1
|
Mitchell AM, Baschal EE, McDaniel KA, Fleury T, Choi H, Pyle L, Yu L, Rewers MJ, Nakayama M, Michels AW. Tracking DNA-based antigen-specific T cell receptors during progression to type 1 diabetes. SCIENCE ADVANCES 2023; 9:eadj6975. [PMID: 38064552 PMCID: PMC10708189 DOI: 10.1126/sciadv.adj6975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D). Here, we tracked ~1700 known antigen-specific TCR sequences, islet antigen or viral reactive, in bulk TCRβ sequencing from longitudinal blood DNA samples in at-risk cases who progressed to T1D, age/sex/human leukocyte antigen-matched controls, and a new-onset T1D cohort. Shared and frequent antigen-specific TCRβ sequences were identified in all three cohorts, and viral sequences were present across all ages. Islet sequences had different patterns of accumulation based upon antigen specificity in the at-risk cases. Furthermore, 73 islet-antigen TCRβ sequences were present in higher frequencies and numbers in T1D samples relative to controls. The total number of these disease-associated TCRβ sequences inversely correlated with age at clinical diagnosis, indicating the potential to use disease-relevant TCR sequences as biomarkers in autoimmune disorders.
Collapse
Affiliation(s)
- Angela M. Mitchell
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin E. Baschal
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen A. McDaniel
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theodore Fleury
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hyelin Choi
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura Pyle
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
Peters LD, Yeh WI, Arnoletti JM, Brown ME, Posgai AL, Mathews CE, Brusko TM. Modeling cell-mediated immunity in human type 1 diabetes by engineering autoreactive CD8 + T cells. Front Immunol 2023; 14:1142648. [PMID: 37325626 PMCID: PMC10262917 DOI: 10.3389/fimmu.2023.1142648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 06/17/2023] Open
Abstract
The autoimmune pathogenesis of type 1 diabetes (T1D) involves cellular infiltration from innate and adaptive immune subsets into the islets of Langerhans within the pancreas; however, the direct cytotoxic killing of insulin-producing β-cells is thought to be mediated primarily by antigen-specific CD8+ T cells. Despite this direct pathogenic role, key aspects of their receptor specificity and function remain uncharacterized, in part, due to their low precursor frequency in peripheral blood. The concept of engineering human T cell specificity, using T cell receptor (TCR) and chimeric antigen receptor (CAR)-based approaches, has been demonstrated to improve adoptive cell therapies for cancer, but has yet to be extensively employed for modeling and treating autoimmunity. To address this limitation, we sought to combine targeted genome editing of the endogenous TCRα chain gene (TRAC) via CRISPR/Cas9 in combination with lentiviral vector (LV)-mediated TCR gene transfer into primary human CD8+ T cells. We observed that knockout (KO) of endogenous TRAC enhanced de novo TCR pairing, which permitted increased peptide:MHC-dextramer staining. Moreover, TRAC KO and TCR gene transfer increased markers of activation and effector function following activation, including granzyme B and interferon-γ production. Importantly, we observed increased cytotoxicity toward an HLA-A*0201+ human β-cell line by HLA-A*02:01 restricted CD8+ T cells engineered to recognize islet-specific glucose-6-phosphatase catalytic subunit (IGRP). These data support the notion of altering the specificity of primary human T cells for mechanistic analyses of autoreactive antigen-specific CD8+ T cells and are expected to facilitate downstream cellular therapeutics to achieve tolerance induction through the generation of antigen-specific regulatory T cells.
