1
|
Ngotho P, Dantzler Press K, Peedell M, Muasya W, Omondi BR, Otoboh SE, Gomez J, Coronado L, Seydel KB, Kapulu M, Laufer M, Taylor T, Bousema T, Marti M. Reversible host cell surface remodelling limits immune recognition and maximizes survival of Plasmodium falciparum gametocytes. PLoS Pathog 2025; 21:e1013110. [PMID: 40354414 PMCID: PMC12091884 DOI: 10.1371/journal.ppat.1013110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 05/20/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., peaking in the immature stages and tapering off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of a proportion of immature gametocyte-infected RBCs (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. Based on these findings we propose that the reversible surface remodelling allows (i) immature gametocyte sequestration in bone marrow followed by (ii) mature gametocyte release into peripheral circulation (and immune evasion due to loss of surface antigens), therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Kathleen Dantzler Press
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Megan Peedell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - William Muasya
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Brian Roy Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley E. Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jahiro Gomez
- Instituto de Investigaciones Científicas y Servicios de alta Tecnología de Panamá, Panamá City, Panamá
| | - Lorena Coronado
- Instituto de Investigaciones Científicas y Servicios de alta Tecnología de Panamá, Panamá City, Panamá
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, Maryland, United States of America
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Hadjimichael E, Deitsch KW. Variable surface antigen expression, virulence, and persistent infection by Plasmodium falciparum malaria parasites. Microbiol Mol Biol Rev 2025; 89:e0011423. [PMID: 39807932 PMCID: PMC11948492 DOI: 10.1128/mmbr.00114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYThe human malaria parasite Plasmodium falciparum is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen. The parasite's genome encodes approximately 60 antigenically distinct forms of PfEMP1, each encoded by individual members of the multicopy var gene family. This provides the parasite with a repertoire of antigenic types that it systematically cycles through over the course of an infection, thereby maintaining an infection until the repertoire is exhausted. While this model of antigenic variation based on var gene switching explains the dynamics of acute infections in individuals with limited anti-malarial immunity, it fails to explain reports of chronic, asymptomatic infections that can last over a decade. Recent field studies have led to a re-evaluation of previous conclusions regarding the prevalence of chronic infections, and the application of new technologies has provided insights into the molecular mechanisms that enable chronic infections and how these processes evolved.
Collapse
Affiliation(s)
- Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
3
|
Evers F, Roverts R, Boshoven C, Kea-Te Lindert M, Verhoef JMJ, Sommerdijk N, Sinden RE, Akiva A, Kooij TWA. Comparative 3D ultrastructure of Plasmodium falciparum gametocytes. Nat Commun 2025; 16:69. [PMID: 39747010 PMCID: PMC11695595 DOI: 10.1038/s41467-024-55413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Despite the enormous significance of malaria parasites for global health, some basic features of their ultrastructure remain obscure. Here, we apply high-resolution volumetric electron microscopy to examine and compare the ultrastructure of the transmissible male and female sexual blood stages of Plasmodium falciparum as well as the more intensively studied asexual blood stages revisiting previously described phenomena in 3D. In doing so, we challenge the widely accepted notion of a single mitochondrion by demonstrating the presence of multiple mitochondria in gametocytes. We also provide evidence for a gametocyte-specific cytostome, or cell mouth. Furthermore, we generate the first 3D reconstructions of the parasite's endoplasmic reticulum (ER) and Golgi apparatus as well as gametocyte-induced extraparasitic structures in the infected red blood cell. Assessing interconnectivity between organelles, we find frequent structural appositions between the nucleus, mitochondria, and apicoplast. We provide evidence that the ER is a promiscuous interactor with numerous organelles and the trilaminar pellicle of the gametocyte. Public availability of these volumetric electron microscopy resources will facilitate reinterrogation by others with different research questions and expertise. Taken together, we reconstruct the 3D ultrastructure of P. falciparum gametocytes at nanometre scale and shed light on the unique organellar biology of these deadly parasites.
Collapse
Affiliation(s)
- Felix Evers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rona Roverts
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mariska Kea-Te Lindert
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert E Sinden
- Department of Life Sciences, Imperial College London, London, UK
| | - Anat Akiva
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Nhim S, Tintó-Font E, Casas-Vila N, Michel-Todó L, Cortés A. Heterochromatin dynamics during the initial stages of sexual development in Plasmodium falciparum. Sci Rep 2024; 14:23180. [PMID: 39369041 PMCID: PMC11455859 DOI: 10.1038/s41598-024-73981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Asexual replication of Plasmodium falciparum in the human blood results in exponential parasite growth and causes all clinical symptoms of malaria. However, at each round of the replicative cycle, some parasites convert into sexual precursors called gametocytes, which develop through different stages until they become infective to mosquito vectors. The genome-wide distribution of heterochromatin, a type of chromatin generally refractory to gene expression, is identical at all asexual blood stages, but is altered in stage II/III and more mature gametocytes. However, it is not known if these changes occur concomitantly with sexual conversion or at a later time during gametocyte development. Using a transgenic line in which massive sexual conversion can be conditionally induced, we show that the genome-wide distribution of heterochromatin at the initial stages of sexual development (i.e., sexual rings and stage I gametocytes) is almost identical to asexual blood stages, and major changes do not occur until stage II/III. However, we found that at loci with heterochromatin alterations, transcriptional changes associated with sexual development typically precede, rather than follow, changes in heterochromatin occupancy.
Collapse
Affiliation(s)
- Sandra Nhim
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Núria Casas-Vila
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lucas Michel-Todó
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alfred Cortés
- ISGlobal, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
5
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
6
|
Omoda A, Matsumoto K, Yoshino KI, Tachibana M, Tsuboi T, Torii M, Ishino T, Iriko H. Skeleton binding protein 1 localizes to the Maurer's cleft and interacts with PfHSP70-1 and PfHSP70-x in Plasmodium falciparum gametocyte-infected erythrocytes. Parasitol Int 2024; 100:102864. [PMID: 38331312 DOI: 10.1016/j.parint.2024.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Plasmodium falciparum accounts for the majority of malaria deaths, due to pathology provoked by the ability of infected erythrocytes to adhere to vascular endothelium within deep tissues. The parasite recognizes endothelium by trafficking and displaying protein ligands on the surface of asexual stage infected erythrocytes, such as members of the large family of pathogenic proteins, P. falciparum erythrocyte membrane protein 1 (PfEMP1). Parasite-encoded skeleton binding protein 1 (SBP1) plays an important role in the transport of these binding-related surface proteins, via cleft-like membranous structures termed Maurer's clefts, which are present within the cytoplasm of infected erythrocytes. Erythrocytes infected with gametocyte stages accumulate in the extravascular compartment of bone marrow; and it was suggested that their surface-expressed adhesion molecule profile and protein trafficking mechanisms might differ from those in asexual stage parasites. Protein trafficking mechanisms via Maurer's clefts have been well investigated in asexual stage parasite-infected erythrocytes; but little is known regarding the gametocyte stages. In this study, we characterized SBP1 during gametocyte maturation and demonstrated that SBP1 is expressed and localizes to dot-like Maurer's cleft structures in the cytoplasm of gametocyte-infected erythrocytes. Co-immunoprecipitation and mass spectrometry assays indicated that SBP1 interacts with the molecular chaperones PfHSP70-1 and PfHSP70-x. Localization analysis suggested that some PfHSP70-1 and/or PfHSP70-x localize in a dot-like pattern within the cytoplasm of immature gametocyte-infected erythrocytes. These findings suggest that SBP1 may interact with HSP70 chaperones in the infected erythrocyte cytoplasm during the immature gametocyte stages.
Collapse
Affiliation(s)
- Ayaka Omoda
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan
| | - Konomi Matsumoto
- Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Hyogo, Japan
| | | | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Motomi Torii
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan; Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan; Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Hyogo, Japan.
| |
Collapse
|
7
|
Dogga SK, Rop JC, Cudini J, Farr E, Dara A, Ouologuem D, Djimdé AA, Talman AM, Lawniczak MKN. A single cell atlas of sexual development in Plasmodium falciparum. Science 2024; 384:eadj4088. [PMID: 38696552 DOI: 10.1126/science.adj4088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 Plasmodium falciparum cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple P. falciparum strains. We investigated genotypic and transcriptional heterogeneity within and among these wild strains at the single-cell level, finding differential expression between different strains even within the same host. These data are a key addition to the Malaria Cell Atlas interactive data resource, enabling a deeper understanding of the biology and diversity of transmission stages.
