1
|
Yang F, Suo M, Weli H, Wong M, Junidi A, Cummings C, Johnson R, Mallory K, Liu AY, Greenberg ZJ, Schuettpelz LG, Miller MJ, Luke CJ, Randolph GJ, Zinselmeyer BH, Wardenburg JB, Clemens RA. Staphylococcus aureus α-toxin impairs early neutrophil localization via electrogenic disruption of store-operated calcium entry. Cell Rep 2023; 42:113394. [PMID: 37950870 PMCID: PMC10731421 DOI: 10.1016/j.celrep.2023.113394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
The pore-forming S. aureus α-toxin (Hla) contributes to virulence and disease pathogenesis. While high concentrations of toxin induce cell death, neutrophils exhibit relative resistance to lysis, suggesting that the action of Hla may not be solely conferred by lytic susceptibility. Using intravital microscopy, we observed that Hla disrupts neutrophil localization and clustering early in infection. Hla forms a narrow, ion-selective pore, suggesting that Hla may dysregulate calcium or other ions to impair neutrophil function. We found that sub-lytic Hla did not permit calcium influx but caused rapid membrane depolarization. Depolarization decreases the electrogenic driving force for calcium, and concordantly, Hla suppressed calcium signaling in vitro and in vivo and calcium-dependent leukotriene B4 (LTB4) production, a key mediator of neutrophil clustering. Thus, Hla disrupts the early patterning of the neutrophil response to infection, in part through direct impairment of neutrophil calcium signaling. This early mis-localization of neutrophils may contribute to establishment of infection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mingyi Suo
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Homayemem Weli
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mason Wong
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alex Junidi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Celeste Cummings
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Johnson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kiara Mallory
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie Y Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zev J Greenberg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark J Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cliff J Luke
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Regina A Clemens
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Wurtz M, Ruhland E, Liu X, Namer IJ, Mazzoleni V, Lipsker D, Keller D, Prévost G, Gaucher D. Panton-Valentine Leucocidin of Staphylococcus aureus Induces Oxidative Stress and Neurotransmitter Imbalance in a Retinal Explant Model. Invest Ophthalmol Vis Sci 2021; 62:4. [PMID: 33393970 PMCID: PMC7794257 DOI: 10.1167/iovs.62.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Endophthalmitis models have reported the virulent role of Panton-Valentine leucocidin (PVL) secreted by Staphylococcus aureus on the retina. PVL targets retinal ganglion cells (RGCs), expressing PVL membrane receptor C5aR. Interactions between PVL and retinal cells lead to glial activation, retinal inflammation, and apoptosis. In this study, we explored oxidative stress and retinal neurotransmitters in a rabbit retinal explant model incubated with PVL. Methods Reactive oxygen species (ROS) production in RGCs has been assessed with fluorescent probes and immunohistochemistry. Nuclear magnetic resonance (NMR) spectroscopy quantified retinal concentrations of antioxidant molecules and neurotransmitters, and concentrations of neurotransmitters released in the culture medium. Quantifying the expression of some pro-inflammatory and anti-inflammatory factors was performed using RT-qPCR. Results PVL induced a mitochondrial ROS production in RGCs after four hours’ incubation with the toxin. Enzymatic sources of ROS, involving nicotinamide adenine dinucleotide phosphate–oxidase and xanthine oxidase, were also activated after four hours in PVL-treated retinal explants. Retinal antioxidants defenses, that is, glutathione, ascorbate and taurine, decreased after two hours’ incubation with PVL. Glutamate retinal concentrations and glutamate release in the culture medium remained unaltered in PVL-treated retinas. GABA, glycine, and acetylcholine (Ach) retinal concentrations decreased after PVL treatment. Glycine release in the culture medium decreased, whereas Ach release increased after PVL treatment. Expression of proinflammatory and anti-inflammatory cytokines remained unchanged in PVL-treated explants. Conclusions PVL activates oxidative pathways and alters neurotransmitter retinal concentrations and release, supporting the hypothesis that PVL could induce a neurogenic inflammation in the retina.