Collapse
Affiliation(s)
- Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Wen-I Yeh
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Juan M. Arnoletti
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Halliez C, Ibrahim H, Otonkoski T, Mallone R. In vitro beta-cell killing models using immune cells and human pluripotent stem cell-derived islets: Challenges and opportunities. Front Endocrinol (Lausanne) 2023; 13:1076683. [PMID: 36726462 PMCID: PMC9885197 DOI: 10.3389/fendo.2022.1076683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Type 1 diabetes (T1D) is a disease of both autoimmunity and β-cells. The β-cells play an active role in their own demise by mounting defense mechanisms that are insufficient at best, and that can become even deleterious in the long term. This complex crosstalk is important to understanding the physiological defense mechanisms at play in healthy conditions, their alterations in the T1D setting, and therapeutic agents that may boost such mechanisms. Robust protocols to develop stem-cell-derived islets (SC-islets) from human pluripotent stem cells (hPSCs), and islet-reactive cytotoxic CD8+ T-cells from peripheral blood mononuclear cells offer unprecedented opportunities to study this crosstalk. Challenges to develop in vitro β-cell killing models include the cluster morphology of SC-islets, the relatively weak cytotoxicity of most autoimmune T-cells and the variable behavior of in vitro expanded CD8+ T-cells. These challenges may however be highly rewarding in light of the opportunities offered by such models. Herein, we discuss these opportunities including: the β-cell/immune crosstalk in an islet microenvironment; the features that make β-cells more sensitive to autoimmunity; therapeutic agents that may modulate β-cell vulnerability; and the possibility to perform analyses in an autologous setting, i.e., by generating T-cell effectors and SC-islets from the same donor.
Collapse
Affiliation(s)
- Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
4
|
Houeiss P, Boitard C, Luce S. Preclinical Models to Evaluate the Human Response to Autoantigen and Antigen-Specific Immunotherapy in Human Type 1 Diabetes. Front Endocrinol (Lausanne) 2022; 13:883000. [PMID: 35498419 PMCID: PMC9044628 DOI: 10.3389/fendo.2022.883000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 Diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic islet β-cells by auto-reactive T cells. The clinical management of T1D faces the lack of fully predictive biomarkers in its preclinical stage and of antigen-specific therapies to induce or re-induce immune tolerance to β-cell autoantigens and prevent its development. From a therapeutic standpoint, preclinical models of T1D have fallen short of directly translating into humans. To circumvent this limitation, preclinical models are being optimized to allow defining autoantigen epitopes that are presented to T cells and directly apply to the human. In this review, we propose to make a point on the latest available models such as humanized immunodeficient NOD mice models and HLA and autoantigen transgenic mice and their application in the context of T1D.
Collapse
Affiliation(s)
- Pamela Houeiss
- Laboratory Immunology of Diabetes, Cochin Institute, Department Endocrinology, Metabolism and Diabetologia (EMD), Institut Nationale de la Santé et de la Recherche Médicale, Unité 1016 (INSERMU1016), Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, Cochin Institute, Department Endocrinology, Metabolism and Diabetologia (EMD), Institut Nationale de la Santé et de la Recherche Médicale, Unité 1016 (INSERMU1016), Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Sandrine Luce
- Laboratory Immunology of Diabetes, Cochin Institute, Department Endocrinology, Metabolism and Diabetologia (EMD), Institut Nationale de la Santé et de la Recherche Médicale, Unité 1016 (INSERMU1016), Paris, France
- Medical Faculty, Paris University, Paris, France
| |
Collapse
|
5
|
Nakayama M, Michels AW. Using the T Cell Receptor as a Biomarker in Type 1 Diabetes. Front Immunol 2021; 12:777788. [PMID: 34868047 PMCID: PMC8635517 DOI: 10.3389/fimmu.2021.777788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
T cell receptors (TCRs) are unique markers that define antigen specificity for a given T cell. With the evolution of sequencing and computational analysis technologies, TCRs are now prime candidates for the development of next-generation non-cell based T cell biomarkers, which provide a surrogate measure to assess the presence of antigen-specific T cells. Type 1 diabetes (T1D), the immune-mediated form of diabetes, is a prototypical organ specific autoimmune disease in which T cells play a pivotal role in targeting pancreatic insulin-producing beta cells. While the disease is now predictable by measuring autoantibodies in the peripheral blood directed to beta cell proteins, there is an urgent need to develop T cell markers that recapitulate T cell activity in the pancreas and can be a measure of disease activity. This review focuses on the potential and challenges of developing TCR biomarkers for T1D. We summarize current knowledge about TCR repertoires and clonotypes specific for T1D and discuss challenges that are unique for autoimmune diabetes. Ultimately, the integration of large TCR datasets produced from individuals with and without T1D along with computational 'big data' analysis will facilitate the development of TCRs as potentially powerful biomarkers in the development of T1D.
