1
|
Alphonse N, Odendall C. Animal models of shigellosis: a historical overview. Curr Opin Immunol 2023; 85:102399. [PMID: 37952487 DOI: 10.1016/j.coi.2023.102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Shigella spp. are major causative agents of bacillary dysentery, a severe enteric disease characterized by destruction and inflammation of the colonic epithelium accompanied by acute diarrhea, fever, and abdominal pain. Although antibiotics have traditionally been effective, the prevalence of multidrug-resistant strains is increasing, stressing the urgent need for a vaccine. The human-specific nature of shigellosis and the absence of a dependable animal model have posed significant obstacles in understanding Shigella pathogenesis and the host immune response, both of which are crucial for the development of an effective vaccine. Efforts have been made over time to develop a physiological model that mimics the pathological features of the human disease with limited success until the recent development of genetically modified mouse models. In this review, we provide an overview of Shigella pathogenesis and chronicle the historical development of various shigellosis models, emphasizing their strengths and weaknesses.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
2
|
Ghalavand Z, Taheri M, Eslami G, Karimi-Yazdi M, Sadredinamin M. Invasion of HeLa Cells by Shigella Species Clinical Isolates Recovered from Pediatric Diarrhea. Foodborne Pathog Dis 2023; 20:509-513. [PMID: 37738332 DOI: 10.1089/fpd.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Shigella is considered a major public health concern, especially for children younger than 5 years of age in developing countries. The pathogenicity of Shigella is a complex process that involves the interplay of multiple genes located on a large, unstable virulence plasmid as well as chromosomal pathogenicity islands. Since various factors (including virulence and antibiotic resistance genes) are associated with the severity and duration of shigellosis, in this article, we aim to evaluate whether the invasion of HeLa cells is affected by Shigella spp. isolates with different characteristics (including serogroups, virulence gene profiles, and antibiotic resistance patterns) recovered from pediatric patients in Tehran, Iran. Cell invasion ability of 10 Shigella isolates with different serogroups (Shigella flexneri and Shigella sonnei), gene profiling (virA, sen, ipgD, ipaD, ipaC, ipaB, and ipaH), and antibiotic resistance phenotyping (ampicillin, azithromycin, ciprofloxacin, nalidixic acid, trimethoprim-sulfamethoxazole, cefixime, cefotaxime, minocycline, and levofloxacin) were measured by plaque-forming assay in HeLa cell lines. The results show that all the selected Shigella spp. isolates recovered from pediatric patients were able to invade HeLa cells, but the total number and average size of plaques were different between the isolates. The higher invasion ability of S. flexneri isolates in HeLa cells compared to S. sonnei isolates was attributed to the presence of particular virulence genes; however, the role of each of these virulence factors remains to be determined.
Collapse
Affiliation(s)
- Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Taheri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gomes MC, Brokatzky D, Bielecka MK, Wardle FC, Mostowy S. Shigella induces epigenetic reprogramming of zebrafish neutrophils. SCIENCE ADVANCES 2023; 9:eadf9706. [PMID: 37672585 PMCID: PMC10482349 DOI: 10.1126/sciadv.adf9706] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Trained immunity is a long-term memory of innate immune cells, generating an improved response upon reinfection. Shigella is an important human pathogen and inflammatory paradigm for which there is no effective vaccine. Using zebrafish larvae, we demonstrate that after Shigella training, neutrophils are more efficient at bacterial clearance. We observe that Shigella-induced protection is nonspecific and has differences with training by BCG and β-glucan. Analysis of histone ChIP-seq on trained neutrophils revealed that Shigella training deposits the active H3K4me3 mark on promoter regions of 1612 genes, dramatically changing the epigenetic landscape of neutrophils toward enhanced microbial recognition and mitochondrial ROS production. Last, we demonstrate that mitochondrial ROS plays a key role in enhanced antimicrobial activity of trained neutrophils. It is envisioned that signals and mechanisms we discover here can be used in other vertebrates, including humans, to suggest new therapeutic strategies involving neutrophils to control bacterial infection.
