1
|
Liu Y, Niu C, Chu M, Liu M, Chi Y. The preparation and characterization of graphene oxide-multiwalled minocycline coatings on ultrafine-grained titanium implants for enhanced performance studies. FRONTIERS IN ORAL HEALTH 2025; 6:1565325. [PMID: 40336634 PMCID: PMC12055806 DOI: 10.3389/froh.2025.1565325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
As the dental implant restoration technology is constantly applied and developed, implant fracture and related infections have emerged as significant factors threatening the long-term outcome of implants. Hence, this experiment intends to bestow the implant itself with anti-fracture and antibacterial capabilities by utilizing ultrafine-grained titanium, which possesses relatively superior mechanical properties, as the implant material and depositing a graphene oxide-minocycline composite coating on its surface. This is done to prevent implant fracture and the initial attachment of early microorganisms, and to strive to impede the colonization of late microorganisms and the formation of infectious biofilms, thereby achieving long-term stability of the implant. The graphene oxide-minocycline composite coating can be successfully fabricated on the surface of ultrafine-grained titanium via electrochemical deposition and liquid-phase deposition techniques, which can enhance the hydrophilicity of ultrafine-grained titanium and exhibit good coating adhesion. It demonstrates excellent antibacterial properties against Staphylococcus aureus, has no in vitro hemolysis, and shows no obvious cytotoxicity to mouse pre-osteoblasts.
Collapse
Affiliation(s)
- Ying Liu
- Stomatology Collage of Jiamusi University, Jiamusi, Heilongjiang, China
- Key Laboratory of Oral Biomedical Materials and Clinical Application, Jiamusi, Heilongjiang, China
| | - Chenyang Niu
- Stomatology Collage of Jiamusi University, Jiamusi, Heilongjiang, China
- Key Laboratory of Oral Biomedical Materials and Clinical Application, Jiamusi, Heilongjiang, China
| | - Minghui Chu
- The Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Mingda Liu
- The Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yanxia Chi
- The Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
2
|
Yang Y, Xu C, Xu S, Li Y, Chen K, Yang T, Bao J, Xu Y, Chen J, Mao C, Chen L, Sun W. Injectable hydrogels activated with copper sulfide nanoparticles for enhancing spatiotemporal sterilization and osteogenesis in periodontal therapy. Biomater Sci 2025; 13:1434-1448. [PMID: 38711336 DOI: 10.1039/d3bm02134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Developing biomaterials capable of promoting bone regeneration in bacteria-infected sites is of utmost urgency for periodontal disease therapies. Here we produce a hybrid hydrogel by integrating CuS nanoparticles (CuSNPs), which could kill bacteria through photothermal therapy (PTT) triggered by a near infrared (NIR) light, and a gelatin methacryloyl (GelMA) hydrogel, which is injectable and biocompatible. Specifically, CuSNPs were precipitated by chitosan (CS) firstly, then grafted with methacrylic anhydride (MA) to form CuSNP@CS-MA, which was photo-crosslinked with GelMA to synthesize hybrid hydrogels (GelMA/CuSNP). The hybrid hydrogels exhibited a broad-spectrum antibacterial property that could be spatiotemprorally manipulated through applying a NIR light. Their mechanical properties were adjustable by controlling the concentration of CuSNPs, enabling the hydrogels to become more adapted to the oral diseases. Meanwhile, the hybrid hydrogels showed good cytocompatibility in vitro and improved hemostasis in vivo. Moreover, they accelerated alveolar osteogenesis and vascular genesis, successfully treating periodontis in four weeks in a rat model. GelMA/CuSNP hydrogels showed a broad-spectrum sterilization ability via PTT in vitro and outstanding antibacterial property in vivo, suggesting that the hybrid hydrogels could function in the challenging, bacteria-rich, oral environment. Such injectable hybrid hydrogels, capable of achieving both facilitated osteogenesis and NIR-inducible sterilization, represent a new biomaterial for treating periodontitis.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Chunbin Xu
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Shengqian Xu
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Yan Li
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Ke'er Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jiaqi Bao
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Yajing Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jingyao Chen
- Facility for Histomorphology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| |
Collapse
|
3
|
Tocarruncho OI, Neuta Y, Lesmes Y, Castillo DM, Leal S, Chambrone L, Lafaurie GI. Submucosal Microbiome Profiles in Paired and Unpaired Samples From Healthy and Peri-Implantitis Dental Implants. Clin Implant Dent Relat Res 2025; 27:e13423. [PMID: 39876091 DOI: 10.1111/cid.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 11/09/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND This cross-sectional study aimed to compare the composition of the submucosal microbiome of peri-implantitis with paired and unpaired healthy implant samples. METHODS We evaluated submucosal plaque samples obtained in 39 cases, including 13 cases of peri-implantitis, 13 cases involving healthy implants from the same patient (paired samples), and 13 cases involving healthy implants from different individuals (unpaired samples). The patients were evaluated using next-generation genomic sequencing (Illumina) based on 16S rRNA gene amplification. The sequences were grouped according to the amplicon sequence variant (ASV) to define the taxonomic categories. Alpha diversity was analyzed using Shannon's and Simpson's indices, while beta diversity was evaluated using principal coordinate analysis, analysis of similarities, and permutational multivariate variance analysis. Additionally, UniFrac distances were evaluated using Quantitative Insights into Microbial Ecology 2. Finally, we evaluated between-group differences in the taxonomic components. RESULTS There were no significant between-group differences in alpha diversity. The average bacterial ratios of Filifactor alocis, Porphyromona endodontalis, Tannerella forsythia, Treponema denticola, Peptostreptococcaceae [Eubacterium nodatum], Desulfobulbus sp. HTM 041, and Mogibacterium timidum significantly differed between peri-implantitis samples and unpaired samples from the healthy implants (p < 0.05). However, there were few differences in the microbiota between peri-implantitis samples and those paired with healthy implants in the same patient. CONCLUSIONS Future studies comparing the microbiome compositions using sequencing techniques between healthy implants and implants with peri-implantitis should focus on retrieving samples from the same patient, especially in individuals with a history of periodontitis.
Collapse
Affiliation(s)
- Oscar Iván Tocarruncho
- Master Oral Science Program, School of Dentistry, Universidad El Bosque, Bogotá-, Colombia
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
- Institución Universitaria Colegios de Colombia UNICOC, School of Dentistry, Bogotá-, Colombia
| | - Yineth Neuta
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Yamil Lesmes
- Universidad El Bosque, School of Dentistry, Bogotá, Colombia
| | - Diana Marcela Castillo
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Sandra Leal
- Centro de Investigaciones y Estudios Odontológicos, School of Dentistry, Bogotá-, Colombia
| | - Leandro Chambrone
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
- Evidence-Based Hub, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
- Department of Periodontics, School of Dental Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gloria Inés Lafaurie
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
4
|
Munteanu IR, Luca RE, Hogea E, Erdelyi RA, Duma VF, Marsavina L, Globasu AL, Constantin GD, Todea DC. Microbiological and Imaging-Based Evaluations of Photodynamic Therapy Combined with Er:YAG Laser Therapy in the In Vitro Decontamination of Titanium and Zirconia Surfaces. Microorganisms 2024; 12:1345. [PMID: 39065113 PMCID: PMC11278944 DOI: 10.3390/microorganisms12071345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The oral cavity's soft and hard tissues create a conducive environment for microbial proliferation and biofilm development, facilitating the colonization of prosthodontic and implant materials such as titanium (Ti) and zirconia (Zr). This study aimed to compare the efficacy of conventional decontamination methodologies (i.e., chemical and mechanical, using 0.12% digluconate chlorhexidine (CHX) solution-treatment and airflow) to adjunctive laser-based interventions on Ti and Zr substrates inoculated with Staphylococcus (S.) aureus ATCC 25923. Additionally, this investigation sought to elucidate the impact of these treatments on temperature variations and surface integrity, analyzing the laser irradiation effects on these prevalent dental materials. Experimental configurations were delineated for both Ti and Zr samples across four groups: (1) a conventional treatment group (CV); (2) a photodynamic therapy group (PDT); (3) an Er:YAG laser treatment group (Er); (4) a combined PDT and Er:YAG treatment group (PDTEr). Also, a negative control group (C) that received no treatment was considered. The decontamination of the inoculated disc samples was evaluated by quantifying the microbial colonies in colony-forming units per milliliter (CFU/mL). Temperature variations on the surface of the samples were determined during laser treatments. Surface modifications were investigated using scanning electron microscopy (SEM) and optical coherence tomography (OCT). For statistical analysis, Fisher 95% confidence intervals, Hsu's MCB method, and the Kruskal-Wallis test were applied. With regard to the 105 CFU/mL of the negative control group, results indicated average values equal for each study group to (1) 2.66 CFU/mL for Ti and 2 CFU/mL for Zr for the CV group; (2) 0.33 CFU/mL for Ti and 1 CFU/mL for Zr for the PDT group; (3) 1.25 CFU/mL for Ti and 0 CFU/mL for Zr for the Er group; (4), and 0 CFU/mL for both Ti and Zr for the PDTEr group. Therefore, the combined PDT and Er:YAG treatment (PDTEr) and the singular PDT modality outperformed conventional decontamination methods in eradicating S. aureus biofilms from both Ti and Zr surfaces. Notably, the PDTEr regime achieved a comprehensive elimination of microbial colonies on treated substrates. Surface examination employing OCT demonstrated discernible alterations in the surface morphology of samples subjected to Er:YAG and combined PDT and Er:YAG treatments. Temperature checks during treatments showed no major changes, suggesting the applied laser methods are safe. In conclusion, PDTEr and PDT eliminated bacteria more effectively, but Zr surfaces were more resilient, making them better for microbe-controlling applications. Also, the study demonstrated that the (less costly but lower resolution) OCT method can replace SEM for such investigations.
Collapse
Affiliation(s)
- Ioana-Roxana Munteanu
- University Clinic of Oral Rehabilitation and Dental Emergencies, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-R.M.); (D.C.T.)
- Interdisciplinary Research Center for Dental Medical Research, Lasers and Innovative Technologies, 300070 Timisoara, Romania
| | - Ruxandra-Elena Luca
- University Clinic of Oral Rehabilitation and Dental Emergencies, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-R.M.); (D.C.T.)
- Interdisciplinary Research Center for Dental Medical Research, Lasers and Innovative Technologies, 300070 Timisoara, Romania
| | - Elena Hogea
- Department XIV, Discipline of Microbiology-Virology, Faculty of General Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Ralph-Alexandru Erdelyi
- Department of Measurements and Optical Electronics, Faculty of Electronics, Telecommunications and Information Technology, Polytechnic University Timisoara, 300006 Timisoara, Romania;
| | - Virgil-Florin Duma
- Department of Measurements and Optical Electronics, Faculty of Electronics, Telecommunications and Information Technology, Polytechnic University Timisoara, 300006 Timisoara, Romania;
- Center of Research and Development for Mechatronics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- 3OM Optomechatronics Group, Faculty of Engineering, “Aurel Vlaicu” University of Arad, 310177 Arad, Romania
| | - Liviu Marsavina
- Department of Mechanics and Strength of Materials, Faculty of Mechanical Engineering, Polytechnic University Timisoara, 300222 Timisoara, Romania;
| | - Amelia-Larisa Globasu
- University Clinic of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - George-Dumitru Constantin
- Department of Internal Medicine, Discipline of Clinical Skills, Faculty of General Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Advanced Cardiology and Hemostaseology Research Center, 300070 Timisoara, Romania
| | - Darinca Carmen Todea
- University Clinic of Oral Rehabilitation and Dental Emergencies, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-R.M.); (D.C.T.)
- Interdisciplinary Research Center for Dental Medical Research, Lasers and Innovative Technologies, 300070 Timisoara, Romania
| |
Collapse
|
5
|
Ramseier CA. Diagnostic measures for monitoring and follow-up in periodontology and implant dentistry. Periodontol 2000 2024; 95:129-155. [PMID: 38951873 DOI: 10.1111/prd.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
This review discusses the role of diagnostic measures in the lifelong management of periodontal disease and peri-implant complications. After active treatment, these conditions require regular monitoring of the supporting structures of teeth and dental implants to assess bone and soft tissue health over time. Several clinical measures have been developed for the routine assessment of periodontal and peri-implant tissues, including periodontal and peri-implant probing, bleeding on probing, intraoral radiography, biomarker analysis, and microbiological testing. This review highlights the evolution of diagnostic practices, integrating traditional methods with emerging technologies such as resonance frequency analysis and ultrasound imaging to provide a holistic view of peri-implant health assessment. In addition to objective measurements, patient risk factors are considered. The goals of periodontal and peri-implant maintenance are to control disease activity and stabilize tissues through supportive care, which includes diagnostic measures at follow-up visits. This enables clinicians to monitor treatment outcomes, assess health status, and detect recurrence or progression early through routine evaluation, allowing additional interventions, including adjustment of supportive therapy intervals, to further improve and maintain periodontal and peri-implant stability over time.