Collapse
MESH Headings
- Alleles
- Animals
- Biomarkers
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Disease Susceptibility
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Genetic Predisposition to Disease
- Genetic Variation
- Histocompatibility Antigens/genetics
- Histocompatibility Antigens/immunology
- Humans
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
6
|
Zhao LP, Papadopoulos GK, Kwok WW, Moustakas AK, Bondinas GP, Carlsson A, Elding Larsson H, Ludvigsson J, Marcus C, Samuelsson U, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Next-Generation HLA Sequence Analysis Uncovers Seven HLA-DQ Amino Acid Residues and Six Motifs Resistant to Childhood Type 1 Diabetes. Diabetes 2020; 69:2523-2535. [PMID: 32868339 PMCID: PMC7576571 DOI: 10.2337/db20-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
HLA-DQA1 and -DQB1 genes have significant and potentially causal associations with autoimmune type 1 diabetes (T1D). To follow up on the earlier analysis on high-risk HLA-DQ2.5 and DQ8.1, the current analysis uncovers seven residues (αa1, α157, α196, β9, β30, β57, and β70) that are resistant to T1D among subjects with DQ4-, 5-, 6-, and 7-resistant DQ haplotypes. These 7 residues form 13 common motifs: 6 motifs are significantly resistant, 6 motifs have modest or no associations (P values >0.05), and 1 motif has 7 copies observed among control subjects only. The motifs "DAAFYDG," "DAAYHDG," and "DAAYYDR" have significant resistance to T1D (odds ratios [ORs] 0.03, 0.25, and 0.18; P = 6.11 × 10-24, 3.54 × 10-15, and 1.03 × 10-21, respectively). Remarkably, a change of a single residue from the motif "DAAYHDG" to "DAAYHSG" (D to S at β57) alters the resistance potential, from resistant motif (OR 0.15; P = 3.54 × 10-15) to a neutral motif (P = 0.183), the change of which was significant (Fisher P value = 0.0065). The extended set of linked residues associated with T1D resistance and unique to each cluster of HLA-DQ haplotypes represents facets of all known features and functions of these molecules: antigenic peptide binding, peptide-MHC class II complex stability, β167-169 RGD loop, T-cell receptor binding, formation of homodimer of α-β heterodimers, and cholesterol binding in the cell membrane rafts. Identification of these residues is a novel understanding of resistant DQ associations with T1D. Our analyses endow potential molecular approaches to identify immunological mechanisms that control disease susceptibility or resistance to provide novel targets for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environment, Ionian University, Argostoli, Cephalonia, Greece
| | - George P Bondinas
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | | | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Wyatt C Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
7
|
Brusko MA, Stewart JM, Posgai AL, Wasserfall CH, Atkinson MA, Brusko TM, Keselowsky BG. Immunomodulatory Dual-Sized Microparticle System Conditions Human Antigen Presenting Cells Into a Tolerogenic Phenotype In Vitro and Inhibits Type 1 Diabetes-Specific Autoreactive T Cell Responses. Front Immunol 2020; 11:574447. [PMID: 33193362 PMCID: PMC7649824 DOI: 10.3389/fimmu.2020.574447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Current monotherapeutic agents fail to restore tolerance to self-antigens in autoimmune individuals without systemic immunosuppression. We hypothesized that a combinatorial drug formulation delivered by a poly-lactic-co-glycolic acid (PLGA) dual-sized microparticle (dMP) system would facilitate tunable drug delivery to elicit immune tolerance. Specifically, we utilized 30 µm MPs to provide local sustained release of granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor β1 (TGF-β1) along with 1 µm MPs to facilitate phagocytic uptake of encapsulated antigen and 1α,25(OH)2 Vitamin D3 (VD3) followed by tolerogenic antigen presentation. We previously demonstrated the dMP system ameliorated type 1 diabetes (T1D) and experimental autoimmune encephalomyelitis (EAE) in murine models. Here, we investigated the system's capacity to impact human cell activity in vitro to advance clinical