differentiation and muscle inflammation in the EAM mice were evaluated. RESULTS RNA-sequencing analysis revealed that iron was involved with glucose metabolism and CD4+ T-cell differentiation. IIM patient-derived CD4+ T-cells showed enhanced glycolysis and mitochondrial respiration, which was inhibited by iron chelation. CD4+ T-cells from patients with IIM was proinflammatory and iron chelation suppressed the differentiation of interferon gamma (IFNγ)- and interleukin (IL)-17A-producing CD4+ T-cells, which resulted in an increased percentage of regulatory T (Treg) cells. Mechanistically, iron promoted glucose metabolism by an upregulation of PFKFB4 through AKT-mTOR signalling pathway. Notably, the knockdown of Pfkfb4 decreased glucose influx and thus suppressed the differentiation of IFNγ- and IL-17A-producing CD4+ T-cells. In vivo, iron chelation inhibited mTOR signalling pathway and reduced PFKFB4 expression in CD4+ T-cells, resulting in reduced proinflammatory IFNγ- and IL-17A-producing CD4+ T-cells and increased Foxp3+ Treg cells, leading to ameliorated muscle inflammation. CONCLUSIONS Iron directs CD4+ T-cells into a proinflammatory phenotype by enhancing glucose metabolism. Therapeutic targeting of iron metabolism should have the potential to normalize glucose metabolism in CD4+ T-cells and reverse their proinflammatory phenotype in IIM.
Collapse
Affiliation(s)
- Yimei Lai
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Siyuan Zhao
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Binfeng Chen
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yuefang Huang
- Department of PediatricsThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chaohuan Guo
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengyuan Li
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Baokui Ye
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shuyi Wang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hui Zhang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Niansheng Yang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
14
|
Rabaan AA, Bakhrebah MA, Mutair AA, Alhumaid S, Al-Jishi JM, AlSihati J, Albayat H, Alsheheri A, Aljeldah M, Garout M, Alfouzan WA, Alhashem YN, AlBahrani S, Alshamrani SA, Alotaibi S, AlRamadhan AA, Albasha HN, Hajissa K, Temsah MH. Systematic Review on Pathophysiological Complications in Severe COVID-19 among the Non-Vaccinated and Vaccinated Population. Vaccines (Basel) 2022; 10:985. [PMID: 35891149 PMCID: PMC9318201 DOI: 10.3390/vaccines10070985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is one of the longest viral pandemics in the history of mankind, which have caused millions of deaths globally and induced severe deformities in the survivals. For instance, fibrosis and cavities in the infected lungs of COVID-19 are some of the complications observed in infected patients post COVID-19 recovery. These health abnormalities, including is multiple organ failure-the most striking pathological features of COVID-19-have been linked with diverse distribution of ACE2 receptor. Additionally, several health complications reports were reported after administration of COVID-19 vaccines in healthy individuals, but clinical or molecular pathways causing such complications are not yet studied in detail. Thus, the present systematic review established the comparison of health complication noted in vaccinated and non-vaccinated individuals (COVID-19 infected patients) to identify the association between vaccination and the multiorgan failure based on the data obtained from case studies, research articles, clinical trials/Cohort based studies and review articles published between 2020-2022. This review also includes the biological rationale behind the COVID-19 infection and its subsequent symptoms and effects including multiorgan failure. In addition, multisystem inflammatory syndrome (MIS) has been informed in individuals post vaccination that resulted in multiorgan failure but, no direct correlation of vaccination with MIS has been established. Similarly, hemophagocytic lymphohistiocytosis (HLH) also noted to cause multiorgan failure in some individuals following full vaccination. Furthermore, severe complications were recorded in elderly patients (+40 years of age), indicates that older age individuals are higher risk by COVID-19 and post vaccination, but available literature is not sufficient to comply with any conclusive statements on relationship between vaccination and multiorgan failure.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia;
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia;
| | - Jehad AlSihati
- Internal Medicine Department, Gastroenterology Section, King Fahad Specialist Hospital, Dammam 31311, Saudi Arabia;
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia; (H.A.); (A.A.)
| | - Ahmed Alsheheri
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia; (H.A.); (A.A.)
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Yousef N. Alhashem
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia;
| | - Salma AlBahrani
- Infectious Disease Unit, Specialty Internal Medicine, King Fahd Military Medical Complex, Dhahran 31932, Saudi Arabia;
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Sultan Alotaibi
- Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Abdullah A. AlRamadhan
- Laboratory and Toxicology Department, Security Forces Specialized Comprehensive Clinics, Al-Ahsa 36441, Saudi Arabia;
| | - Hanadi N. Albasha
- Department of Infection Prevention and Control, Obeid Specialized Hospital, Riyadh 12627, Saudi Arabia;
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Mohamad-Hani Temsah
- Pediatric Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
15
|
The SNPs of mitochondrial DNA displacement loop region and mitochondrial DNA copy number associated with risk of polymyositis and dermatomyositis. Sci Rep 2022; 12:5903. [PMID: 35393495 PMCID: PMC8990067 DOI: 10.1038/s41598-022-09943-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative damage-induced mitochondrial dysfunction may activate muscle catabolism and autophagy pathways to initiate muscle weakening in idiopathic inflammatory myopathies (IIMs). In this study, Single nucleotide polymorphisms (SNPs) in the mitochondrial displacement loop (D-loop) and mitochondrial DNA (mtDNA) copy number were assessed and their association with the risk of polymyositis and dermatomyositis (PM/DM) was evaluated. Excessive D-loop SNPs (8.779 ± 1.912 vs. 7.972 ± 1.903, p = 0.004) correlated positively with mtDNA copy number (0.602 ± 0.457 vs. 0.300 ± 0.118, p < 0.001). Compared with that of the controls, the mtDNA of PM/DM patients showed D-loop SNP accumulation. In addition, the distribution frequencies of 16304C (p = 0.047) and 16519C (p = 0.043) were significantly higher in the patients with PM/DM. Subsequent analysis showed that reactive oxygen species (ROS) generation was increased in PM/DM patients compared with that in the controls (18,477.756 ± 13,574.916 vs. 14,484.191 ± 5703.097, p = 0.012). Further analysis showed that the PM/DM risk-related allele 16304C was significantly associated with lower IL-4 levels (p = 0.021), while 16519C had a trend to be associated with higher IL-2 expression (p = 0.064). The allele 16519C was associated with a positive antinuclear antibody (ANA) status in PM/DM patients (p = 0.011). Our findings suggest that mitochondrial D-loop SNPs could be potential biomarkers for PM/DM risk and these SNPs associated with cytokine expression may be involved in the development of PM/DM. Further, mtDNA copy number-mediated mitochondrial dysfunction may precede the onset of PM/DM.
Collapse
|
16
|
Ahn SS, Park YB, Lee SW. Clinical Features of Anti-Synthetase Syndrome Associated with Prognosis in Patients with Dermatomyositis and Polymyositis. J Clin Med 2022; 11:jcm11072052. [PMID: 35407661 PMCID: PMC8999572 DOI: 10.3390/jcm11072052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
We evaluated whether the clinical features of anti-synthetase syndrome (ASA)—myositis, fever, arthritis, mechanic’s hand, Raynaud’s phenomenon and interstitial lung disease—are relevant to prognosis in patients with dermatomyositis/polymyositis (DM/PM). A retrospective analysis was performed to identify patients diagnosed with DM/PM according to Bohan and Peter criteria. Clinical information, laboratory data and the presence of ASA clinical features at disease diagnosis were searched, and the outcomes of all-cause mortality, intensive care unit admission and disease remission at 1 year were assessed. Among the 86 patients included, fever (36.0%) and interstitial lung disease (26.7%) were the most common ASA clinical features. During the follow-up, 12 patients experienced death, and 7 of the 12 deaths (58.3%) occurred within 3 months of DM/PM diagnosis. Mortality was more frequently observed in those presenting with fever than in those without (25.8% versus 7.3%, p = 0.024). Multivariable Cox proportional analysis revealed that male sex (hazard ratio [HR] 5.53, 95% confidence interval [CI] 1.65, 18.49, p < 0.01) and fever (HR 4.20, 95% CI 1.26, 14.01, p = 0.02) independently predicted mortality. The clinical impact of fever was consistent in both sexes. Fever could be a warning signal heralding the poor outcome of mortality in patients with DM/PM, especially in early disease phases.
Collapse
Affiliation(s)
- Sung Soo Ahn
- Department of Internal Medicine, Yongin Severance Hospital, College of Medicine, Yonsei University, Yongin 16995, Korea;
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 03722, Korea;
- Institute for Immunology and Immunological Diseases, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 03722, Korea;
- Institute for Immunology and Immunological Diseases, College of Medicine, Yonsei University, Seoul 03722, Korea
- Correspondence:
| |
Collapse
|
17
|
Cirillo E, Esposito C, Giardino G, Azan G, Fecarotta S, Pittaluga S, Ruggiero L, Barretta F, Frisso G, Notarangelo LD, Pignata C. Case Report: Severe Rhabdomyolysis and Multiorgan Failure After ChAdOx1 nCoV-19 Vaccination. Front Immunol 2022; 13:845496. [PMID: 35371100 PMCID: PMC8968726 DOI: 10.3389/fimmu.2022.845496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background Severe skeletal muscle damage has been recently reported in patients with SARS-CoV-2 infection and as a rare vaccination complication. Case summary On Apr 28, 2021 a 68-year-old man who was previously healthy presented with an extremely severe rhabdomyolysis that occurred nine days following the first dose of SARS-CoV-2 ChAdOx1 nCov-19 vaccination. He had no risk factors, and denied any further assumption of drugs except for fermented red rice, and berberine supplement. The clinical scenario was complicated by a multi organ failure involving bone marrow, liver, lung, and kidney. For the rapid increase of the inflammatory markers, a cytokine storm was suspected and multi-target biologic immunosuppressive therapy was started, consisting of steroids, anakinra, and eculizumab, which was initially successful resulting in close to normal values of creatine phosphokinase after 17 days of treatment. Unfortunately, 48 days after the vaccination an accelerated phase of deterioration, characterized by severe multi-lineage cytopenia, untreatable hypotensive shock, hypoglycemia, and dramatic increase of procalcitonin (PCT), led to patient death. Conclusion Physicians should be aware that severe and fatal rhabdomyolysis may occur after SARS-CoV2 vaccine administration.