Collapse
Affiliation(s)
- Mathieu Wurtz
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Department of Ophthalmology, Nouvel Hôpital Civil, Strasbourg, France
| | - Elisa Ruhland
- MNMS Platform, Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - XuanLi Liu
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France
| | - Izzie-Jacques Namer
- MNMS Platform, Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Viola Mazzoleni
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France
| | - Dan Lipsker
- Hôpitaux Universitaires de Strasbourg, Department of Dermatology, Nouvel Hôpital Civil, Strasbourg, France
| | - Daniel Keller
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France
| | - Gilles Prévost
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France
| | - David Gaucher
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Department of Ophthalmology, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
3
|
Mazzoleni V, Zimmermann K, Smirnova A, Tarassov I, Prévost G. Staphylococcus aureus Panton-Valentine Leukocidin triggers an alternative NETosis process targeting mitochondria. FASEB J 2020; 35:e21167. [PMID: 33241563 DOI: 10.1096/fj.201902981r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/18/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Panton-Valentine Leukocidin (PVL) is a bicomponent leukotoxin produced by 3%-10% of clinical Staphylococcus aureus (SA) strains involved in the severity of hospital and community-acquired infections. Although PVL was long known as a pore-forming toxin, recent studies have challenged the formation of a pore at the plasma membrane, while its endocytosis and the exact mode of action remain to be defined. In vitro immunolabeling of human neutrophils shows that Neutrophil Extracellular Traps (NETosis) is triggered by the action of purified PVL, but not by Gamma hemolysin CB (HlgCB), a structurally similar SA leukotoxin. PVL causes the ejection of chromatin fibers (NETs) decorated with antibacterial peptides independently of the NADPH oxidase oxidative burst. Leukotoxin partially colocalizes with mitochondria and enhances the production of reactive oxygen species from these organelles, while showing an increased autophagy, which results unnecessary for NETs ejection. PVL NETosis is elicited through Ca2+ -activated SK channels and Myeloperoxidase activity but is abolished by Allopurinol pretreatment of neutrophils. Moreover, massive citrullination of the histone H3 is performed by peptidyl arginine deiminases. Inhibition of this latter enzymes fails to abolish NET extrusion. Unexpectedly, PVL NETosis does not seem to involve Src kinases, which is the main kinase family activated downstream the binding of PVL F subunit to CD45 receptor, while the specific kinase pathway differs from the NADPH oxidase-dependent NETosis. PVL alone causes a different and specific form of NETosis that may rather represent a bacterial strategy conceived to disarm and disrupt the immune response, eventually allowing SA to spread.
Collapse
Affiliation(s)
- Viola Mazzoleni
- University of Strasbourg, CHRU Strasbourg, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, UR7290, Institut de Bactériologie, Strasbourg, France
| | - Kiran Zimmermann
- University of Strasbourg, CHRU Strasbourg, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, UR7290, Institut de Bactériologie, Strasbourg, France
| | - Anna Smirnova
- UMR 7156 GMGM Strasbourg University/CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 GMGM Strasbourg University/CNRS, Strasbourg, France
| | - Gilles Prévost
- University of Strasbourg, CHRU Strasbourg, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, UR7290, Institut de Bactériologie, Strasbourg, France
| |
Collapse
|
4
|
von Hoven G, Qin Q, Neukirch C, Husmann M, Hellmann N. Staphylococcus aureus α-toxin: small pore, large consequences. Biol Chem 2020; 400:1261-1276. [PMID: 30951494 DOI: 10.1515/hsz-2018-0472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
The small β-pore-forming α-toxin, also termed α-hemolysin or Hla is considered to be an important virulence factor of Staphylococcus aureus. Perforation of the plasma membrane (PM) by Hla leads to uncontrolled flux of ions and water. Already a small number of toxin pores seems to be sufficient to induce complex cellular responses, many of which depend on the efflux of potassium. In this article, we discuss the implications of secondary membrane lesions, for example, by endogenous channels, for Hla-mediated toxicity, for calcium-influx and membrane repair. Activation of purinergic receptors has been proposed to be a major contributor to the lytic effects of various pore forming proteins, but new findings raise doubts that this holds true for Hla. However, the recently discovered cellular pore forming proteins gasdermin D and Mixed lineage kinase domain-like pseudokinase (MLKL) which perforate the PM from the cytosolic side might contribute to both calcium-influx-dependent damage and membrane repair. Activation of endogenous pore forming proteins by Hla above a threshold concentration could explain the apparent dependence of pore characteristics on toxin concentrations. If secondary membrane damage in the aftermath of Hla-attack contributes significantly to overall PM permeability, it might be an interesting target for new therapeutic approaches.