translation. dMP treatment directly reduced T cell proliferation and inflammatory cytokine production. dMP delivery to monocytes and monocyte-derived dendritic cells (DCs) increased their expression of surface and intracellular anti-inflammatory mediators. In co-culture, dMP-treated DCs (dMP-DCs) reduced allogeneic T cell receptor (TCR) signaling and proliferation, while increasing PD-1 expression, IL-10 production, and regulatory T cell (Treg) frequency. To model antigen-specific activation and downstream function, we co-cultured TCR-engineered autoreactive T cell "avatars," with dMP-DCs or control DCs followed by β-cell line (ßlox5) target cells. For G6PC2-specific CD8+ avatars (clone 32), dMP-DC exposure reduced Granzyme B and dampened cytotoxicity. GAD65-reactive CD4+ avatars (clone 4.13) exhibited an anergic/exhausted phenotype with dMP-DC presence. Collectively, these data suggest this dMP formulation conditions human antigen presenting cells toward a tolerogenic phenotype, inducing regulatory and suppressive T cell responses.
Collapse
Affiliation(s)
- Maigan A. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Joshua M. Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Clive H. Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Benjamin G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Susukida T, Aoki S, Shirayanagi T, Yamada Y, Kuwahara S, Ito K. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev 2020; 52:540-567. [PMID: 32847422 DOI: 10.1080/03602532.2020.1800725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death. For example, abacavir-induced IDT has successfully been reproduced in HLA-B*57:01 transgenic mice. Several reports using HLA transgenic mice for IDT have proven the utility of this concept for the evaluation of IDT using various HLA allele combinations and drugs. It has become apparent that such models may be a valuable tool to investigate the mechanisms underlying HLA-mediated IDT. This review summarizes the latest findings in the area of HLA transgenic mouse models and discusses the current challenges that must be overcome to maximize the potential of this unique animal model.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Laboratory of Cancer Biology and Immunology, Section of Host Defenses, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Shultz LD, Keck J, Burzenski L, Jangalwe S, Vaidya S, Greiner DL, Brehm MA. Humanized mouse models of immunological diseases and precision medicine. Mamm Genome 2019; 30:123-142. [PMID: 30847553 PMCID: PMC6610695 DOI: 10.1007/s00335-019-09796-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/02/2019] [Indexed: 12/25/2022]
Abstract
With the increase in knowledge resulting from the sequencing of the human genome, the genetic basis for the underlying differences in individuals, their diseases, and how they respond to therapies is starting to be understood. This has formed the foundation for the era of precision medicine in many human diseases that is beginning to be implemented in the clinic, particularly in cancer. However, preclinical testing of therapeutic approaches based on individual biology will need to be validated in animal models prior to translation into patients. Although animal models, particularly murine models, have provided significant information on the basic biology underlying immune responses in various diseases and the response to therapy, murine and human immune systems differ markedly. These fundamental differences may be the underlying reason why many of the positive therapeutic responses observed in mice have not translated directly into the clinic. There is a critical need for preclinical animal models in which human immune responses can be investigated. For this, many investigators are using humanized mice, i.e., immunodeficient mice engrafted with functional human cells, tissues, and immune systems. We will briefly review the history of humanized mice, the remaining limitations, approaches to overcome them and how humanized mouse models are being used as a preclinical bridge in precision medicine for evaluation of human therapies prior to their implementation in the clinic.