Collapse
Affiliation(s)
- Christoph A Ramseier
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Parga A, Pose-Rodríguez JM, Muras A, Baus-Domínguez M, Otero-Casal P, Ortega-Quintana ML, Torres-Lagares D, Otero A. Do Concurrent Peri-Implantitis and Periodontitis Share Their Microbiotas? A Pilot Study. Dent J (Basel) 2024; 12:113. [PMID: 38668025 PMCID: PMC11049029 DOI: 10.3390/dj12040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The microbial compositions from concurrent peri-implant and periodontal lesions were compared, since the results reported in the literature on the etiological relationship between these oral pathologies are contradictory. Microbial compositions from nine patients were evaluated using Illumina MiSeq sequencing of 16S rRNA gene amplicons and Principal Components Analysis. Comparisons between the use of curettes or paper points as collection methods and between bacterial composition in both pathologies were performed. Paper points allowed the recovery of a higher number of bacterial genera. A higher bacterial diversity was found in peri-implantitis compared to periodontal samples from the same patient, while a greater number of operational taxonomic units (OTUs) were present in the corresponding periodontal samples. A higher abundance of oral pathogens, such as Porphyromonas or Treponema, was found in peri-implantitis sites. The opposite trend was observed for Aggregatibacter abundance, which was higher in periodontal than in peri-implantitis lesions, suggesting that both oral pathologies could be considered different but related diseases. Although the analysis of a higher number of samples would be needed, the differences regarding the microbial composition provide a basis for further understating the pathogenesis of peri-implant infections.
Collapse
Affiliation(s)
- Ana Parga
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.P.); (A.M.)
- Aquatic One Health Research Center (iARCUS), Edificio CIBUS, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Manuel Pose-Rodríguez
- Department of Surgery and Medical-Surgical Specialities, Faculty of Medicine and Odontology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.M.P.-R.); (M.L.O.-Q.)
| | - Andrea Muras
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.P.); (A.M.)
| | - María Baus-Domínguez
- Department of Stomatology, Faculty of Odontology, University of Seville, 41009 Sevilla, Spain; (M.B.-D.); (D.T.-L.)
| | - Paz Otero-Casal
- Department of Surgery and Medical-Surgical Specialities, Faculty of Medicine and Odontology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.M.P.-R.); (M.L.O.-Q.)
- Unit of Oral Health, Santa Comba-Negreira, (CS) SERGAS, 15840 Santiago de Compostela, Spain
| | - Marcos Luis Ortega-Quintana
- Department of Surgery and Medical-Surgical Specialities, Faculty of Medicine and Odontology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.M.P.-R.); (M.L.O.-Q.)
| | - Daniel Torres-Lagares
- Department of Stomatology, Faculty of Odontology, University of Seville, 41009 Sevilla, Spain; (M.B.-D.); (D.T.-L.)
| | - Ana Otero
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.P.); (A.M.)
- Aquatic One Health Research Center (iARCUS), Edificio CIBUS, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Sinjab K, Sawant S, Ou A, Fenno JC, Wang HL, Kumar P. Impact of surface characteristics on the peri-implant microbiome in health and disease. J Periodontol 2024; 95:244-255. [PMID: 37665015 PMCID: PMC10909931 DOI: 10.1002/jper.23-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Because little is known about the impact of implant surface modifications on the peri-implant microbiome, we aimed to examine peri-implant communities in various surface types in order to better understand the impact of these surfaces on the development of peri-implantitis (PI). METHODS One hundred and six systemically healthy individuals with anodized (AN), hydroxyapatite-coated (HA), or sandblasted acid-etched (SLA) implants that were >6 months in function were recruited and categorized into health (H) or PI. Peri-implant biofilm was analyzed using 16S rRNA gene sequencing and compared between health/disease and HA/SLA/AN using community-level and taxa-level metrics. RESULTS Healthy implants did not demonstrate significant differences in clustering, alpha- or beta-diversity based on surface modification. AN and HA surfaces displayed significant differences between health and PI (p < 0.05); however, such a clustering was not evident with SLA (p > 0.05). AN and HA surfaces also differed in the magnitude and diversity of differences between health and PI. Six species belonging to the genera Shuttleworthia, Scardovia, and Prevotella demonstrated lower abundances in AN implants with PI, and 18 species belonging to the genera Fretibacterium, Tannerella, Treponema, and Fusobacterium were elevated, while in HA implants with PI, 20 species belonging to the genera Streptococcus, Lactobacillus, Veillonella, Rothia, and family Ruminococcaceae were depleted and Peptostreptococcaceae, Atopobiaceae, Veillonellaceae, Porphyromonadaceae, Desulfobulbaceae, and order Synergistales were enriched. CONCLUSIONS Within the limitations of this study, we demonstrate that implant surface can differentially modify the disease-associated microbiome, suggesting that surface topography must be considered in the multi-factorial etiology of peri-implant diseases.
Collapse
Affiliation(s)
- Khaled Sinjab
- Department of Periodontics and Oral Medicine, School of Dentistry University of Michigan 1011 N University Ave Ann Arbor, Michigan 48109
| | - Shriya Sawant
- Department of Periodontics and Oral Medicine, School of Dentistry University of Michigan 1011 N University Ave Ann Arbor, Michigan 48109
| | - Alice Ou
- Department of Periodontics and Oral Medicine, School of Dentistry University of Michigan 1011 N University Ave Ann Arbor, Michigan 48109
| | - J. Christopher Fenno
- Department of Biological and Material Sciences and Prosthodontics, School of Dentistry University of Michigan 1011 N University Ave Ann Arbor, Michigan 48109
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, School of Dentistry University of Michigan 1011 N University Ave Ann Arbor, Michigan 48109
| | - Purnima Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry University of Michigan 1011 N University Ave Ann Arbor, Michigan 48109
| |
Collapse
|
8
|
Yamaguchi K, Munakata M, Ishii K, Uesugi T. Bacterial Flora in Screw-Fixed Superstructures with Different Sealing Materials: A Comparative Clinical Trial. Bioengineering (Basel) 2024; 11:195. [PMID: 38391681 PMCID: PMC10886632 DOI: 10.3390/bioengineering11020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
A screw-fixed superstructure is predominantly selected for implant prostheses because of the concern regarding developing peri-implantitis, although its infection route remains unclear. Focusing on microleakage from access holes, the present study clinically investigated the bacterial flora in access holes with different sealing materials. We examined 38 sites in 19 patients with two adjacent screw-fixed superstructures. Composite resin was used in the control group, and zinc-containing glass ionomer cement was used in the test group. Bacteria were collected from the access holes 28 days after superstructure placement and were subjected to DNA hybridization analysis. The same patient comparisons of the bacterial counts showed a significant decrease in 14 bacterial species for the red, yellow, and purple complexes in the test group (p < 0.05). In addition, the same patient comparisons of the bacterial ratios showed a significant decrease in six bacterial species for the orange, green, yellow, and purple complexes in the test group (p < 0.05). Furthermore, the same patient comparisons of the implant positivity rates showed a significant decrease in the six bacterial species for the orange, yellow, and purple complexes in the test group. The results of this study indicate that zinc-containing glass ionomer cement is effective as a sealing material for access holes.
Collapse
Affiliation(s)
- Kikue Yamaguchi
- Department of Implant Dentistry, Showa University School of Dentistry, 2-1-1 Kita-senzoku, Ota-ku, Tokyo 1458515, Japan
| | - Motohiro Munakata
- Department of Implant Dentistry, Showa University School of Dentistry, 2-1-1 Kita-senzoku, Ota-ku, Tokyo 1458515, Japan
| | - Kota Ishii
- Department of Implant Dentistry, Showa University School of Dentistry, 2-1-1 Kita-senzoku, Ota-ku, Tokyo 1458515, Japan
| | - Takashi Uesugi
- Department of Implant Dentistry, Showa University School of Dentistry, 2-1-1 Kita-senzoku, Ota-ku, Tokyo 1458515, Japan
| |
Collapse
|
9
|
Song L, Feng Z, Zhou Q, Wu X, Zhang L, Sun Y, Li R, Chen H, Yang F, Yu Y. Metagenomic analysis of healthy and diseased peri-implant microbiome under different periodontal conditions: a cross-sectional study. BMC Oral Health 2024; 24:105. [PMID: 38233815 PMCID: PMC10795403 DOI: 10.1186/s12903-023-03442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/21/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Peri-implantitis is a polybacterial infection that can lead to the failure of dental implant rehabilitation. This study aimed to profile the microbiome of the peri-implant plaque and estimate the effect of periodontitis on it among 40 Chinese participants with dental implant prostheses and presenting with varying peri-implant and periodontal health states. METHODS Submucosal plaque samples were collected from four distinct clinical categories based on both their implant and periodontal health status at sampling point. Clinical examinations of dental implant and remaining teeth were carried out. Metagenomic analysis was then performed. RESULTS The microbiome of the peri-implantitis sites differed from that of healthy implant sites, both taxonomically and functionally. Moreover, the predominant species in peri-implantitis sites were slightly affected by the presence of periodontitis. T. forsythia, P. gingivalis, T. denticola, and P. endodontalis were consistently associated with peri-implantitis and inflammatory clinical parameters regardless of the presence of periodontitis. Prevotella spp. and P. endodontalis showed significant differences in the peri-implantitis cohorts under different periodontal conditions. The most distinguishing function between diseased and healthy implants is related to flagellar assembly, which plays an important role in epithelial cell invasion. CONCLUSIONS The composition of the peri-implant microbiome varied in the diseased and healthy states of implants and is affected by individual periodontal conditions. Based on their correlations with clinical parameters, certain species are associated with disease and healthy implants. Flagellar assembly may play a vital role in the process of peri-implantitis.
Collapse
Affiliation(s)
- Liang Song
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Ziying Feng
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Qianrong Zhou
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xingwen Wu
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Limin Zhang
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Yang Sun
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruixue Li
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Huijuan Chen
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Fei Yang
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Tan X, Wang Z, Yang X, Yu P, Sun M, Zhao Y, Yu H. Enhancing cell adhesive and antibacterial activities of glass-fibre-reinforced polyetherketoneketone through Mg and Ag PIII. Regen Biomater 2023; 10:rbad066. [PMID: 37489146 PMCID: PMC10363026 DOI: 10.1093/rb/rbad066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Glass-fibre-reinforced polyetherketoneketone (PEKK-GF) shows great potential for application as a dental implant restoration material; however, its surface bioinertness and poor antibacterial properties limit its integration with peri-implant soft tissue, which is critical in the long-term success of implant restoration. Herein, functional magnesium (Mg) and silver (Ag) ions were introduced into PEKK-GF by plasma immersion ion implantation (PIII). Surface characterization confirmed that the surface morphology of PEKK-GF was not visibly affected by PIII treatment. Further tests revealed that PIII changed the wettability and electrochemical environment of the PEKK-GF surface and enabled the release of Mg2+ and Ag+ modulated by Giavanni effect. In vitro experiments showed that Mg/Ag PIII-treated PEKK-GF promoted the proliferation and adhesion of human gingival fibroblasts and upregulated the expression of adhesion-related genes and proteins. In addition, the treated samples inhibited the metabolic viability and adhesion of Streptococcus mutans and Porphyromonas gingivalis on their surfaces, distorting bacterial morphology. Mg/Ag PIII surface treatment improved the soft tissue integration and antibacterial activities of PEKK-GF, which will further support and broaden its adoption in dentistry.