Collapse
Affiliation(s)
| | - Jesse C Rop
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Elias Farr
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Institute for Computational Biomedicine, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Antoine Dara
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Dinkorma Ouologuem
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Abdoulaye A Djimdé
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Arthur M Talman
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | | |
Collapse
|
8
|
Ngotho P, Press KD, Peedell M, Muasya W, Omondi BR, Otoboh SE, Seydel KB, Kapulu M, Laufer M, Taylor T, Bousema T, Marti M. Reversible host cell surface remodelling limits immune recognition and maximizes transmission of Plasmodium falciparum gametocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591837. [PMID: 38746342 PMCID: PMC11092622 DOI: 10.1101/2024.04.30.591837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., on in immature and off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of immature gametocytes (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. These findings suggest that the dynamic surface remodelling allows (i) immature gametocyte sequestration in bone marrow and (ii) mature gametocyte release into peripheral circulation and immune evasion, therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Megan Peedell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - William Muasya
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Brian Roy Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley E. Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, MD, United States
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Bekić V, Kilian N. Novel secretory organelles of parasite origin - at the center of host-parasite interaction. Bioessays 2023; 45:e2200241. [PMID: 37518819 DOI: 10.1002/bies.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Reorganization of cell organelle-deprived host red blood cells by the apicomplexan malaria parasite Plasmodium falciparum enables their cytoadherence to endothelial cells that line the microvasculature. This increases the time red blood cells infected with mature developmental stages remain within selected organs such as the brain to avoid the spleen passage, which can lead to severe complications and cumulate in patient death. The Maurer's clefts are a novel secretory organelle of parasite origin established by the parasite in the cytoplasm of the host red blood cell in order to facilitate the establishment of cytoadherence by conducting the trafficking of immunovariant adhesins to the host cell surface. Another important function of the organelle is the sorting of other proteins the parasite traffics into its host cell. Although the organelle is of high importance for the pathology of malaria, additional putative functions, structure, and genesis remain shrouded in mystery more than a century after its discovery. In this review, we highlight our current knowledge about the Maurer's clefts and other novel secretory organelles established within the host cell cytoplasm by human-pathogenic malaria parasites and other parasites that reside within human red blood cells.
Collapse
Affiliation(s)
- Viktor Bekić
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nicole Kilian
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
10
|
Donsante S, Siciliano G, Ciardo M, Palmisano B, Messina V, de Turris V, Farinacci G, Serafini M, Silvestrini F, Corsi A, Riminucci M, Alano P. An in vivo humanized model to study homing and sequestration of Plasmodium falciparum transmission stages in the bone marrow. Front Cell Infect Microbiol 2023; 13:1161669. [PMID: 37153157 PMCID: PMC10154621 DOI: 10.3389/fcimb.2023.1161669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Recent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of P. falciparum malaria by providing a "niche" for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized in vivo models to study the mechanisms of the interplay between the parasite and the human BM components are still missing. Methods We report a novel experimental system based on the infusion of immature P. falciparum gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells. Results We demonstrate that immature gametocytes home within minutes to the ossicles and reach the extravascular regions, where they are retained in contact with different human BM stromal cell types. Discussion Our model represents a powerful tool to study BM function and the interplay essential for parasite transmission in P. falciparum malaria and can be extended to study other infections in which the human BM plays a role.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Siciliano
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Mariagrazia Ciardo
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Messina
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria de Turris
- Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | | | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Mara Riminucci, ; Pietro Alano,
| | - Pietro Alano
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Mara Riminucci, ; Pietro Alano,
| |
Collapse
|
11
|
Real E, Nardella F, Scherf A, Mancio-Silva L. Repurposing of Plasmodium falciparum var genes beyond the blood stage. Curr Opin Microbiol 2022; 70:102207. [PMID: 36183663 DOI: 10.1016/j.mib.2022.102207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 01/25/2023]
Abstract
A commonly observed survival strategy in protozoan parasites is the sequential expression of clonally variant-surface antigens to avoid elimination by the host's immune response. In malaria-causing P. falciparum, the immunovariant erythrocyte-membrane protein-1 (PfEMP1) adhesin family, encoded by var genes, is responsible for both antigenic variation and cytoadherence of infected erythrocytes to the microvasculature. Until recently, the biological function of these variant genes was believed to be restricted to intraerythrocytic developmental stages. With the advent of new technologies, var gene expression has been confirmed in transmission and pre-erythrocytic stages. Here, we discuss how repurposing of var gene expression beyond chronic blood-stage infection may be critical for successful transmission.
Collapse
Affiliation(s)
- Eliana Real
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Flore Nardella
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Artur Scherf
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France.
| | - Liliana Mancio-Silva
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
12
|
Hayakawa ESH, Wayama M, Tokumasu F, Ohno N, Matsumoto M, Usukura J. Budding pouches and associated bubbles: 3D visualization of exo-membrane structures in plasmodium falciparum gametocytes. Front Cell Infect Microbiol 2022; 12:962495. [PMID: 36072224 PMCID: PMC9441640 DOI: 10.3389/fcimb.2022.962495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum gametocytes have unique morphology, metabolism, and protein expression profiles in their asexual stages of development. In addition to the striking changes in their appearance, a wide variety of “exo-membrane structures” are newly formed in the gametocyte stage. Little is known about their function, localization, or three-dimensional structural information, and only some structural data, typically two-dimensional, have been reported using conventional electron microscopy or fluorescence microscopy. For better visualization of intracellular organelle and exo-membrane structures, we previously established an unroofing technique to directly observe Maurer’s clefts (MCs) in asexual parasitized erythrocytes by removing the top part of the cell’s membrane followed by transmission electron microscopy. We found that MCs have numerous tethers connecting themselves to the host erythrocyte membrane skeletons. In this study, we investigated the intracellular structures of gametocytes using unroofing-TEM, Serial Block Face scanning electron microscopy, and fluorescence microscopy to unveil the exo-membrane structures in gametocytes. Our data showed “balloon/pouch”-like objects budding from the parasitophorous vacuole membrane (PVM) in gametocytes, and some balloons included multiple layers of other balloons. Furthermore, numerous bubbles appeared on the inner surface of the erythrocyte membrane or PVM; these were similar to MC-like membranes but were smaller than asexual MCs. Our study demonstrated P. falciparum reforms exo-membranes in erythrocytes to meet stage-specific biological activities during their sexual development.
Collapse
Affiliation(s)
- Eri Saki H. Hayakawa
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
- *Correspondence: Eri Saki H. Hayakawa, ; Fuyuki Tokumasu,
| | - Marina Wayama
- Nanostructure Characterization Group, Solution Development Department, Hitachi High-Tech Corporation, Tokyo, Japan
| | - Fuyuki Tokumasu
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- *Correspondence: Eri Saki H. Hayakawa, ; Fuyuki Tokumasu,
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Tochigi, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jiro Usukura
- Institute of Material and Systems for Sustainability, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Usui M, Williamson KC. Stressed Out About Plasmodium falciparum Gametocytogenesis. Front Cell Infect Microbiol 2021; 11:790067. [PMID: 34926328 PMCID: PMC8674873 DOI: 10.3389/fcimb.2021.790067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Blocking malaria transmission is critical to malaria control programs but remains a major challenge especially in endemic regions with high levels of asymptomatic infections. New strategies targeting the transmissible sexual stages of the parasite, called gametocytes, are needed. This review focuses on P. falciparum gametocytogenesis in vivo and in vitro. Highlighting advances made elucidating genes required for gametocyte production and identifying key questions that remain unanswered such as the factors and regulatory mechanisms that contribute to gametocyte induction, and the mechanism of sequestration. Tools available to begin to address these issues are also described to facilitate advances in our understanding of this important stage of the life cycle.
Collapse
Affiliation(s)
- Miho Usui
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
15
|
Salazar Alvarez LC, Vera Lizcano O, da Silva Barros DKA, Baia-da-Silva DC, Monteiro WM, Pimenta PFP, de Lacerda MVG, Costa FTM, Lopes SCP. Plasmodium vivax Gametocytes Adherence to Bone Marrow Endothelial Cells. Front Cell Infect Microbiol 2021; 11:614985. [PMID: 34249772 PMCID: PMC8265044 DOI: 10.3389/fcimb.2021.614985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
In a Plasmodium vivax infection, it was shown a proportionally increased on gametocyte distribution within the bone marrow aspirant, suggesting a role of this organ as a reservoir for this parasite stage. Here, we evaluated the ex vivo cytoadhesive capacity of P. vivax gametocytes to bone marrow endothelial cells (HBMEC) and investigated the involvement of some receptors in the cytoadhesion process by using transfected CHO cells (CHO-ICAM1, CHO-CD36 and CHO-VCAM), wild type (CHO-K1) or deficient in heparan and chondroitin sulfate (CHO-745). Ex-vivo cytoadhesion assays were performed using a total of 44 P. vivax isolates enriched in gametocyte stages by Percoll gradient in the different cell lines. The majority of isolates (88.9%) were able to adhere to HBMEC monolayer. ICAM1 seemed to be the sole receptor significantly involved. CD-36 was the receptor with higher adhesion rate, despite no significance was noticed when compared to CHO-745. We demonstrated that gametocyte P. vivax adheres ex vivo to bone marrow endothelial cells. Moreover, P. vivax gametocytes display the ability to adhere to all CHO cells investigated, especially to CHO-ICAM1. These findings bring insights to the comprehension of the role of the bone marrow as a P. vivax reservoir and the potential impact on parasite transmission to the vector.
