1
|
Cai X, Zhou K, Alvarez-Cabrera AL, Si Z, Wang H, He Y, Li C, Zhou ZH. Structural Heterogeneity of the Rabies Virus Virion. Viruses 2024; 16:1447. [PMID: 39339924 PMCID: PMC11437398 DOI: 10.3390/v16091447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Rabies virus (RABV) is among the first recognized viruses of public health concern and has historically contributed to the development of viral vaccines. Despite these significances, the three-dimensional structure of the RABV virion remains unknown due to the challenges in isolating structurally homogenous virion samples in sufficient quantities needed for structural investigation. Here, by combining the capabilities of cryogenic electron tomography (cryoET) and microscopy (cryoEM), we determined the three-dimensional structure of the wild-type RABV virion. Tomograms of RABV virions reveal a high level of structural heterogeneity among the bullet-shaped virion particles encompassing the glycoprotein (G) trimer-decorated envelope and the nucleocapsid composed of RNA, nucleoprotein (N), and matrix protein (M). The structure of the trunk region of the virion was determined by cryoEM helical reconstruction, revealing a one-start N-RNA helix bound by a single layer of M proteins at an N:M ratio of 1. The N-M interaction differs from that in fellow rhabdovirus vesicular stomatitis virus (VSV), which features two layers of M stabilizing the N-RNA helix at an M:N ratio of 2. These differences in both M-N stoichiometry and binding allow RABV to flex its N-RNA helix more freely and point to different mechanisms of viral assembly between these two bullet-shaped rhabdoviruses.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Kang Zhou
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Ana Lucia Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Zhu Si
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Cally Li
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
- Alsion Montessori High School, 750 Witherly Ln., Fremont, CA 94539, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| |
Collapse
|
2
|
Zhang W, Liu Y, Li M, Zhu J, Li X, Luo TR, Liang J. Host Desmin Interacts with RABV Matrix Protein and Facilitates Virus Propagation. Viruses 2023; 15:v15020434. [PMID: 36851648 PMCID: PMC9964581 DOI: 10.3390/v15020434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Microfilaments and microtubules, two crucial structures of cytoskeletal networks, are usurped by various viruses for their entry, egress, and/or intracellular trafficking, including the Rabies virus (RABV). Intermediate filaments (IFs) are the third major component of cytoskeletal filaments; however, little is known about the role of IFs during the RABV infection. Here, we identified the IF protein desmin as a novel host interactor with the RABV matrix protein, and we show that this physical interaction has a functional impact on the virus lifecycle. We found that the overexpression of desmin facilitates the RABV infection by increasing the progeny virus yield, and the suppression of endogenous desmin inhibits virus replication. Furthermore, we used confocal microscopy to observe that the RABV-M co-localizes with desmin in IF bundles in the BHK-21 cells. Lastly, we found that mice challenged with RABV displayed an enhanced expression of desmin in the brains of infected animals. These findings reveal a desmin/RABV-M interaction that positively regulates the virus infection and suggests that the RABV may utilize cellular IFs as tracks for the intracellular transport of viral components and efficient budding.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Yuming Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Mengru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Jian Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Xiaoning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Correspondence: (X.L.); (T.R.L.); (J.L.)
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Correspondence: (X.L.); (T.R.L.); (J.L.)
| | - Jingjing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (X.L.); (T.R.L.); (J.L.)