Collapse
Affiliation(s)
| | | | - Xin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Yu
- Department of Stomatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Manlin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- Correspondence address. Tel: +86 0 18980685999, E-mail:
| |
Collapse
|
11
|
Wilensky A, Shapira L, Limones A, Martin C. The efficacy of implant surface decontamination using chemicals during surgical treatment of peri-implantitis: A systematic review and meta-analysis. J Clin Periodontol 2023; 50 Suppl 26:336-358. [PMID: 36792071 DOI: 10.1111/jcpe.13794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/03/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
AIM To answer the following PICOS question: "In adult patients with peri-implantitis, what is the efficacy of surgical therapy with chemical surface decontamination of implant surfaces in comparison with surgical therapy alone or surgery with placebo decontamination, on probing pocket depth (PD) reduction and bleeding on probing (BoP)/suppuration on probing (SoP), in randomized controlled clinical trials (RCTs) and non-RCTs with at least 6 months of follow-up?" MATERIALS AND METHODS Six databases were searched from their inception up to 20 May 2022. Data on clinical outcome variables were pooled and analysed using mean differences (MDs), risk ratios (RRs), or risk differences (RDs) as appropriate, 95% confidence intervals (CIs), and prediction intervals (PIs) in the case of significant heterogeneity. Primary outcomes were determined as changes in PD and BoP/SoP. Secondary outcomes were radiographic marginal bone loss (MBL), implant loss, and disease resolution. PROSPERO registration number: CRD42022325603. RESULTS Six RCTs-two with moderate, three with high, and one with low risk of bias (RoB)-were included. These studies test the adjunctive effect of photodynamic therapy (PDT), chlorhexidine (CHX), and administration of local antibiotics (LAbs) during surgery on the clinical outcome. In a single 12-month study, the adjunctive use of local antibiotics showed a clinically relevant reduction of PD [MD = 1.44; 95%CI (0.40 to -2.48)] and MBL [MD = 1.21; 95%CI (0.44-1.98); one trial, 32 participants]. PDT showed a small but significant reduction in BoP [MD = 7.41%; 95%CI (0.81-14.00); p = 0.028; two trials; 42 participants]. Treatment with CHX resulted in no significant changes in PD, BoP, or MBL compared to placebo (saline solution). None of the interventions affected disease resolution and implant loss. Certainty of the evidence was very low for all outcome measures assessed. CONCLUSIONS Within the limitations of this systematic review and the meta-analysis, adjunctive use of chemicals such as PDT, CHX, and LAbs for surface decontamination during surgery of peri-implantitis cannot be recommended as superior to standard debridement procedures (mechanical debridement with or without saline).
Collapse
Affiliation(s)
- Asaf Wilensky
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Shapira
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alvaro Limones
- Department of Conservative and Prosthetic Dentistry, Faculty of Dentistry, Complutense University of Madrid (UCM), Madrid, Spain
| | - Conchita Martin
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid (UCM), Madrid, Spain
- BIOCRAN Research group, Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
12
|
Veras EL, Castro dos Santos N, Souza JGS, Figueiredo LC, Retamal-Valdes B, Barão VAR, Shibli J, Bertolini M, Faveri M, Teles F, Duarte P, Feres M. Newly identified pathogens in periodontitis: evidence from an association and an elimination study. J Oral Microbiol 2023; 15:2213111. [PMID: 37261036 PMCID: PMC10228317 DOI: 10.1080/20002297.2023.2213111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
We assessed the level of evidence for the presence of new periodontal pathogens by (i) comparing the occurrence of non-classical periodontal taxa between healthy vs. periodontitis patients (Association study); (ii) assessing the modifications in the prevalence and levels of these species after treatments (Elimination study). In the Association study, we compared the prevalence and levels of 39 novel bacterial species between periodontally healthy and periodontitis patients. In the Elimination study, we analyzed samples from periodontitis patients assigned to receive scaling and root planing alone or with metronidazole+ amoxicillin TID/ 14 days. Levels of 79 bacterial species (39 novel and 40 classic) were assessed at baseline, 3 and 12 months post-therapy. All samples were analyzed using Checkerboard DNA-DNA hybridization. Out of the 39 novel species evaluated, eight were categorized as having strong and four as having moderate association with periodontitis. Our findings suggest strong evidence supporting Lancefieldella rimae, Cronobacter sakazakii, Pluralibacter gergoviae, Enterococcus faecalis, Eubacterium limosum, Filifactor alocis, Haemophilus influenzae, and Staphylococcus warneri, and moderate evidence supporting Escherichia coli, Fusobacterium necrophorum, Spiroplasma ixodetis, and Staphylococcus aureus as periodontal pathogens. These findings contribute to a better understanding of the etiology of periodontitis and may guide future diagnostic and interventional studies.
Collapse
Affiliation(s)
- Eduardo Lobão Veras
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Nídia Castro dos Santos
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- The Forsyth Institute, Cambridge, MA, USA
| | - João Gabriel S. Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Department of Dental Research, Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Brazil
| | - Luciene C. Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Belen Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Valentim A. R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Jamil Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Flavia Teles
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Poliana Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
13
|
Seo BY, Son K, Son YT, Dahal RH, Kim S, Kim J, Hwang J, Kwon SM, Lee JM, Lee KB, Kim JW. Influence of Dental Titanium Implants with Different Surface Treatments Using Femtosecond and Nanosecond Lasers on Biofilm Formation. J Funct Biomater 2023; 14:297. [PMID: 37367261 DOI: 10.3390/jfb14060297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
This study aimed to evaluate the impact of different surface treatments (machined; sandblasted, large grit, and acid-etched (SLA); hydrophilic; and hydrophobic) on dental titanium (Ti) implant surface morphology, roughness, and biofilm formation. Four groups of Ti disks were prepared using distinct surface treatments, including femtosecond and nanosecond lasers for hydrophilic and hydrophobic treatments. Surface morphology, wettability, and roughness were assessed. Biofilm formation was evaluated by counting the colonies of Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Prevotella intermedia (Pi) at 48 and 72 h. Statistical analysis was conducted to compare the groups using the Kruskal-Wallis H test and the Wilcoxon signed-rank test (α = 0.05). The analysis revealed that the hydrophobic group had the highest surface contact angle and roughness (p < 0.05), whereas the machined group had significantly higher bacterial counts across all biofilms (p < 0.05). At 48 h, the lowest bacterial counts were observed in the SLA group for Aa and the SLA and hydrophobic groups for Pg and Pi. At 72 h, low bacterial counts were observed in the SLA, hydrophilic, and hydrophobic groups. The results indicate that various surface treatments affect implant surface properties, with the hydrophobic surface using femtosecond laser treatment exerting a particularly inhibitory effect on initial biofilm growth (Pg and Pi).
Collapse
Affiliation(s)
- Bo Yun Seo
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - KeunBaDa Son
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea
| | - Young-Tak Son
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - JunHo Hwang
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea
| | - Sung-Min Kwon
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Kyu-Bok Lee
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea
- Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Wook Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
14
|
Ding T, Zhang L, Han J, Zhou J, Han Y. Photo-Responded Antibacterial Therapy of Reinfection in Percutaneous Implants by Nanostructured Bio-Heterojunction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206265. [PMID: 36470672 DOI: 10.1002/smll.202206265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Percutaneous implants may experience infection for several times during their servicing periods. They need antibacterial activity and durability to reduce recurrent infection and cytocompatibility to reconstruct biosealing. A novel photoresponse bio-heterojunction (PCT) is developed herein. It consists of TiO2 nanotubes loaded with CuS nanoparticles and wrapped with polydopamine (PDA) layer. In PCT, a built-in electric field directing from TiO2 to CuS and then to PDA is formed, and with near-infrared (NIR) irradiation, it drives photoexcited electrons to transfer in opposite direction, resulting in the separation of electron-hole pairs and formation of reactive oxygen species (ROS). Simultaneously, PCT shows photothermal effect due to nonradiative relaxation of photoexcited electrons and thermal vibration of lattices. The synergic effect of photogenerated ROS and hyperthermia increases bacterial membrane permeability and leakage of cellular components, endowing PCT with outstanding antibacterial performance. More importantly, PCT has good antibacterial durability and cytocompatibility due to the inhibited leaching of CuS by PDA layer. In reinfected models, with NIR irradiation, PCT sterilizes bacteria, reduces inflammatory response and enhances re-integration of soft tissue efficiently. This work provides an outstanding bio-heterojunction for percutaneous implants in treating reinfection by NIR irradiation and rebuilding biosealing.
Collapse
Affiliation(s)
- Tiexin Ding
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Jing Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, P. R. China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
15
|
Bagheri R, Bohlouli S, Maleki Dizaj S, Shahi S, Memar MY, Salatin S. The Antimicrobial and Anti-Biofilm Effects of Hypericum perforatum Oil on Common Pathogens of Periodontitis: An In Vitro Study. Clin Pract 2022; 12:1009-1019. [PMID: 36547112 PMCID: PMC9777146 DOI: 10.3390/clinpract12060104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The antibacterial and anti-biofilm effects of Hypericum perforatum oil against the common pathogens of periodontitis (Escherichia coli, Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, Porphyromonas gingivalis) was investigated. Disk diffusion (DD), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) approaches were applied to test the antimicrobial effects. In order to determine the anti-biofilm effects, the amount of bacterial biofilm formation was assessed using the microtiter plate technique. The anti-biofilm effects were then confirmed by determining the minimum biofilm inhibitor concentration (MBIC). The MIC, MBC, MBIC, and DD values were 64, 256, 512 μg/mL, and 14 mm for Staphylococcus aureus; 128, 256, 512 μg/mL, and 16 mm for Streptococcus mutans; 256, 512, 256 μg/mL, and 20 mm for Escherichia coli; 32, 128, 512 µg/mL, and 16 mm for Enterococcus faecalis; and 64, 128, 256 µg/mL, and 15 mm for Porphyromonas gingivalis, respectively. According to our results, Hypericum perforatum oil has antibacterial and anti-biofilm properties against the common bacteria associated with periodontitis.
Collapse
Affiliation(s)
- Reza Bagheri
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
- Correspondence: (S.M.D.); (M.Y.M.)
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
- Correspondence: (S.M.D.); (M.Y.M.)
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| |
Collapse
|
16
|
Abstract
The impact of lifestyle factors has been increasingly studied and discussed in oral healthcare. Positive lifestyle factors are important in maintaining oral health or controlling disease, but they are not easy to adopt over the long term. Along with public health initiatives within communities and groups, there is a role for behavior change interventions delivered in dental practice settings to improve the periodontal health of individuals. Behavior management is now seen as a part of both prevention and therapy of periodontal diseases. This article summarizes the evidence on behavioral strategies for periodontal health to inform and assist oral healthcare professionals in implementing behavior change in their practice. In addition, strategies for education and training in communication and behavior change techniques are considered.
Collapse
Affiliation(s)
- Jean E. Suvan
- Unit of PeriodontologyEastman Dental Institute, University College London (UCL)LondonUK
| | - Maja Sabalic
- Unit of PeriodontologyEastman Dental Institute, University College London (UCL)LondonUK
| | - Mário R. Araújo
- Department of Dental HygieneEscola Superior de Saúde de PortalegrePortalegrePortugal
| | | |
Collapse
|
17
|
kang B, Lan D, Yao C, Liu P, Chen X, Qi S. Evaluation of antibacterial property and biocompatibility of Cu doped TiO2 coated implant prepared by micro-arc oxidation. Front Bioeng Biotechnol 2022; 10:941109. [PMID: 36118563 PMCID: PMC9479446 DOI: 10.3389/fbioe.2022.941109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
In order to enhance osteogenic differentiation and antibacterial property of dental implants, volcano-shaped microporous TiO2 coatings doped with Cu were fabricated via micro-arc oxidation (MAO) on Ti. Cu-doped coating with different mass ratios of Cu were obtained by changing the concentration of copper acetate in the electrolyte. The structure of Cu-TiO2 coatings were systematically investigated. Element Copper was uniformly distributed throughout the coating. Compared with TiO2 coating, the Cu-doped can further improved proliferation of bone mesenchymal stem cells (BMSCs), facilitated osteogenic differentiation. The bacteriostasis experiments demonstrated that Cu-doped TiO2 coating possess excellent antibacterial property against Staphylococcus aureus (S. aureus) and Porphyromonas gingivalis (P. gingivalis).