Collapse
Affiliation(s)
- Emilia Cirillo
- Departments of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Ciro Esposito
- Department of Transplants, A. Cardarelli Hospital, Naples, Italy
| | - Giuliana Giardino
- Departments of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Gaetano Azan
- Department of Transplants, A. Cardarelli Hospital, Naples, Italy
| | - Simona Fecarotta
- Departments of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Stefania Pittaluga
- Laboratory of Pathology Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lucia Ruggiero
- Department of Neuroscience, Reproductive and Odontostomatological Science, Federico II University of Naples, Naples, Italy
| | - Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology , Federico II University of Naples, Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology , Federico II University of Naples, Naples, Italy
| | - Luigi Daniele Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Claudio Pignata
- Departments of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
- *Correspondence: Claudio Pignata,
| |
Collapse
|
18
|
Frequency of orthopedic manifestations in COVID-19 patients. J Taibah Univ Med Sci 2022; 17:186-191. [PMID: 35194420 PMCID: PMC8853859 DOI: 10.1016/j.jtumed.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives The effects of the novel coronavirus on the musculoskeletal system have been reported with wide variability. The purpose of this study was to determine the prevalence of musculoskeletal symptoms and if these correlated with other patient characteristics. Methods This was a retrospective review of 685 admitted patients who were found to be positive for COVID-19 during their admission. Based on a standard COVID-19 questionnaire, we recorded complaints of new onset myalgias, joint pain, back pain, and muscle weakness and performed a chart review for all existing comorbidities. Statistical analyses were performed to determine the association between various comorbidities and orthopedic manifestations of COVID-19 patients. Results Of the 685 patients who tested positive for COVID-19, 186 patients presented with at least one orthopedic manifestation (27.1%). Patients that experienced orthopedic manifestations were significantly younger at 53.7 years of age compared to 58.1 years of age (p = 0.003) with a significantly higher BMI (body mass index) at 32.6 versus 30.0 (p = 0.022). Patients that had diabetes or were obese had significantly higher rates of orthopedic manifestations while those that had heart or lung disease had significantly fewer. Conclusion Obese and diabetic patients had significantly higher rates of orthopedic symptoms during COVID-19 infection. Further studies need to be carried out in these populations to determine if these comorbidities during infection have an effect on the musculoskeletal system in the perioperative setting and after recovery from infection.
Collapse
|
19
|
Štorkánová H, Oreská S, Špiritović M, Heřmánková B, Bubová K, Kryštůfková O, Mann H, Komarc M, Slabý K, Pavelka K, Šenolt L, Zámečník J, Vencovský J, Tomčík M. Hsp90 Levels in Idiopathic Inflammatory Myopathies and Their Association With Muscle Involvement and Disease Activity: A Cross-Sectional and Longitudinal Study. Front Immunol 2022; 13:811045. [PMID: 35154129 PMCID: PMC8832010 DOI: 10.3389/fimmu.2022.811045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heat shock proteins (Hsp) are chaperones playing essential roles in skeletal muscle physiology, adaptation to exercise or stress, and activation of inflammatory cells. We aimed to assess Hsp90 in patients with idiopathic inflammatory myopathies (IIM) and its association with IIM-related features. Methods Hsp90 plasma levels were analyzed in a cross-sectional cohort (277 IIM patients and 157 healthy controls [HC]) and two longitudinal cohorts to assess the effect of standard-of-care pharmacotherapy (n=39 in early disease and n=23 in established disease). Hsp90 and selected cytokines/chemokines were measured by commercially available ELISA and human Cytokine 27-plex Assay. Results Hsp90 plasma levels were increased in IIM patients compared to HC (median [IQR]: 20.2 [14.3–40.1] vs 9.8 [7.5–13.8] ng/mL, p<0.0001). Elevated Hsp90 was found in IIM patients with pulmonary, cardiac, esophageal, and skeletal muscle involvement, with higher disease activity or damage, and with elevated muscle enzymes and crucial cytokines/chemokines involved in the pathogenesis of myositis (p<0.05 for all). Plasma Hsp90 decreased upon pharmacological treatment in both patients with early and established disease. Notably, Hsp90 plasma levels were slightly superior to traditional biomarkers, such as C-reactive protein and creatine kinase, in differentiating IIM from HC, and IIM patients with cardiac involvement and interstitial lung disease from those without these manifestations. Conclusions Hsp90 is increased systemically in patients with IIM. Plasma Hsp90 could become an attractive soluble biomarker of disease activity and damage and a potential predictor of treatment response in IIM.
Collapse
Affiliation(s)
- Hana Štorkánová
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Sabína Oreská
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Maja Špiritović
- Institute of Rheumatology, Prague, Czechia
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Barbora Heřmánková
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Kristýna Bubová
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Olga Kryštůfková
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Heřman Mann
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Komarc
- Department of Methodology, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Kryštof Slabý
- Department of Rehabilitation and Sports Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Karel Pavelka
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Ladislav Šenolt
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jiří Vencovský
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Tomčík
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Michal Tomčík,
| |
Collapse
|
20
|
Lin ZH, Hu J, Shi H, Liaw CC, Qiu WL, Hsu WH, Lin TY. Water extract of medicinal ink (WEMI) attenuates lipopolysaccharide-induced NO production of Raw264.7 cells via downregulating JAK2/STAT3-mediated iNOS expression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114636. [PMID: 34520830 DOI: 10.1016/j.jep.2021.114636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal ink is used as a traditional topical medicine for treating inflammatory diseases via detoxification, relieving pain, hemostasis, and reducing swelling. However, the effect of medicinal ink on the inhibition of inflammatory responses and the underlying molecular mechanism remain unclear. AIM OF THE STUDY The present study aimed to investigate the anti-inflammatory function of water extract of medical ink (WEMI) and elucidate its active mechanisms. MATERIALS AND METHODS Cell viability was assessed using crystal violet staining assay. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were detected by ELISA. Nitric oxide (NO) production was measured by Griess assay. The activation of inflammatory signaling molecules stimulated by lipopolysaccharide (LPS) was evaluated by assessing levels of inducible nitric oxide synthase (iNOS), phosphorylated Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) using Western blot assay. RESULTS Water extract of medical ink (WEMI) did not present cytotoxic effect on murine macrophage Raw264.7 cells. High dosage of WEMI slightly rescued LPS-suppressed cell viability of Raw264.7 cells. WEMI did not induce NO production or IL-6 secretion, though WEMI significantly induced secretion of TNF-α on Raw264.7 cells not stimulated with LPS. On the other hand, LPS effectively stimulated inflammation on Raw264.7 cells; however, WEMI dramatically reduced LPS-induced NO production. WEMI alleviated LPS-stimulated IL-6 secretion but did not affect the content of TNF-α. In addition, WEMI effectively reduced expression of iNOS by abolishing LPS-mediated phosphorylation of JAK2 and STAT3 but not TLR4-mediated NF-κB and MAPK molecules. CONCLUSIONS Our findings suggest that WEMI targets of the JAK2/STAT3-mediated iNOS expression play a key role in alleviating LPS-induced inflammatory responses in RAW264.7 macrophages. Therefore, medicinal ink may be a potential topical agent for treating fasciitis or synovitis via regulating the immune system.