Collapse
Affiliation(s)
- Margarida C. Gomes
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Magdalena K. Bielecka
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona C. Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Nasser A, Mosadegh M, Azimi T, Shariati A. Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population. Mol Cell Pediatr 2022; 9:12. [PMID: 35718793 PMCID: PMC9207015 DOI: 10.1186/s40348-022-00145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Different gastrointestinal pathogens cause diarrhea which is a very common problem in children aged under 5 years. Among bacterial pathogens, Shigella is one of the main causes of diarrhea among children, and it accounts for approximately 11% of all deaths among children aged under 5 years. The case-fatality rates for Shigella among the infants and children aged 1 to 4 years are 13.9% and 9.4%, respectively. Shigella uses unique effector proteins to modulate intracellular pathways. Shigella cannot invade epithelial cells on the apical site; therefore, it needs to pass epithelium through other cells rather than the epithelial cell. After passing epithelium, macrophage swallows Shigella, and the latter should prepare itself to exhibit at least two types of responses: (I) escaping phagocyte and (II) mediating invasion of and injury to the recurrent PMN. The presence of PMN and invitation to a greater degree resulted in gut membrane injuries and greater bacterial penetration. Infiltration of Shigella to the basolateral space mediates (A) cell attachment, (B) cell entry, (C) evasion of autophagy recognition, (D) vacuole formation and and vacuole rapture, (E) intracellular life, (F) Shiga toxin, and (G) immune response. In this review, an attempt is made to explain the role of each factor in Shigella infection.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
5
|
Abstract
Shigellosis causes most diarrheal deaths worldwide, particularly affecting children. Shigella invades and replicates in the epithelium of the large intestine, eliciting inflammation and tissue destruction. To understand how Shigella rewires macrophages prior to epithelium invasion, we performed genome-wide and focused secondary CRISPR knockout and CRISPR interference (CRISPRi) screens in Shigella flexneri-infected human monocytic THP-1 cells. Knockdown of the Toll-like receptor 1/2 signaling pathway significantly reduced proinflammatory cytokine and chemokine production, enhanced host cell survival, and controlled intracellular pathogen growth. Knockdown of the enzymatic component of the mitochondrial pyruvate dehydrogenase complex enhanced THP-1 cell survival. Small-molecule inhibitors blocking key components of these pathways had similar effects; these were validated with human monocyte-derived macrophages, which closely mimic the in vivo physiological state of macrophages postinfection. High-throughput CRISPR screens can elucidate how S. flexneri triggers inflammation and redirects host pyruvate catabolism for energy acquisition before killing macrophages, pointing to new shigellosis therapies.
Collapse
|
6
|
Gluschko A, Farid A, Herb M, Grumme D, Krönke M, Schramm M. Macrophages target Listeria monocytogenes by two discrete non-canonical autophagy pathways. Autophagy 2021; 18:1090-1107. [PMID: 34482812 DOI: 10.1080/15548627.2021.1969765] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Non-canonical autophagy pathways decorate single-membrane vesicles with Atg8-family proteins such as MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). Phagosomes containing the bacterial pathogen Listeria monocytogenes (L.m.) can be targeted by a non-canonical autophagy pathway called LC3-associated phagocytosis (LAP), which substantially contributes to the anti-listerial activity of macrophages and immunity. We here characterized a second non-canonical autophagy pathway targeting L.m.-containing phagosomes, which is induced by damage caused to the phagosomal membrane by the pore-forming toxin of L.m., listeriolysin O. This pore-forming toxin-induced non-canonical autophagy pathway (PINCA) was the only autophagic pathway evoked in tissue macrophages deficient for the NADPH oxidase CYBB/NOX2 that produces the reactive oxygen species (ROS) that are required for LAP induction. Similarly, also bone marrow-derived macrophages (BMDM) exclusively targeted L.m. by PINCA as they completely failed to induce LAP because of insufficient production of ROS through CYBB, in part, due to low expression of some CYBB complex subunits. Priming of BMDM with proinflammatory cytokines such as TNF and IFNG/IFNγ increased ROS production by CYBB and endowed them with the ability to target L.m. by LAP. Targeting of L.m. by LAP remained relatively rare, though, preventing LAP from substantially contributing to the anti-listerial activity of BMDM. Similar to LAP, the targeting of L.m.