Collapse
Affiliation(s)
- Binbin kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongmei Lan
- Medical College, Anhui University of Science and Technology, Huainan, China
| | - Chao Yao
- Medical College, Anhui University of Science and Technology, Huainan, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
- *Correspondence: Xiaohong Chen, ; Shengcai Qi,
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxill of Acial Development and Diseases, Fudan University, Shanghai, China
- *Correspondence: Xiaohong Chen, ; Shengcai Qi,
| |
Collapse
|
18
|
Abdullatif FA, Almaarik B, Al-Askar M. Resolvin E1's Antimicrobial Potential Against Aggregatibacter Actinomycetemcomitans. FRONTIERS IN ORAL HEALTH 2022; 3:875047. [PMID: 35571980 PMCID: PMC9095612 DOI: 10.3389/froh.2022.875047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMicroorganisms along with host response play a key role in the development of periodontal and peri-implant infections. Advanced periodontal and peri-implant diseases are most likely associated with bacterial plaques that trigger host immune response and eventually lead to the destruction of the attachment apparatus and bone loss around a tooth or a dental implant. A recent systematic review and meta-analysis revealed that Aggregatibacter actinomycetemcomitans had the highest association with peri-implantitis. Resolvin E1 (RvE1) is part of the specialized pro-resolving lipid mediator family biosynthesized from omega-3, polyunsaturated fatty acids (PUFAs), and eicosapentaenoic acid (EPA). Although RvE1 is an established anti-inflammatory agent, it was found that its application as a treatment or as a preventive drug had an indirect effect on the subgingival microbiota of both rats and rabbits with experimental periodontitis.AimThe aim of this study is to evaluate the direct antimicrobial effect of RvE1 on Aggregatibacter actinomycetemcomitans bacteria.Materials and MethodsThe study comprised three groups that underwent minimum inhibitory concentration (MIC) against Aggregatibacter actinomycetemcomitans. The first group was tested with the RvE1 working concentration of 5 ug/ml, the second group was tested with ethanol (EtOH), 10% as the working concentration, and the final group was diluted in phosphate-buffered saline (PBS) as the positive control. Optical density (OD600) was used for the comparison of bacterial growth among the tested groups. The experiment was conducted in three biological replicates. Data were analyzed using SPSS, and results were analyzed by using one-way analysis of variance (ANOVA) followed by post-hoc Bonferroni using a minimum level of significance (P-value) of 0.05.ResultsMinimum inhibitory concentration was 1.25 μg/ml and 5% for RvE1 and EtOH, respectively. RvE1's mean optical density (OD600) was 0.156 ± 0.021 and was significantly lower compared with all the other groups (P-value < 0.01). The EtOH group (mean OD600 0.178 ± 0.013) and the PBS group (mean OD600 0.1855 ± 0.022) did not reveal a significant difference (P-value = 0.185).ConclusionRvE1 demonstrated significant antimicrobial activity against A. actinomycetemcomitans with an MIC of 1.25 μg/ml. The RvE1 group showed significantly lower bacterial growth compared to the EtOH and PBS groups.
Collapse
Affiliation(s)
- Fahad A. Abdullatif
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Fahad A. Abdullatif
| | - Basmah Almaarik
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mansour Al-Askar
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Chen Y, Shi T, Li Y, Huang L, Yin D. Fusobacterium nucleatum: The Opportunistic Pathogen of Periodontal and Peri-Implant Diseases. Front Microbiol 2022; 13:860149. [PMID: 35369522 PMCID: PMC8966671 DOI: 10.3389/fmicb.2022.860149] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Peri-implant diseases are considered to be a chronic destructive inflammatory destruction/damage occurring in soft and hard peri-implant tissues during the patient’s perennial use after implant restoration and have attracted much attention because of their high incidence. Although most studies seem to suggest that the pathogenesis of peri-implant diseases is similar to that of periodontal diseases and that both begin with microbial infection, the specific mechanism of peri-implant diseases remains unclear. As an oral opportunistic pathogen, Fusobacterium nucleatum (F. nucleatum) has been demonstrated to be vital for the occurrence and development of many oral infectious diseases, especially periodontal diseases. More notably, the latest relevant studies suggest that F. nucleatum may contribute to the occurrence and development of peri-implant diseases. Considering the close connection between peri-implant diseases and periodontal diseases, a summary of the role of Fusobacterium nucleatum in periodontal diseases may provide more research directions and ideas for the peri-implantation mechanism. In this review, we summarize the effects of F. nucleatum on periodontal diseases by biofilm formation, host infection, and host response, and then we establish the relationship between periodontal and peri-implant diseases. Based on the above aspects, we discuss the importance and potential value of F. nucleatum in peri-implant diseases.
Collapse
|
20
|
Rajasekar A, Varghese S. MICROBIOLOGICAL PROFILE IN PERIODONTITIS AND PERI-IMPLANTITIS: A SYSTEMATIC REVIEW. J Long Term Eff Med Implants 2022; 32:83-94. [DOI: 10.1615/jlongtermeffmedimplants.2022043121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Zhou N, Huang H, Liu H, Li Q, Yang G, Zhang Y, Ding M, Dong H, Mou Y. Microbiota analysis of peri-implant mucositis in patients with periodontitis history. Clin Oral Investig 2022; 26:6223-6233. [PMID: 35672515 PMCID: PMC9525361 DOI: 10.1007/s00784-022-04571-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To investigate the bacterial diversity in peri-implant plaques and the effect of periodontitis history on the occurrence of peri-implant mucositis. MATERIALS AND METHODS Three groups of subgingival plaques were collected from peri-implant sulci in the first molar area. The three groups included healthy implants in patients without periodontitis (NH implant), healthy implants in patients with periodontitis history (PH implant), and peri-implant mucositis implants in patients with periodontitis history (PM implant). Subgingival plaques in periodontal pockets of contralateral natural first molars were also collected. Bacterial DNA was extracted and the V4 region of the 16S rDNA sequence was amplified and sequenced on an Illumina HiSeq platform. The operational taxonomic units obtained from amplicon sequencing were used to analyze the prevalence and identity of bacteria based on public databases and advanced techniques. RESULTS Analysis of similarities indicated a significant difference in bacterial structures between the NH implant and PM implant groups. Additionally, a significantly higher relative abundance of the genera Actinomyces and Streptococcus was found in the samples of the NH implant group. The genera Fusobacterium and Prevotella could be considered as potential biomarkers for peri-implant mucositis. Moreover, more gram-negative anaerobic bacteria (Porphyromonas and Prevotella) were detected in the samples from patients with periodontitis history. CONCLUSIONS The increased accumulation of Fusobacterium and Prevotella is associated with a higher risk of peri-implant mucositis. In addition, patients with periodontal history may be more likely to develop peri-implant mucositis. CLINICAL RELEVANCE The increase in periodontal pathogens and the decrease in health-associated bacteria in patients with periodontitis history may be more likely to develop peri-implant mucositis. These results provide a bacteriological basis for the prevention and treatment of peri-implant mucositis in patients with periodontitis history.
Collapse
Affiliation(s)
- Na Zhou
- Department of Jiangbei, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haohao Huang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hui Liu
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiang Li
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Zhang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meng Ding
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
22
|
Jung WR, Joo JY, Lee JY, Kim HJ. Prevalence and abundance of 9 periodontal pathogens in the saliva of periodontally healthy adults and patients undergoing supportive periodontal therapy. J Periodontal Implant Sci 2021; 51:316-328. [PMID: 34713993 PMCID: PMC8558008 DOI: 10.5051/jpis.2006640332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/07/2021] [Accepted: 03/05/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study aimed to examine the prevalence and abundance of 9 representative periodontal pathogens in the saliva samples of periodontally healthy subjects (PH) and patients with periodontitis who underwent supportive periodontal therapy (SPT). The age-specific distribution of these pathogens in periodontally healthy individuals was also analyzed. METHODS One hundred subjects (aged >35 years) were recruited (50 each in the PH and SPT groups) between August 2016 and April 2019. The prevalence and abundance of periodontal pathogens in the PH group were compared with those in periodontally healthy young subjects (94 subjects; aged <35 years), who were included in our previous study. DNA copy numbers of Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf), Treponema denticola (Td), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn), Campylobacter rectus (Cr), Peptostreptococcus anaerobius (Pa), and Eikenella corrodens (Ec) were analyzed using real-time polymerase chain reaction. RESULTS The detection frequencies of all pathogens, except Aa, were high in the PH and SPT groups. The ranking order of pathogen DNA copy numbers was similar in both groups. In both groups, Fn had the highest abundance, Aa had the lowest abundance. Additionally, Td was significantly more abundant in men than in women in both groups (P<0.05). Compared with the PH group, the SPT group exhibited significantly lower total bacteria and Fn abundance and higher Pg abundance (P<0.05). The age-specific pathogen distribution analysis revealed a significantly low Aa abundance and high Tf and Cr abundance in the PH group. CONCLUSIONS The clinical parameters and microbial profiles were similar between the SPT and PH groups. However, patients with periodontitis require supportive care to prevent recurrence. As the abundance of some bacteria varied with age, future studies must elucidate the correlation between age-related physiological changes and periodontal bacterial composition.
Collapse
Affiliation(s)
- Woo-Ri Jung
- Department of Periodontology, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea.
| | - Hyun-Joo Kim
- Department of Periodontology, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea.
| |
Collapse
|
23
|
Karcı BL, Oncu E. Comparison of Osteoimmunological and Microbiological Parameters of Extra Short and Longer Implants Loaded in the Posterior Mandible: A Split Mouth Randomized Clinical Study. Acta Stomatol Croat 2021; 55:238-247. [PMID: 34658370 PMCID: PMC8514233 DOI: 10.15644/asc55/3/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/15/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the levels of TNF-α, PGE2, RANKL, RANK, OPG, the markers of periimplant bone loss in peri-implant crevicular fluid obtained around standard and extra short implants. Moreover, the levels of putative oral pathogens were investigated in the submucosal biofilm samples. MATERIAL AND METHODS The implants were divided into two groups according to their lengths: standard (≥8 mm) and extra short (4 mm). A total of 60 implants were researched in 30 patients. The probing depth (PD), clinical attachment level (CAL), presence of bleeding on probing (BOP), 3-year survival rate (CSR), and bone loss (BL) were measured. RESULTS No statistically significant difference was found in the values of PD, CAL, BOP, CSR, and BL between the groups (P> 0.05). Total amounts of PGE2, TNF-α, RANKL, RANK, OPG, and RANKL/OPG were not statistically significantly different between the groups (P> 0.05). The abundance of F. nucleatum, T. forsythia, P. intermedia, P. gingivalis, S. oralis and T. denticola was compared between the groups and the results were not statistically significant (P> 0.05). CONCLUSION The results of this study suggested that PGE2, TNF-α, RANKL, RANK, OPG, and RANKL/OPG in PICF, as well as microbiological parameters in submucosal biofilms, were similar between standard (≥8 mm) and extra short (4 mm) implants. Therefore, the implant length does not seem to influence the bone loss, levels of osteoimmunological and microbiological markers in the peri-implant tissues and survival rates.
Collapse
Affiliation(s)
- Bi Lge Karcı
- Bi̇lge Karcı, Alanya Alaaddin Keykubat University, Faculty of Dentistry, Department of Periodontology, Alanya, Antalya, Turkey
| | - Elif Oncu
- Elif Oncu, Necmettin Erbakan University, Faculty of Dentistry, Department of Periodontology, Konya, Turkey
| |
Collapse
|
24
|
Sun J, Liu X, Lyu C, Hu Y, Zou D, He YS, Lu J. Synergistic antibacterial effect of graphene-coated titanium loaded with levofloxacin. Colloids Surf B Biointerfaces 2021; 208:112090. [PMID: 34507071 DOI: 10.1016/j.colsurfb.2021.112090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
In this study, graphene coating was introduced to the modified titanium surface to prevent bacterial infection in oral implants. We modified the titanium surface through SLA and silanization treatment and then coated the surface with graphene. The structure and surface properties were characterized by XPS and SEM. Graphene-coated titanium sheet was incubated with bacteria to test the antibacterial property, which was enhanced by adsorption and release of levofloxacin. We further implanted the graphene-coated titanium sheet loaded with levofloxacin into rabbits to test the antibacterial properties in vivo. The graphene coating exhibited inherent antibacterial properties through membrane stress and the generation of reactive oxygen species (ROS). When loaded with levofloxacin, the graphene coating exhibited a synergistic antibacterial effect and effectively prevented bacterial infections following the implantation. The graphene coating is promising to improve the antibacterial functions of oral implant surfaces to prevent bacterial infection.