Collapse
Affiliation(s)
- Gisela von Hoven
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Qianqian Qin
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Claudia Neukirch
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Matthias Husmann
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Nadja Hellmann
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 30, 55128 Mainz, Germany
| |
Collapse
|
5
|
Clemens RA, Lowell CA. CRAC channel regulation of innate immune cells in health and disease. Cell Calcium 2019; 78:56-65. [PMID: 30641250 PMCID: PMC8055042 DOI: 10.1016/j.ceca.2019.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 01/17/2023]
Abstract
Calcium is a major intracellular signaling messenger in innate immune cells. Similar to other immune cell subsets, the majority of calcium entry into innate immune cells is induced by cell surface receptors that stimulate store-operated calcium entry through calcium-release activated calcium (CRAC) channels. Since the molecular description of the STIM family of calcium sensors and the ORAI family of CRAC channel proteins, the majority of studies support a dominant role for these proteins in calcium signaling in innate cells. In reviewing the literature on CRAC channel function in innate cells, several general themes emerge. All innate cells express multiple members of the STIM and ORAI family members, however the ratio and relative contribution of individual isoforms changes depending on the cell type and activation state of the cell. It is evident that study of functional roles for STIM molecules is clearly ahead of studies of specific ORAI family members in all innate cell types, and that studies of CRAC channels in innate cells are not nearly as advanced as studies in lymphocytes. However, taken together, evidence from both STIM calcium sensors and ORAI channels in innate cells indicates that deficiency of STIM and ORAI proteins tends not to affect the development of any innate cell lineage, but certainly affects their function, in particular activation of the neutrophil oxidase and mast cell activation via IgE receptors. Furthermore, there are clearly hints that therapeutic targeting of CRAC channels in innate cells offers a new approach to various inflammatory and allergic diseases.
Collapse
Affiliation(s)
- Regina A Clemens
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
6
|
Panton-Valentine Leucocidin Proves Direct Neuronal Targeting and Its Early Neuronal and Glial Impacts a Rabbit Retinal Explant Model. Toxins (Basel) 2018; 10:toxins10110455. [PMID: 30400375 PMCID: PMC6266138 DOI: 10.3390/toxins10110455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 01/23/2023] Open
Abstract
: Panton-Valentine leukocidin (PVL) retinal intoxication induces glial activation and inflammatory response via the interaction with retinal neurons. In this study, rabbit retinal explant was used as a model to study neuronal and glial consequences of PVL intoxication. Retinal explants were treated with different concentrations of PVL. PVL location and neuronal and glial changes were examined using immunohistochemistry. Some inflammatory factors were quantified using RT-qPCR at 4 and 8 h. These results were compared with those of control explants. PVL co-localized rapidly with retinal ganglion cells and with horizontal cells. PVL induced Müller and microglial cell activation. Retinal structure was altered and some amacrine and microglial cells underwent apoptosis. Glial activation and cell apoptosis increased in a PVL concentration- and time-dependent manner. IL-6 and IL-8 expression increased in PVL-treated explants but less than in control explants, which may indicate that other factors were responsible for glial activation and retinal apoptosis. On retinal explants, PVL co-localized with neuronal cells and induced glial activation together with microglial apoptosis, which confirms previous results observed in in vivo model. Rabbit retinal explant seems to be suitable model to further study the process of PVL leading to glial activation and retinal cells apoptosis.
Collapse
|
7
|
Bouillot S, Reboud E, Huber P. Functional Consequences of Calcium Influx Promoted by Bacterial Pore-Forming Toxins. Toxins (Basel) 2018; 10:toxins10100387. [PMID: 30257425 PMCID: PMC6215193 DOI: 10.3390/toxins10100387] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023] Open
Abstract
Bacterial pore-forming toxins induce a rapid and massive increase in cytosolic Ca2+ concentration due to the formation of pores in the plasma membrane and/or activation of Ca2+-channels. As Ca2+ is an essential messenger in cellular signaling, a sustained increase in Ca2+ concentration has dramatic consequences on cellular behavior, eventually leading to cell death. However, host cells have adapted mechanisms to protect against Ca2+ intoxication, such as Ca2+ efflux and membrane repair. The final outcome depends upon the nature and concentration of the toxin and on the cell type. This review highlights the repercussions of Ca2+ overload on the induction of cell death, repair mechanisms, cellular adhesive properties, and the inflammatory response.