-containing phagosomes by PINCA promoted their fusion with lysosomes. Surprisingly, however, this did not substantially contribute to anti-listerial activity of BMDM. Thus, in contrast to LAP, PINCA does not have clear anti-listerial function suggesting that the two different non-canonical autophagy pathways targeting L.m. may have discrete functions.Abbreviations: actA/ActA: actin assembly-inducing protein A; ATG: autophagy-related; BMDM: Bone marrow-derived macrophages; CALCOCO2/NDP52: calcium-binding and coiled-coil domain-containing protein 2; CYBA/p22phox: cytochrome b-245 light chain; CYBB/NOX2: cytochrome b(558) subunit beta; E. coli: Escherichia coli; IFNG/IFNγ: interferon gamma; L.m.: Listeria monocytogenes; LAP: LC3-associated phagocytosis; LGALS: galectin; LLO: listeriolysin O; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NCF1/p47phox: neutrophil cytosol factor 1; NCF2/p67phox: neutrophil cytosol factor 2; NCF4/p67phox: neutrophil cytosol factor 4; Peritoneal macrophages: PM; PINCA: pore-forming toxin-induced non-canonical autophagy; plc/PLC: 1-phosphatidylinositol phosphodiesterase; PMA: phorbol 12-myristate 13-acetate; RB1CC1/FIP200: RB1-inducible coiled-coil protein 1; ROS: reactive oxygen species; S. aureus: Staphylococcus aureus; S. flexneri: Shigella flexneri; SQSTM1/p62: sequestosome 1; S. typhimurium: Salmonella typhimurium; T3SS: type III secretion system; TNF: tumor necrosis factor; ULK: unc-51 like autophagy activating kinase; PM: peritoneal macrophages; WT: wild type.
Collapse
Affiliation(s)
- Alexander Gluschko
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Alina Farid
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Daniela Grumme
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases Cecad, Cologne, Germany.,German Center for Infection Research Dzif, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Oh C, Verma A, Hafeez M, Hogland B, Aachoui Y. Shigella OspC3 suppresses murine cytosolic LPS sensing. iScience 2021; 24:102910. [PMID: 34409271 PMCID: PMC8361271 DOI: 10.1016/j.isci.2021.102910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Shigella flexneri, a cytosol-invasive gram-negative pathogen, deploys an array of type III-secreted effector proteins to evade host cell defenses. Caspase-11 and its human ortholog caspase-4 detect cytosolic lipopolysaccharide (LPS) and trigger gasdermin D-mediated pyroptosis to eliminate intra-cytoplasmic bacterial threats. However, the role of caspase-11 in combating S. flexneri is unclear. The Shigella T3SS effector OspC3 reportedly suppresses cytosolic LPS sensing by inhibiting caspase-4 but not caspase-11 activity. Surprisingly, we found that S. flexneri also uses OspC3 to inhibit murine caspase-11 activity. Mechanistically, we found that OspC3 binds only to primed caspase-11. Importantly, we demonstrate that S. flexneri employs OspC3 to prevent caspase-11-mediated pyroptosis in neutrophils, enabling bacteria to disseminate and evade clearance following intraperitoneal challenge. In contrast, S. flexneri lacking OspC3 is attenuated in a caspase-11- and gasdermin D-dependent fashion. Overall, our study reveals that OspC3 suppresses cytosolic LPS detection in a broad array of mammals. S. flexneri T3SS-secreted OspC3 suppresses cytosolic LPS sensing by caspase-11 OspC3 binds to caspase-11 in a priming-dependent manner S. flexneri employs OspC3 to prevent caspase-11-mediated pyroptosis in neutrophils Neutrophil caspase-11 is essential in defense against S. flexneri ΔOspC3 in vivo
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ambika Verma
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mohib Hafeez
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Brandon Hogland
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
8
|
Li W, Jiang L, Liu X, Guo R, Ma S, Wang J, Ma S, Li S, Li H. YhjC is a novel transcriptional regulator required for Shigella flexneri virulence. Virulence 2021; 12:1661-1671. [PMID: 34152261 PMCID: PMC8218686 DOI: 10.1080/21505594.2021.1936767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Shigella is an intracellular pathogen that primarily infects the human colon and causes shigellosis. Shigella virulence relies largely on the type III secretion system (T3SS) and secreted effectors. VirF, the master Shigella virulence regulator, is essential for the expression of T3SS-related genes. In this study, we found that YhjC, a LysR-type transcriptional regulator, is required for Shigella virulence through activating the transcription of virF. Pathogenicity of the yhjC mutant, including colonization in the colons of guinea pigs as well as its ability for host cell adhesion and invasion, was significantly lowered. Expression levels of virF and nearly all VirF-dependent genes were downregulated by yhjC deletion, indicating that YhjC can activate virF transcription. Electrophoretic mobility shift assay analysis demonstrated that YhjC could bind directly to the virF promoter region. Therefore, YhjC is a novel virulence regulator that positively regulates the virF expression and promotes Shigella virulence. Additionally, genome-wide expression analysis identified the presence of other genes in the large virulence plasmid and a genome exhibiting differential expression in response to yhjC deletion, with 169 downregulated and 99 upregulated genes, indicating that YhjC also functioned as a global regulatory factor.