| |
Collapse
|
3
|
Nitschel S, Zaeck LM, Potratz M, Nolden T, te Kamp V, Franzke K, Höper D, Pfaff F, Finke S. Point Mutations in the Glycoprotein Ectodomain of Field Rabies Viruses Mediate Cell Culture Adaptation through Improved Virus Release in a Host Cell Dependent and Independent Manner. Viruses 2021; 13:v13101989. [PMID: 34696419 PMCID: PMC8538267 DOI: 10.3390/v13101989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Molecular details of field rabies virus (RABV) adaptation to cell culture replication are insufficiently understood. A better understanding of adaptation may not only reveal requirements for efficient RABV replication in cell lines, but may also provide novel insights into RABV biology and adaptation-related loss of virulence and pathogenicity. Using two recombinant field rabies virus clones (rRABV Dog and rRABV Fox), we performed virus passages in three different cell lines to identify cell culture adaptive mutations. Ten passages were sufficient for the acquisition of adaptive mutations in the glycoprotein G and in the C-terminus of phosphoprotein P. Apart from the insertion of a glycosylation sequon via the mutation D247N in either virus, both acquired additional and cell line-specific mutations after passages on BHK (K425N) and MDCK-II (R346S or R350G) cells. As determined by virus replication kinetics, complementation, and immunofluorescence analysis, the major bottleneck in cell culture replication was the intracellular accumulation of field virus G protein, which was overcome after the acquisition of the adaptive mutations. Our data indicate that limited release of extracellular infectious virus at the plasma membrane is a defined characteristic of highly virulent field rabies viruses and we hypothesize that the observed suboptimal release of infectious virions is due to the inverse correlation of virus release and virulence in vivo.
Collapse
Affiliation(s)
- Sabine Nitschel
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Luca M. Zaeck
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Madlin Potratz
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Tobias Nolden
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Verena te Kamp
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Kati Franzke
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectiology (IMED), 17493 Greifswald-Insel Riems, Germany;
| | - Dirk Höper
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Diagnostic Virology (IVD), 17493 Greifswald-Insel Riems, Germany; (D.H.); (F.P.)
| | - Florian Pfaff
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Diagnostic Virology (IVD), 17493 Greifswald-Insel Riems, Germany; (D.H.); (F.P.)
| | - Stefan Finke
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
- Correspondence: ; Tel.: +49-38351-71283
| |
Collapse
|
4
|
A strain of highly pathogenic porcine reproductive and respiratory syndrome virus: genomic characterization, pathogenicity, and construction of an infectious full-length cDNA clone. Arch Virol 2021; 166:3127-3141. [PMID: 34529151 DOI: 10.1007/s00705-021-05212-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious infectious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), which inflicts major economic losses on the global pig farming industry. Based on its similarity to highly pathogenic strains, the GDzj strain isolated in this study was predicted to be highly pathogenic. We therefore analyzed the pathogenicity of this strain experimentally in piglets. All piglets challenged with this virus experienced fever or high fever, loss of appetite, decreased food intake, daily weight loss, shortness of breath, and listlessness, and the necropsy results showed that they had experienced severe interstitial pneumonia. We then used the BAC system to construct a full-length cDNA infectious clone of GDzj, and the rescued virus displayed in vitro proliferation characteristics similar to those of the parental PRRSV strain. In summary, we successfully isolated a highly pathogenic PRRSV strain and constructed a full-length infectious cDNA clone from it, thereby providing an effective reverse genetics platform for further study of viral pathogenesis.
Collapse
|
5
|
Dolnik O, Gerresheim GK, Biedenkopf N. New Perspectives on the Biogenesis of Viral Inclusion Bodies in Negative-Sense RNA Virus Infections. Cells 2021; 10:cells10061460. [PMID: 34200781 PMCID: PMC8230417 DOI: 10.3390/cells10061460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies. Biomolecular condensates are highly dynamic structures formed by liquid-liquid phase separation (LLPS). Key drivers for LLPS in cells are multivalent protein:protein and protein:RNA interactions leading to specialized areas in the cell that recruit molecules with similar properties, while other non-similar molecules are excluded. These typical features of cellular biomolecular condensates are also a common characteristic in the biogenesis of viral inclusion bodies. Viral IBs are predominantly induced by the expression of the viral nucleoprotein (N, NP) and phosphoprotein (P); both are characterized by a special protein architecture containing multiple disordered regions and RNA-binding domains that contribute to different protein functions. P keeps N soluble after expression to allow a concerted binding of N to the viral RNA. This results in the encapsidation of the viral genome by N, while P acts additionally as a cofactor for the viral polymerase, enabling viral transcription and replication. Here, we will review the formation and function of those viral inclusion bodies upon infection with NSVs with respect to their nature as biomolecular condensates.