Collapse
Affiliation(s)
- Luis Carlos Salazar Alvarez
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Omaira Vera Lizcano
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil.,Grupo de Investigación QUIBIO, Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
| | - Dayanne Kamylla Alves da Silva Barros
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto Leonidas & Maria Deane - ILMD/Fiocruz Amazônia, Manaus, Brazil
| | | | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Paulo Filemon Paolluci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto René Rachou - IRR/Fiocruz Minas, Belo Horizonte, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto Leonidas & Maria Deane - ILMD/Fiocruz Amazônia, Manaus, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto Leonidas & Maria Deane - ILMD/Fiocruz Amazônia, Manaus, Brazil
| |
Collapse
|
16
|
Plasmodium falciparum goes bananas for sex. Mol Biochem Parasitol 2021; 244:111385. [PMID: 34062177 DOI: 10.1016/j.molbiopara.2021.111385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
The sexual blood stages of the human malaria parasite Plasmodium falciparum undergo a remarkable transformation from a roughly spherical shape to an elongated crescent or "falciform" morphology from which the species gets its name. In this review, the molecular events that drive this spectacular shape change are discussed and some questions that remain regarding the mechanistic underpinnings are posed. We speculate on the role of the shape changes in promoting sequestration and release of the developing gametocyte, thereby facilitating parasite survival in the host and underpinning transmission to the mosquito vector.
Collapse
|
17
|
Singh S, Santos JM, Orchard LM, Yamada N, van Biljon R, Painter HJ, Mahony S, Llinás M. The PfAP2-G2 transcription factor is a critical regulator of gametocyte maturation. Mol Microbiol 2021; 115:1005-1024. [PMID: 33368818 PMCID: PMC8330521 DOI: 10.1111/mmi.14676] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Differentiation from asexual blood stages to mature sexual gametocytes is required for the transmission of malaria parasites. Here, we report that the ApiAP2 transcription factor, PfAP2-G2 (PF3D7_1408200) plays a critical role in the maturation of Plasmodium falciparum gametocytes. PfAP2-G2 binds to the promoters of a wide array of genes that are expressed at many stages of the parasite life cycle. Interestingly, we also find binding of PfAP2-G2 within the gene body of almost 3,000 genes, which strongly correlates with the location of H3K36me3 and several other histone modifications as well as Heterochromatin Protein 1 (HP1), suggesting that occupancy of PfAP2-G2 in gene bodies may serve as an alternative regulatory mechanism. Disruption of pfap2-g2 does not impact asexual development, but the majority of sexual parasites are unable to mature beyond stage III gametocytes. The absence of pfap2-g2 leads to overexpression of 28% of the genes bound by PfAP2-G2 and none of the PfAP2-G2 bound genes are downregulated, suggesting that it is a repressor. We also find that PfAP2-G2 interacts with chromatin remodeling proteins, a microrchidia (MORC) protein, and another ApiAP2 protein (PF3D7_1139300). Overall our data demonstrate that PfAP2-G2 establishes an essential gametocyte maturation program in association with other chromatin-related proteins.
Collapse
Affiliation(s)
- Suprita Singh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Joana M. Santos
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Lindsey M. Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Naomi Yamada
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA 16802
| | - Riëtte van Biljon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Heather J. Painter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA 16802
| |
Collapse
|
18
|
Connacher J, Josling GA, Orchard LM, Reader J, Llinás M, Birkholtz LM. H3K36 methylation reprograms gene expression to drive early gametocyte development in Plasmodium falciparum. Epigenetics Chromatin 2021; 14:19. [PMID: 33794978 PMCID: PMC8017609 DOI: 10.1186/s13072-021-00393-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The Plasmodium sexual gametocyte stages are the only transmissible form of the malaria parasite and are thus responsible for the continued transmission of the disease. Gametocytes undergo extensive functional and morphological changes from commitment to maturity, directed by an equally extensive control program. However, the processes that drive the differentiation and development of the gametocyte post-commitment, remain largely unexplored. A previous study reported enrichment of H3K36 di- and tri-methylated (H3K36me2&3) histones in early-stage gametocytes. Using chromatin immunoprecipitation followed by high-throughput sequencing, we identify a stage-specific association between these repressive histone modifications and transcriptional reprogramming that define a stage II gametocyte transition point. Results Here, we show that H3K36me2 and H3K36me3 from stage II gametocytes are associated with repression of genes involved in asexual proliferation and sexual commitment, indicating that H3K36me2&3-mediated repression of such genes is essential to the transition from early gametocyte differentiation to intermediate development. Importantly, we show that the gene encoding the transcription factor AP2-G as commitment master regulator is enriched with H3K36me2&3 and actively repressed in stage II gametocytes, providing the first evidence of ap2-g gene repression in post-commitment gametocytes. Lastly, we associate the enhanced potency of the pan-selective Jumonji inhibitor JIB-04 in gametocytes with the inhibition of histone demethylation including H3K36me2&3 and a disruption of normal transcriptional programs. Conclusions Taken together, our results provide the first description of an association between global gene expression reprogramming and histone post-translational modifications during P. falciparum early sexual development. The stage II gametocyte-specific abundance of H3K36me2&3 manifests predominantly as an independent regulatory mechanism targeted towards genes that are repressed post-commitment. H3K36me2&3-associated repression of genes is therefore involved in key transcriptional shifts that accompany the transition from early gametocyte differentiation to intermediate development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00393-9.
Collapse
Affiliation(s)
- Jessica Connacher
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Gabrielle A Josling
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lindsey M Orchard
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
19
|
Chawla J, Oberstaller J, Adams JH. Targeting Gametocytes of the Malaria Parasite Plasmodium falciparum in a Functional Genomics Era: Next Steps. Pathogens 2021; 10:346. [PMID: 33809464 PMCID: PMC7999360 DOI: 10.3390/pathogens10030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Mosquito transmission of the deadly malaria parasite Plasmodium falciparum is mediated by mature sexual forms (gametocytes). Circulating in the vertebrate host, relatively few intraerythrocytic gametocytes are picked up during a bloodmeal to continue sexual development in the mosquito vector. Human-to-vector transmission thus represents an infection bottleneck in the parasite's life cycle for therapeutic interventions to prevent malaria. Even though recent progress has been made in the identification of genetic factors linked to gametocytogenesis, a plethora of genes essential for sexual-stage development are yet to be unraveled. In this review, we revisit P. falciparum transmission biology by discussing targetable features of gametocytes and provide a perspective on a forward-genetic approach for identification of novel transmission-blocking candidates in the future.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 7, Tampa, FL 33612, USA;
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| |
Collapse
|
20
|
Tonkin-Hill G, Ruybal-Pesántez S, Tiedje KE, Rougeron V, Duffy MF, Zakeri S, Pumpaibool T, Harnyuttanakorn P, Branch OH, Ruiz-Mesía L, Rask TS, Prugnolle F, Papenfuss AT, Chan YB, Day KP. Evolutionary analyses of the major variant surface antigen-encoding genes reveal population structure of Plasmodium falciparum within and between continents. PLoS Genet 2021; 17:e1009269. [PMID: 33630855 PMCID: PMC7906310 DOI: 10.1371/journal.pgen.1009269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a major public health problem in many countries. Unlike influenza and HIV, where diversity in immunodominant surface antigens is understood geographically to inform disease surveillance, relatively little is known about the global population structure of PfEMP1, the major variant surface antigen of the malaria parasite Plasmodium falciparum. The complexity of the var multigene family that encodes PfEMP1 and that diversifies by recombination, has so far precluded its use in malaria surveillance. Recent studies have demonstrated that cost-effective deep sequencing of the region of var genes encoding the PfEMP1 DBLα domain and subsequent classification of within host sequences at 96% identity to define unique DBLα types, can reveal structure and strain dynamics within countries. However, to date there has not been a comprehensive comparison of these DBLα types between countries. By leveraging a bioinformatic approach (jumping hidden Markov model) designed specifically for the analysis of recombination within var genes and applying it to a dataset of DBLα types from 10 countries, we are able to describe population structure of DBLα types at the global scale. The sensitivity of the approach allows for the comparison of the global dataset to ape samples of Plasmodium Laverania species. Our analyses show that the evolution of the parasite population emerging out of Africa underlies current patterns of DBLα type diversity. Most importantly, we can distinguish geographic population structure within Africa between Gabon and Ghana in West Africa and Uganda in East Africa. Our evolutionary findings have translational implications in the context of globalization. Firstly, DBLα type diversity can provide a simple diagnostic framework for geographic surveillance of the rapidly evolving transmission dynamics of P. falciparum. It can also inform efforts to understand the presence or absence of global, regional and local population immunity to major surface antigen variants. Additionally, we identify a number of highly conserved DBLα types that are present globally that may be of biological significance and warrant further characterization.