Collapse
Affiliation(s)
- Stéphanie Bouillot
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble 38054, France.
| | - Emeline Reboud
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble 38054, France.
| | - Philippe Huber
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble 38054, France.
| |
Collapse
|
8
|
Panton-Valentine Leukocidin Colocalizes with Retinal Ganglion and Amacrine Cells and Activates Glial Reactions and Microglial Apoptosis. Sci Rep 2018; 8:2953. [PMID: 29440661 PMCID: PMC5811455 DOI: 10.1038/s41598-018-20590-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Experimental models have established Panton-Valentine leukocidin (PVL) as a potential critical virulence factor during Staphylococcus aureus endophthalmitis. In the present study, we aimed to identify retinal cell targets for PVL and to analyze early retinal changes during infection. After the intravitreous injection of PVL, adult rabbits were euthanized at different time points (30 min, 1, 2, 4 and 8 h). PVL location in the retina, expression of its binding receptor C5a receptor (C5aR), and changes in Müller and microglial cells were analyzed using immunohistochemistry, Western blotting and RT-qPCR. In this model of PVL eye intoxication, only retinal ganglion cells (RGCs) expressed C5aR, and PVL was identified on the surface of two kinds of retinal neural cells. PVL-linked fluorescence increased in RGCs over time, reaching 98% of all RGCs 2 h after PVL injection. However, displaced amacrine cells (DACs) transiently colocalized with PVL. Müller and microglial cells were increasingly activated after injection over time. IL-6 expression in retina increased and some microglial cells underwent apoptosis 4 h and 8 h after PVL infection, probably because of abnormal nitrotyrosine production in the retina.
Collapse
|
9
|
Zimmermann-Meisse G, Prévost G, Jover E. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton-Valentine Leucocidin and γ-Hemolysin. Toxins (Basel) 2017; 9:toxins9010041. [PMID: 28117704 PMCID: PMC5308273 DOI: 10.3390/toxins9010041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 12/03/2022] Open
Abstract
Various membrane receptors associated with the innate immune response have recently been identified as mediators of the cellular action of Staphylococcus aureus leucotoxins. Two of these, the Panton–Valentine leucotoxin LukS-PV/LukF-PV and the γ-hemolysin HlgC/HlgB, bind the C5a complement-derived peptide receptor. These leucotoxins utilize the receptor to induce intracellular Ca2+ release from internal stores, other than those activated by C5a. The two leucotoxins are internalized with the phosphorylated receptor, but it is unknown whether they divert retrograde transport of the receptor or follow another pathway. Immunolabeling and confocal microscopic techniques were used to analyze the presence of leucotoxins in endosomes, lysosomes, endoplasmic reticulum, and Golgi. The two leucotoxins apparently followed retrograde transport similar to that of the C5a peptide-activated receptor. However, HlgC/HlgB reached the Golgi network very early, whereas LukS-PV/LukF-PV followed slower kinetics. The HlgC/HlgB leucotoxin remained in neutrophils 6 h after a 10-min incubation of the cells in the presence of the toxin with no signs of apoptosis, whereas apoptosis was observed 3 h after neutrophils were incubated with LukS-PV/LukF-PV. Such retrograde transport of leucotoxins provides a novel understanding of the cellular effects initiated by sublytic concentrations of these toxins.