Collapse
|
6
|
Nikolic J, Lagaudrière-Gesbert C, Scrima N, Blondel D, Gaudin Y. Structure and Function of Negri Bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:111-127. [PMID: 31317498 DOI: 10.1007/978-3-030-14741-9_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Replication and assembly of many viruses occur in viral factories which are specialized intracellular compartments formed during viral infection. For rabies virus, those viral factories are called Negri bodies (NBs). NBs are cytoplasmic inclusion bodies in which viral RNAs (mRNAs as well as genomic and antigenomic RNAs) are synthesized. NBs are spherical, they can fuse together, and can reversibly deform when encountering a physical barrier. All these characteristics are similar to those of eukaryotic membrane-less liquid organelles which contribute to the compartmentalization of the cell interior. Indeed, the liquid nature of NBs has been confirmed by FRAP experiments. The co-expression of rabies virus nucleoprotein N and phosphoprotein P is sufficient to induce the formation of cytoplasmic inclusions recapitulating NBs properties. Remarkably, P and N have features similar to those of cellular proteins involved in liquid organelles formation: N is an RNA-binding protein and P contains intrinsically disordered domains. An overview of the literature indicates that formation of liquid viral factories by phase separation is probably common among Mononegavirales. This allows specific recruitment and concentration of viral proteins. Finally, as virus-associated molecular patterns recognized by cellular sensors of RNA virus replication are probably essentially present in the viral factory, there should be a subtle interplay (which remains to be characterized) between those liquid structures and the cellular proteins which trigger the innate immune response.
Collapse
Affiliation(s)
- Jovan Nikolic
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
| |
Collapse
|
7
|
Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. Rabies. Nat Rev Dis Primers 2017; 3:17091. [PMID: 29188797 DOI: 10.1038/nrdp.2017.91] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rabies is a life-threatening neglected tropical disease: tens of thousands of cases are reported annually in endemic countries (mainly in Africa and Asia), although the actual numbers are most likely underestimated. Rabies is a zoonotic disease that is caused by infection with viruses of the Lyssavirus genus, which are transmitted via the saliva of an infected animal. Dogs are the most important reservoir for rabies viruses, and dog bites account for >99% of human cases. The virus first infects peripheral motor neurons, and symptoms occur after the virus reaches the central nervous system. Once clinical disease develops, it is almost certainly fatal. Primary prevention involves dog vaccination campaigns to reduce the virus reservoir. If exposure occurs, timely post-exposure prophylaxis can prevent the progression to clinical disease and involves appropriate wound care, the administration of rabies immunoglobulin and vaccination. A multifaceted approach for human rabies eradication that involves government support, disease awareness, vaccination of at-risk human populations and, most importantly, dog rabies control is necessary to achieve the WHO goal of reducing the number of cases of dog-mediated human rabies to zero by 2030.