Collapse
Affiliation(s)
- Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jinsong Hu
- Ruijin Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Huagang Shi
- Sichuan Provincial Orthopedics Hospital, Chengdu, Sichuan, China
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Wei-Lun Qiu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hung Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; LO-Sheng Hospital Ministry of Health and Welfare, Taipei, Taiwan; College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
21
|
Vallejo AN, Mroczkowski HJ, Michel JJ, Woolford M, Blair HC, Griffin P, McCracken E, Mihalik SJ, Reyes‐Mugica M, Vockley J. Pervasive inflammatory activation in patients with deficiency in very-long-chain acyl-coA dehydrogenase (VLCADD). Clin Transl Immunology 2021; 10:e1304. [PMID: 34194748 PMCID: PMC8236555 DOI: 10.1002/cti2.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a disorder of fatty acid oxidation. Symptoms are managed by dietary supplementation with medium-chain fatty acids that bypass the metabolic block. However, patients remain vulnerable to hospitalisations because of rhabdomyolysis, suggesting pathologic processes other than energy deficit. Since rhabdomyolysis is a self-destructive process that can signal inflammatory/immune cascades, we tested the hypothesis that inflammation is a physiologic dimension of VLCADD. METHODS All subjects (n = 18) underwent informed consent/assent. Plasma cytokine and cytometry analyses were performed. A prospective case analysis was carried out on a patient with recurrent hospitalisation. Health data were extracted from patient medical records. RESULTS Patients showed systemic upregulation of nine inflammatory mediators during symptomatic and asymptomatic periods. There was also overall abundance of immune cells with high intracellular expression of IFNγ, IL-6, MIP-1β (CCL4) and TNFα, and the transcription factors p65-NFκB and STAT1 linked to inflammatory pathways. A case analysis of a patient exhibited already elevated plasma cytokine levels during diagnosis in early infancy, evolving into sustained high systemic levels during recurrent rhabdomyolysis-related hospitalisations. There were corresponding activated leukocytes, with higher intracellular stores of inflammatory molecules in monocytes compared to T cells. Exposure of monocytes to long-chain free fatty acids recapitulated the cytokine signature of patients. CONCLUSION Pervasive plasma cytokine upregulation and pre-activated immune cells indicate chronic inflammatory state in VLCADD. Thus, there is rationale for practical implementation of clinical assessment of inflammation and/or translational testing, or adoption, of anti-inflammatory intervention(s) for personalised disease management.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Henry J Mroczkowski
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Present address:
Department of PediatricsUniversity of Tennessee Health Sciences CenterMemphisTNUSA
| | - Joshua J Michel
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Michael Woolford
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Harry C Blair
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Veterans Administration Medical CenterPittsburghPAUSA
| | - Patricia Griffin
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Elizabeth McCracken
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Center for Rare Disease and TherapyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephanie J Mihalik
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Miguel Reyes‐Mugica
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Jerry Vockley
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Center for Rare Disease and TherapyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Human GeneticsUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
| |
Collapse
|
22
|
Špiritović M, Heřmánková B, Oreská S, Štorkánová H, Růžičková O, Vernerová L, Klein M, Kubínová K, Šmucrová H, Rathouská A, Česák P, Komarc M, Bunc V, Pavelka K, Šenolt L, Mann H, Vencovský J, Tomčík M. The effect of a 24-week training focused on activities of daily living, muscle strengthening, and stability in idiopathic inflammatory myopathies: a monocentric controlled study with follow-up. Arthritis Res Ther 2021; 23:173. [PMID: 34154634 PMCID: PMC8218432 DOI: 10.1186/s13075-021-02544-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The structural and functional changes of the skeletal muscles in idiopathic inflammatory myopathies (IIM) caused by inflammation and immune changes can be severely disabling. The objective of this study was to assess the effect of a 24-week program combining a supervised training of activities of daily living (ADL), resistance, and stability with home exercise for improving muscle function, compared to a daily home-based exercise representing the regular outpatient care. METHODS Fifty-seven patients with IIM were consecutively and non-selectively enrolled in an intervention (IG, n = 30) or control (CG, n = 27) group. Both groups were provided a standard-of-care pharmacological treatment and follow-up. Only the IG underwent the supervised intervention twice a week for 1 h per session. At baseline, 12, 24, and 48 weeks, all patients were assessed by an assessor blinded to the intervention for primary outcomes: muscle strength (Manual Muscle Testing of eight muscle groups [MMT-8]) and endurance (Functional Index-2 [FI-2]), and secondary outcomes: stability and body composition. Secondary outcomes also included questionnaires evaluating disability (Health Assessment Questionnaire [HAQ]), quality of life (Short Form 36 [SF-36]), depression (Beck's Depression Inventory-II [BDI-II]), and fatigue (Fatigue Impact Scale [FIS]), and analysis of the systemic and local inflammatory response and perceived exertion to assess the safety of the intervention. RESULTS Twenty-seven patients in the IG and 23 in the CG completed the entire program and follow-up. At week 24, compared to deterioration in the CG, we found a significant improvement in the IG in muscle strength (mean % improvement compared to baseline by 26%), endurance (135%), disability (39%), depression (26%), stability (11%), and basal metabolism (2%) and a stabilization of fitness for physical exercise. The improvement was clinically meaningful (a 24-week change by >20%) in most outcomes in a substantial proportion of patients. Although the improvement was still present at 48 weeks, the effect was not sustained during follow-up. No significant increase in the systemic or local expression of inflammatory markers was found throughout the intervention. CONCLUSIONS This 24-week supervised intervention focused on ADL training proved to be safe and effective. It not only prevented the progressive deterioration, but also resulted in a significant improvement in muscle strength, endurance, stability, and disability, which was clinically meaningful in a substantial proportion of patients. TRIAL REGISTRATION ISRCTN35925199 (retrospectively registered on 22 May 2020).
Collapse
Affiliation(s)
- Maja Špiritović
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Barbora Heřmánková
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Sabína Oreská
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Štorkánová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Růžičková
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucia Vernerová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic
| | - Martin Klein
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Kubínová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Šmucrová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic
| | - Adéla Rathouská
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic
| | - Petr Česák
- Department of Human Movement Laboratory, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Martin Komarc
- Department of Methodology, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Václav Bunc
- Department of Human Movement Laboratory, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Šenolt
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Heřman Mann
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Tomčík
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic. .,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
23
|
Cytokines and inflammatory mediators as promising markers of polymyositis/dermatomyositis. Curr Opin Rheumatol 2021; 32:534-541. [PMID: 32941247 DOI: 10.1097/bor.0000000000000744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Idiopathic inflammatory myopathies (IIMs), known also as myositis, represent challenging group of heterogeneous muscle disorders characterized by symmetric proximal muscle weakness and evidence of muscle inflammation. The purpose of this review is to provide important updates on cytokines and inflammatory mediators related to myositis. RECENT FINDINGS In the past 5 years, multiple studies brought a fresh insight into the pathogenesis of myositis by introducing new factors or further characterizing the role of the well established mediators in myositis. Among the mediators reviewed in this article, special attention was paid to interferons, C-X-C motif chemokine ligand 10, interleukin-18 and the IL23/Th17 axis. Some of the recent work has also focused on the nontraditional cytokines, such as adipokines, myokines, S100 proteins, High Mobility Group Box 1 or B-cell activating factor and on several anti-inflammatory mediators. Moreover, microRNAs and their potential to reflect the disease activity or to regulate the inflammatory processes in myositis have recently been subject of intensive investigation. Some of the above-mentioned mediators have been proposed as promising clinical biomarkers or therapeutic targets for myositis. SUMMARY Several recent studies contributed to a better understanding of the pathogenesis of myositis and highlighted the clinical significance of certain inflammatory mediators. Application of these new findings may help to develop innovative approaches for patients' phenotyping, disease activity monitoring and potentially novel therapies.
Collapse
|
24
|
Islam B, Ahmed M, Islam Z, Begum SM. Severe acute myopathy following SARS-CoV-2 infection: a case report and review of recent literature. Skelet Muscle 2021; 11:10. [PMID: 33883014 PMCID: PMC8058144 DOI: 10.1186/s13395-021-00266-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background SARS-CoV2 virus could be potentially myopathic. Serum creatinine phosphokinase (CPK) is frequently found elevated in severe SARS-CoV2 infection, which indicates skeletal muscle damage precipitating limb weakness or even ventilatory failure. Case presentation We addressed such a patient in his forties presented with features of severe SARS-CoV2 pneumonia and high serum CPK. He developed severe sepsis and acute respiratory distress syndrome (ARDS) and received intravenous high dose corticosteroid and tocilizumab to counter SARS-CoV2 associated cytokine surge. After 10 days of mechanical ventilation (MV), weaning was unsuccessful albeit apparently clear lung fields, having additionally severe and symmetric limb muscle weakness. Ancillary investigations in addition with serum CPK, including electromyogram, muscle biopsy, and muscle magnetic resonance imaging (MRI) suggested acute myopathy possibly due to skeletal myositis. Conclusion We wish to stress that myopathogenic medication in SARS-CoV2 pneumonia should be used with caution. Additionally, serum CPK could be a potential marker to predict respiratory failure in SARS-CoV2 pneumonia as skeletal myopathy affecting chest muscles may contribute ventilatory failure on top of oxygenation failure due to SARS-CoV2 pneumonia.
Collapse
Affiliation(s)
- Badrul Islam
- Laboratory Sciences and Services Division (LSSD), International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | | | - Zhahirul Islam
- Laboratory Sciences and Services Division (LSSD), International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - S M Begum
- Bangladesh Specialized Hospital, Dhaka, Bangladesh
| |
Collapse
|
25
|
Watanabe E, Kato K, Gono T, Chiba E, Terai C, Kotake S. Serum levels of galectin-3 in idiopathic inflammatory myopathies: a potential biomarker of disease activity. Rheumatology (Oxford) 2021; 60:322-332. [PMID: 32770187 DOI: 10.1093/rheumatology/keaa305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/04/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Galectin-3 is involved in various biological activities, including immune activations and fibrosis. Idiopathic inflammatory myopathies (IIMs) are autoimmune diseases of unknown aetiology, often complicated by interstitial lung disease (ILD). The aim of this study was to evaluate the expression of galectin-3 in sera and tissues of patients with IIM and assess the associations of galectin-3 with patient characteristics and disease activity. RESULTS Serum galectin-3 levels were significantly higher in IIM patients than in healthy controls. The serum galectin-3 levels positively correlated with serum levels of inflammatory markers and proinflammatory cytokines/chemokines and the Myositis Intention-to-Treat Activity Index. Stratification analysis revealed that patients with IIM-associated ILD (IIM-ILD) had significantly higher levels of serum galectin-3 than those without IIM-ILD. In addition, patients with acute/subacute interstitial pneumonia had significantly higher levels of serum galectin-3 than those with chronic interstitial pneumonia. Furthermore, serum galectin-3 levels in IIM-ILD patients correlated with the radiological assessments of parenchymal lung involvement and treatment response. Immunohistochemical analysis revealed that galectin-3 was expressed in inflammatory cells of myositis and dermatitis sections, whereas in ILD sections, galectin-3 was expressed in interstitial fibrosis and inflammatory cells. CONCLUSION Galectin-3 may be involved in the pathogenesis of inflammatory and fibrotic conditions in IIM and can serve as a potential biomarker of disease activity, especially in patients with IIM-ILD.