Collapse
Affiliation(s)
- Gaëlle Zimmermann-Meisse
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), VBP EA7290, Institut de Bactériologie, Université de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
| | - Gilles Prévost
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), VBP EA7290, Institut de Bactériologie, Université de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
| | - Emmanuel Jover
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), VBP EA7290, Institut de Bactériologie, Université de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
| |
Collapse
|
10
|
Gaurilcikaite E, Renton T, Grant AD. The paradox of painless periodontal disease. Oral Dis 2016; 23:451-463. [PMID: 27397640 DOI: 10.1111/odi.12537] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/04/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
Abstract
Periodontal diseases, primarily gingivitis and periodontitis, are characterised by progressive inflammation and tissue destruction. However, they are unusual in that they are not also accompanied by the pain commonly seen in other inflammatory conditions. This suggests that interactions between periodontal bacteria and host cells create a unique environment in which the pro-algesic effects of inflammatory mediators and factors released during tissue damage are directly or indirectly inhibited. In this review, we summarise the evidence that periodontal disease is characterised by an accumulation of classically pro-algesic factors from bacteria and host cells. We then discuss several mechanisms by which inflammatory sensitisation of nociceptive fibres could be prevented through inactivation or inhibition of these factors. Further studies are necessary to fully understand the molecular processes underlying the endogenous localised hypoalgesia in human periodontal disease. This knowledge might provide a rational basis to develop future therapeutic interventions, such as host modulation therapies, against a wide variety of other human pain conditions.
Collapse
Affiliation(s)
- E Gaurilcikaite
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - T Renton
- Department of Oral Surgery, Dental Institute, King's College London, London, UK
| | - A D Grant
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
11
|
Lim JY, Choi SI, Choi G, Hwang SW. Atypical sensors for direct and rapid neuronal detection of bacterial pathogens. Mol Brain 2016; 9:26. [PMID: 26960533 PMCID: PMC4784462 DOI: 10.1186/s13041-016-0202-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
Bacterial infection can threaten the normal biological functions of a host, often leading to a disease. Hosts have developed complex immune systems to cope with the danger. Preceding the elimination of pathogens, selective recognition of the non-self invaders is necessary. At the forefront of the body’s defenses are the innate immune cells, which are equipped with particular sensor molecules that can detect common exterior patterns of invading pathogens and their secreting toxins as well as with phagocytic machinery. Inflammatory mediators and cytokines released from these innate immune cells and infected tissues can boost the inflammatory cascade and further recruit adaptive immune cells to maximize the elimination and resolution. The nervous system also seems to interact with this process, mostly known to be affected by the inflammatory mediators through the binding of neuronal receptors, consequently activating neural circuits that tune the local and systemic inflammatory states. Recent research has suggested new contact points: direct interactions of sensory neurons with pathogens. Latest findings demonstrated that the sensory neurons not only share pattern recognition mechanisms with innate immune cells, but also utilize endogenous and exogenous electrogenic components for bacterial pathogen detection, by which the electrical firing prompts faster information flow than what could be achieved when the immune system is solely involved. As a result, rapid pain generation and active accommodation of the immune status occur. Here we introduced the sensory neuron-specific detector molecules for directly responding to bacterial pathogens and their signaling mechanisms. We also discussed extended issues that need to be explored in the future.
Collapse
Affiliation(s)
- Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 136-705, Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 136-705, Korea.
| | - Seung-In Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 136-705, Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 136-705, Korea.
| | - Geunyeol Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 136-705, Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 136-705, Korea.
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 136-705, Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 136-705, Korea.
| |
Collapse
|
12
|
The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 2015; 78:199-230. [PMID: 24847020 DOI: 10.1128/mmbr.00055-13] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets.