Collapse
Affiliation(s)
- Gerry Tonkin-Hill
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Shazia Ruybal-Pesántez
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Virginie Rougeron
- Laboratoire MIVEGEC, Université de Montpellier-CNRS-IRD, Montpellier, France
| | - Michael F. Duffy
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Tepanata Pumpaibool
- Biomedical Science, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Malaria Research Programme, College of Public Health Science, Chulalongkorn University, Bangkok, Thailand
| | - Pongchai Harnyuttanakorn
- Malaria Research Programme, College of Public Health Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - OraLee H. Branch
- Concordia University, Portland, Oregon, United States of America
- Universidad Nacional de la Amazonía Peruana, Iquitos, Perú
| | | | - Thomas S. Rask
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Franck Prugnolle
- Laboratoire MIVEGEC, Université de Montpellier-CNRS-IRD, Montpellier, France
| | - Anthony T. Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute, Melbourne, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
- Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
21
|
Jennison C, Lucantoni L, O'Neill MT, McConville R, Erickson SM, Cowman AF, Sleebs BE, Avery VM, Boddey JA. Inhibition of Plasmepsin V Activity Blocks Plasmodium falciparum Gametocytogenesis and Transmission to Mosquitoes. Cell Rep 2020; 29:3796-3806.e4. [PMID: 31851913 DOI: 10.1016/j.celrep.2019.11.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum gametocytes infect mosquitoes and are responsible for malaria transmission. New interventions that block transmission could accelerate malaria elimination. Gametocytes develop within erythrocytes and activate protein export pathways that remodel the host cell. Plasmepsin V (PMV) is an aspartyl protease that is required for protein export in asexual parasites, but its function and essentiality in gametocytes has not been definitively proven, nor has PMV been assessed as a transmission-blocking drug target. Here, we show that PMV is expressed and can be inhibited specifically in P. falciparum stage I-II gametocytes. PMV inhibitors block processing and export of gametocyte effector proteins and inhibit development of stage II-V gametocytes. Gametocytogenesis in the presence of sublethal inhibitor concentrations results in stage V gametocytes that fail to infect mosquitoes. Therefore, PMV primes gametocyte effectors for export, which is essential for the development and fitness of gametocytes for transmission to mosquitoes.
Collapse
Affiliation(s)
- Charlie Jennison
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, QLD, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia
| | - Robyn McConville
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Sara M Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, QLD, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
22
|
Neveu G, Richard C, Dupuy F, Behera P, Volpe F, Subramani PA, Marcel-Zerrougui B, Vallin P, Andrieu M, Minz AM, Azar N, Martins RM, Lorthiois A, Gazeau F, Lopez-Rubio JJ, Mazier D, Silva AKA, Satpathi S, Wassmer SC, Verdier F, Lavazec C. Plasmodium falciparum sexual parasites develop in human erythroblasts and affect erythropoiesis. Blood 2020; 136:1381-1393. [PMID: 32589714 PMCID: PMC7498361 DOI: 10.1182/blood.2019004746] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Plasmodium falciparum gametocytes, the sexual stage responsible for malaria parasite transmission from humans to mosquitoes, are key targets for malaria elimination. Immature gametocytes develop in the human bone marrow parenchyma, where they accumulate around erythroblastic islands. Notably though, the interactions between gametocytes and this hematopoietic niche have not been investigated. Here, we identify late erythroblasts as a new host cell for P falciparum sexual stages and show that gametocytes can fully develop inside these nucleated cells in vitro and in vivo, leading to infectious mature gametocytes within reticulocytes. Strikingly, we found that infection of erythroblasts by gametocytes and parasite-derived extracellular vesicles delay erythroid differentiation, thereby allowing gametocyte maturation to coincide with the release of their host cell from the bone marrow. Taken together, our findings highlight new mechanisms that are pivotal for the maintenance of immature gametocytes in the bone marrow and provide further insights on how Plasmodium parasites interfere with erythropoiesis and contribute to anemia in malaria patients.
Collapse
Affiliation(s)
- Gaëlle Neveu
- INSERM U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Université de Paris, Institut Cochin, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cyrielle Richard
- INSERM U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Université de Paris, Institut Cochin, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Florian Dupuy
- INSERM U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Université de Paris, Institut Cochin, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Prativa Behera
- Department of Pathology, Ispat General Hospital, Rourkela, Odisha, India
| | - Fiona Volpe
- INSERM U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Université de Paris, Institut Cochin, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Pradeep Annamalai Subramani
- INSERM U1135, CNRS Equipe de Recherche Labellisée (ERL) 8255, Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Patrice Vallin
- INSERM U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Université de Paris, Institut Cochin, Paris, France
| | - Muriel Andrieu
- INSERM U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Université de Paris, Institut Cochin, Paris, France
| | - Aruna Mukti Minz
- Department of Pathology, Ispat General Hospital, Rourkela, Odisha, India
| | - Nabih Azar
- Service d'Hémobiologie, Hôpital La Pitié Salpêtrière, Paris, France
| | - Rafael M Martins
- Laboratory of Pathogen Host Interactions - UMR 5235, CNRS, INSERM, Université de Montpellier, Montpellier, France; and
| | - Audrey Lorthiois
- INSERM U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Université de Paris, Institut Cochin, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Florence Gazeau
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS, Université de Paris, Paris, France
| | - José-Juan Lopez-Rubio
- Laboratory of Pathogen Host Interactions - UMR 5235, CNRS, INSERM, Université de Montpellier, Montpellier, France; and
| | - Dominique Mazier
- INSERM U1135, CNRS Equipe de Recherche Labellisée (ERL) 8255, Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Amanda K A Silva
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS, Université de Paris, Paris, France
| | | | - Samuel C Wassmer
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Frédérique Verdier
- INSERM U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Université de Paris, Institut Cochin, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Catherine Lavazec
- INSERM U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Université de Paris, Institut Cochin, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
23
|
Venugopal K, Hentzschel F, Valkiūnas G, Marti M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat Rev Microbiol 2020; 18:177-189. [PMID: 31919479 PMCID: PMC7223625 DOI: 10.1038/s41579-019-0306-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/28/2022]
Abstract
Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood-feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood-stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions.
Collapse
Affiliation(s)
- Kannan Venugopal
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Franziska Hentzschel
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
24
|
de Jong RM, Tebeje SK, Meerstein‐Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunol Rev 2020; 293:190-215. [PMID: 31840844 PMCID: PMC6973022 DOI: 10.1111/imr.12828] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.
Collapse
MESH Headings
- Antibodies, Blocking/immunology
- Antibodies, Protozoan/immunology
- Host-Parasite Interactions/immunology
- Humans
- Immunity
- Immunomodulation
- Life Cycle Stages
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
Collapse
Affiliation(s)
- Roos M. de Jong
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Lisette Meerstein‐Kessel
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research InstituteAddis AbabaEthiopia
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthijs M. Jore
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Will Stone
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Teun Bousema
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
25
|
van Biljon R, van Wyk R, Painter HJ, Orchard L, Reader J, Niemand J, Llinás M, Birkholtz LM. Hierarchical transcriptional control regulates Plasmodium falciparum sexual differentiation. BMC Genomics 2019; 20:920. [PMID: 31795940 PMCID: PMC6889441 DOI: 10.1186/s12864-019-6322-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Malaria pathogenesis relies on sexual gametocyte forms of the malaria parasite to be transmitted between the infected human and the mosquito host but the molecular mechanisms controlling gametocytogenesis remains poorly understood. Here we provide a high-resolution transcriptome of Plasmodium falciparum as it commits to and develops through gametocytogenesis. RESULTS The gametocyte-associated transcriptome is significantly different from that of the asexual parasites, with dynamic gene expression shifts characterizing early, intermediate and late-stage gametocyte development and results in differential timing for sex-specific transcripts. The transcriptional dynamics suggest strict transcriptional control during gametocytogenesis in P. falciparum, which we propose is mediated by putative regulators including epigenetic mechanisms (driving active repression of proliferation-associated processes) and a cascade-like expression of ApiAP2 transcription factors. CONCLUSIONS The gametocyte transcriptome serves as the blueprint for sexual differentiation and will be a rich resource for future functional studies on this critical stage of Plasmodium development, as the intraerythrocytic transcriptome has been for our understanding of the asexual cycle.