Collapse
Affiliation(s)
- Leonard D Shultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - James Keck
- The Jackson Laboratory, 1650 Santa Ana Avenue, Sacramento, CA, 95838, USA
| | - Lisa Burzenski
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Sonal Jangalwe
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Shantashri Vaidya
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Dale L Greiner
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Michael A Brehm
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| |
Collapse
|
10
|
Kooreman NG, de Almeida PE, Stack JP, Nelakanti RV, Diecke S, Shao NY, Swijnenburg RJ, Sanchez-Freire V, Matsa E, Liu C, Connolly AJ, Hamming JF, Quax PHA, Brehm MA, Greiner DL, Shultz LD, Wu JC. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics. Cell Rep 2018; 20:1978-1990. [PMID: 28834758 PMCID: PMC5573767 DOI: 10.1016/j.celrep.2017.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 04/23/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
There is growing interest in using embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts. Innate immunity is crucial in rejection of minor HA mismatched grafts Stem cell alloimmune responses modeled with an “allogenized mouse” Humanized mice are unable to fully model immune responses to stem cell allografts Splenocytes and graft-infiltrating lymphocytes display an exhausted phenotype
Collapse
Affiliation(s)
- Nigel G Kooreman
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Patricia E de Almeida
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan P Stack
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Raman V Nelakanti
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Sebastian Diecke
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ning-Yi Shao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | - Veronica Sanchez-Freire
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew J Connolly
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jaap F Hamming
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael A Brehm
- Diabetes Center of Excellence, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Diabetes Center of Excellence, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
11
|
McDaniel Mims B, Grisham MB. Humanizing the mouse immune system to study splanchnic organ inflammation. J Physiol 2018; 596:3915-3927. [PMID: 29574759 DOI: 10.1113/jp275325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
It is well known that alterations in splanchnic organ perfusion and/or immune regulation may produce inflammatory tissue injury similar to that observed in several human disorders such as ischaemia and reperfusion injury, food allergies, diabetes, inflammatory bowel disease and graft-versus-host disease. Mouse models have been tremendously important in defining the roles of the circulation, leukocyte trafficking, inflammatory mediator generation, immune regulation and the intestinal microbiota in the pathogenesis of acute and chronic inflammation. However, few of the promising interventions or therapeutics reported in mouse models of inflammatory diseases have been translated to clinically effective treatments in patients. There is growing concern that because of the significant differences that exist between the murine and human immune systems, mouse models may not adequately recapitulate the immuno-pathogenesis of inflammatory diseases. This inconvenient reality has prompted a number of investigators to undertake a series of studies to humanize the murine immune system via adoptive transfer of human lymphoid or progenitor cells into a new generation of immuno-deficient recipients. In this review, we summarize the recent advances that have been made in the development of humanized mice and describe how these mouse models are being used to study the pathophysiology of splanchnic organ inflammation. In addition, we discuss the limitations of the different approaches and present potential solutions for the continued improvement of these important animal models.
Collapse
Affiliation(s)
- Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
12
|
Newby BN, Brusko TM, Zou B, Atkinson MA, Clare-Salzler M, Mathews CE. Type 1 Interferons Potentiate Human CD8 + T-Cell Cytotoxicity Through a STAT4- and Granzyme B-Dependent Pathway. Diabetes 2017; 66:3061-3071. [PMID: 28877912 PMCID: PMC5697952 DOI: 10.2337/db17-0106] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022]
Abstract
Events defining the progression to human type 1 diabetes (T1D) have remained elusive owing to the complex interaction between genetics, the immune system, and the environment. Type 1 interferons (T1-IFN) are known to be a constituent of the autoinflammatory milieu within the pancreas of patients with T1D. However, the capacity of IFNα/β to modulate human activated autoreactive CD8+ T-cell (cytotoxic T lymphocyte) responses within the islets of patients with T1D has not been investigated. Here, we engineer human β-cell-specific cytotoxic T lymphocytes and demonstrate that T1-IFN augments cytotoxicity by inducing rapid phosphorylation of STAT4, resulting in direct binding at the granzyme B promoter within 2 h of exposure. The current findings provide novel insights concerning the regulation of effector function by T1-IFN in human antigen-experienced CD8+ T cells and provide a mechanism by which the presence of T1-IFN potentiates diabetogenicity within the autoimmune islet.