Collapse
Affiliation(s)
- Jiayue Sun
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuling Liu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chengqi Lyu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Derong Zou
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yu-Shi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
25
|
Sun Y, Lu R, Liu J, Wang X, Dong H, Chen S. The Early Adhesion Effects of Human Gingival Fibroblasts on Bovine Serum Albumin Loaded Hydrogenated Titanium Nanotube Surface. Molecules 2021; 26:molecules26175229. [PMID: 34500663 PMCID: PMC8434219 DOI: 10.3390/molecules26175229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
The soft tissue sealing at the transmucal portion of implants is vital for the long-term stability of implants. Hydrogenated titanium nanotubes (H2-TNTs) as implant surface treatments were proved to promote the adhesion of human gingival fibroblasts (HGFs) and have broad usage as drug delivery systems. Bovine serum albumin (BSA) as the most abundant albumin in body fluid was crucial for cell adhesion and was demonstrated as a normal loading protein. As the first protein arriving on the surface of the implant, albumin plays an important role in initial adhesion of soft tissue cells, it is also a common carrier, transferring and loading different endogenous and exogenous substances, ions, drugs, and other small molecules. The aim of the present work was to investigate whether BSA-loaded H2-TNTs could promote the early adhesion of HGFs; H2-TNTs were obtained by hydrogenated anodized titanium dioxide nanotubes (TNTs) in thermal treatment, and BSA was loaded in the nanotubes by vacuum drying; our results showed that the superhydrophilicity of H2-TNTs is conducive to the loading of BSA. In both hydrogenated titanium nanotubes and non-hydrogenated titanium nanotubes, a high rate of release was observed over the first hour, followed by a period of slow and sustained release; however, BSA-loading inhibits the early adhesion of human gingival fibroblasts, and H2-TNTs has the best promoting effect on cell adhesion. With the release of BSA after 4 h, the inhibitory effect of BSA on cell adhesion was weakened.
Collapse
Affiliation(s)
| | | | | | | | | | - Su Chen
- Correspondence: ; Tel.: +86-10-5709-9279
| |
Collapse
|
26
|
Wang X, Ning B, Pei X. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2021; 208:112055. [PMID: 34438295 DOI: 10.1016/j.colsurfb.2021.112055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Implant-associated infections and aseptic loosening are some of the main reasons for implant failure. Therefore, there is an urgent need to improve the osseointegration and antibacterial capabilities of implant materials. In recent years, a large number of breakthroughs in the biological application of tantalum and its derivatives have been achieved. Owing to their corrosion resistance, biocompatibility, osseointegration ability, and antibacterial properties, they have shown considerable potential in orthopedic and dental implant applications. In this review, we provide the latest progress and achievements in the research on osseointegration and antibacterial properties of tantalum as well as its derivatives, and summarize the surface modification methods to enhance their osseointegration and antibacterial properties.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Ning
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
27
|
Tambone E, Marchetti A, Ceresa C, Piccoli F, Anesi A, Nollo G, Caola I, Bosetti M, Fracchia L, Ghensi P, Tessarolo F. Counter-Acting Candida albicans- Staphylococcus aureus Mixed Biofilm on Titanium Implants Using Microbial Biosurfactants. Polymers (Basel) 2021; 13:polym13152420. [PMID: 34372023 PMCID: PMC8348062 DOI: 10.3390/polym13152420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to grow a fungal-bacterial mixed biofilm on medical-grade titanium and assess the ability of the biosurfactant R89 (R89BS) coating to inhibit biofilm formation. Coated titanium discs (TDs) were obtained by physical absorption of R89BS. Candida albicans-Staphylococcus aureus biofilm on TDs was grown in Yeast Nitrogen Base, supplemented with dextrose and fetal bovine serum, renewing growth medium every 24 h and incubating at 37 °C under agitation. The anti-biofilm activity was evaluated by quantifying total biomass, microbial metabolic activity and microbial viability at 24, 48, and 72 h on coated and uncoated TDs. Scanning electron microscopy was used to evaluate biofilm architecture. R89BS cytotoxicity on human primary osteoblasts was assayed on solutions at concentrations from 0 to 200 μg/mL and using eluates from coated TDs. Mixed biofilm was significantly inhibited by R89BS coating, with similar effects on biofilm biomass, cell metabolic activity and cell viability. A biofilm inhibition >90% was observed at 24 h. A lower but significant inhibition was still present at 48 h of incubation. Viability tests on primary osteoblasts showed no cytotoxicity of coated TDs. R89BS coating was effective in reducing C. albicans-S. aureus mixed biofilm on titanium surfaces and is a promising strategy to prevent dental implants microbial colonization.
Collapse
Affiliation(s)
- Erica Tambone
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (G.N.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Federico Piccoli
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (F.P.); (A.A.); (I.C.)
| | - Adriano Anesi
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (F.P.); (A.A.); (I.C.)
| | - Giandomenico Nollo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (G.N.)
| | - Iole Caola
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (F.P.); (A.A.); (I.C.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Paolo Ghensi
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (G.N.)
- Correspondence: ; Tel.: +39-0461-282775
| |
Collapse
|
28
|
The Impact of Peri-Implantitis on Systemic Diseases and Conditions: A Review of the Literature. Int J Dent 2021; 2021:5536566. [PMID: 34054959 PMCID: PMC8143885 DOI: 10.1155/2021/5536566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
While periodontitis has been proven to have an impact on systemic conditions, such as cardiovascular diseases, pregnancy complications, or poor glycemic control in diabetic patients, the influence of peri-implantitis on systemic health has not been adequately explored in the literature as yet. The existing evidence suggests that peri-implant lesions lead to more intense inflammatory response than periodontitis. Given the analogies between periodontal diseases and peri-implantitis, the aim of the present paper was to review the scientific evidence about the potential correlation between peri-implantitis and systemic diseases and conditions. Two clinical trials on animals reported that experimental peri-implantitis determined an alteration in hematological and biological parameters. One human study explored the risk indicators for cardiovascular diseases and found that patients with peri-implantitis had significantly higher levels of triglyceride, uric acid, and white blood cells and lower levels of vitamin D. It was described in the literature that periodontitis affects cardiovascular health through a number of mechanisms, including the increase in systemic mediators of inflammation, which also has a role in the worsening of glycemic control in diabetic patients. Similarly, peri-implantitis may influence the systemic status through inflammatory cytokines such as IL-1, IL-6, and IL-10 and matrix metalloproteinases. One microbiological mechanism, based on the systemic dissemination of periodontal bacteria, has been hypothesized for cardiovascular diseases and pregnancy complications. Again, it is plausible that the same could occur in peri-implantitis. In conclusion, only few studies explored the systemic impact of peri-implantitis. Although changes in hematological parameters, biochemical parameters, and inflammatory markers have been reported in peri-implantitis, further studies are needed to investigate this correlation.
Collapse
|
29
|
Abushahba F, Gürsoy M, Hupa L, Närhi TO. Effect of bioactive glass air-abrasion on Fusobacterium nucleatum and Porphyromonas gingivalis biofilm formed on moderately rough titanium surface. Eur J Oral Sci 2021; 129:e12783. [PMID: 33724569 DOI: 10.1111/eos.12783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022]
Abstract
This aim of this study was to investigate the effects of three types of air-abrasion particles on dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis, both of which were cultured on sandblasted and acid-etched (SA) titanium discs. Out of 24 SA discs with biofilm, 18 were exposed to either air-abrasion using Bioglass 45S5 (45S5 BG; n = 6), novel zinc (Zn)-containing bioactive glass (Zn4 BG; n = 6), or inert glass (n = 6). The efficiency of biofilm removal was evaluated using scanning electron microscopy (SEM) imaging and culturing techniques. Air-abrasion using 45S5 BG or Zn4 BG demonstrated a significant decrease in the total number of viable bacteria compared to discs air-abraded with inert glass or intact biofilm without abrasion. Moreover, P. gingivalis could not be detected from SEM images nor culture plates after air-abrasion with 45S5 BG or Zn4 BG. The present study showed that air-abrasion with 45S5 or Zn4 bioactive glasses can successfully eradicate dual-biofilm of F. nucleatum and P. gingivalis from sandblasted and acid-etched titanium discs.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Timo O Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland.,Welfare Division, City of Turku, Turku, Finland
| |
Collapse
|
30
|
Matthes de Freitas Pontes K, Fontenelle ISDO, Nascimento CD, Oliveira VDC, Albuquerque Garcia B, Silva PGDB, Henrique LDS, de Souza KM, Pontes CDB. Clinical study of the biofilm of implant-supported complete dentures in healthy patients. Gerodontology 2021; 39:148-160. [PMID: 33660315 DOI: 10.1111/ger.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of this study was to quantify the area covered by biofilm and identify bacteria and yeasts present in mandibular acrylic resin full-arch implant-supported fixed prostheses. BACKGROUND Biofilm control of implant-supported fixed prosthesis is hampered by their design, and it can cause oral and systemic problems, mainly in immunocompromised patients like the elder. Knowledge about microbiota reinforces the awareness about the need for periodic professional cleaning maintenance. MATERIALS AND METHODS Twenty prostheses were unscrewed, washed in 0.89% sodium chloride, stained with eosin 1% and photographed. The area covered by biofilm was digitally delimited and quantified. Biofilm samples were collected, diluted up to 1:107 , seeded in chromogenic agar media and incubated for 48 hours, at 37°C, for counting of colony-forming units (CFU/mL). DNA hybridization was performed to complement the identification and quantification of microorganisms. Data were analyzed using Mann-Whitney test, Spearman correlation and Fisher's exact test (α = .05). RESULTS An average of 62% of the gingival surface of the prostheses was covered by biofilm. Enterococcus spp. (5.82 ± 1.38 log10 CFU/mL) and Staphylococcus aureus (5.75 ± 2.02 log10 CFU/mL) showed higher prevalence in cultures. Patients with five implants had less biofilm compared to those with four implants (P = .031) but had higher Escherichia coli counts (P = .039). In DNA hybridization, Streptococcus pneumoniae, Veillonella parvula and Fusobacterium nucleatum presented higher quantification and were present in all the samples; patients over 65 years old contained more Candida tropicalis (P = .049); prostheses on five implants presented lower quantification for several species. CONCLUSION Biofilm was present on all prostheses, containing potentially pathogenic microorganisms. The number of implants may play a role in quantification of biofilm and in microorganism counts.
Collapse
Affiliation(s)
- Karina Matthes de Freitas Pontes
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil.,Postgraduate Program in Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | | | - Cássio do Nascimento
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Viviane de Cássia Oliveira
- School of Dentistry of Ribeirão Preto - Oral Rehabilitation Laboratory, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Balderrama ÍDF, Cardoso MV, Stuani VT, Oliveira RC, Matos AA, Greghi SLA, Sant'Ana ACP. Residual decontamination chemical agents negatively affect adhesion and proliferation of osteoblast-like cells on implant surface. Int J Implant Dent 2020; 6:84. [PMID: 33330954 PMCID: PMC7744281 DOI: 10.1186/s40729-020-00278-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/06/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose To investigate the influence of implant surface decontaminated and uncontaminated on osteoblast-like cell adhesion and proliferation Materials and methods Commercially available implants of different brands and surface characteristics were selected: Biomet 3i® Nanotite (NT) and Osseotite (OT), Straumann® SLActive (SLA), and Neodent® Acqua Drive (ACQ) and Neoporos Drive CM (CM). Physical and chemical properties of the implants were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and wettability analysis (WETT). Implants were previously contaminated with Aggregatibacter actinomycetemcomitans strains; after that, samples were decontaminated by different chemical methods. Decontaminated (test group; n = 15/type of implant) and uncontaminated (control group; n = 5/type of implant) samples were analyzed according to the number of human osteoblastic osteosarcoma cells (Saos-2) adhered on the implant surface after 24 h and 72 h in SEM images. Results ACQ was found to be highly hydrophilic, and NT was the most hydrophobic implant. Increased variation of Saos-2 cell adhesion and proliferation were observed on all test and control groups. Controversially, at the proliferation analysis in 72 h, CM implant was the only implant that showed no significant difference between test and group (p = 0.2833; Tukey’s multiple comparisons test). NT implants showed the greater value of cell proliferation when compared with all types of implant surface (p = 0.0002; Tukey’s multiple comparisons test). Conclusions These findings suggest that decontaminated surfaces were able to impair the counting of osteoblast-like cell adhesion and proliferation.