Collapse
Affiliation(s)
- Riëtte van Biljon
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Heather J Painter
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Review, U.S. Food & Drug Administration, Silver Spring, MD, 20993, USA
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
26
|
Neveu G, Lavazec C. Erythrocyte Membrane Makeover by Plasmodium falciparum Gametocytes. Front Microbiol 2019; 10:2652. [PMID: 31787966 PMCID: PMC6856072 DOI: 10.3389/fmicb.2019.02652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum sexual parasites, called gametocytes, are the only parasite stages responsible for transmission from humans to Anopheles mosquitoes. During their maturation, P. falciparum gametocytes remodel the structural and mechanical properties of the membrane of their erythrocyte host. This remodeling is induced by the export of several parasite proteins and a dynamic reorganization of the erythrocyte cytoskeleton. Some of these modifications are specific for sexual stages and play a key role for gametocyte maturation, sequestration in internal organs, subsequent release in the bloodstream and ability to persist in circulation. Here we discuss the mechanisms developed by gametocytes to remodel their host cell and the functional relevance of these modifications.
Collapse
Affiliation(s)
- Gaëlle Neveu
- Inserm U1016, CNRS UMR 8104, Université de Paris, Institut Cochin, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR 8104, Université de Paris, Institut Cochin, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
27
|
Host Cytoskeleton Remodeling throughout the Blood Stages of Plasmodium falciparum. Microbiol Mol Biol Rev 2019; 83:83/4/e00013-19. [PMID: 31484690 DOI: 10.1128/mmbr.00013-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asexual intraerythrocytic development of Plasmodium falciparum, causing the most severe form of human malaria, is marked by extensive host cell remodeling. Throughout the processes of invasion, intracellular development, and egress, the erythrocyte membrane skeleton is remodeled by the parasite as required for each specific developmental stage. The remodeling is facilitated by a plethora of exported parasite proteins, and the erythrocyte membrane skeleton is the interface of most of the observed interactions between the parasite and host cell proteins. Host cell remodeling has been extensively described and there is a vast body of information on protein export or the description of parasite-induced structures such as Maurer's clefts or knobs on the host cell surface. Here we specifically review the molecular level of each host cell-remodeling step at each stage of the intraerythrocytic development of P. falciparum We describe key events, such as invasion, knob formation, and egress, and identify the interactions between exported parasite proteins and the host cell cytoskeleton. We discuss each remodeling step with respect to time and specific requirement of the developing parasite to explain host cell remodeling in a stage-specific manner. Thus, we highlight the interaction with the host membrane skeleton as a key event in parasite survival.
Collapse
|
28
|
Ngotho P, Soares AB, Hentzschel F, Achcar F, Bertuccini L, Marti M. Revisiting gametocyte biology in malaria parasites. FEMS Microbiol Rev 2019; 43:401-414. [PMID: 31220244 PMCID: PMC6606849 DOI: 10.1093/femsre/fuz010] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Gametocytes are the only form of the malaria parasite that is transmissible to the mosquito vector. They are present at low levels in blood circulation and significant knowledge gaps exist in their biology. Recent reductions in the global malaria burden have brought the possibility of elimination and eradication, with renewed focus on malaria transmission biology as a basis for interventions. This review discusses recent insights into gametocyte biology in the major human malaria parasite, Plasmodium falciparum and related species.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Alexandra Blancke Soares
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Lucia Bertuccini
- Core Facilities, Microscopy Area, Instituto Superiore di Sanita, Via Regina Elena 299, 00161 Rome, Italy
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA
| |
Collapse
|
29
|
Dantzler KW, Ma S, Ngotho P, Stone WJR, Tao D, Rijpma S, De Niz M, Nilsson Bark SK, Jore MM, Raaijmakers TK, Early AM, Ubaida-Mohien C, Lemgruber L, Campo JJ, Teng AA, Le TQ, Walker CL, Hermand P, Deterre P, Davies DH, Felgner P, Morlais I, Wirth DF, Neafsey DE, Dinglasan RR, Laufer M, Huttenhower C, Seydel K, Taylor T, Bousema T, Marti M. Naturally acquired immunity against immature Plasmodium falciparum gametocytes. Sci Transl Med 2019; 11:eaav3963. [PMID: 31167926 PMCID: PMC6653583 DOI: 10.1126/scitranslmed.aav3963] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
The recent decline in global malaria burden has stimulated efforts toward Plasmodium falciparum elimination. Understanding the biology of malaria transmission stages may provide opportunities to reduce or prevent onward transmission to mosquitoes. Immature P. falciparum transmission stages, termed stages I to IV gametocytes, sequester in human bone marrow before release into the circulation as mature stage V gametocytes. This process likely involves interactions between host receptors and potentially immunogenic adhesins on the infected red blood cell (iRBC) surface. Here, we developed a flow cytometry assay to examine immune recognition of live gametocytes of different developmental stages by naturally exposed Malawians. We identified strong antibody recognition of the earliest immature gametocyte-iRBCs (giRBCs) but not mature stage V giRBCs. Candidate surface antigens (n = 30), most of them shared between asexual- and gametocyte-iRBCs, were identified by mass spectrometry and mouse immunizations, as well as correlations between responses by protein microarray and flow cytometry. Naturally acquired responses to a subset of candidate antigens were associated with reduced asexual and gametocyte density, and plasma samples from malaria-infected individuals were able to induce immune clearance of giRBCs in vitro. Infected RBC surface expression of select candidate antigens was validated using specific antibodies, and genetic analysis revealed a subset with minimal variation across strains. Our data demonstrate that humoral immune responses to immature giRBCs and shared iRBC antigens are naturally acquired after malaria exposure. These humoral immune responses may have consequences for malaria transmission potential by clearing developing gametocytes, which could be leveraged for malaria intervention.
Collapse
Affiliation(s)
- Kathleen W Dantzler
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Siyuan Ma
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Priscilla Ngotho
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Will J R Stone
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sanna Rijpma
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Sandra K Nilsson Bark
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthijs M Jore
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | - Tonke K Raaijmakers
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | | | | | - Leandro Lemgruber
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | | | | | - Patricia Hermand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMR 1135, ERL CNRS 8255, F-75013 Paris, France
| | - Philippe Deterre
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMR 1135, ERL CNRS 8255, F-75013 Paris, France
| | - D Huw Davies
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Phil Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Isabelle Morlais
- UMR MIVEGEC UM1-CNRS 5290-IRD 224, Institut de Recherche pour le Développement, Montpellier Cedex, France
| | - Dyann F Wirth
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Miriam Laufer
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karl Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands.
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthias Marti
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Abstract
In the progression of the life cycle of Plasmodium falciparum, a small proportion of asexual parasites differentiate into male or female sexual forms called gametocytes. Just like their asexual counterparts, gametocytes are contained within the infected host's erythrocytes (RBCs). However, unlike their asexual partners, they do not exit the RBC until they are taken up in a blood meal by a mosquito. In the mosquito midgut, they are stimulated to emerge from the RBC, undergo fertilization, and ultimately produce tens of thousands of sporozoites that are infectious to humans. This transmission cycle can be blocked by antibodies targeting proteins exposed on the parasite surface in the mosquito midgut, a process that has led to the development of candidate transmission-blocking vaccines (TBV), including some that are in clinical trials. Here we review the leading TBV antigens and highlight the ongoing search for additional gametocyte/gamete surface antigens, as well as antigens on the surfaces of gametocyte-infected erythrocytes, which can potentially become a new group of TBV candidates.