Collapse
|
13
|
Tawk MY, Zimmermann K, Bossu J, Potrich C, Bourcier T, Dalla Serra M, Poulain B, Prévost G, Jover E. Internalization of staphylococcal leukotoxins that bind and divert the
C
5a receptor is required for intracellular
Ca
2+
mobilization by human neutrophils. Cell Microbiol 2015; 17:1241-57. [DOI: 10.1111/cmi.12434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/26/2015] [Accepted: 03/01/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Mira Y. Tawk
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Kiran Zimmermann
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Jean‐Louis Bossu
- INCI – UPR‐CNRS 3212 Physiologie des réseaux de neurones Strasbourg France
| | - Cristina Potrich
- National Research Council of Italy Institute of Biophysics and Bruno Kessler Foundation Trento Italy
| | - Tristan Bourcier
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Mauro Dalla Serra
- National Research Council of Italy Institute of Biophysics and Bruno Kessler Foundation Trento Italy
| | - Bernard Poulain
- INCI – UPR‐CNRS 3212 Physiologie des réseaux de neurones Strasbourg France
| | - Gilles Prévost
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Emmanuel Jover
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| |
Collapse
|
14
|
Wioland L, Dupont JL, Doussau F, Gaillard S, Heid F, Isope P, Pauillac S, Popoff MR, Bossu JL, Poulain B. Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination. Cell Microbiol 2014; 17:369-88. [PMID: 25287162 DOI: 10.1111/cmi.12373] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/29/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
Abstract
Epsilon toxin (ET) is produced by Clostridium perfringens types B and D and causes severe neurological disorders in animals. ET has been observed binding to white matter, suggesting that it may target oligodendrocytes. In primary cultures containing oligodendrocytes and astrocytes, we found that ET (10(-9) M and 10(-7) M) binds to oligodendrocytes, but not to astrocytes. ET induces an increase in extracellular glutamate, and produces oscillations of intracellular Ca(2+) concentration in oligodendrocytes. These effects occurred without any change in the transmembrane resistance of oligodendrocytes, underlining that ET acts through a pore-independent mechanism. Pharmacological investigations revealed that the Ca(2+) oscillations are caused by the ET-induced rise in extracellular glutamate concentration. Indeed, the blockade of metabotropic glutamate receptors type 1 (mGluR1) prevented ET-induced Ca(2+) signals. Activation of the N-methyl-D-aspartate receptor (NMDA-R) is also involved, but to a lesser extent. Oligodendrocytes are responsible for myelinating neuronal axons. Using organotypic cultures of cerebellar slices, we found that ET induced the demyelination of Purkinje cell axons within 24 h. As this effect was suppressed by antagonizing mGluR1 and NMDA-R, demyelination is therefore caused by the initial ET-induced rise in extracellular glutamate concentration. This study reveals the novel possibility that ET can act on oligodendrocytes, thereby causing demyelination. Moreover, it suggests that for certain cell types such as oligodendrocytes, ET can act without forming pores, namely through the activation of an undefined receptor-mediated pathway.
Collapse
Affiliation(s)
- Laetitia Wioland
- Centre National de la Recherche Scientifique Associé à l'Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, 5 rue Blaise Pascal, Strasbourg, cedex F-67084, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Attien P, Sina H, Moussaoui W, Zimmermann K, Dadié T, Keller D, Riegel P, Edoh V, Kotchoni SO, Djè M, Prévost G, Baba-Moussa L. Mass spectrometry and multiplex antigen assays to assess microbial quality and toxin production of Staphylococcus aureus strains isolated from clinical and food samples. BIOMED RESEARCH INTERNATIONAL 2014; 2014:485620. [PMID: 24987686 PMCID: PMC4058891 DOI: 10.1155/2014/485620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/27/2014] [Accepted: 05/12/2014] [Indexed: 11/17/2022]
Abstract
The aim of our study was to investigate the microbial quality of meat products and on some clinical samples in Abidjan focused on Staphylococcus genus and the toxin production profile of Staphylococcus aureus (S. aureus) isolated. Bacteria were collected from 240 samples of three meat products sold in Abidjan and 180 samples issued from clinical infections. The strains were identified by both microbiological and MALDI-TOF-MS methods. The susceptibility to antibiotics was determined by the disc diffusion method. The production of Panton-Valentine Leukocidin, LukE/D, and epidermolysins was screened using radial gel immunodiffusion. The production of staphylococcal enterotoxins and TSST-1 was screened by a Bio-Plex Assay. We observed that 96/240 of meat samples and 32/180 of clinical samples were contaminated by Staphylococcus. Eleven species were isolated from meats and 4 from clinical samples. Forty-two S. aureus strains were isolated from ours samples. Variability of resistance was observed for most of the tested antibiotics but none of the strains displays a resistance to imipenem and quinolones. We observed that 89% of clinical S. aureus were resistant to methicillin against 58% for those issued from meat products. All S. aureus isolates issued from meat products produce epidermolysins whereas none of the clinical strains produced these toxins. The enterotoxins were variably produced by both clinical and meat product samples.