Collapse
Affiliation(s)
- Eri Watanabe
- Department of Rheumatology, Saitama Medical Center, Jichi Medical University, Saitama
| | - Kazunori Kato
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, Saitama
| | - Takahisa Gono
- Department of Rheumatology, Saitama Medical Center, Jichi Medical University, Saitama.,Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo
| | - Emiko Chiba
- Department of Radiology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Chihiro Terai
- Department of Rheumatology, Saitama Medical Center, Jichi Medical University, Saitama
| | - Shigeru Kotake
- Department of Rheumatology, Saitama Medical Center, Jichi Medical University, Saitama
| |
Collapse
|
26
|
Prisco F, De Biase D, Piegari G, Oriente F, Cimmino I, De Pasquale V, Costanzo M, Santoro P, Gizzarelli M, Papparella S, Paciello O. Leishmania spp.-Infected Dogs Have Circulating Anti-Skeletal Muscle Autoantibodies Recognizing SERCA1. Pathogens 2021; 10:463. [PMID: 33921323 PMCID: PMC8070147 DOI: 10.3390/pathogens10040463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Leishmania spp. infection is associated with an inflammatory myopathy (IM) in dogs. The pathomechanism underlying this disorder is still elusive, however, the pattern of cellular infiltration and MHC I and II upregulation indicate an immune-mediated myositis. This study aimed to investigate the presence of autoantibodies targeting the skeletal muscle in sera of leishmania-infected dogs and individuate the major autoantigen. We tested sera from 35 leishmania-infected dogs and sera from 10 negative controls for the presence of circulating autoantibodies with indirect immunofluorescence. Immunoblot and mass spectrometry were used to identify the main target autoantigen. Immunocolocalization and immunoblot on immunoprecipitated muscle proteins were performed to confirm the individuated major autoantigen. We identified circulating autoantibodies that recognize skeletal muscle antigen(s) in sera of leishmania-infected dogs. The major antigen was identified as the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1). We also found that canine SERCA1 presents several identical traits to the calcium-translocating P-type ATPase of Leishmania infantum. In the present study, we defined circulating anti-SERCA1 autoantibodies as part of the pathogenesis of the leishmania-associated IM in dogs. Based on our data, we hypothesize that antigen mimicry is the mechanism underlying the production of these autoantibodies in leishmania-infected dogs.
Collapse
Affiliation(s)
- Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Davide De Biase
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Francesco Oriente
- Research Unit (URT) Genomic of Diabetes, Department of Translational Medicine, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, 80131 Naples, Italy; (F.O.); (I.C.)
| | - Ilaria Cimmino
- Research Unit (URT) Genomic of Diabetes, Department of Translational Medicine, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, 80131 Naples, Italy; (F.O.); (I.C.)
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Pasquale Santoro
- Veterinary Diagnostic Laboratory (Di.Lab.), 80125 Naples, Italy;
| | - Manuela Gizzarelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Serenella Papparella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| |
Collapse
|
27
|
Wongsaengsak S, Quirch M, Ball S, Sultan A, Jahan N, Elmassry M, Rehman S. Docetaxel-induced acute myositis: a case report with review of literature. J Chemother 2020; 33:116-121. [PMID: 32619151 DOI: 10.1080/1120009x.2020.1785740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Docetaxel is an anti-microtubule agent and a highly effective treatment of locally advanced and metastatic breast cancer. There are several adverse effects associated with docetaxel, such as myelosuppression, peripheral neuropathy, fluid retention, and asthenia. One of the most well-known side-effects of this medication is mild to moderate myalgia. Here, we report a case of a 49-year-old female with stage 3 breast cancers who developed severe acute myositis following docetaxel use. The mechanism of docetaxel-induced myositis remains unclear; however, physicians still need to be aware of the possibility of this complication in patients with cancer and a history of exposure to this medication.
Collapse
Affiliation(s)
- Sariya Wongsaengsak
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Miguel Quirch
- Division of Hematology and Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Somedeb Ball
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anita Sultan
- Division of Hematology and Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nusrat Jahan
- Division of Hematology and Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mohamed Elmassry
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Shabnam Rehman
- Division of Hematology and Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
28
|
Co-Transplantation of Bone Marrow-MSCs and Myogenic Stem/Progenitor Cells from Adult Donors Improves Muscle Function of Patients with Duchenne Muscular Dystrophy. Cells 2020; 9:cells9051119. [PMID: 32365922 PMCID: PMC7290387 DOI: 10.3390/cells9051119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder associated with a progressive deficiency of dystrophin that leads to skeletal muscle degeneration. In this study, we tested the hypothesis that a co-transplantation of two stem/progenitor cell populations, namely bone marrow-derived mesenchymal stem cells (BM-MSCs) and skeletal muscle-derived stem/progenitor cells (SM-SPCs), directly into the dystrophic muscle can improve the skeletal muscle function of DMD patients. Three patients diagnosed with DMD, confirmed by the dystrophin gene mutation, were enrolled into a study approved by the local Bioethics Committee (no. 79/2015). Stem/progenitor cells collected from bone marrow and skeletal muscles of related healthy donors, based on HLA matched antigens, were expanded in a closed MC3 cell culture system. A simultaneous co‑transplantation of BM-MSCs and SM-SPCs was performed directly into the biceps brachii (two patients) and gastrocnemius (one patient). During a six‑month follow‑up, the patients were examined with electromyography (EMG) and monitored for blood kinase creatine level. Muscle biopsies were examined with histology and assessed for dystrophin at the mRNA and protein level. A panel of 27 cytokines was analysed with multiplex ELISA. We did not observe any adverse effects after the intramuscular administration of cells. The efficacy of BM‑MSC and SM‑SPC application was confirmed through an EMG assessment by an increase in motor unit parameters, especially in terms of duration, amplitude range, area, and size index. The beneficial effect of cellular therapy was confirmed by a decrease in creatine kinase levels and a normalised profile of pro-inflammatory cytokines. BM-MSCs may support the pro-regenerative potential of SM-SPCs thanks to their trophic, paracrine, and immunomodulatory activity. Both applied cell populations may fuse with degenerating skeletal muscle fibres in situ, facilitating skeletal muscle recovery. However, further studies are required to optimise the dose and timing of stem/progenitor cell delivery.
Collapse
|
29
|
Patwardhan A, Spencer CH. Biologics in refractory myositis: experience in juvenile vs. adult myositis; part II: emerging biologic and other therapies on the horizon. Pediatr Rheumatol Online J 2019; 17:56. [PMID: 31429786 PMCID: PMC6702719 DOI: 10.1186/s12969-019-0361-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
The idiopathic inflammatory myopathies (IIM) until recently have been considered a heterogeneous broad group of six autoimmune muscle diseases. Initially, autoantibodies in IIM (including JDM) and CD8+ T cell-induced cytotoxicity (PM and IBM) were the predominant recognized etiopathology mechanisms used to classify myopathies. In the early late 1990's to 2000's, evolving understanding of the molecules such as interleukin (IL), tumor necrosis factor (TNF), interferon (IFN), and other cytokines as well as differences in response to therapies, has led IIM researchers to look beyond previous disease mechanisms. For decades the overexpression of Th1- associated cytokines (TNF-α, IFN-γ and IL-12) in the areas of inflammation in skin and muscle in IIM pointed to Th1 as the primary pathway for inflammation in myositis.However, in the last decade overexpression and elevated level of Th17-associated cytokines (IL-17, IL-22, and IL-6) were identified in the blood and the inflamed muscles of myositis patients. We also do not know how Th1 and Th2 cytokines work differently in diverse hosts, in different concentrations, in different inflammatory milieus, and in the presence or absence of each other or other adhesion/co-stimulatory molecules such as NF-κB. Also, several autoantibodies to intracellular organelles have been identified in myositis.In this review, we will discuss the most recent advances in IIM research and how that might bring new biologic therapies to market in the next 5-15 years to assist in the care of our most difficult IIM and JDM patients.