Collapse
Affiliation(s)
- Ísis de Fátima Balderrama
- Department of Diagnosis and Surgery, Araraquara School of Dentistry, Sao Paulo State University, Araraquara, Sao Paulo, Brazil. .,Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, Sao Paulo, Brazil.
| | - Matheus Völz Cardoso
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, Sao Paulo, Brazil
| | - Vitor Toledo Stuani
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, Sao Paulo, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Science, Bauru School of Dentistry, University of Sao Paulo, Bauru, Sao Paulo, Brazil
| | - Adriana Arruda Matos
- Department of Biological Science, Bauru School of Dentistry, University of Sao Paulo, Bauru, Sao Paulo, Brazil
| | - Sebastião Luiz Aguiar Greghi
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, Sao Paulo, Brazil
| | | |
Collapse
|
32
|
Komatsu K, Shiba T, Takeuchi Y, Watanabe T, Koyanagi T, Nemoto T, Shimogishi M, Shibasaki M, Katagiri S, Kasugai S, Iwata T. Discriminating Microbial Community Structure Between Peri-Implantitis and Periodontitis With Integrated Metagenomic, Metatranscriptomic, and Network Analysis. Front Cell Infect Microbiol 2020; 10:596490. [PMID: 33425781 PMCID: PMC7793907 DOI: 10.3389/fcimb.2020.596490] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Peri-implantitis and periodontitis are both polymicrobial diseases induced by subgingival plaque accumulation, with some differing clinical features. Studies on the microbial and gene transcription activity of peri-implantitis microbiota are limited. This study aimed to verify the hypothesis that disease-specific microbial and gene transcription activity lead to disease-specific clinical features, using an integrated metagenomic, metatranscriptomic, and network analysis. Metagenomic data in peri-implantitis and periodontitis were obtained from the same 21 subjects and metatranscriptomic data from 12 subjects were obtained from a database. The microbial co-occurrence network based on metagenomic analysis had more diverse species taxa and correlations than the network based on the metatranscriptomic analysis. Solobacterium moorei and Prevotella denticola had high activity and were core species taxa specific to peri-implantitis in the co-occurrence network. Moreover, the activity of plasmin receptor/glyceraldehyde-3-phosphate dehydrogenase genes was higher in peri-implantitis. These activity differences may increase complexity in the peri-implantitis microbiome and distinguish clinical symptoms of the two diseases. These findings should help in exploring a novel biomarker that assist in the diagnosis and preventive treatment design of peri-implantitis.
Collapse
Affiliation(s)
- Keiji Komatsu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Watanabe
- Department of Chemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Tatsuro Koyanagi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Nemoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Shimogishi
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Shibasaki
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Kasugai
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
33
|
Yu P, Zhi Li, Tan X, Yu H. Effect of sealing gel on the microleakage resistance and mechanical behavior during dynamic loading of 3 implant systems. J Prosthet Dent 2020; 127:308-317. [PMID: 33246561 DOI: 10.1016/j.prosdent.2020.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
STATEMENT OF PROBLEM Sealing products have been produced to reduce microleakage at the implant abutment interface. However, little is known about their effectiveness and any alterations in mechanical behavior of implant systems with their application. PURPOSE The purpose of this in vitro study was to evaluate the effect of a silicone sealing gel on implant abutment interface microleakage, abutment screw torque loss, and thread wear of implant systems in a simulated oral environment. MATERIAL AND METHODS Five specimens each of 3 implants systems (Nobel, Straumann, and WEGO) that included sealed and unsealed groups were analyzed (N=30). Before assembling the components, toluidine blue solution was injected to the implant intaglio cavity to evaluate implant abutment interface microleakage. After tightening to the recommended torque, 20 to 200 N of 30-degree off-axis dynamic force was applied at 2 Hz for 48 hours. The toluidine blue solution was extracted to test optical density values at 1, 3, 9, 24, 33, and 48 hours. Detorque values were measured before and after cycling loading, and torque loss rates were calculated. The abutment screw morphologies were observed by using scanning electron microscopy. The coefficient of friction tendency of applying sealing gel was explored with a ball-on-flat configuration. One-way ANOVA and Student t test were used for statistical analysis (α=.05). RESULTS The optical density value increased with the loading time, especially for Straumann group. The sealing gel decreased the implant abutment interface microleakage of Straumann assemblies after cyclic loading of 9 hours (P=.044), whereas no statistical difference was found for Nobel (P=.140) or WEGO groups (P=.402) at 6 time points. Torque loss occurred during tightening and further increased after dynamic cyclic load in each group. Among the 3 implant systems, Straumann implants reported the best antiloosening property (P<.001). The application of sealing gel reduced the initial (P=.048) and final (P=.032) torque loss rate in all the 3 systems. Scanning electron microscopy observations revealed the bottom thread tended to have more abrasion than the first thread. After applying sealing gel, less thread abrasion was found in Nobel and WEGO assemblies, whereas the protective effect was not evident for the Straumann group. The coefficient of friction of sealed group (0.17 ±0.026) was significantly (P=.012) lower than that of unsealed group (0.24 ±0.044). CONCLUSIONS The silicone sealing gel improved the immediate fastening and long-term antiloosening performances of 3 implant systems, decreased the implant abutment interface microleakage of Straumann system, and reduced abutment screw thread abrasion of the Nobel and WEGO systems.
Collapse
Affiliation(s)
- Ping Yu
- Doctoral candidate, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Zhi Li
- Resident Doctor, Aerospace Center Hospital, Beijing, PR China
| | - Xin Tan
- Doctoral candidate, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Haiyang Yu
- Professor, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
34
|
Balderrama ÍDF, Stuani VDT, Cardoso MV, Oliveira RC, Lopes MMR, Greghi SLA, Adriana Campos Passanezi S. The influence of implant surface roughness on decontamination by antimicrobial photodynamic therapy and chemical agents: A preliminary study in vitro. Photodiagnosis Photodyn Ther 2020; 33:102105. [PMID: 33217567 DOI: 10.1016/j.pdpdt.2020.102105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/06/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The aim of this preliminary study was to analyze the effectiveness of three different protocols of decontamination on five commercial moderate rough implants. MATERIAL AND METHODS The types of implants investigated were: Neoporos Drive CM (CM; Neodent®), Drive CM Acqua (ACQ; Neodent®), SLActive (SLA; Straumann®), Osseotite (OT; Biomet 3i®) and Nanotite (NT; Biomet 3i®). Implant surface properties (n = 2/type of implant; control groups) were analyzed by scanning electron microscopy (SEM) images to determine surface roughness parameters (SRP) and energy disperse X-ray spectrometry to determine the chemical composition. Implants were then inoculated with Aggregatibacter actinomycetencomitans in vitro (n = 6/type of implant;experimental groups) and the contaminated areas were determined in SEM images (500x magnifications). Decontamination of implants was performed in duplicate by three protocols: antimicrobial photodynamic therapy (aPDT), EDTA associated with citric acid (EDTA + CA) and 0.12 % chlorhexidine (CHX). The remaining contaminated area (rCtA) was determined in SEM images (500x magnifications). All quantitative analysis through SEM images were analyzed in ImageJ® software for two-dimensional parameters. RESULTS No significant differences were found in SRP among implants (control group), except for Rv (lowest valley) between SLA vs. OT (p=0.0031; Kruskal Wallis post hoc Dunn). NT implants showed highest contaminated area vs. ACQ implants (68.19 % ± 8.63 % and 57.32 % ± 5.38 %, respectively; p = 0.0016, Tukey's test). SRP after decontamination showed statistical difference for Ra (arithmetical mean deviation) for all decontamination groups when compared to control (p < 0.05; ANOVA with post-hoc Tukey's multiple comparisons test), only CM implants showed statistical difference when compared decontamination protocols to control with highest modification of SRP for EDTA + AC group. For decontamination analysis, for applicability of different protocols in the same type of implant, only SLA showed statistical significant difference for aPDT vs. EDTA + CA (p = 0.0114; ANOVA with post-hoc Tukey's multiple comparisons test) with lowest rCTA for aPDT, however for ACQ implants the aPDT showed lowest rCTA with no statistical difference (p > 0.05; ANOVA with post-hoc Tukey's multiple comparisons test). No statistical difference was observed between the decontamination protocols at other implant types. CONCLUSION It can be suggested that the chemical-physical characteristics of dental implants can be effected by the process of contamination and decontamination by aPDT and chemical agents.
Collapse
Affiliation(s)
- Ísis de Fátima Balderrama
- Department of Diagnosis and Surgery, Araraquara School of Dentistry, Sao Paulo State University, Araraquara, SP, Brazil; Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil.
| | - Vitor de Toledo Stuani
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil.
| | - Matheus Völz Cardoso
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil.
| | - Rodrigo Cardoso Oliveira
- Department of Biological Science, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil.
| | | | - Sebastião Luiz Aguiar Greghi
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil.
| | | |
Collapse
|
35
|
Kwapisz E, Garbacz K, Kosecka-Strojek M, Schubert J, Bania J, Międzobrodzki J. Presence of egc-positive major clones ST 45, 30 and 22 among methicillin-resistant and methicillin-susceptible oral Staphylococcus aureus strains. Sci Rep 2020; 10:18889. [PMID: 33144661 PMCID: PMC7609576 DOI: 10.1038/s41598-020-76009-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
The oral cavity may comprise a significant reservoir for Staphylococcus aureus but the data on molecular epidemiology and clonal distribution of oral strains are really scarce. This study aimed to evaluate the clonal relatedness in S. aureus isolated from oral cavity and their relationship with carriage of virulence genes, and antimicrobial resistance profiles. A total of 139 oral S. aureus isolates were obtained from 2327 analysed oral samples of dental patients. Antimicrobial susceptibility testing was performed. Isolates were characterized using protein A gene (spa) typing, spa-CC clonal complexes, toxin genes and SCCmec typing for MRSA. High resistance rates for penicillin, tetracycline and gentamicin were detected, respectively 58.3%, 42.4%, and 35.2%. Twelve (8.6%) S. aureus isolates were identified as MRSA. All of MRSA isolates were mecA-positive and mecC-negative. SCCmec IV was the most common type (66.7%), which was typical for community-acquired MRSA (CA-MRSA). Overall, the enterotoxin gene cluster (egc) was the most frequent detected virulence factor (44.9%), both in MSSA and MRSA isolates. Presence of genes encoding for the enterotoxins (sea, seb, sec, seh, sek), exfoliative toxin A (eta), and toxic shock syndrome toxin-1 (tst) was also observed. Strains carrying lukS-PV/lukF-PV genes belonged to SCCmecV- spa type t437. The most prevalent spa types were t091, t015, t084, t002, t571, and t026 among all 57 identified. Spa types, including 3 new ones, grouped in 6 different spa-CC clonal complexes, with four major dominated; CC45, CC30, CC5, and CC15. This study demonstrated that both methicillin-susceptible and methicillin-resistant major European clones of S. aureus could be isolated from the oral cavity of dental patients, with the emergence of PVL-positive CA-MRSA strains. The oral cavity should be considered as a possible source of toxigenic egc-positive S. aureus strains, in terms of potential risk of cross-infection and dissemination to other body sites.
Collapse
Affiliation(s)
- Ewa Kwapisz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland.
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
36
|
Ghensi P, Manghi P, Zolfo M, Armanini F, Pasolli E, Bolzan M, Bertelle A, Dell'Acqua F, Dellasega E, Waldner R, Tessarolo F, Tomasi C, Segata N. Strong oral plaque microbiome signatures for dental implant diseases identified by strain-resolution metagenomics. NPJ Biofilms Microbiomes 2020; 6:47. [PMID: 33127901 PMCID: PMC7603341 DOI: 10.1038/s41522-020-00155-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Dental implants are installed in an increasing number of patients. Mucositis and peri-implantitis are common microbial-biofilm-associated diseases affecting the tissues that surround the dental implant and are a major medical and socioeconomic burden. By metagenomic sequencing of the plaque microbiome in different peri-implant health and disease conditions (113 samples from 72 individuals), we found microbial signatures for peri-implantitis and mucositis and defined the peri-implantitis-related complex (PiRC) composed by the 7 most discriminative bacteria. The peri-implantitis microbiome is site specific as contralateral healthy sites resembled more the microbiome of healthy implants, while mucositis was specifically enriched for Fusobacterium nucleatum acting as a keystone colonizer. Microbiome-based machine learning showed high diagnostic and prognostic power for peri-implant diseases and strain-level profiling identified a previously uncharacterized subspecies of F. nucleatum to be particularly associated with disease. Altogether, we associated the plaque microbiome with peri-implant diseases and identified microbial signatures of disease severity.
Collapse
Affiliation(s)
- Paolo Ghensi
- Department CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | - Mattia Bolzan
- Department CIBIO, University of Trento, Trento, Italy.,PreBiomics S.r.l., Trento, Italy
| | | | | | | | | | - Francesco Tessarolo
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Cristiano Tomasi
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
37
|
Shao C, Zhang X, Ye J, Li YC, Bao YJ, Li ZH, Huang Y, Liu Y. Surface functionalization of titanium substrates with Deoxyribonuclease I inhibit peri-implant bacterial infection. Dent Mater J 2020; 40:322-330. [PMID: 33116001 DOI: 10.4012/dmj.2020-055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effect of Deoxyribonuclease I (DNase I) coating on initial adhesion and biofilm formation of peri-implant bacteria. Titanium (Ti), Ti-polydopamine (Ti-PDOP), Ti-PDOP-DNase I and Ti-PDOP-inactivated DNase I samples were studied. The FE-SEM, EDS and XPS were used to confirm that DNase I was coated onto Ti. The initial adhesion and biofilm formation of Aggregatibacter actinomycetemcomitans (A.a) and Fusobacterium nucleatum (F.n) were observed by CLSM. The osteogenic induction of Ti-PDOP-DNase I on MC3T3-E1 cells was investigated by ALP activity and RT-PCR. The adhesion clearance rate of viable bacteria on the surfaces of Ti-PDOP-DNase I was 91.95% for A.a, and 96.37% for F.n, and the 24 h biofilm formation of the bacteria was significantly inhibited. In addition, on DNase I coating, the mRNA level of osteogenic marker genes (alp, opn, bsp, sp7) and the activity of ALP were both up-regulated. Therefore, DNase I coating could be an alternative approach for preventing implant-related infection.