Collapse
Affiliation(s)
- Paul Attien
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Faculté des Sciences et Technologies des Aliments, Université Nangui Abroguoua, BP 801 Abidjan 02, Cote D'Ivoire
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 05 BP 1604 Cotonou, Benin
- Laboratoire de Bactériologie et Virologie, Faculté des Sciences Médicales, Centre Hospitalier et Universitaire de Treichville, BP V3 Abidjan, Cote D'Ivoire
| | - Haziz Sina
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 05 BP 1604 Cotonou, Benin
| | - Wardi Moussaoui
- Université de Strasbourg (CHRU Strasbourg), Fédération de Médecine Translationnelle de Strasbourg, EA 7290 Virulence Bactérienne Précoce, Institut de Bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Kiran Zimmermann
- Université de Strasbourg (CHRU Strasbourg), Fédération de Médecine Translationnelle de Strasbourg, EA 7290 Virulence Bactérienne Précoce, Institut de Bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Thomas Dadié
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Faculté des Sciences et Technologies des Aliments, Université Nangui Abroguoua, BP 801 Abidjan 02, Cote D'Ivoire
| | - Daniel Keller
- Université de Strasbourg (CHRU Strasbourg), Fédération de Médecine Translationnelle de Strasbourg, EA 7290 Virulence Bactérienne Précoce, Institut de Bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Philippe Riegel
- Université de Strasbourg (CHRU Strasbourg), Fédération de Médecine Translationnelle de Strasbourg, EA 7290 Virulence Bactérienne Précoce, Institut de Bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Vincent Edoh
- Laboratoire de Bactériologie et Virologie, Faculté des Sciences Médicales, Centre Hospitalier et Universitaire de Treichville, BP V3 Abidjan, Cote D'Ivoire
| | - Simeon O. Kotchoni
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, 315 Penn Street, Camden, NJ 08102, USA
| | - Marcellin Djè
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Faculté des Sciences et Technologies des Aliments, Université Nangui Abroguoua, BP 801 Abidjan 02, Cote D'Ivoire
| | - Gilles Prévost
- Université de Strasbourg (CHRU Strasbourg), Fédération de Médecine Translationnelle de Strasbourg, EA 7290 Virulence Bactérienne Précoce, Institut de Bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Lamine Baba-Moussa
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 05 BP 1604 Cotonou, Benin
| |
Collapse
|
16
|
Clark KB. Biotic activity of Ca(2+)-modulating non-traditional antimicrobial and -viral agents. Front Microbiol 2013; 4:381. [PMID: 24376441 PMCID: PMC3859912 DOI: 10.3389/fmicb.2013.00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/24/2013] [Indexed: 01/23/2023] Open
Affiliation(s)
- Kevin B Clark
- Research and Development Service, Veterans Affairs Greater Los Angeles Healthcare System Los Angeles, CA, USA
| |
Collapse
|
17
|
Wioland L, Dupont JL, Bossu JL, Popoff MR, Poulain B. Attack of the nervous system by Clostridium perfringens Epsilon toxin: from disease to mode of action on neural cells. Toxicon 2013; 75:122-35. [PMID: 23632158 DOI: 10.1016/j.toxicon.2013.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/29/2013] [Accepted: 04/10/2013] [Indexed: 12/24/2022]
Abstract
Epsilon toxin (ET), produced by Clostridium perfringens types B and D, ranks among the four most potent poisonous substances known so far. ET-intoxication is responsible for enterotoxaemia in animals, mainly sheep and goats. This disease comprises several manifestations indicating the attack of the nervous system. This review aims to summarize the effects of ET on central nervous system. ET binds to endothelial cells of brain capillary vessels before passing through the blood-brain barrier. Therefore, it induces perivascular oedema and accumulates into brain. ET binding to different brain structures and to different component in the brain indicates regional susceptibility to the toxin. Histological examination has revealed nerve tissue and cellular lesions, which may be directly or indirectly caused by ET. The naturally occurring disease caused by ET-intoxication can be reproduced experimentally in rodents. In mice and rats, ET recognizes receptor at the surface of different neural cell types, including certain neurons (e.g. the granule cells in cerebellum) as well as oligodendrocytes, which are the glial cells responsible for the axons myelination. Moreover, ET induces release of glutamate and other transmitters, leading to firing of neural network. The precise mode of action of ET on neural cells remains to be determined.
Collapse
Affiliation(s)
- Laetitia Wioland
- Centre National de la Recherche Scientifique (CNRS) and Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR 3212, Strasbourg, France
| | | | | | | | | |
Collapse
|