Collapse
Affiliation(s)
- Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Baiming Zou
- Department of Biostatistics, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Michael Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
13
|
Gomez-Tourino I, Kamra Y, Baptista R, Lorenc A, Peakman M. T cell receptor β-chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nat Commun 2017; 8:1792. [PMID: 29176645 PMCID: PMC5702608 DOI: 10.1038/s41467-017-01925-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/25/2017] [Indexed: 01/10/2023] Open
Abstract
Defects in T cell receptor (TCR) repertoire are proposed to predispose to autoimmunity. Here we show, by analyzing >2 × 108TCRB sequences of circulating naive, central memory, regulatory and stem cell-like memory CD4+ T cell subsets from patients with type 1 diabetes and healthy donors, that patients have shorter TCRB complementarity-determining region 3s (CDR3), in all cell subsets, introduced by increased deletions/reduced insertions during VDJ rearrangement. High frequency of short CDR3s is also observed in unproductive TCRB sequences, which are not subjected to thymic culling, suggesting that the shorter CDR3s arise independently of positive/negative selection. Moreover, TCRB CDR3 clonotypes expressed by autoantigen-specific CD4+ T cells are shorter compared with anti-viral T cells, and with those from healthy donors. Thus, early events in thymic T cell development and repertoire generation are abnormal in type 1 diabetes, which suggest that short CDR3s increase the potential for self-recognition, conferring heightened risk of autoimmune disease. T cell receptors are generated by somatic gene recombination, and are normally selected against autoreactivity. Here the authors show that CD4 T cells from patients with autoimmune type 1 diabetes have shorter TCRβ sequences, broader repertoire diversity, and more repertoire sharing than those from healthy individuals.
Collapse
Affiliation(s)
- Iria Gomez-Tourino
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK.,Immunology Laboratory, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia, University of Vigo, Campus Universitario de Vigo, Pontevedra, 36310, Spain
| | - Yogesh Kamra
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Roman Baptista
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Anna Lorenc
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK. .,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
14
|
Yeh WI, Seay HR, Newby B, Posgai AL, Moniz FB, Michels A, Mathews CE, Bluestone JA, Brusko TM. Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo Autoreactive T-Cell Receptors in Type 1 Diabetes. Front Immunol 2017; 8:1313. [PMID: 29123516 PMCID: PMC5662552 DOI: 10.3389/fimmu.2017.01313] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022] Open
Abstract
The ability to alter antigen specificity by T-cell receptor (TCR) or chimeric antigen receptor (CAR) gene transfer has facilitated personalized cellular immune therapies in cancer. Inversely, this approach can be harnessed in autoimmune settings to attenuate inflammation by redirecting the specificity of regulatory T cells (Tregs). Herein, we demonstrate efficient protocols for lentiviral gene transfer of TCRs that recognize type 1 diabetes-related autoantigens with the goal of tissue-targeted induction of antigen-specific tolerance to halt β-cell destruction. We generated human Tregs expressing a high-affinity GAD555–567-reactive TCR (clone R164), as well as the lower affinity clone 4.13 specific for the same peptide. We demonstrated that de novo Treg avatars potently suppress antigen-specific and bystander responder T-cell (Tresp) proliferation in vitro in a process that requires Treg activation (P < 0.001 versus unactivated Tregs). When Tresp were also glutamic acid decarboxylase (GAD)-reactive, the high-affinity R164 Tregs exhibited increased suppression (P < 0.01) with lower Tresp-division index (P < 0.01) than the lower affinity 4.13 Tregs. These data demonstrate the feasibility of rapid expansion of antigen-specific Tregs for applications in attenuating β-cell autoimmunity and emphasize further opportunities for engineering cellular specificities, affinities, and phenotypes to tailor Treg activity in adoptive cell therapies for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Wen-I Yeh