Collapse
Affiliation(s)
- Anjali Patwardhan
- University of Missouri School of Medicine, 400 Keene Street, Columbia, MO, 65201, USA.
| | - Charles H. Spencer
- 0000 0004 1937 0407grid.410721.1University of Mississippi Medical Center, Batson Children’s Hospital, Rm 289, 2500 North State St, Jackson, MS 39216 USA
| |
Collapse
|
30
|
Beringer A, Gouriou Y, Lavocat F, Ovize M, Miossec P. Blockade of Store-Operated Calcium Entry Reduces IL-17/TNF Cytokine-Induced Inflammatory Response in Human Myoblasts. Front Immunol 2019; 9:3170. [PMID: 30693003 PMCID: PMC6339936 DOI: 10.3389/fimmu.2018.03170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022] Open
Abstract
Muscle inflammation as in idiopathic inflammatory myopathies (IIM) leads to muscle weakness, mononuclear cell infiltration, and myofiber dysfunction affecting calcium channels. The effects of interleukin-17A (IL-17) and tumor necrosis factor-α (TNFα) on inflammation and calcium changes were investigated in human myoblasts. Human myoblasts were exposed to IL-17 and/or TNFα with/without store-operated Ca2+ entry (SOCE) inhibitors (2-ABP or BTP2). For co-cultures, peripheral blood mononuclear cells (PBMC) from healthy donors activated or not with phytohemagglutinin (PHA) were added to myoblasts at a 5:1 ratio. IL-17 and TNFα induced in synergy CCL20 and IL-6 production by myoblasts (>14-fold). PBMC-myoblast co-cultures enhanced CCL20 and IL-6 production in the presence or not of PHA compared to PBMC or myoblast monocultures. Anti-IL-17 and/or anti-TNFα decreased the production of IL-6 in co-cultures (p < 0.05). Transwell system that prevents direct cell-cell contact reduced CCL20 (p < 0.01) but not IL-6 secretion. IL-17 and/or TNFα increased the level of the ER stress marker Grp78, mitochondrial ROS and promoted SOCE activation by 2-fold (p < 0.01) in isolated myoblasts. SOCE inhibitors reduced the IL-6 production induced by IL-17/TNFα. Therefore, muscle inflammation induced by IL-17 and/or TNFα may increase muscle cell dysfunction, which, in turn, increased inflammation. Such close interplay between immune and non-immune mechanisms may drive and increase muscle inflammation and weakness.
Collapse
Affiliation(s)
- Audrey Beringer
- Immunogenomics and Inflammation Research Unit EA4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Yves Gouriou
- CarMeN Laboratory, University of Lyon, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Groupement Hospitalier Est, Bron, France.,Service d'Explorations Fonctionnelles Cardiovasculaires and CIC de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Fabien Lavocat
- Immunogenomics and Inflammation Research Unit EA4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Michel Ovize
- CarMeN Laboratory, University of Lyon, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Groupement Hospitalier Est, Bron, France.,Service d'Explorations Fonctionnelles Cardiovasculaires and CIC de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
31
|
Lorenzon R, Mariotti-Ferrandiz E, Aheng C, Ribet C, Toumi F, Pitoiset F, Chaara W, Derian N, Johanet C, Drakos I, Harris S, Amselem S, Berenbaum F, Benveniste O, Bodaghi B, Cacoub P, Grateau G, Amouyal C, Hartemann A, Saadoun D, Sellam J, Seksik P, Sokol H, Salem JE, Vicaut E, Six A, Rosenzwajg M, Bernard C, Klatzmann D. Clinical and multi-omics cross-phenotyping of patients with autoimmune and autoinflammatory diseases: the observational TRANSIMMUNOM protocol. BMJ Open 2018; 8:e021037. [PMID: 30166293 PMCID: PMC6119447 DOI: 10.1136/bmjopen-2017-021037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/02/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Autoimmune and autoinflammatory diseases (AIDs) represent a socioeconomic burden as the second cause of chronic illness in Western countries. In this context, the TRANSIMMUNOM clinical protocol is designed to revisit the nosology of AIDs by combining basic, clinical and information sciences. Based on classical and systems biology analyses, it aims to uncover important phenotypes that cut across diagnostic groups so as to discover biomarkers and identify novel therapeutic targets. METHODS AND ANALYSIS TRANSIMMUNOM is an observational clinical protocol that aims to cross-phenotype a set of 19 AIDs, six related control diseases and healthy volunteers . We assembled a multidisciplinary cohort management team tasked with (1) selecting informative biological (routine and omics type) and clinical parameters to be captured, (2) standardising the sample collection and shipment circuit, (3) selecting omics technologies and benchmarking omics data providers, (4) designing and implementing a multidisease electronic case report form and an omics database and (5) implementing supervised and unsupervised data analyses. ETHICS AND DISSEMINATION The study was approved by the institutional review board of Pitié-Salpêtrière Hospital (ethics committee Ile-De-France 48-15) and done in accordance with the Declaration of Helsinki and good clinical practice. Written informed consent is obtained from all participants before enrolment in the study. TRANSIMMUNOM's project website provides information about the protocol (https://www.transimmunom.fr/en/) including experimental set-up and tool developments. Results will be disseminated during annual scientific committees appraising the project progresses and at national and international scientific conferences. DISCUSSION Systems biology approaches are increasingly implemented in human pathophysiology research. The TRANSIMMUNOM study applies such approach to the pathophysiology of AIDs. We believe that this translational systems immunology approach has the potential to provide breakthrough discoveries for better understanding and treatment of AIDs. TRIAL REGISTRATION NUMBER NCT02466217; Pre-results.
Collapse
Affiliation(s)
- Roberta Lorenzon
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Caroline Aheng
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Ribet
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ferial Toumi
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
| | - Fabien Pitoiset
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Wahiba Chaara
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Derian
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Catherine Johanet
- Immunology Department, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UFR 967, Sorbonne Université, Paris, France
| | - Iannis Drakos
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
| | - Sophie Harris
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
| | - Serge Amselem
- Laboratoire de génétique, UMR S933, Sorbonne Université, INSERM, Paris, France
| | - Francis Berenbaum
- Rheumatology Department, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMR S938, Sorbonne Université, INSERM, Paris, France
| | - Olivier Benveniste
- Internal Medicine and Clinical Immunology Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMR 974, Sorbonne Université, Paris, France
| | - Bahram Bodaghi
- Département Hospitalo-Universitaire Vision and Handicaps ‘ViewMaintain’, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Patrice Cacoub
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Internal Medicine and Clinical Immunology Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gilles Grateau
- Internal Medicine Department, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMR S933, Sorbonne Université, INSERM, Paris, France
| | - Chloe Amouyal
- Diabetology Department, Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Agnes Hartemann
- Diabetology Department, Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - David Saadoun
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Internal Medicine and Clinical Immunology Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jeremie Sellam
- Rheumatology Department, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMR S938, Sorbonne Université, INSERM, Paris, France
| | - Philippe Seksik
- Gastroenterology Department, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- GRC-UPMC 03, Sorbonne Université, Paris, France
| | - Harry Sokol
- Gastroenterology Department, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- GRC-UPMC 03, Sorbonne Université, Paris, France
| | - Joe-Elie Salem
- CIC-1421, Pharmacology Department, INSERM, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Vicaut
- Unité de recherche clinique, UMR 942, Saint-Louis Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Adrien Six
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michelle Rosenzwajg
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claude Bernard
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - David Klatzmann
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
- Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
32
|
Herbelet S, De Bleecker JL. Immune checkpoint failures in inflammatory myopathies: An overview. Autoimmun Rev 2018; 17:746-754. [PMID: 29885538 DOI: 10.1016/j.autrev.2018.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
Dermatomyositis (DM), polymyositis (PM), inclusion body myositis (IBM), immune mediated necrotizing myopathy (IMNM) and overlap myositis (OM) are classified as inflammatory myopathies (IM) with involvement of autoimmune features such as autoreactive lymphocytes and autoantibodies. Autoimmunity can be defined as a loss in self-tolerance and attack of autoantigens by the immune system. Self-tolerance is achieved by a group of immune mechanisms occurring in central and periphal lymphoid organs and tissues, called immune checkpoints, that work in synergy to protect the body from harmful immune reactions. Autoimmune disorders appear when immune checkpoints fail. In this review, the different immune checkpoint failures are discussed in DM, PM, IBM and IMNM. Exploring research contribution in each of these immune checkpoints might help to highlight research perspectives in the field and obtain a more complete picture of IM disease pathology.
Collapse
Affiliation(s)
- Sandrine Herbelet
- Department of Neurology, Ghent University and Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium.
| | - Jan L De Bleecker
- Department of Neurology, Ghent University and Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium
| |
Collapse
|
33
|
Abstract
Inflammatory disorders of the skeletal muscle include polymyositis (PM), dermatomyositis (DM), (immune mediated) necrotizing myopathy (NM), overlap syndrome with myositis (overlap myositis, OM) including anti-synthetase syndrome (ASS), and inclusion body myositis (IBM). Whereas DM occurs in children and adults, all other forms of myositis mostly develop in middle aged individuals. Apart from a slowly progressive, chronic disease course in IBM, patients with myositis typically present with a subacute onset of weakness of arms and legs, often associated with pain and clearly elevated creatine kinase in the serum. PM, DM and most patients with NM and OM usually respond to immunosuppressive therapy, whereas IBM is largely refractory to treatment. The diagnosis of myositis requires careful and combinatorial assessment of (1) clinical symptoms including pattern of weakness and paraclinical tests such as MRI of the muscle and electromyography (EMG), (2) broad analysis of auto-antibodies associated with myositis, and (3) detailed histopathological work-up of a skeletal muscle biopsy. This review provides a comprehensive overview of the current classification, diagnostic pathway, treatment regimen and pathomechanistic understanding of myositis.