Collapse
Affiliation(s)
- Wanwu Li
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China.,Shandong Center for Food and Drug Evaluation & Certification, Jinan, China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Rui Guo
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - Shuai Ma
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Jingting Wang
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Shuangshuang Ma
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Shujie Li
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Huiying Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
9
|
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol 2020; 10:601072. [PMID: 33344265 PMCID: PMC7746538 DOI: 10.3389/fcimb.2020.601072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
10
|
Mitchell PS, Roncaioli JL, Turcotte EA, Goers L, Chavez RA, Lee AY, Lesser CF, Rauch I, Vance RE. NAIP-NLRC4-deficient mice are susceptible to shigellosis. eLife 2020; 9:e59022. [PMID: 33074100 PMCID: PMC7595732 DOI: 10.7554/elife.59022] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease that is a major cause of diarrhea-associated mortality in humans. Mice are highly resistant to Shigella and the lack of a tractable physiological model of shigellosis has impeded our understanding of this important human disease. Here, we propose that the differential susceptibility of mice and humans to Shigella is due to mouse-specific activation of the NAIP-NLRC4 inflammasome. We find that NAIP-NLRC4-deficient mice are highly susceptible to oral Shigella infection and recapitulate the clinical features of human shigellosis. Although inflammasomes are generally thought to promote Shigella pathogenesis, we instead demonstrate that intestinal epithelial cell (IEC)-specific NAIP-NLRC4 activity is sufficient to protect mice from shigellosis. In addition to describing a new mouse model of shigellosis, our results suggest that the lack of an inflammasome response in IECs may help explain the susceptibility of humans to shigellosis.
Collapse
Affiliation(s)
- Patrick S Mitchell
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Justin L Roncaioli
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elizabeth A Turcotte
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Lisa Goers
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Roberto A Chavez
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science UniversityPortlandUnited States
| | - Russell E Vance
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Immunotherapeutics and Vaccine Research Initiative, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
11
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
12
|
Ashida H, Suzuki T, Sasakawa C. Shigella infection and host cell death: a double-edged sword for the host and pathogen survival. Curr Opin Microbiol 2020; 59:1-7. [PMID: 32784063 DOI: 10.1016/j.mib.2020.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
In response to bacterial infection, epithelial cells undergo several types of cell death, including apoptosis, necrosis, pyroptosis, and necroptosis, which serve to expel the infected cells and activate the innate and acquired immune responses. Shigella initially invades macrophages and subsequently surrounding enterocytes; the pathogen executes macrophage cell death but prevents epithelial cell death in order to maintain its foothold for replication. To this end, Shigella delivers versatile effector proteins via the type III secretion system (T3SS), allowing it to efficiently colonize the intestinal epithelium. In this article, we review insights into the mechanisms underlying circumvention of the host cell death by Shigella, as an example of bacterial fine-tuning of host cell death pathways.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Chihiro Sasakawa
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan; Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan.