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Brittney Newby
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Filipa Botelho Moniz
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Aaron Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Jeffrey A Bluestone
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Abstract
There is an urgent and unmet need for humanized in vivo models of type 1 diabetes to study immunopathogenesis and immunotherapy, and in particular antigen-specific therapy. Transfer of patient blood lymphocytes to immunodeficient mice is associated with xenogeneic graft-versus-host reactivity that complicates assessment of autoimmunity. Improved models could identify which human T cells initiate and participate in beta-cell destruction and help define critical target islet autoantigens. We used humanized mice (hu-mice) containing robust human immune repertoires lacking xenogeneic graft-versus-host reactivity to address this question. Hu-mice constructed by transplantation of HLA-DQ8+ human fetal thymus and CD34+ cells into HLA-DQ8-transgenic immunodeficient mice developed hyperglycemia and diabetes after transfer of autologous HLA-DQ8/insulin-B:9-23 (InsB:9-23)-specific T-cell receptor (TCR)-expressing human CD4+ T cells and immunization with InsB:9-23. Survival of the infused human T cells depended on the preexisting autologous human immune system, and pancreatic infiltration by human CD3+ T cells and insulitis were observed in the diabetic hu-mice, provided their islets were stressed by streptozotocin. This study fits Koch's postulate for pathogenicity, demonstrating a pathogenic role of islet autoreactive CD4+ T-cell responses in type 1 diabetes induction in humans, underscores the role of the target beta-cells in their immunological fate, and demonstrates the capacity to initiate disease with T cells, recognizing the InsB:9-23 epitope in the presence of islet inflammation. This preclinical model has the potential to be used in studies of the pathogenesis of type 1 diabetes and for testing of clinically relevant therapeutic interventions.
Collapse
|
16
|
Ali R, Babad J, Follenzi A, Gebe JA, Brehm MA, Nepom GT, Shultz LD, Greiner DL, DiLorenzo TP. Genetically modified human CD4(+) T cells can be evaluated in vivo without lethal graft-versus-host disease. Immunology 2017; 148:339-51. [PMID: 27124592 DOI: 10.1111/imm.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Adoptive cell immunotherapy for human diseases, including the use of T cells modified to express an anti-tumour T-cell receptor (TCR) or chimeric antigen receptor, is showing promise as an effective treatment modality. Further advances would be accelerated by the availability of a mouse model that would permit human T-cell engineering protocols and proposed genetic modifications to be evaluated in vivo. NOD-scid IL2rγ(null) (NSG) mice accept the engraftment of mature human T cells; however, long-term evaluation of transferred cells has been hampered by the xenogeneic graft-versus-host disease (GVHD) that occurs soon after cell transfer. We modified human primary CD4(+) T cells by lentiviral transduction to express a human TCR that recognizes a pancreatic beta cell-derived peptide in the context of HLA-DR4. The TCR-transduced cells were transferred to NSG mice engineered to express HLA-DR4 and to be deficient for murine class II MHC molecules. CD4(+) T-cell-depleted peripheral blood mononuclear cells were also transferred to facilitate engraftment. The transduced cells exhibited long-term survival (up to 3 months post-transfer) and lethal GVHD was not observed. This favourable outcome was dependent upon the pre-transfer T-cell transduction and culture conditions, which influenced both the kinetics of engraftment and the development of GVHD. This approach should now permit human T-cell transduction protocols and genetic modifications to be evaluated in vivo, and it should also facilitate the development of human disease models that incorporate human T cells.