Collapse
Affiliation(s)
- Jens Schmidt
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Göttingen, Germany,Correspondence to: Prof. Dr. Jens Schmidt, MD, FEAN, FAAN, Muscle Immunobiology Group, Neuromuscular Center, Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany. Tel.: +49 551 39 22355; Fax: +49 551 39 8405; E-mail:
| |
Collapse
|
34
|
Raouf J, Idborg H, Englund P, Alexanderson H, Dastmalchi M, Jakobsson PJ, Lundberg IE, Korotkova M. Targeted lipidomics analysis identified altered serum lipid profiles in patients with polymyositis and dermatomyositis. Arthritis Res Ther 2018; 20:83. [PMID: 29720222 PMCID: PMC5932839 DOI: 10.1186/s13075-018-1579-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polymyositis (PM) and dermatomyositis (DM) are severe chronic autoimmune diseases, characterized by muscle fatigue and low muscle endurance. Conventional treatment includes high doses of glucocorticoids and immunosuppressive drugs; however, few patients recover full muscle function. One explanation of the persistent muscle weakness could be altered lipid metabolism in PM/DM muscle tissue as we previously reported. Using a targeted lipidomic approach we aimed to characterize serum lipid profiles in patients with PM/DM compared to healthy individuals (HI) in a cross-sectional study. Also, in the longitudinal study we compared serum lipid profiles in patients newly diagnosed with PM/DM before and after immunosuppressive treatment. METHODS Lipidomic profiles were analyzed in serum samples from 13 patients with PM/DM, 12 HI and 8 patients newly diagnosed with PM/DM before and after conventional immunosuppressive treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) and a gas-chromatography flame ionization detector (GC-FID). Functional Index (FI), as a test of muscle performance and serum levels of creatine kinase (s-CK) as a proxy for disease activity were analyzed. RESULTS The fatty acid (FA) composition of total serum lipids was altered in patients with PM/DM compared to HI; the levels of palmitic (16:0) acid were significantly higher while the levels of arachidonic (20:4, n-6) acid were significantly lower in patients with PM/DM. The profiles of serum phosphatidylcholine and triacylglycerol species were changed in patients with PM/DM compared to HI, suggesting disproportionate levels of saturated and polyunsaturated FAs that might have negative effects on muscle performance. After immunosuppressive treatment the total serum lipid levels of eicosadienoic (20:2, n-6) and eicosapentaenoic (20:5, n-3) acids were increased and serum phospholipid profiles were altered in patients with PM/DM. The correlation between FI or s-CK and levels of several lipid species indicate the important role of lipid changes in muscle performance and inflammation. CONCLUSIONS Serum lipids profiles are significantly altered in patients with PM/DM compared to HI. Moreover, immunosuppressive treatment in patients newly diagnosed with PM/DM significantly affected serum lipid profiles. These findings provide new evidence of the dysregulated lipid metabolism in patients with PM/DM that could possibly contribute to low muscle performance.
Collapse
Affiliation(s)
- Joan Raouf
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Petter Englund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Helene Alexanderson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Maryam Dastmalchi
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
35
|
Activated dendritic cells modulate proliferation and differentiation of human myoblasts. Cell Death Dis 2018; 9:551. [PMID: 29748534 PMCID: PMC5945640 DOI: 10.1038/s41419-018-0426-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/26/2022]
Abstract
Idiopathic Inflammatory Myopathies (IIMs) are a heterogeneous group of autoimmune diseases affecting skeletal muscle tissue homeostasis. They are characterized by muscle weakness and inflammatory infiltration with tissue damage. Amongst the cells in the muscle inflammatory infiltration, dendritic cells (DCs) are potent antigen-presenting and key components in autoimmunity exhibiting an increased activation in inflamed tissues. Since, the IIMs are characterized by the focal necrosis/regeneration and muscle atrophy, we hypothesized that DCs may play a role in these processes. Due to the absence of a reliable in vivo model for IIMs, we first performed co-culture experiments with immature DCs (iDC) or LPS-activated DCs (actDC) and proliferating myoblasts or differentiating myotubes. We demonstrated that both iDC or actDCs tightly interact with myoblasts and myotubes, increased myoblast proliferation and migration, but inhibited myotube differentiation. We also observed that actDCs increased HLA-ABC, HLA-DR, VLA-5, and VLA-6 expression and induced cytokine secretion on myoblasts. In an in vivo regeneration model, the co-injection of human myoblasts and DCs enhanced human myoblast migration, whereas the absolute number of human myofibres was unchanged. In conclusion, we suggest that in the early stages of myositis, DCs may play a crucial role in inducing muscle-damage through cell–cell contact and inflammatory cytokine secretion, leading to muscle regeneration impairment.
Collapse
|
36
|
Liang E, Rastegar M. Immune-mediated necrotising myopathy: a rare cause of hyperCKaemia. BMJ Case Rep 2018; 2018:bcr-2017-223870. [PMID: 29691272 DOI: 10.1136/bcr-2017-223870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Immune-mediated necrotising myopathy (IMNM) is a type of inflammatory myopathy characterised by acute or subacute severe proximal muscle weakness, significantly elevated creatine kinase levels, and prominent myofibre necrosis and regeneration with little or no inflammation. A subtype of IMNM identified by anti-HMG-CoA reductase (HMGCR)antibodies has been shown to be associated with statin exposure. Treatment of IMNM consists of immunosuppression with steroids, steroid-sparing agents, intravenous immune globulin and/or biologics. We present here a case of anti-HMCGR-associated IMNM and review the pathophysiology, diagnosis and treatment to increase physician awareness of this rare and debilitating condition.
Collapse
Affiliation(s)
- Emily Liang
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Mandana Rastegar
- Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA.,Division of Nephrology, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
37
|
Abstract
Autoimmune diseases develop as a result of chronic inflammation owing to interactions between genes and the environment. However, the mechanisms by which autoimmune diseases evolve remain poorly understood. Newly discovered risk factors and pathogenic processes in the various idiopathic inflammatory myopathy (IIM) phenotypes (known collectively as myositis) have illuminated innovative approaches for understanding these diseases. The HLA 8.1 ancestral haplotype is a key risk factor for major IIM phenotypes in some populations, and several genetic variants associated with other autoimmune diseases have been identified as IIM risk factors. Environmental risk factors are less well studied than genetic factors but might include viruses, bacteria, ultraviolet radiation, smoking, occupational and perinatal exposures and a growing list of drugs (including biologic agents) and dietary supplements. Disease mechanisms vary by phenotype, with evidence of shared innate and adaptive immune and metabolic pathways in some phenotypes but unique pathways in others. The heterogeneity and rarity of the IIMs make advancements in diagnosis and treatment cumbersome. Novel approaches, better-defined phenotypes, and international, multidisciplinary consensus have contributed to progress, and it is hoped that these methods will eventually enable therapeutic intervention before the onset or major progression of disease. In the future, preemptive strategies for IIM management might be possible.
Collapse
Affiliation(s)
- Frederick W. Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Janine A. Lamb
- Centre for Epidemiology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, UK
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
38
|
Wang L, Quan Y, Yue Y, Heng X, Che F. Interleukin-37: A crucial cytokine with multiple roles in disease and potentially clinical therapy. Oncol Lett 2018; 15:4711-4719. [PMID: 29552110 DOI: 10.3892/ol.2018.7982] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Interleukin (IL)-37, a new IL-1 family member, has received increasing attention in recent years. In the past decade, it has been determined that IL-37 is expressed in various normal cells and tissues and is regulated by inflammatory stimuli and pro-cytokines via different signal transduction pathways. Recently, it has been found that IL-37 is expressed in a variety of cancers, chronic inflammatory and autoimmune disorders, and exerts anti-inflammatory effects. Moreover, a growing body of literature demonstrates that IL-37 plays a vital role in inhibiting both innate and adaptive immune responses as well as inflammatory reactions. In addition, IL-37 may prove to be a new and potentially useful target for effective cytokine therapy. Further evidence is needed to clarify in more detail the effects of IL-37 in experimental and clinical studies. Based on an extensive summary of published data, the aim of this review is to outline the current knowledge of IL-37, including the location, structure, expression, regulation and function, as well as the potential clinical applications of this cytokine.
Collapse
Affiliation(s)
- Lijuan Wang
- Central Laboratory, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China.,Department of Hematology, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China
| | - Yanchun Quan
- Central Laboratory, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China
| | - Yongfang Yue
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xueyuan Heng
- Department of Neurosurgery, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China
| | - Fengyuan Che
- Central Laboratory, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
39
|
Alves P, Bashir MM, Wysocka M, Zeidi M, Feng R, Werth VP. Quinacrine Suppresses Tumor Necrosis Factor-α and IFN-α in Dermatomyositis and Cutaneous Lupus Erythematosus. J Investig Dermatol Symp Proc 2017; 18:S57-S63. [PMID: 28941496 PMCID: PMC5645024 DOI: 10.1016/j.jisp.2016.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 09/21/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022]
Abstract
Antimalarials are used to treat dermatomyositis (DM) and cutaneous lupus erythematosus (CLE). Although hydroxychloroquine (HCQ) is frequently used, addition of quinacrine (QC) has shown additional clinical effects when combined with HCQ. To quantify the effects of HCQ versus QC in suppressing secretion of tumor necrosis factor-α (TNF-α) and IFN-α from the peripheral blood mononuclear cells of DM and CLE patients, lipopolysaccharide-stimulated and control peripheral blood mononuclear cells from DM and CLE patients and control subjects were analyzed for the effect of HCQ and QC on TNF-α and IFN-α production using ELISA testing. Flow cytometry showed the effects of these therapies on intracellular TNF-α in myeloid dendritic cells and monocytes of DM patients and control subjects. QC significantly suppressed TNF-α relative to HCQ from unstimulated and lipopolysaccharide-stimulated peripheral blood mononuclear cells of DM and CLE patients (P < 0.0001). It suppressed IFN-α as significantly as HCQ from cytosine phosphodiester guanine-stimulated peripheral blood mononuclear cells of DM and CLE patients (P < 0.0001). Flow cytometry showed that QC significantly suppressed intracellular expression of TNF-α from the lipopolysaccharide-stimulated myeloid dendritic cells and monocytes of DM patients (P-values ≤ 0.0008). In conclusion, QC likely has a different mechanism of action than HCQ, given the broader inhibition of proinflammatory cytokines, including both TNF-α and IFN-α.