Collapse
|
31
|
Kengne-Ouafo JA, Sutherland CJ, Binka FN, Awandare GA, Urban BC, Dinko B. Immune Responses to the Sexual Stages of Plasmodium falciparum Parasites. Front Immunol 2019; 10:136. [PMID: 30804940 PMCID: PMC6378314 DOI: 10.3389/fimmu.2019.00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria infections remain a serious global health problem in the world, particularly among children and pregnant women in Sub-Saharan Africa. Moreover, malaria control and elimination is hampered by rapid development of resistance by the parasite and the vector to commonly used antimalarial drugs and insecticides, respectively. Therefore, vaccine-based strategies are sorely needed, including those designed to interrupt disease transmission. However, a prerequisite for such a vaccine strategy is the understanding of both the human and vector immune responses to parasite developmental stages involved in parasite transmission in both man and mosquito. Here, we review the naturally acquired humoral and cellular responses to sexual stages of the parasite while in the human host and the Anopheles vector. In addition, updates on current anti-gametocyte, anti-gamete, and anti-mosquito transmission blocking vaccines are given. We conclude with our views on some important future directions of research into P. falciparum sexual stage immunity relevant to the search for the most appropriate transmission-blocking vaccine.
Collapse
Affiliation(s)
- Jonas A Kengne-Ouafo
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Colin J Sutherland
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fred N Binka
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Britta C Urban
- Faculty of Biological Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
32
|
Chan JA, Drew DR, Reiling L, Lisboa-Pinto A, Dinko B, Sutherland CJ, Dent AE, Chelimo K, Kazura JW, Boyle MJ, Beeson JG. Low Levels of Human Antibodies to Gametocyte-Infected Erythrocytes Contrasts the PfEMP1-Dominant Response to Asexual Stages in P. falciparum Malaria. Front Immunol 2019; 9:3126. [PMID: 30692996 PMCID: PMC6340286 DOI: 10.3389/fimmu.2018.03126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
Vaccines that target Plasmodium falciparum gametocytes have the potential to reduce malaria transmission and are thus attractive targets for malaria control. However, very little is known about human immune responses to gametocytes present in human hosts. We evaluated naturally-acquired antibodies to gametocyte-infected erythrocytes (gametocyte-IEs) of different developmental stages compared to other asexual parasite stages among naturally-exposed Kenyan residents. We found that acquired antibodies strongly recognized the surface of mature asexual-IEs, but there was limited reactivity to the surface of gametocyte-IEs of different stages. We used genetically-modified P. falciparum with suppressed expression of PfEMP1, the major surface antigen of asexual-stage IEs, to demonstrate that PfEMP1 is a dominant target of antibodies to asexual-IEs, in contrast to gametocyte-IEs. Antibody reactivity to gametocyte-IEs was similar to asexual-IEs lacking PfEMP1. Significant antibody reactivity to the surface of gametocytes was observed when outside of the host erythrocyte, including recognition of the major gametocyte antigen, Pfs230. This indicates that there is a deficiency of acquired antibodies to gametocyte-IEs despite the acquisition of antibodies to gametocyte antigens and asexual IEs. Our findings suggest that the acquisition of substantial immunity to the surface of gametocyte-IEs is limited, which may facilitate immune evasion to enable malaria transmission even in the face of substantial host immunity to malaria. Further studies are needed to understand the basis for the limited acquisition of antibodies to gametocytes and whether vaccine strategies can generate substantial immunity.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - Ashley Lisboa-Pinto
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Colin J Sutherland
- Department of Immunology and InfectionLondon School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arlene E Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
| | - Kiprotich Chelimo
- Department of Biomedical Science and Technology Maseno University, Kisumu, Kenya
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne Parkville, VIC, Australia.,Department of Microbiology and Central Clinical School, Monash University Melbourne, VIC, Australia
| |
Collapse
|
33
|
Adapa SR, Taylor RA, Wang C, Thomson-Luque R, Johnson LR, Jiang RHY. Plasmodium vivax readiness to transmit: implication for malaria eradication. BMC SYSTEMS BIOLOGY 2019; 13:5. [PMID: 30634978 PMCID: PMC6330404 DOI: 10.1186/s12918-018-0669-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Background The lack of a continuous long-term in vitro culture system for Plasmodium vivax severely limits our knowledge of pathophysiology of the most widespread malaria parasite. To gain direct understanding of P. vivax human infections, we used Next Generation Sequencing data mining to unravel parasite in vivo expression profiles for P. vivax, and P. falciparum as comparison. Results We performed cloud and local computing to extract parasite transcriptomes from publicly available raw data of human blood samples. We developed a Poisson Modelling (PM) method to confidently identify parasite derived transcripts in mixed RNAseq signals of infected host tissues. We successfully retrieved and reconstructed parasite transcriptomes from infected patient blood as early as the first blood stage cycle; and the same methodology did not recover any significant signal from controls. Surprisingly, these first generation blood parasites already show strong signature of transmission, which indicates the commitment from asexual-to-sexual stages. Further, we place the results within the context of P. vivax’s complex life cycle, by developing mathematical models for P. vivax and P. falciparum and using sensitivity analysis assess the relative epidemiological impact of possible early stage transmission. Conclusion The study uncovers the earliest onset of P. vivax blood pathogenesis and highlights the challenges of P. vivax eradication programs. Electronic supplementary material The online version of this article (10.1186/s12918-018-0669-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Swamy Rakesh Adapa
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Rachel A Taylor
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Chengqi Wang
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Richard Thomson-Luque
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Leah R Johnson
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Rays H Y Jiang
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
34
|
Plasmodium falciparum gametocyte-infected erythrocytes do not adhere to human primary erythroblasts. Sci Rep 2018; 8:17886. [PMID: 30552367 PMCID: PMC6294825 DOI: 10.1038/s41598-018-36148-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/16/2018] [Indexed: 11/14/2022] Open
Abstract
Plasmodium falciparum gametocytes, the sexual stages responsible for malaria parasite transmission, develop in the human bone marrow parenchyma in proximity to the erythroblastic islands. Yet, mechanisms underlying gametocytes interactions with these islands are unknown. Here, we have investigated whether gametocyte-infected erythrocytes (GIE) adhere to erythroid precursors, and whether a putative adhesion may be mediated by a mechanism similar to the adhesion of erythrocytes infected with P. falciparum asexual stages to uninfected erythrocytes. Cell-cell adhesion assays with human primary erythroblasts or erythroid cell lines revealed that immature GIE do not specifically adhere to erythroid precursors. To determine whether adhesion may be dependent on binding of STEVOR proteins to Glycophorin C on the surface of erythroid cells, we used clonal lines and transgenic parasites that overexpress specific STEVOR proteins known to bind to Glycophorin C in asexual stages. Our results indicate that GIE overexpressing STEVOR do not specifically adhere to erythroblasts, in agreement with our observation that the STEVOR adhesive domain is not exposed at the surface of GIE.
Collapse
|
35
|
Bunnik EM, Cook KB, Varoquaux N, Batugedara G, Prudhomme J, Cort A, Shi L, Andolina C, Ross LS, Brady D, Fidock DA, Nosten F, Tewari R, Sinnis P, Ay F, Vert JP, Noble WS, Le Roch KG. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat Commun 2018; 9:1910. [PMID: 29765020 PMCID: PMC5954139 DOI: 10.1038/s41467-018-04295-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
The development of malaria parasites throughout their various life cycle stages is coordinated by changes in gene expression. We previously showed that the three-dimensional organization of the Plasmodium falciparum genome is strongly associated with gene expression during its replication cycle inside red blood cells. Here, we analyze genome organization in the P. falciparum and P. vivax transmission stages. Major changes occur in the localization and interactions of genes involved in pathogenesis and immune evasion, host cell invasion, sexual differentiation, and master regulation of gene expression. Furthermore, we observe reorganization of subtelomeric heterochromatin around genes involved in host cell remodeling. Depletion of heterochromatin protein 1 (PfHP1) resulted in loss of interactions between virulence genes, confirming that PfHP1 is essential for maintenance of the repressive center. Our results suggest that the three-dimensional genome structure of human malaria parasites is strongly connected with transcriptional activity of specific gene families throughout the life cycle.
Collapse
Affiliation(s)
- Evelien M Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Kate B Cook
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Nelle Varoquaux
- Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA, 94720, USA
- Berkeley Institute for Data Science, 190 Doe Library, Berkeley, CA, 94720, USA
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 60 boulevard Saint-Michel, 75006, Paris, France
- Institut Curie, 75248, Paris, France
- U900, INSERM, Paris, 75248, France
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Anthony Cort
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Lirong Shi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, E5132, Baltimore, MD, 21205, USA
| | - Chiara Andolina
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, 63110, Thailand
| | - Leila S Ross
- Department of Microbiology and Immunology, Columbia University Medical Center, 701W. 168 St., HHSC 1208, New York, NY, 10032, USA
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, 701W. 168 St., HHSC 1208, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, 63110, Thailand
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, E5132, Baltimore, MD, 21205, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy & Immunology, 9420 Athena Cir, La Jolla, CA, 92037, USA
| | - Jean-Philippe Vert
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 60 boulevard Saint-Michel, 75006, Paris, France
- Institut Curie, 75248, Paris, France
- U900, INSERM, Paris, 75248, France
- Département de mathématiques et applications, École normale supérieure, CNRS, PSL Research University, Paris, 75005, France
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA.