Collapse
Affiliation(s)
- Riyasat Ali
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - John A Gebe
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence™, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence™, University of Massachusetts Medical School, Worcester, MA, USA
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
17
|
Seay HR, Yusko E, Rothweiler SJ, Zhang L, Posgai AL, Campbell-Thompson M, Vignali M, Emerson RO, Kaddis JS, Ko D, Nakayama M, Smith MJ, Cambier JC, Pugliese A, Atkinson MA, Robins HS, Brusko TM. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 2016; 1:e88242. [PMID: 27942583 DOI: 10.1172/jci.insight.88242] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The adaptive immune repertoire plays a critical role in type 1 diabetes (T1D) pathogenesis. However, efforts to characterize B cell and T cell receptor (TCR) profiles in T1D subjects have been largely limited to peripheral blood sampling and restricted to known antigens. To address this, we collected pancreatic draining lymph nodes (pLN), "irrelevant" nonpancreatic draining lymph nodes, peripheral blood mononuclear cells (PBMC), and splenocytes from T1D subjects (n = 18) and control donors (n = 9) as well as pancreatic islets from 1 T1D patient; from these tissues, we collected purified CD4+ conventional T cells (Tconv), CD4+ Treg, CD8+ T cells, and B cells. By conducting high-throughput immunosequencing of the TCR β chain (TRB) and B cell receptor (BCR) immunoglobulin heavy chain (IGH) on these samples, we sought to analyze the molecular signature of the lymphocyte populations within these tissues and of T1D. Ultimately, we observed a highly tissue-restricted CD4+ repertoire, while up to 24% of CD8+ clones were shared among tissues. We surveyed our data set for previously described proinsulin- and glutamic acid decarboxylase 65-reactive (GAD65-reactive) receptors, and interestingly, we observed a TRB with homology to a known GAD65-reactive TCR (clone GAD4.13) present in 7 T1D donors (38.9%), representing >25% of all productive TRB within Tconv isolated from the pLN of 1 T1D subject. These data demonstrate diverse receptor signatures at the nucleotide level and enriched autoreactive clones at the amino acid level, supporting the utility of coupling immunosequencing data with knowledge of characterized autoreactive receptors.
Collapse
Affiliation(s)
- Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Erik Yusko
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - Stephanie J Rothweiler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Lin Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Marissa Vignali
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - Ryan O Emerson
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - John S Kaddis
- Department of Information Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Dave Ko
- Department of Information Sciences, City of Hope National Medical Center, Duarte, California, USA
| | | | - Mia J Smith
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alberto Pugliese
- Diabetes Research Institute and Departments of Medicine, Microbiology, and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Harlan S Robins
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
18
|
Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, Shultz LD. Humanized Mouse Models of Clinical Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:187-215. [PMID: 27959627 DOI: 10.1146/annurev-pathol-052016-100332] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunodeficient mice engrafted with functional human cells and tissues, that is, humanized mice, have become increasingly important as small, preclinical animal models for the study of human diseases. Since the description of immunodeficient mice bearing mutations in the IL2 receptor common gamma chain (IL2rgnull) in the early 2000s, investigators have been able to engraft murine recipients with human hematopoietic stem cells that develop into functional human immune systems. These mice can also be engrafted with human tissues such as islets, liver, skin, and most solid and hematologic cancers. Humanized mice are permitting significant progress in studies of human infectious disease, cancer, regenerative medicine, graft-versus-host disease, allergies, and immunity. Ultimately, use of humanized mice may lead to the implementation of truly personalized medicine in the clinic. This review discusses recent progress in the development and use of humanized mice and highlights their utility for the study of human diseases.
Collapse
Affiliation(s)
- Nicole C Walsh
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Laurie L Kenney
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sonal Jangalwe
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Ken-Edwin Aryee
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | |
Collapse
|
19
|
Geisshüsler H, Marti E, Stoffel M, Kühni K, Stojiljkovic A, von Tscharner C, Vidondo B, Gerber V, Koch C. Quantitative analysis of infiltrating immune cells and bovine papillomavirus type 1 E2-positive cells in equine sarcoids. Vet J 2016; 216:45-52. [DOI: 10.1016/j.tvjl.2016.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022]
|
20
|
Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes Immun 2016; 17:342-8. [DOI: 10.1038/gene.2016.29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
|
21
|
Gomez-Tourino I, Arif S, Eichmann M, Peakman M. T cells in type 1 diabetes: Instructors, regulators and effectors: A comprehensive review. J Autoimmun 2016; 66:7-16. [DOI: 10.1016/j.jaut.2015.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|