Collapse
Affiliation(s)
- Paul Alves
- Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Muhammad M Bashir
- Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Wysocka
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Majid Zeidi
- Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rui Feng
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
40
|
Dellaripa PF. Interstitial lung disease in the connective tissue diseases; a paradigm shift in diagnosis and treatment. Clin Immunol 2017; 186:71-73. [PMID: 28923440 DOI: 10.1016/j.clim.2017.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 01/03/2023]
Abstract
Interstitial lung disease (ILD) in the connective tissue diseases (CTD) is amongst the most challenging aspect of care of patients with rheumatic diseases and is the source of significant morbidity and mortality. While there has been progress in our understanding of the natural history of these complications, we still suffer from a limited reservoir of data to confidently determine which patients are at highest risk for disease and those who are at highest risk for disease progression. Treatment options until recently have been limited to anti-inflammatory therapies but with the emerging availability of anti-fibrotic therapies, a shift in strategy is emerging to target therapies based on the specific radiographic, histopathologic features and biomarker profiles that are unique to patients with rheumatic diseases and ILD.
Collapse
Affiliation(s)
- Paul F Dellaripa
- Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
41
|
Burns DP, Rowland J, Canavan L, Murphy KH, Brannock M, O'Malley D, O'Halloran KD, Edge D. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2. Exp Physiol 2017; 102:1177-1193. [PMID: 28665499 DOI: 10.1113/ep086232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg-1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg-1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal density of infiltrates and collagen content were significantly increased in mdx sternohyoid; both indices were unaffected by drug treatment. The abundance of myosin heavy chain type IIb fibres was significantly decreased in mdx sternohyoid; drug treatment preserved myosin heavy chain type IIb complement in mdx muscle. The chemokines macrophage inflammatory protein 2, interferon-γ-induced protein 10 and macrophage inflammatory protein 3α were significantly increased in mdx sternohyoid compared with WT. Drug treatment significantly increased chemokine expression in mdx but not WT sternohyoid. Recovery of contractile function was impressive in our study, with implications for Duchenne muscular dystrophy. The precise molecular mechanisms by which the drug treatment exerts an inotropic effect on mdx sternohyoid muscle remain to be elucidated.
Collapse
Affiliation(s)
- David P Burns
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Jane Rowland
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Leonie Canavan
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Kevin H Murphy
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Molly Brannock
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Dervla O'Malley
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Deirdre Edge
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Zhang H, He F, Shi M, Wang W, Tian X, Kang J, Han W, Wu R, Zhou L, Hu M, Li X, Mi F, Zhao G, Jia H. Toll-Like Receptor 4-Myeloid Differentiation Primary Response Gene 88 Pathway Is Involved in the Inflammatory Development of Polymyositis by Mediating Interferon-γ and Interleukin-17A in Humans and Experimental Autoimmune Myositis Mouse Model. Front Neurol 2017; 8:132. [PMID: 28446897 PMCID: PMC5388689 DOI: 10.3389/fneur.2017.00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Toll-like receptor 4 (TLR4) is one of the key players in the development of many autoimmune diseases. To determine the possible role of TLR4 in polymyositis (PM) development, we collected muscle samples from PM patients and mice subjected to an experimental autoimmune myositis (EAM) model. METHODS We measured TLR4-MyD88 pathway-related factors, interferon-γ (IFN-γ), and interleukin-17A (IL-17A) in EAM mice and PM patients. Then, we observed the changes of above factors and the inflammatory development of EAM mice with TLR4 antagonist TAK-242, IFN-γ, or IL-17A antibody treatment. RESULTS The expression of TLR4, MyD88, and NF-κB was significantly upregulated in the muscle tissues both in 22 patients with PM and in the EAM model. As expected, increased levels of various cytokines, such as IL-1β, IL-6, IL-10, IL-12, tumor necrosis factor-α, TGF-β, IFN-γ, and IL-17A, were evident in the serum of EAM mice. Moreover, mRNA expression levels of IFN-γ and IL-17A were significantly increased in both PM patients and EAM mice. Consistently, the levels of these factors were positively correlated with the degree of muscle inflammation in EAM mice. However, when EAM mice were treated with TLR4 antagonist TAK-242, the expression of IFN-γ and IL-17A was decreased. When the cytokines were neutralized by anti-IFN-γ or anti-IL-17A antibody, the inflammatory development of EAM exacerbated or mitigated. CONCLUSION The present study provided the important evidence that the TLR4-MyD88 pathway may be involved in the immune mechanisms of PM by mediating IFN-γ and IL-17A.
Collapse
Affiliation(s)
- Hongya Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fangyuan He
- Department of Neurology, Xi'an Children's Hospital, Xi'an, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenxiu Wang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaojia Tian
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Juan Kang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjuan Han
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Wu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Linfu Zhou
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengmeng Hu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaobo Li
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fang Mi
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongge Jia
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
43
|
Yin X, Han GC, Jiang XW, Shi Q, Pu CQ. Increased Expression of the NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome in Dermatomyositis and Polymyositis is a Potential Contributor to Their Pathogenesis. Chin Med J (Engl) 2017; 129:1047-52. [PMID: 27098789 PMCID: PMC4852671 DOI: 10.4103/0366-6999.180528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Dermatomyositis (DM) and polymyositis (PM) are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is a type of cytoplasmic multiprotein inflammasome and is responsible for the activation of inflammatory reactivations. Responding to a wide range of exogenous and endogenous microbial or sterile stimuli, NLRP3 inflammasomes can cleave pro-caspase-1 into active caspase-1, which processes the pro-inflammatory cytokines pro-interleukin (IL)-1β and pro-IL-18 into active and secreted IL-1β and IL-18. The NLRP3 inflammasome is implicated in infectious and sterile inflammatory diseases. However, it remains unclear whether it is involved in the pathogenesis of DM/PM, which we aim to address in our research. Methods: In this study, 22 DM/PM patients and 24 controls were recruited. The protein and RNA expression of IL-1β, IL-18, NLRP3, and caspase-1 in serum and muscle samples were tested and compared between the two groups. Results: The serum IL-1β and IL-18 levels were significantly higher in DM/PM patients than those in the controls by enzyme linked immunosorbent assay (ELISA, DM vs. control, 25.02 ± 8.29 ng/ml vs. 16.49 ± 3.30 ng/ml, P < 0.001; PM vs. control, 26.49 ± 7.79 ng/ml vs. 16.49 ± 3.30 ng/ml, P < 0.001). Moreover, the real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed that DM/PM patients exhibited higher RNA expression of IL-1β, IL-18, and NLRP3 in the muscle (for IL-1β, DM vs. control, P = 0.0012, PM vs. control, P = 0.0021; for IL-18, DM vs. control, P = 0.0045, PM vs. control, P = 0.0031; for NLRP3, DM vs. control, P = 0.0017, PM vs. control, P = 0.0006). Moreover, the protein expression of NLRP3 and caspase-1 in muscle samples of DM/PM patients were also significantly elevated compared to that in the muscles of the controls. Conclusions: Our findings demonstrate that the NLRP3 inflammasome is implicated in the pathogenesis of DM/PM. High NLRP3 expression led to elevated levels of IL-1β and IL-18 and could be one of the factors promoting disease progress.
Collapse
Affiliation(s)
| | | | | | | | - Chuan-Qiang Pu
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
44
|
Ceribelli A, De Santis M, Isailovic N, Gershwin ME, Selmi C. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review. Clin Rev Allergy Immunol 2017; 52:58-70. [PMID: 26780034 DOI: 10.1007/s12016-016-8527-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.
Collapse
Affiliation(s)
- Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy.
- BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
45
|
Masat E, Laforêt P, De Antonio M, Corre G, Perniconi B, Taouagh N, Mariampillai K, Amelin D, Mauhin W, Hogrel JY, Caillaud C, Ronzitti G, Puzzo F, Kuranda K, Colella P, Mallone R, Benveniste O, Mingozzi F. Long-term exposure to Myozyme results in a decrease of anti-drug antibodies in late-onset Pompe disease patients. Sci Rep 2016; 6:36182. [PMID: 27812025 PMCID: PMC5096052 DOI: 10.1038/srep36182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Immunogenicity of recombinant human acid-alpha glucosidase (rhGAA) in enzyme replacement therapy (ERT) is a safety and efficacy concern in the management of late-onset Pompe disease (LOPD). However, long-term effects of ERT on humoral and cellular responses to rhGAA are still poorly understood. To better understand the impact of immunogenicity of rhGAA on the efficacy of ERT, clinical data and blood samples from LOPD patients undergoing ERT for >4 years (n = 28) or untreated (n = 10) were collected and analyzed. In treated LOPD patients, anti-rhGAA antibodies peaked within the first 1000 days of ERT, while long-term exposure to rhGAA resulted in clearance of antibodies with residual production of non-neutralizing IgG. Analysis of T cell responses to rhGAA showed detectable T cell reactivity only after in vitro restimulation. Upregulation of several cytokines and chemokines was detectable in both treated and untreated LOPD subjects, while IL2 secretion was detectable only in subjects who received ERT. These results indicate that long-term ERT in LOPD patients results in a decrease in antibody titers and residual production of non-inhibitory IgGs. Immune responses to GAA following long-term ERT do not seem to affect efficacy of ERT and are consistent with an immunomodulatory effect possibly mediated by regulatory T cells.