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
36
|
Fraschka SA, Filarsky M, Hoo R, Niederwieser I, Yam XY, Brancucci NMB, Mohring F, Mushunje AT, Huang X, Christensen PR, Nosten F, Bozdech Z, Russell B, Moon RW, Marti M, Preiser PR, Bártfai R, Voss TS. Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites. Cell Host Microbe 2018; 23:407-420.e8. [PMID: 29503181 PMCID: PMC5853956 DOI: 10.1016/j.chom.2018.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium.
Collapse
Affiliation(s)
- Sabine A Fraschka
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Michael Filarsky
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Xue Yan Yam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Nicolas M B Brancucci
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02155, USA
| | - Franziska Mohring
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Annals T Mushunje
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ximei Huang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter R Christensen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford OX3 7FZ, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Robert W Moon
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Matthias Marti
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02155, USA
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Richárd Bártfai
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, the Netherlands.
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
37
|
Messina V, Valtieri M, Rubio M, Falchi M, Mancini F, Mayor A, Alano P, Silvestrini F. Gametocytes of the Malaria Parasite Plasmodium falciparum Interact With and Stimulate Bone Marrow Mesenchymal Cells to Secrete Angiogenetic Factors. Front Cell Infect Microbiol 2018; 8:50. [PMID: 29546035 PMCID: PMC5838020 DOI: 10.3389/fcimb.2018.00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
The gametocytes of Plasmodium falciparum, responsible for the transmission of this malaria parasite from humans to mosquitoes, accumulate and mature preferentially in the human bone marrow. In the 10 day long sexual development of P. falciparum, the immature gametocytes reach and localize in the extravascular compartment of this organ, in contact with several bone marrow stroma cell types, prior to traversing the endothelial lining and re-entering in circulation at maturity. To investigate the host parasite interplay underlying this still obscure process, we developed an in vitro tridimensional co-culture system in a Matrigel scaffold with P. falciparum gametocytes and self-assembling spheroids of human bone marrow mesenchymal cells (hBM-MSCs). Here we show that this co-culture system sustains the full maturation of the gametocytes and that the immature, but not the mature, gametocytes adhere to hBM-MSCs via trypsin-sensitive parasite ligands exposed on the erythrocyte surface. Analysis of a time course of gametocytogenesis in the co-culture system revealed that gametocyte maturation is accompanied by the parasite induced stimulation of hBM-MSCs to secrete a panel of 14 cytokines and growth factors, 13 of which have been described to play a role in angiogenesis. Functional in vitro assays on human bone marrow endothelial cells showed that supernatants from the gametocyte mesenchymal cell co-culture system enhance ability of endothelial cells to form vascular tubes. These results altogether suggest that the interplay between immature gametocytes and hBM-MSCs may induce functional and structural alterations in the endothelial lining of the human bone marrow hosting the P. falciparum transmission stages.
Collapse
Affiliation(s)
- Valeria Messina
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Valtieri
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Mercedes Rubio
- ISGlobal, Barcelona Ctr. Int. Health Res, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Mario Falchi
- AIDS National Center, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Mancini
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Umberto I - Policlinico di Roma, Rome, Italy
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
38
|
Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol 2017; 15:479-491. [DOI: 10.1038/nrmicro.2017.47] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Farid R, Dixon MW, Tilley L, McCarthy JS. Initiation of gametocytogenesis at very low parasite density in Plasmodium falciparum infection. J Infect Dis 2017; 215:1167-1174. [PMID: 28498997 PMCID: PMC5426372 DOI: 10.1093/infdis/jix035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/05/2017] [Indexed: 11/28/2022] Open
Abstract
The recent focus on the elimination of malaria has led to an increased interest in the role of sexual stages in its transmission. We introduce Plasmodium falciparum gametocyte exported protein-5 (PfGEXP5) transcript analysis as an important tool for evaluating the earliest (ring) stage sexual gametocytes in the blood of infected individuals. We show that gametocyte rings are detected in the peripheral blood immediately following establishment of asexual infections—without the need for triggers such as high-density asexual parasitemia or drug treatment. Committed gametocytes are refractory to the commonly used drug piperaquine, and mature gametocytes reappear in the bloodstream 10 days after the initial appearance of gametocyte rings. A further wave of commitment is observed following recrudescent asexual parasitemia, and these gametocytes are again refractory to piperaquine treatment. This work has implications for monitoring gametocyte and transmission dynamics and responses to drug treatment.
Collapse
Affiliation(s)
- Ryan Farid
- QIMR Berghofer Medical Research Institute and University of Queensland, Brisbane, Australia; and
| | - Matthew W. Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute and University of Queensland, Brisbane, Australia; and
| |
Collapse
|
40
|
Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci Rep 2017; 7:607. [PMID: 28377601 PMCID: PMC5428830 DOI: 10.1038/s41598-017-00687-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/08/2017] [Indexed: 01/24/2023] Open
Abstract
Gene expression in Plasmodia integrates post-transcriptional regulation with epigenetic marking of active genomic regions through histone post-translational modifications (PTMs). To generate insights into the importance of histone PTMs to the entire asexual and sexual developmental cycles of the parasite, we used complementary and comparative quantitative chromatin proteomics to identify and functionally characterise histone PTMs in 8 distinct life cycle stages of P. falciparum parasites. ~500 individual histone PTMs were identified of which 106 could be stringently validated. 46 individual histone PTMs and 30 co-existing PTMs were fully quantified with high confidence. Importantly, 15 of these histone PTMs are novel for Plasmodia (e.g. H3K122ac, H3K27me3, H3K56me3). The comparative nature of the data revealed a highly dynamic histone PTM landscape during life cycle development, with a set of histone PTMs (H3K4ac, H3K9me1 and H3K36me2) displaying a unique and conserved abundance profile exclusively during gametocytogenesis (P < 0.001). Euchromatic histone PTMs are abundant during schizogony and late gametocytes; heterochromatic PTMs mark early gametocytes. Collectively, this data provides the most accurate, complete and comparative chromatin proteomic analyses of the entire life cycle development of malaria parasites. A substantial association between histone PTMs and stage-specific transition provides insights into the intricacies characterising Plasmodial developmental biology.
Collapse
|
41
|
Dinko B, King E, Targett GAT, Sutherland CJ. Antibody responses to surface antigens of Plasmodium falciparum gametocyte-infected erythrocytes and their relation to gametocytaemia. Parasite Immunol 2017; 38:352-64. [PMID: 27084060 PMCID: PMC5089589 DOI: 10.1111/pim.12323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/06/2016] [Indexed: 01/13/2023]
Abstract
An essential element for continuing transmission of Plasmodium falciparum is the availability of mature gametocytes in human peripheral circulation for uptake by mosquitoes. Natural immune responses to circulating gametocytes may play a role in reducing transmission from humans to mosquitoes. Here, antibody recognition of the surface of mature intra‐erythrocytic gametocytes produced either by a laboratory‐adapted parasite, 3D7, or by a recent clinical isolate of Kenyan origin (HL1204), was evaluated longitudinally in a cohort of Ghanaian school children by flow cytometry. This showed that a proportion of children exhibited antibody responses that recognized gametocyte surface antigens on one or both parasite lines. A subset of the children maintained detectable anti‐gametocyte surface antigen (GSA) antibody levels during the 5 week study period. There was indicative evidence that children with anti‐GSA antibodies present at enrolment were less likely to have patent gametocytaemia at subsequent visits (odds ratio = 0·29, 95% CI 0·06–1·05; P = 0·034). Our data support the existence of antigens on the surface of gametocyte‐infected erythrocytes, but further studies are needed to confirm whether antibodies against them reduce gametocyte carriage. The identification of GSA would allow their evaluation as potential anti‐gametocyte vaccine candidates and/or biomarkers for gametocyte carriage.
Collapse
Affiliation(s)
- B Dinko
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - E King
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G A T Targett
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - C J Sutherland
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
42
|
Abstract
Understanding transmission biology at an individual level is a key component of intervention strategies that target the spread of malaria parasites from human to mosquito. Gametocytes are specialized sexual stages of the malaria parasite life cycle developed during evolution to achieve crucial steps in transmission. As sexual differentiation and transmission are tightly linked, a deeper understanding of molecular and cellular events defining this relationship is essential to combat malaria. Recent advances in the field are gradually revealing mechanisms underlying sexual commitment, gametocyte sequestration, and dynamics of transmissible stages; however, key questions on fundamental gametocyte biology still remain. Moreover, species-specific variation between Plasmodium falciparum and Plasmodium vivax transmission dynamics pose another significant challenge for worldwide malaria elimination efforts. Here, we review the biology of transmission stages, highlighting numerous factors influencing development and dynamics of gametocytes within the host and determinants of human infectiousness.