Collapse
Affiliation(s)
- Anthony R Fooks
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.,Institute of Infection &Global Health, University of Liverpool, Liverpool, UK.,Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thiravat Hemachudha
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Thai Red Cross Emerging Infectious Disease-Health Science Centre, Thai Red Cross Society, Bangkok, Thailand
| | - Reeta S Mani
- Department of Neurovirology (WHO Collaborating Centre for Reference and Research in Rabies), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Susan Nadin-Davis
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency (WHO Collaborating Centre for Control, Pathogenesis and Epidemiology of Rabies in Carnivores), Ottawa, Ontario, Canada
| | - Evelyne Picard-Meyer
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Henry Wilde
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
8
|
Besson B, Sonthonnax F, Duchateau M, Ben Khalifa Y, Larrous F, Eun H, Hourdel V, Matondo M, Chamot-Rooke J, Grailhe R, Bourhy H. Regulation of NF-κB by the p105-ABIN2-TPL2 complex and RelAp43 during rabies virus infection. PLoS Pathog 2017; 13:e1006697. [PMID: 29084252 PMCID: PMC5679641 DOI: 10.1371/journal.ppat.1006697] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/09/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
At the crossroad between the NF-κB and the MAPK pathways, the ternary complex composed of p105, ABIN2 and TPL2 is essential for the host cell response to pathogens. The matrix protein (M) of field isolates of rabies virus was previously shown to disturb the signaling induced by RelAp43, a NF-κB protein close to RelA/p65. Here, we investigated how the M protein disturbs the NF-κB pathway in a RelAp43-dependant manner and the potential involvement of the ternary complex in this mechanism. Using a tandem affinity purification coupled with mass spectrometry approach, we show that RelAp43 interacts with the p105-ABIN2-TPL2 complex and we observe a strong perturbation of this complex in presence of M protein. M protein interaction with RelAp43 is associated with a wide disturbance of NF-κB signaling, involving a modulation of IκBα-, IκBβ-, and IκBε-RelAp43 interaction and a favored interaction of RelAp43 with the non-canonical pathway (RelB and p100/p52). Monitoring the interactions between host and viral proteins using protein-fragment complementation assay and bioluminescent resonance energy transfer, we further show that RelAp43 is associated to the p105-ABIN2-TPL2 complex as RelAp43-p105 interaction stabilizes the formation of a complex with ABIN2 and TPL2. Interestingly, the M protein interacts not only with RelAp43 but also with TPL2 and ABIN2. Upon interaction with this complex, M protein promotes the release of ABIN2, which ultimately favors the production of RelAp43-p50 NF-κB dimers. The use of recombinant rabies viruses further indicates that this mechanism leads to the control of IFNβ, TNF and CXCL2 expression during the infection and a high pathogenicity profile in rabies virus infected mice. All together, our results demonstrate the important role of RelAp43 and M protein in the regulation of NF-κB signaling. Rabies virus is a recurring zoonosis responsible for about 60,000 deaths per year. A key feature of rabies virus is its stealth, allowing it to spread within the host and escape the immune response. To do so, rabies virus developed several mechanisms, including a thorough interference with cell signaling pathways. Here, we focused our attention on the molecular aspects of rabies virus escape to the NF-κB pathway through the interaction between the M protein and the NF-κB protein RelAp43. Monitoring close range interactions, we found that RelAp43 plays an important role in the stabilization of the p105-ABIN2-TPL2 complex, which is essential in the regulation of both NF-κB and MAPK pathways, and we brought a new insight on the dynamics within the host protein complex. These results were confirmed in living cells and in mice. Overall, our data suggest that rabies virus interference with the p105-ABIN2-TPL2 complex is a cornerstone of its stealth strategy to escape the immune response.
Collapse
Affiliation(s)
- Benoit Besson
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Florian Sonthonnax
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Magalie Duchateau
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | | | - Florence Larrous
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
| | - Hyeju Eun
- Technology Development Platform, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Rep. of Korea
| | - Véronique Hourdel
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Mariette Matondo
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Julia Chamot-Rooke
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Regis Grailhe
- Technology Development Platform, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Rep. of Korea
| | - Hervé Bourhy
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
| |
Collapse
|
9
|
Nikolic J, Le Bars R, Lama Z, Scrima N, Lagaudrière-Gesbert C, Gaudin Y, Blondel D. Negri bodies are viral factories with properties of liquid organelles. Nat Commun 2017; 8:58. [PMID: 28680096 PMCID: PMC5498545 DOI: 10.1038/s41467-017-00102-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/31/2017] [Indexed: 11/23/2022] Open
Abstract
Replication of Mononegavirales occurs in viral factories which form inclusions in the host-cell cytoplasm. For rabies virus, those inclusions are called Negri bodies (NBs). We report that NBs have characteristics similar to those of liquid organelles: they are spherical, they fuse to form larger structures, and they disappear upon hypotonic shock. Their liquid phase is confirmed by FRAP experiments. Live-cell imaging indicates that viral nucleocapsids are ejected from NBs and transported along microtubules to form either new virions or secondary viral factories. Coexpression of rabies virus N and P proteins results in cytoplasmic inclusions recapitulating NBs properties. This minimal system reveals that an intrinsically disordered domain and the dimerization domain of P are essential for Negri bodies-like structures formation. We suggest that formation of liquid viral factories by phase separation is common among Mononegavirales and allows specific recruitment and concentration of viral proteins but also the escape to cellular antiviral response. Negative strand RNA viruses, such as rabies virus, induce formation of cytoplasmic inclusions for genome replication. Here, Nikolic et al. show that these so-called Negri bodies (NBs) have characteristics of liquid organelles and they identify the minimal protein domains required for NB formation.