Collapse
Affiliation(s)
- Elisa Masat
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Pascal Laforêt
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | - Barbara Perniconi
- Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Nadjib Taouagh
- Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Kuberaka Mariampillai
- Department of Internal Medicine and Clinical Immunology, DHUI2B, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Damien Amelin
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Wladimir Mauhin
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Lab, Institute of Myology, Paris, France
| | | | | | | | - Klaudia Kuranda
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | | | - Roberto Mallone
- Institute Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France.,Department of diabetology, Cochin Hospital, AP-HP, Paris, France
| | - Olivier Benveniste
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Department of Internal Medicine and Clinical Immunology, DHUI2B, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Federico Mingozzi
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Genethon, INSERM, UMR951, Evry, France
| | | |
Collapse
|
46
|
Dysregulated innate immune function in the aetiopathogenesis of idiopathic inflammatory myopathies. Autoimmun Rev 2016; 16:87-95. [PMID: 27666811 DOI: 10.1016/j.autrev.2016.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
The idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of systemic muscle conditions that are believed to be autoimmune in nature. They have distinct pathological features, but the aetiopathogenesis of each subtype remains largely unknown. Recently, there has been increased interest in the complex role the innate immune system plays in initiating and perpetuating these conditions, and how this may differ between subtypes. This article summarises the traditional paradigms of IIM pathogenesis and reviews the accumulating evidence for disturbances in innate immune processes in these rare, but debilitating chronic conditions.
Collapse
|
47
|
Nitahara-Kasahara Y, Takeda S, Okada T. Inflammatory predisposition predicts disease phenotypes in muscular dystrophy. Inflamm Regen 2016; 36:14. [PMID: 29259687 PMCID: PMC5725653 DOI: 10.1186/s41232-016-0019-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
Duchenne muscular dystrophy is an incurable genetic disease that presents with skeletal muscle weakness and chronic inflammation and is associated with early mortality. Indeed, immune cell infiltration into the skeletal muscle is a notable feature of the disease pathophysiology and is strongly associated with disease severity. Interleukin (IL)-10 regulates inflammatory immune responses by reducing both M1 macrophage activation and the production of pro-inflammatory cytokines, thereby promoting the activation of the M2 macrophage phenotype. We previously reported that genetic ablation of IL-10 in dystrophic mice resulted in more severe phenotypes, in regard to heart and respiratory function, as evidenced by increased macrophage infiltration, high levels of inflammatory factors in the muscle, and progressive cardiorespiratory dysfunction. These data therefore indicate that IL-10 comprises an essential immune-modulator within dystrophic muscles. In this review, we highlight the pivotal role of the immune system in the pathogenesis of muscular dystrophy and discuss how an increased understanding of the pathogenesis of this disease may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku Tokyo, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku Tokyo, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira Tokyo, Japan
| |
Collapse
|
48
|
The immunoproteasomes are key to regulate myokines and MHC class I expression in idiopathic inflammatory myopathies. J Autoimmun 2016; 75:118-129. [PMID: 27522114 DOI: 10.1016/j.jaut.2016.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are diseases with muscle weakness, morphologically characterized by inflammatory infiltration and increased expression of MHC class I molecule on myofibers. Immunoproteasome, as a proteolytic complex that shapes the repertoire of antigenic peptides, has been previously demonstrated to be over-expressed in IIMs at mRNA level. In this study, we investigated the expression and the function of the immunoproteasome in IIMs in more detail. As shown by immunofluorescence staining, expression of relevant players of the immunoproteasome was detectable in the inflamed skeletal muscle tissue from IIM patients. In fact, two subunits of the immunoproteasome, β1i or β5i were upregulated in sporadic inclusion body myositis, immune-mediated necrotizing myopathies and dermatomyositis muscle biopsies and co-localized with the MHC class I expressing myofibers. Double immunofluorescence revealed that both myofibers and muscle infiltrating cells, including CD8+ T-cells and CD68 + macrophages in IIMs expressed β1i or β5i. In addition, we have also investigated the role of the immunoproteasome in myoblasts during in vitro inflammatory conditions. Using human primary myoblasts cultures we found that pro-inflammatory cytokines, TNF-α or IFN-γ upregulate β1i or β5i. Selective inhibition or depletion of β5i amplified the TNF-α or IFN-γ mediated expression of cytokines/chemokines (myokines) in myoblasts. Furthermore, we demonstrated that specific inhibitors of β1i or β5i reduced the cell surface expression of MHC class I in myoblasts induced by IFN-γ. Taken together, our data suggest that the immunoproteasome is involved in pathologic MHC class I expression and maintenance of myokine production in IIMs. Thus, induction of the immunoproteasome was identified as a pathomechanism underlying inflammation in IIMs.
Collapse
|
49
|
Zengin O, Onder ME, Alkan S, Kimyon G, Hüseynova N, Demir ZH, Kısacık B, Onat AM. Three cases of anti-TNF induced myositis and literature review. REVISTA BRASILEIRA DE REUMATOLOGIA 2016; 57:590-595. [PMID: 29173693 DOI: 10.1016/j.rbre.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/08/2015] [Indexed: 11/24/2022] Open
Abstract
Anti-tumor necrosis factor drugs are frequently preferred in the treatment of rheumatologic diseases and other inflammatory diseases. The development of myositis after using anti-tumor necrosis factor drugs is a rare clinical condition. Here we aimed to report cases who developed myositis after using anti-tumor necrosis factor drugs and review the current literature. We report two cases of rheumatoid arthritis and a case of ankylosing spondylitis developed idiopathic inflammatory myopathy following anti-tumor necrosis factor therapy. In conclusion, myositis could develop during anti-tumor necrosis factor therapy, so these patients should be evaluated carefully initially for myositis and should be closely monitored due to the potential for developing myositis in treatment process.
Collapse
Affiliation(s)
- Orhan Zengin
- Gaziantep University, School of Medicine, Department of Rheumatology, Gaziantep, Turkey.
| | - Mustafa Erkut Onder
- Gaziantep University, School of Medicine, Department of Rheumatology, Gaziantep, Turkey
| | - Samet Alkan
- Gaziantep University, School of Medicine, Department of Internal Medicine, Gaziantep, Turkey
| | - Gezmiş Kimyon
- Gaziantep University, School of Medicine, Department of Rheumatology, Gaziantep, Turkey
| | - Nergis Hüseynova
- Gaziantep University, School of Medicine, Department of Rheumatology, Gaziantep, Turkey
| | - Zeynep Hanım Demir
- NYU School of Medicine, Center for Cognitive Neurology, New York, United States
| | - Bünyamin Kısacık
- Gaziantep University, School of Medicine, Department of Rheumatology, Gaziantep, Turkey
| | - Ahmet Mesut Onat
- Gaziantep University, School of Medicine, Department of Rheumatology, Gaziantep, Turkey
| |
Collapse
|
50
|
Zengin O, Onder ME, Alkan S, Kimyon G, Hüseynova N, Demir ZH, Kısacık B, Onat AM. Three cases of anti-TNF induced myositis and literature review. REVISTA BRASILEIRA DE REUMATOLOGIA 2016; 57:S0482-5004(16)00043-7. [PMID: 27004932 DOI: 10.1016/j.rbr.2015.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/29/2015] [Accepted: 12/08/2015] [Indexed: 01/18/2023] Open
Abstract
Anti-tumor necrosis factor (anti-TNF) drugs are frequently preferred in the treatment of rheumatologic diseases and other inflammatory diseases. The development of myositis after using anti-TNF is a rare clinical condition. Here we aimed to report cases who developed myositis after using anti-TNF and review the current literature. We report two cases of rheumatoid arthritis (RA) and a case of ankylosing spondylitis (AS) developed idiopathic inflammatory myopathy following anti-TNF therapy. In conclusion, myositis could develop during anti-TNF therapy, so these patients should be evaluated carefully initially for myositis and should be closely monitored due to the potential for developing myositis in treatment process.
Collapse
Affiliation(s)
- Orhan Zengin
- Departamento de Reumatologia, Faculdade de Medicina, Gaziantep University, Gaziantep, Turquia.
| | - Mustafa Erkut Onder
- Departamento de Reumatologia, Faculdade de Medicina, Gaziantep University, Gaziantep, Turquia
| | - Samet Alkan
- Departamento de Medicina Interna, Faculdade de Medicina, Gaziantep University, Gaziantep, Turquia
| | - Gezmiş Kimyon
- Departamento de Reumatologia, Faculdade de Medicina, Gaziantep University, Gaziantep, Turquia
| | - Nergis Hüseynova
- Departamento de Reumatologia, Faculdade de Medicina, Gaziantep University, Gaziantep, Turquia
| | - Zeynep Hanım Demir
- Centro de Neurologia Cognitiva, NYU School of Medicine, Nova York, Estados Unidos
| | - Bünyamin Kısacık
- Departamento de Reumatologia, Faculdade de Medicina, Gaziantep University, Gaziantep, Turquia
| | - Ahmet Mesut Onat
- Departamento de Reumatologia, Faculdade de Medicina, Gaziantep University, Gaziantep, Turquia
| |
Collapse
|