Collapse
Affiliation(s)
- Elamaran Meibalan
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| | - Matthias Marti
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| |
Collapse
|
43
|
Plasmodium falciparum STEVOR phosphorylation regulates host erythrocyte deformability enabling malaria parasite transmission. Blood 2016; 127:e42-53. [DOI: 10.1182/blood-2016-01-690776] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/29/2016] [Indexed: 12/25/2022] Open
Abstract
Key Points
P falciparum STEVORs interact with the erythrocyte cytoskeletal ankyrin complex. Infected erythrocyte deformability is regulated by PKA-mediated phosphorylation of STEVOR cytoplasmic domain.
Collapse
|
44
|
Duffy S, Loganathan S, Holleran JP, Avery VM. Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nat Protoc 2016; 11:976-92. [PMID: 27123949 DOI: 10.1038/nprot.2016.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tightly controlled induction of Plasmodium falciparum gametocytes in large-scale culture is a fundamental requirement for malaria drug discovery applications including, but not limited to, high-throughput screening. This protocol uses magnetic separation for isolation of hemozoin-containing parasites in order to (i) increase parasitemia, (ii) decrease hematocrit and (iii) introduce higher levels of young red blood cells in a culture simultaneously within 2-4 h. These parameters, along with red blood cell lysis products that are generated through schizont rupture, are highly relevant for enabling optimum induction of gametocytogenesis in vitro. No other previously published protocols have applied this particular approach for parasite isolation and maximization of fresh red blood cells before inducing gametocytogenesis, which is essential for obtaining highly synchronous gametocyte classical stages on a large scale. In summary, 500-1,000 million stage IV gametocytes can be obtained within 16 d from an initial 10 ml of asexual blood-stage culture.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Sasdekumar Loganathan
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - John P Holleran
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
45
|
Dearnley M, Chu T, Zhang Y, Looker O, Huang C, Klonis N, Yeoman J, Kenny S, Arora M, Osborne JM, Chandramohanadas R, Zhang S, Dixon MWA, Tilley L. Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages. Proc Natl Acad Sci U S A 2016; 113:4800-4805. [PMID: 27071094 PMCID: PMC4855574 DOI: 10.1073/pnas.1520194113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The sexual blood stage of the human malaria parasite Plasmodium falciparum undergoes remarkable biophysical changes as it prepares for transmission to mosquitoes. During maturation, midstage gametocytes show low deformability and sequester in the bone marrow and spleen cords, thus avoiding clearance during passage through splenic sinuses. Mature gametocytes exhibit increased deformability and reappear in the peripheral circulation, allowing uptake by mosquitoes. Here we define the reversible changes in erythrocyte membrane organization that underpin this biomechanical transformation. Atomic force microscopy reveals that the length of the spectrin cross-members and the size of the skeletal meshwork increase in developing gametocytes, then decrease in mature-stage gametocytes. These changes are accompanied by relocation of actin from the erythrocyte membrane to the Maurer's clefts. Fluorescence recovery after photobleaching reveals reversible changes in the level of coupling between the membrane skeleton and the plasma membrane. Treatment of midstage gametocytes with cytochalasin D decreases the vertical coupling and increases their filterability. A computationally efficient coarse-grained model of the erythrocyte membrane reveals that restructuring and constraining the spectrin meshwork can fully account for the observed changes in deformability.
Collapse
Affiliation(s)
- Megan Dearnley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Trang Chu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | - Yao Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
| | - Oliver Looker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Changjin Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
| | - Nectarios Klonis
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeff Yeoman
- Department of Biochemistry, La Trobe University, Melbourne, VIC 3086, Australia
| | - Shannon Kenny
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mohit Arora
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | - James M Osborne
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rajesh Chandramohanadas
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
| | - Matthew W A Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia;
| |
Collapse
|
46
|
Global selection of Plasmodium falciparum virulence antigen expression by host antibodies. Sci Rep 2016; 6:19882. [PMID: 26804201 PMCID: PMC4726288 DOI: 10.1038/srep19882] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Parasite proteins called PfEMP1 that are inserted on the surface of infected erythrocytes, play a key role in the severe pathology associated with infection by the Plasmodium falciparum malaria parasite. These proteins mediate binding of infected cells to the endothelial lining of blood vessels as a strategy to avoid clearance by the spleen and are major targets of naturally acquired immunity. PfEMP1 is encoded by a large multi-gene family called var. Mutually-exclusive transcriptional switching between var genes allows parasites to escape host antibodies. This study examined in detail the patterns of expression of var in a well-characterized sample of parasites from Kenyan Children. Instead of observing clear inverse relationships between the expression of broad sub-classes of PfEMP1, we found that expression of different PfEMP1 groups vary relatively independently. Parasite adaptation to host antibodies also appears to involve a general reduction in detectable var gene expression. We suggest that parasites switch both between different PfEMP1 variants and between high and low expression states. Such a strategy could provide a means of avoiding immunological detection and promoting survival under high levels of host immunity.
Collapse
|
47
|
Spielmann T, Gilberger TW. Critical Steps in Protein Export of Plasmodium falciparum Blood Stages. Trends Parasitol 2015; 31:514-525. [DOI: 10.1016/j.pt.2015.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
|
48
|
Tibúrcio M, Dixon MWA, Looker O, Younis SY, Tilley L, Alano P. Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malar J 2015; 14:334. [PMID: 26315106 PMCID: PMC4552133 DOI: 10.1186/s12936-015-0853-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum sexual development plays a fundamental role in the transmission and spread of malaria. The ability to generate gametocytes can be lost during culture in vitro, often associated with the loss of a subtelomeric region of chromosome 9. Gametocytogenesis starts with erythrocyte invasion by a sexually committed merozoite, but the first available specific marker of sexual differentiation appears only from 24 h post invasion. METHODS Specific antibodies and gene fusions were produced to study the timing of expression and the sub-cellular localization of the P. falciparum Gametocyte EXported Protein-5 (PfGEXP5), encoded in the subtelomeric region of chromosome 9. Expression patterns were examined in wild-type parasites and in parasite lines mutated in the Apetala2-G (AP2-G) transcription factor, governing a cascade of early sexual stage specific genes. RESULTS PfGEXP5 is highly expressed in early sexual stages and it is actively exported to the infected erythrocyte cytoplasm from as early as 14 h post-invasion in haemozoin-free, ring stage-like parasites. The pattern of PfGEXP5 expression and export is similar in wild-type parasites and in independent AP2-G defective parasite lines unable to produce gametocytes. CONCLUSIONS PfGEXP5 represents the earliest post-invasion sexual stage marker described to date. This provides a tool that can be used to identify sexually committed ring stage parasites in natural infections. This early gametocyte marker would enable the identification and mapping of malaria transmission reservoirs in human populations and the study of gametocyte sequestration dynamics in infected individuals. The fact that regulation of PfGEXP5 does not depend on the AP2-G master regulator of parasite sexual development suggests that, after sexual commitment, differentiation progresses through multiple checkpoints in the early phase of gametocytogenesis.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | - Matthew W A Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Oliver Looker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sumera Younis Younis
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,Department of Parasitology, Biomedical Primate Research Centre, PO Box 306, 2280 GH, Rijswijk, The Netherlands.
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
49
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Abstract
Malaria remains one of the leading causes of death worldwide, despite decades of public health efforts. The recent commitment by many endemic countries to eliminate malaria marks a shift away from programs aimed at controlling disease burden towards one that emphasizes reducing transmission of the most virulent human malaria parasite, Plasmodium falciparum. Gametocytes, the only developmental stage of malaria parasites able to infect mosquitoes, have remained understudied, as they occur in low numbers, do not cause disease, and are difficult to detect in vivo by conventional methods. Here, we review the transmission biology of P. falciparum gametocytes, featuring important recent discoveries of genes affecting parasite commitment to gametocyte formation, microvesicles enabling parasites to communicate with each other, and the anatomical site where immature gametocytes develop. We propose potential parasite targets for future intervention and highlight remaining knowledge gaps.
Collapse
Affiliation(s)
- Sandra K. Nilsson
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren M. Childs
- Centre for Communicable Disease Dynamics and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Caroline Buckee
- Centre for Communicable Disease Dynamics and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: (CB); (MM)
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: (CB); (MM)
| |
Collapse
|