Collapse
Affiliation(s)
- Jovan Nikolic
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Romain Le Bars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Zoé Lama
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
10
|
Ghanem A, Conzelmann KK. G gene-deficient single-round rabies viruses for neuronal circuit analysis. Virus Res 2016; 216:41-54. [DOI: 10.1016/j.virusres.2015.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 12/11/2022]
|
11
|
Rupprecht CE, Nagarajan T, Ertl H. Current Status and Development of Vaccines and Other Biologics for Human Rabies Prevention. Expert Rev Vaccines 2016; 15:731-49. [PMID: 26796599 DOI: 10.1586/14760584.2016.1140040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rabies is a neglected viral zoonosis with the highest case fatality of any infectious disease. Pasteur's historical accomplishments during the late 19(th) century began the process of human vaccine development, continuing to evolve into the 21(st) century. Over the past 35 years, great improvements occurred in the production of potent tissue culture vaccines and the gradual removal from the market of unsafe nerve tissue products. Timely and appropriate administration of modern biologics virtually assures survivorship, even after severe exposures. Nevertheless, in the developing world, if not provided for free nationally, the cost of a single course of human prophylaxis exceeds the average monthly wage of the common worker. Beyond traditional approaches, recombinant, sub-unit and other novel methods are underway to improve the availability of safe, effective and more affordable rabies biologics.
Collapse
|
12
|
Davis BM, Rall GF, Schnell MJ. Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annu Rev Virol 2015; 2:451-71. [PMID: 26958924 DOI: 10.1146/annurev-virology-100114-055157] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cultural impact of rabies, the fatal neurological disease caused by infection with rabies virus, registers throughout recorded history. Although rabies has been the subject of large-scale public health interventions, chiefly through vaccination efforts, the disease continues to take the lives of about 40,000-70,000 people per year, roughly 40% of whom are children. Most of these deaths occur in resource-poor countries, where lack of infrastructure prevents timely reporting and postexposure prophylaxis and the ubiquity of domestic and wild animal hosts makes eradication unlikely. Moreover, although the disease is rarer than other human infections such as influenza, the prognosis following a bite from a rabid animal is poor: There is currently no effective treatment that will save the life of a symptomatic rabies patient. This review focuses on the major unanswered research questions related to rabies virus pathogenesis, especially those connecting the disease progression of rabies with the complex dysfunction caused by the virus in infected cells. The recent applications of cutting-edge research strategies to this question are described in detail.
Collapse
Affiliation(s)
| | - Glenn F Rall
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Matthias J Schnell
- Department of Microbiology and Immunology and.,Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107; .,Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
13
|
Rupprecht CE, Kuzmin IV. Why we can prevent, control and possibly treat – but will not eradicate – rabies. Future Virol 2015. [DOI: 10.2217/fvl.15.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Rabies is an acute, progressive viral encephalitis. Despite historical recognition, millions still remain exposed annually. Most fatalities are of children, although this zoonosis is a vaccine-preventable disease. All developed countries interrupted canine transmission and increasingly, Asian and African communities recognize what Latin Americans demonstrated – dog rabies can be eliminated – by mass application of veterinary vaccines. Realistically, rabies is not a candidate for eradication. Management is lacking for major reservoirs, such as bats. Increasing pre-exposure immunization of individuals at risk, simplification of postexposure schedules, enhancing vaccine delivery by alternative routes, development of less expensive biologics and antiviral drugs, may lessen its impact if applied strategically in a One Health context.