| |
Collapse
|
13
|
Ashida H, Sasakawa C, Suzuki T. A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspase-8. EMBO J 2020; 39:e104469. [PMID: 32657447 PMCID: PMC7459423 DOI: 10.15252/embj.2020104469] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Upon invasive bacterial infection of colonic epithelium, host cells induce several types of cell death to eliminate pathogens. For instance, necroptosis is a RIPK‐dependent lytic cell death that serves as a backup system to fully eliminate intracellular pathogens when apoptosis is inhibited; this phenomenon has been termed “cell death crosstalk”. To maintain their replicative niche and multiply within cells, some enteric pathogens prevent epithelial cell death by delivering effectors via the type III secretion system. In this study, we found that Shigella hijacks host cell death crosstalk via a dual mechanism: inhibition of apoptosis by the OspC1 effector and inhibition of necroptosis by the OspD3 effector. Upon infection by Shigella, host cells recognize blockade of caspase‐8 apoptosis signaling by OspC1 effector as a key danger signal and trigger necroptosis as a backup form of host defense. To counteract this backup defense, Shigella delivers the OspD3 effector, a protease, to degrade RIPK1 and RIPK3, preventing necroptosis. We believe that blockade of host cell death crosstalk by Shigella is a unique intracellular survival tactic for prolonging the bacterium's replicative niche.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Chihiro Sasakawa
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Nippon Institute for Biological Science, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
14
|
Mukhopadhyay S, Ganguli S, Chakrabarti S. <em>Shigella</em> pathogenesis: molecular and computational insights. AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
15
|
Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide. Nat Microbiol 2019; 5:354-367. [PMID: 31873204 DOI: 10.1038/s41564-019-0620-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/24/2019] [Indexed: 02/08/2023]
Abstract
The cytosolic appearance and propagation of bacteria cause overwhelming cellular stress responses that induce apoptosis under normal conditions. Therefore, successful bacterial colonization depends on the ability of intracellular pathogens to block apoptosis and to safeguard bacterial replicative niches. Here, we show that the cytosolic Gram-negative bacterium Shigella flexneri stalls apoptosis by inhibiting effector caspase activity. Our data identified lipopolysaccharide (LPS) as a bona fide effector caspase inhibitor that directly binds caspases by involving its O-antigen (O Ag) moiety. Bacterial strains that lacked the O Ag or failed to replicate within the cytosol were incapable of blocking apoptosis and exhibited reduced virulence in a murine model of bacterial infection. Our findings demonstrate how Shigella inhibits pro-apoptotic caspase activity, effectively delays coordinated host-cell demise and supports its intracellular propagation. Next to the recently discovered pro-inflammatory role of cytosolic LPS, our data reveal a distinct mode of LPS action that, through the disruption of the early coordinated non-lytic cell death response, ultimately supports the inflammatory breakdown of infected cells at later time points.
Collapse
|
16
|
Wang J, Yang B, An Y, Marquez-Lago T, Leier A, Wilksch J, Hong Q, Zhang Y, Hayashida M, Akutsu T, Webb GI, Strugnell RA, Song J, Lithgow T. Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches. Brief Bioinform 2019; 20:931-951. [PMID: 29186295 PMCID: PMC6585386 DOI: 10.1093/bib/bbx164] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
In the course of infecting their hosts, pathogenic bacteria secrete numerous effectors, namely, bacterial proteins that pervert host cell biology. Many Gram-negative bacteria, including context-dependent human pathogens, use a type IV secretion system (T4SS) to translocate effectors directly into the cytosol of host cells. Various type IV secreted effectors (T4SEs) have been experimentally validated to play crucial roles in virulence by manipulating host cell gene expression and other processes. Consequently, the identification of novel effector proteins is an important step in increasing our understanding of host-pathogen interactions and bacterial pathogenesis. Here, we train and compare six machine learning models, namely, Naïve Bayes (NB), K-nearest neighbor (KNN), logistic regression (LR), random forest (RF), support vector machines (SVMs) and multilayer perceptron (MLP), for the identification of T4SEs using 10 types of selected features and 5-fold cross-validation. Our study shows that: (1) including different but complementary features generally enhance the predictive performance of T4SEs; (2) ensemble models, obtained by integrating individual single-feature models, exhibit a significantly improved predictive performance and (3) the 'majority voting strategy' led to a more stable and accurate classification performance when applied to predicting an ensemble learning model with distinct single features. We further developed a new method to effectively predict T4SEs, Bastion4 (Bacterial secretion effector predictor for T4SS), and we show our ensemble classifier clearly outperforms two recent prediction tools. In summary, we developed a state-of-the-art T4SE predictor by conducting a comprehensive performance evaluation of different machine learning algorithms along with a detailed analysis of single- and multi-feature selections.