Collapse
Affiliation(s)
- Can Shao
- Department of Endodontics, School of Stomatology, Tianjin Medical University.,Department of Stomatology, Peking University Third Hospital Yanqing Hospital
| | - Xin Zhang
- Department of Prosthodonictcs, School of Stomatology, Tianjin Medical University
| | - Jing Ye
- Department of Stomatology, Tianjin Hospital
| | - Ya-Chong Li
- Department of Endodontics, School of Stomatology, Tianjin Medical University
| | - Yi-Jun Bao
- Department of Endodontics, School of Stomatology, Tianjin Medical University
| | - Zhi-Hui Li
- Tianjin International Travel Health Center
| | - Ying Huang
- Department of Endodontics, School of Stomatology, Tianjin Medical University
| | - Ying Liu
- Department of Endodontics, School of Stomatology, Tianjin Medical University
| |
Collapse
|
38
|
Qiao S, Wu D, Wang M, Qian S, Zhu Y, Shi J, Wei Y, Lai H. Oral microbial profile variation during canine ligature-induced peri-implantitis development. BMC Microbiol 2020; 20:293. [PMID: 32993514 PMCID: PMC7526148 DOI: 10.1186/s12866-020-01982-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Dental implants have become well-established in oral rehabilitation for fully or partially edentulous patients. However, peri-implantitis often leads to the failure of dental implants. The aim of this study was to understand the core microbiome associated with peri-implantitis and evaluate potential peri-implantitis pathogens based on canine peri-implantitis model. Results In this study, three beagle dogs were used to build peri-implantitis models with ligature-induced strategy. The peri-implant sulcular fluids were collected at four different phases based on disease severity during the peri-implantitis development. Microbial compositions during peri-implantitis development were monitored and evaluated. The microbes were presented with operational taxonomic unit (OTU) classified at 97% identity of the high-throughput 16S rRNA gene fragments. Microbial diversity and richness varied during peri-implantitis. At the phylum-level, Firmicutes decreased and Bacteroides increased during peri-implantitis development. At the genus-level, Peptostreptococcus decreased and Porphyromonas increased, suggesting peri-implantitis pathogens might be assigned to these two genera. Further species-level and co-occurrence network analyses identified several potential keystone species during peri-implantitis development, and some OTUs were potential peri-implantitis pathogens. Conclusion In summary, canine peri-implantitis models help to identify several potential keystone peri-implantitis associated species. The canine model can give insight into human peri-implantitis associated microbiota.
Collapse
Affiliation(s)
- Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Dongle Wu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Mengge Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, PR China
| | - Shujiao Qian
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yu Zhu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Junyu Shi
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, PR China.
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China.
| |
Collapse
|
39
|
Prevalence of Peri-Implantitis: A Multi-Centered Cross-Sectional Study on 248 Patients. Dent J (Basel) 2020; 8:dj8030080. [PMID: 32756300 PMCID: PMC7557736 DOI: 10.3390/dj8030080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this multicenter cross-sectional study was to determine the prevalence of peri-implantitis and to assess its association with several patient- and implant-related factors. Patients with at least one implant, who came for a recall visit to one of the four centers over a period of five months, were enrolled. Presence of peri-implantitis (defined as bleeding on probing, exudate/suppuration, bone loss > 0.2 mm/year and increased pocket depth) and several other variables (e.g., smoking habits, history of periodontitis, diabetes) were recorded. Out of 248 enrolled patients (1162 implants), 10 patients had at least one implant with peri-implantitis (4.03%); a total of 14 implants were affected (1.20%). A statistically significant association between peri-implantitis and diabetes was found (OR 8.65; CI: 1.94–38.57). Smoking more than 10 cigarettes per day (OR: 0.53; CI 0.03–9.45) and history of periodontitis (OR: 2.42; CI: 0.49–11.89) were not found to be statistically associated with peri-implantitis. Even if implant therapy is a consolidated treatment, biological complications do happen. Strict supportive therapy recalls could lead to lower rates of peri-implantitis and earlier diagnosis.
Collapse
|
40
|
Sahrmann P, Gilli F, Wiedemeier DB, Attin T, Schmidlin PR, Karygianni L. The Microbiome of Peri-Implantitis: A Systematic Review and Meta-Analysis. Microorganisms 2020; 8:microorganisms8050661. [PMID: 32369987 PMCID: PMC7284896 DOI: 10.3390/microorganisms8050661] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
This review aimed to systematically compare microbial profiles of peri-implantitis to those of periodontitis and healthy implants. Therefore, an electronic search in five databases was conducted. For inclusion, studies assessing the microbiome of peri-implantitis in otherwise healthy patients were considered. Literature was assessed for consistent evidence of exclusive or predominant peri-implantitis microbiota. Of 158 potentially eligible articles, data of 64 studies on 3730 samples from peri-implant sites were included in this study. Different assessment methods were described in the studies, namely bacterial culture, PCR-based assessment, hybridization techniques, pyrosequencing, and transcriptomic analyses. After analysis of 13 selected culture-dependent studies, no microbial species were found to be specific for peri-implantitis. After assessment of 28 studies using PCR-based methods and a meta-analysis on 19 studies, a higher prevalence of Aggregatibacter actinomycetemcomitans and Prevotella intermedia (log-odds ratio 4.04 and 2.28, respectively) was detected in peri-implantitis biofilms compared with healthy implants. Actinomyces spp., Porphyromonas spp. and Rothia spp. were found in all five pyrosequencing studies in healthy-, periodontitis-, and peri-implantitis samples. In conclusion, the body of evidence does not show a consistent specific profile. Future studies should focus on the assessment of sites with different diagnosis for the same patient, and investigate the complex host-biofilm interaction.
Collapse
Affiliation(s)
- Philipp Sahrmann
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
- Correspondence: ; Tel.: +41-44-634-3412
| | - Fabienne Gilli
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
| | - Daniel B. Wiedemeier
- Statistical Services, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland;
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
| |
Collapse
|
41
|
Yan X, Lu H, Zhang L, Zhu B, Piao M, Huang B, Zhang H, Meng H. A three-year study on periodontal microorganisms of short locking-taper implants and adjacent teeth in patients with history of periodontitis. J Dent 2020; 95:103299. [DOI: 10.1016/j.jdent.2020.103299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022] Open
|
42
|
Checchi V, Racca F, Bencivenni D, Lo Bianco L. Role of Dental Implant Homecare in Mucositis and Peri-implantitis Prevention: A Literature Overview. Open Dent J 2019. [DOI: 10.2174/1874210601913010470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Correlation between high plaque index and inflammatory lesions around dental implants has been shown and this highlights the importance of patient plaque control. Until now, knowledge of peri-implant home care practices has been based on periodontal devices.
Objective:
The aim of this overview is to identify the presence of scientific evidence that peri-implant homecare plays a role in mucositis and peri-implantitis prevention.
Methods:
Different databases were used in order to detect publications reflecting the inclusion criteria. The search looked into peri-implant homecare studies published from 1991 to 2019 and the terms used for the identification of keywords were: Dental implants, Brush, Interproximal brushing, Interdental brushing, Power toothbrush, Cleaning, Interdental cleaning, Interspace cleaning, Flossing, Super floss, Mouth rinses, Chlorhexidine. The type of studies included in the selection for this structured review were Randomized Clinical Trials, Controlled Clinical Trials, Systematic Reviews, Reviews, Cohort Studies and Clinical cases.
Results:
Seven studies fulfilled all the inclusion criteria: 3 RCTs, one Consensus report, one cohort study, one systematic review and one review. Other 14 studies that partially met the inclusion criteria were analyzed and classified into 3 different levels of evidence: good evidence for RCTs, fair evidence for case control and cohort studies and poor evidence for expert opinion and case report.
Conclusion:
Not much research has been done regarding homecare implant maintenance. Scientific literature seems to show little evidence regarding these practices therefore most of the current knowledge comes from the periodontal literature. Manual and powered toothbrushes, dental floss and interdental brushes seem to be useful in maintaining peri-implant health. The use of antiseptic rinses or gels does not seem to have any beneficial effects.
It can be concluded that to better understand which are the most effective home care practices to prevent mucositis and peri-implantitis in implant-rehabilitated patients, new specific high evidence studies are needed.
Collapse
|
43
|
Abstract
This article summarizes the microbiological findings at dental implants, drawing distinctions between the peri-implant microbiome and the periodontal microbiome, and summarizes what is known regarding biofilm as a risk factor for specific stages of implant treatment. Targeted microbial analysis is reviewed as well as the latest results from open-ended sequencing of the peri-implant flora. At this time there remains a lack of consensus for a specific microbial profile that is associated with peri-implantitis, suggesting that there may be other factors which influence the microbiome such as titanium surface dissolution. Therapeutic interventions to address the biofilm are presented at the preoperative, perioperative, and postoperative stages. Evidence supports that perioperative chlorhexidine reduces biofilm-related implant complications and failure. Regular maintenance for dental implants is also shown to reduce peri-implant mucositis and implant failure. Maintenance procedures should aim to disrupt the biofilm without damaging the titanium dioxide surface layer in an effort to prevent further oxidation. Evidence supports the use of glycine powder air polishing as a valuable adjunct to conventional therapies for use at implant maintenance visits. For the treatment of peri-implantitis, nonsurgical therapy has not been shown to be effective, and while surgical intervention is not always predictable, it has been shown to be superior to nonsurgical treatment for decontamination of the implant surface that is not covered by bone.
Collapse
Affiliation(s)
- Diane M Daubert
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Bradley F Weinstein
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
44
|
Bennani M, Rangé H, Meuric V, Mora F, Bouchard P, Carra MC. Shared detection of Porphyromonas gingivalis in cohabiting family members: a systematic review and meta-analysis. J Oral Microbiol 2019; 12:1687398. [PMID: 31893015 PMCID: PMC6844440 DOI: 10.1080/20002297.2019.1687398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/18/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction: Periodontitis is an inflammatory dysbiotic disease. Among putative dysbiosis causes, transmission of Porphyromonas gingivalis between individuals of the same family remains unclear. The aim of this systematic review and meta-analysis is to assess the likelihood of shared detection of Porphyromonas gingivalis among cohabiting family members. Methods: A literature search was conducted on different databases up to September 2018. Articles assessing the presence of P.gingivalis between members of the same family were screened. Only English literature was retrieved, whereas no limits were applied for bacterial sampling and detection methods. Results: Overall, 26 articles published between 1993 and 2017 met the inclusion criteria. Of these, 18 articles were used for meta-analyses. Based on bacterial culture, the likelihood of an intra-familial transmission of P.gingivalis once a member of the family harbors the bacterium is estimated at 63.5% (n = 132 pairs of family members); this drops to 45% when pooling together culture and Polymerase-Chain-Reaction (n = 481 pairs), whereas it is estimated at 35.7% when genotyping is applied (n = 137 pairs). Conclusion: Pooled results suggest that the likelihood of detecting P.gingivalis within within family members is moderately frequent. Personalized periodontal screening and prevention may consider intra-familial co-occurrence of P.gingivalis as feasible.