Collapse
Affiliation(s)
| | - Ivan V Kuzmin
- University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
14
|
Anterograde glycoprotein-dependent transport of newly generated rabies virus in dorsal root ganglion neurons. J Virol 2014; 88:14172-83. [PMID: 25275124 DOI: 10.1128/jvi.02254-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rabies virus (RABV) spread is widely accepted to occur only by retrograde axonal transport. However, examples of anterograde RABV spread in peripheral neurons such as dorsal root ganglion (DRG) neurons indicated a possible bidirectional transport by an uncharacterized mechanism. Here, we analyzed the axonal transport of fluorescence-labeled RABV in DRG neurons by live-cell microscopy. Both entry-related retrograde transport of RABV after infection at axon endings and postreplicative transport of newly formed virus were visualized in compartmentalized DRG neuron cultures. Whereas entry-related transport at 1.5 μm/s occurred only retrogradely, after 2 days of infection, multiple particles were observed in axons moving in both the anterograde and retrograde directions. The dynamics of postreplicative retrograde transport (1.6 μm/s) were similar to those of entry-related retrograde transport. In contrast, anterograde particle transport at 3.4 μm/s was faster, indicating active particle transport. Interestingly, RABV missing the glycoproteins did not move anterogradely within the axon. Thus, anterograde RABV particle transport depended on the RABV glycoprotein. Moreover, colocalization of green fluorescent protein (GFP)-labeled ribonucleoproteins (RNPs) and glycoprotein in distal axonal regions as well as cotransport of labeled RNPs with membrane-anchored mCherry reporter confirmed that either complete enveloped virus particles or vesicle associated RNPs were transported. Our data show that anterograde RABV movement in peripheral DRG neurons occurs by active motor protein-dependent transport. We propose two models for postreplicative long-distance transport in peripheral neurons: either transport of complete virus particles or cotransport of RNPs and G-containing vesicles through axons to release virus at distal sites of infected DRG neurons. IMPORTANCE Rabies virus retrograde axonal transport by dynein motors supports virus spread over long distances and lethal infection of the central nervous system. Though active rabies virus transport has been widely accepted to be unidirectional, evidence for anterograde spread in peripheral neurons supports the hypothesis that in some neurons RABV also enters the anterograde pathway by so-far unknown mechanisms. By live microscopy we visualized fast anterograde axonal transport of rabies virus. The velocities exceeded those of retrograde movements, suggesting that active, most likely kinesin-dependent transport machineries are involved. Dependency of anterograde transport on the expression of virus glycoprotein G and cotransport with vesicles further suggest that complete enveloped virus particles or cotransport of virus ribonucleoprotein and G-containing vesicles occurred. These data provide the first insight in the mechanism of anterograde rabies virus transport and substantially contribute to the understanding of RABV replication and spread of newly formed virus in peripheral neurons.
Collapse
|
15
|
Abstract
Membrane envelopment and budding of negative strand RNA viruses (NSVs) is mainly driven by viral matrix proteins (M). In addition, several M proteins are also known to be involved in host cell manipulation. Knowledge about the cellular targets and detailed molecular mechanisms, however, is poor for many M proteins. For instance, Nipah Virus (NiV) M protein trafficking through the nucleus is essential for virus release, but nuclear targets of NiV M remain unknown. To identify cellular interactors of henipavirus M proteins, tagged Hendra Virus (HeV) M proteins were expressed and M-containing protein complexes were isolated and analysed. Presence of acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) in the complex suggested that this protein represents a direct or indirect interactor of the viral matrix protein. Over-expression of ANP32B led to specific nuclear accumulation of HeV M, providing a functional link between ANP32B and M protein. ANP32B-dependent nuclear accumulation was observed after plasmid-driven expression of HeV and NiV matrix proteins and also in NiV infected cells. The latter indicated that an interaction of henipavirus M protein with ANP32B also occurs in the context of virus replication. From these data we conclude that ANP32B is a nuclear target of henipavirus M that may contribute to virus replication. Potential effects of ANP32B on HeV nuclear shuttling and host cell manipulation by HeV M affecting ANP32B functions in host cell survival and gene expression regulation are discussed.
Collapse
|