Collapse
Affiliation(s)
- Maha Bennani
- Department of Periodontology, Service of Odontology, Rothschild Hospital, Paris, France.,U.F.R. of Odontology, Université de Paris, Paris, France
| | - Hélène Rangé
- Department of Periodontology, Service of Odontology, Rothschild Hospital, Paris, France.,U.F.R. of Odontology, Université de Paris, Paris, France.,EA 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Faculty of Dental Surgery, Paris Descartes University, Montrouge, France
| | - Vincent Meuric
- Microbiology UPRES-EA 1254, Université Européenne de Bretagne, Université of Rennes 1, Rennes, France
| | - Francis Mora
- Department of Periodontology, Service of Odontology, Rothschild Hospital, Paris, France.,U.F.R. of Odontology, Université de Paris, Paris, France
| | - Philippe Bouchard
- Department of Periodontology, Service of Odontology, Rothschild Hospital, Paris, France.,U.F.R. of Odontology, Université de Paris, Paris, France.,EA 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Faculty of Dental Surgery, Paris Descartes University, Montrouge, France
| | - Maria Clotilde Carra
- Department of Periodontology, Service of Odontology, Rothschild Hospital, Paris, France.,U.F.R. of Odontology, Université de Paris, Paris, France.,Inserm, Population-based Epidemiologic Cohorts Unit, Villejuif, France
| |
Collapse
|
45
|
Zhang XM, Li Y, Gu YX, Zhang CN, Lai HC, Shi JY. Ta-Coated Titanium Surface With Superior Bacteriostasis And Osseointegration. Int J Nanomedicine 2019; 14:8693-8706. [PMID: 31806965 PMCID: PMC6842742 DOI: 10.2147/ijn.s218640] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Although tantalum (Ta)-based coatings have been proven to have good antibacterial activity, the underlying mechanism and in vivo biological performance remain unclear, which are essential for the clinical application of Ta-coated biomaterials as dental implants. Purpose The main objective of this study is to investigate the antibacterial activity of Ta-modified titanium (Ti) implants against peri-implantitis-related microbes and the potential molecular mechanisms. Methods Fusobacterium nucleatum and Porphyromonas gingivalis were selected to evaluate the antibacterial activity and potential antibacterial mechanism of Ta modification. The in vivo biocompatibility of Ta-modified implants was also evaluated. Results The results showed that Ta-modified surface performed excellent antimicrobial activity against Fusobacterium nucleatum and Porphyromonas gingivalis. Micro galvanic might be formed between the incorporated Ta and the Ti base, which could consume the protons and result in decreased ATP synthesis and increased ROS generation. The gene expression of bacterial virulence factors associated with cellular attachment, invasion and viability as the target of ROS was downregulated. Importantly, in vivo biological studies showed that Ta modification significantly promoted the osseointegration of implants by stimulating the expression of bone-forming proteins. Conclusion This study may provide some insights into clinical applications of Ta-coated Ti implants, especially in possibly infected situations.
Collapse
Affiliation(s)
- Xiao-Meng Zhang
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yuan Li
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Ying-Xin Gu
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Chu-Nan Zhang
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Hong-Chang Lai
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jun-Yu Shi
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
46
|
Zhu Y, Zhang CN, Gu YX, Shi JY, Mo JJ, Qian SJ, Qiao SC, Lai HC. The responses of human gingival fibroblasts to magnesium-doped titanium. J Biomed Mater Res A 2019; 108:267-278. [PMID: 31606920 DOI: 10.1002/jbm.a.36813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
The titanium (Ti) implant is widely used in implant dentistry; yet peri-implantitis has always been one of the most common and serious complications. Here, we demonstrated that magnesium-doping would be an effective way of enhancing the integration between implant surfaces and gingival tissues, which is critical to peri-implant health. The magnesium (2.76-6.35 at %) was immobilized onto the titanium substrate by a magnesium plasma immersion ion implantation (Mg-PIII) technique. Mg-PIII treatments did not alter surface topographies of the original titanium substrate but improved its hydrophilicity. The in vitro study including cell viability, adhesion, proliferation, migration, and real-time polymerase chain reaction assays disclosed improved adhesion, proliferation, migration, and extracellular matrix remodeling abilities of human gingival fibroblasts (HGFs) on the magnesium-doped titanium. The results of western blot suggested that the Mg-modified titanium induced the phosphorylation of AKT through the activation of PI3K. Our results revealed that magnesium-doping would potentially enhance soft tissue sealings by promoting cellular functions of HGFs in a dose-dependent manner, boding well for its applications on surfaces of implant necks in early peri-implant soft tissue integrations.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chu-Nan Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ying-Xin Gu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jun-Yu Shi
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jia-Ji Mo
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shu-Jiao Qian
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shi-Chong Qiao
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hong-Chang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
47
|
Soriano-Lerma A, Magán-Fernández A, Gijón J, Sánchez-Fernández E, Soriano M, García-Salcedo JA, Mesa F. Short-term effects of hyaluronic acid on the subgingival microbiome in peri-implantitis: A randomized controlled clinical trial. J Periodontol 2019; 91:734-745. [PMID: 31577041 DOI: 10.1002/jper.19-0184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The aim of our study was to evaluate the effects of a hyaluronic acid (HA) gel at 45 days on the microbiome of implants with peri-implantitis with at least 1 year of loading. METHODS A randomized controlled trial was conducted in peri-implantitis patients. Swabs containing the samples were collected both at baseline and after 45 days of treatment. 16S rRNA sequencing techniques were used to investigate the effect of HA gel on the subgingival microbiome. RESULTS One hundred and eight samples of 54 patients were analyzed at baseline and after follow-up at 45 days. Three strata with different microbial composition were obtained in the samples at baseline, representing three main microbial consortia associated with peri-implantitis. Stratum 1 did not show any difference for any variable after treatment with HA, whereas in stratum 2, Streptococcus, Veillonella, Rothia, and Granulicatella did decrease (P < 0.05). Similarly, Prevotella and Campylobacter (P < 0.05) decreased in stratum 3 after treatment with HA. Microbial diversity was found to be decreased in stratum 3 (P < 0.05) after treatment with HA compared with the control group, in which an increase was found (P < 0.05). CONCLUSIONS HA reduced the relative abundance of peri-implantitis-related microorganisms, especially the early colonizing bacteria, suggesting a specific action during the first stages in the development of the disease. HA did not alter relative abundances of non-oral genera. The use of HA in advanced stages of peri-implantitis resulted in a decrease in microbial alpha diversity, suggesting a protective action of the peri-implant site against bacteria colonization.
Collapse
Affiliation(s)
- Ana Soriano-Lerma
- Department of Physiology (Faculty of Pharmacy, Campus Universitario de Cartuja), Institute of Nutrition and Food Technology "José Mataix", University of Granada, Granada, Spain.,Microbiology Unit, Biosanitary Research Institute ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | | | - Juan Gijón
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
| | - Elena Sánchez-Fernández
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Miguel Soriano
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAMBITAL), University of Almeria, Almería, Spain
| | - José A García-Salcedo
- Microbiology Unit, Biosanitary Research Institute ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain.,GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
48
|
Mello DDCR, de Oliveira JR, Cairo CAA, Ramos LSDB, Vegian MRDC, de Vasconcellos LGO, de Oliveira FE, de Oliveira LD, de Vasconcellos LMR. Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:108. [PMID: 31535222 DOI: 10.1007/s10856-019-6310-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Biological effects of titanium (Ti) alloys were analyzed on biofilms of Candida albicans, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Streptococcus sanguinis, as well as on osteoblast-like cells (MG63) and murine macrophages (RAW 264.7). Standard samples composed of aluminum and vanadium (Ti-6Al-4V), and sample containing niobium (Ti-35Nb) and zirconium (Ti-13Nb-13Zr) were analyzed. Monomicrobial biofilms were formed on the Ti alloys. MG63 cells were grown with the alloys and the biocompatibility (MTT), total protein (TP) level, alkaline phosphatase (ALP) activity, and mineralization nodules (MN) formation were verified. Levels of interleukins (IL-1β and IL-17), tumor necrosis factor alpha (TNF-α), and oxide nitric (NO) were checked, from RAW 264.7 cells supernatants. Data were statically analyzed by one-way analysis of variance (ANOVA) and Tukey's test, or T-test (P ≤ 0.05). Concerning the biofilm formation, Ti-13Nb-13Zr alloy showed the best inhibitory effect on E. faecalis, P. aeruginosa, and S. aureus. And, it also acted similarly to the Ti-6Al-4V alloy on C. albicans and Streptococcus spp. Both alloys were biocompatible and similar to the Ti-6Al-4V alloy. Additionally, Ti-13Nb-13Zr alloy was more effective for cell differentiation, as observed in the assays of ALP and MN. Regarding the stimulation for release of IL-1β and TNF-α, Ti-35Nb and Ti-13Nb-13Zr alloys inhibited similarly the synthesis of these molecules. However, both alloys stimulated the production of IL-17. Additionally, all Ti alloys showed the same effect for NO generation. Thus, Ti-13Nb-13Zr alloy was the most effective for inhibition of biofilm formation, cell differentiation, and stimulation for release of immune mediators.
Collapse
Affiliation(s)
- Daphne de Camargo Reis Mello
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Jonatas Rafael de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil.
| | - Carlos Alberto Alves Cairo
- Division of Materials, Air and Space Institute (CTA), Praça Marechal do Ar Eduardo Gomes, 14, São José dos Campos, SP, CEP 12904-000, Brazil
| | - Lais Siebra de Brito Ramos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Mariana Raquel da Cruz Vegian
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Luis Gustavo Oliveira de Vasconcellos
- Department of Materials and Dental Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Felipe Eduardo de Oliveira
- Brazcubas Faculty of Dentistry, University Center Brazcubas, Av. Francisco Rodrigues Filho, 1233, Mogi das Cruzes, SP, CEP 08773-380, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| |
Collapse
|
49
|
Alsahhaf A, Al‐Aali KA, Alshagroud RS, Alshiddi IF, Alrahlah A, Abduljabbar T, Javed F, Vohra F. Comparison of yeast species in the subgingival oral biofilm of individuals with type 2 diabetes and peri‐implantitis and individuals with peri‐implantitis without diabetes. J Periodontol 2019; 90:1383-1389. [DOI: 10.1002/jper.19-0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 04/13/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Abdulaziz Alsahhaf
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Khulud Abdulrahman Al‐Aali
- Department of Clinical Dental SciencesCollege of DentistryPrincess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Rana Saud Alshagroud
- Department of Oral Medicine and Diagnostic SciencesCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Ibraheem F. Alshiddi
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Ali Alrahlah
- Department of Restorative Dental SciencesCollege of DentistryKing Saud University Riyadh Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral RehabilitationCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral RehabilitationCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Fawad Javed
- Department of PeriodontologyStony Brook University Stony Brook NY USA
- Laboratory for Periodontal‐, Implant‐, Phototherapy (LA‐PIP)School of Dental MedicineStony Brook University Stony Brook NY USA
| | - Fahim Vohra
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral RehabilitationCollege of DentistryKing Saud University Riyadh Saudi Arabia
| |
Collapse
|
50
|
Alagl AS, Madi M, Bedi S, Al Onaizan F, Al-Aql ZS. The Effect of Er,Cr:YSGG and Diode Laser Applications on Dental Implant Surfaces Contaminated with Acinetobacter Baumannii and Pseudomonas Aeruginosa. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2073. [PMID: 31252629 PMCID: PMC6651164 DOI: 10.3390/ma12132073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Treatment of peri-implantitis through several implant surface decontamination techniques have been reported, however, some of them can negatively alter the implant surface or enhance more bacterial resistance. The aim of this in vitro study was to evaluate implant surface decontamination by means of Er,Cr:YSGG and diode lasers. Fifty micro-textured (MTX) dental implants were contaminated with Acinetobacter baumannii (n = 25) and with Pseudomonas aeruginosa (n = 25). All implants were then divided into five groups for the decontamination procedure. In group I (GI), decontamination was done with an Er,Cr:YSGG laser (2780 nm), while in group II (GII) decontamination was performed using photodynamic therapy (a 650 nm diode laser). In Group III (GIII) decontamination was performed with photodynamic therapy (an 808 nm diode laser), and in group IV (GIV) decontamination was performed with 0.12% chlorhexidine. Group V (GV) was the control group with no decontamination. After decontamination, colony forming units (CFU) were counted and implants were prepared for SEM analysis. A significant difference (p < 0.001) was observed for GI compared to the other groups, and also for GIV compared to both GII and GIII. The Er,Cr:YSGG laser (GI) showed the best results in decontaminating the implant surface. Chlorhexidine (GIV), proved to be better in decontaminating the implant surface than photodynamic therapy GII and diode laser GIII. No significant difference was found between group GII and GIII. The SEM analysis showed no significant change in the implant surface topography. The results of this study suggest that the Er,Cr:YSGG laser can be considered as an effective technique for reducing bacteria contamination on implant surfaces.
Collapse
Affiliation(s)
- Adel S Alagl
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwa Madi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Sumit Bedi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faisal Al Onaizan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Zainab S Al-Aql
- Dental Services, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah 21423, Saudi Arabia
| |
Collapse
|