Collapse
Affiliation(s)
- Jiawei Wang
- Biomedicine Discovery Institute and the Department of Microbiology at Monash University, Australia
| | - Bingjiao Yang
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, College of Mechanical Engineering from Yanshan University, China
| | - Yi An
- College of Information Engineering, Northwest A&F University, China
| | - Tatiana Marquez-Lago
- Department of Genetics, University of Alabama at Birmingham (UAB) School of Medicine, USA
| | - André Leier
- Department of Genetics and the Informatics Institute, University of Alabama at Birmingham (UAB) School of Medicine, USA
| | - Jonathan Wilksch
- Department of Microbiology and Immunology at the University of Melbourne, Australia
| | | | - Yang Zhang
- Computer Science and Engineering in 2015 fromNorthwestern Polytechnical University, China
| | | | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash Centre for Data Science, Monash University
| | - Richard A Strugnell
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Trevor Lithgow
- Department of Microbiology at Monash University, Australia
| |
Collapse
|
17
|
Koestler BJ, Ward CM, Fisher CR, Rajan A, Maresso AW, Payne SM. Human Intestinal Enteroids as a Model System of Shigella Pathogenesis. Infect Immun 2019; 87:e00733-18. [PMID: 30642906 PMCID: PMC6434139 DOI: 10.1128/iai.00733-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/06/2019] [Indexed: 01/01/2023] Open
Abstract
The enteric bacterium and intracellular human pathogen Shigella causes hundreds of millions of cases of the diarrheal disease shigellosis per year worldwide. Shigella is acquired by ingestion of contaminated food or water; upon reaching the colon, the bacteria invade colonic epithelial cells, replicate intracellularly, spread to adjacent cells, and provoke an intense inflammatory response. There is no animal model that faithfully recapitulates human disease; thus, cultured cells have been used to model Shigella pathogenesis. However, the use of transformed cells in culture does not provide the same environment to the bacteria as the normal human intestinal epithelium. Recent advances in tissue culture now enable the cultivation of human intestinal enteroids (HIEs), which are derived from human intestinal stem cells, grown ex vivo, and then differentiated into "mini-intestines." Here, we demonstrate that HIEs can be used to model Shigella pathogenesis. We show that Shigella flexneri invades polarized HIE monolayers preferentially via the basolateral surface. After S. flexneri invades HIE monolayers, S. flexneri replicates within HIE cells and forms actin tails. S. flexneri also increases the expression of HIE proinflammatory signals and the amino acid transporter SLC7A5. Finally, we demonstrate that disruption of HIE tight junctions enables S. flexneri invasion via the apical surface.
Collapse
Affiliation(s)
- Benjamin J Koestler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Cara M Ward
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - C R Fisher
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shelley M Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
18
|
Abstract
The history of Shigella, the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of Shigella pathogenesis in the first 100 years. Over the past century, Shigella has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and "black holes" and antivirulence genes. While there is still much to learn from studying Shigella pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.
Collapse
|
19
|
Schnupf P, Sansonetti PJ. Shigella Pathogenesis: New Insights through Advanced Methodologies. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0023-2019. [PMID: 30953429 PMCID: PMC11588159 DOI: 10.1128/microbiolspec.bai-0023-2019] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Shigella is a genus of Gram-negative enteropathogens that have long been, and continue to be, an important public health concern worldwide. Over the past several decades, Shigella spp. have also served as model pathogens in the study of bacterial pathogenesis, and Shigella flexneri has become one of the best-studied pathogens on a molecular, cellular, and tissue level. In the arms race between Shigella and the host immune system, Shigella has developed highly sophisticated mechanisms to subvert host cell processes in order to promote infection, escape immune detection, and prevent bacterial clearance. Here, we give an overview of Shigella pathogenesis while highlighting innovative techniques and methods whose application has significantly advanced our understanding of Shigella pathogenesis in recent years.
Collapse
Affiliation(s)
- Pamela Schnupf
- Institut Imagine, Laboratory of Intestinal Immunity, INSERM UMR1163; Institut Necker Enfants Malades, Laboratory of Host-Microbiota Interaction, INSERM U1151; and Université Paris Descartes-Sorbonne, 75006 Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, and College de France, Paris, France
| |
Collapse
|
20
|
Yamaguchi T, Higa N, Okura N, Matsumoto A, Hermawan I, Yamashiro T, Suzuki T, Toma C. Characterizing interactions of Leptospira interrogans with proximal renal tubule epithelial cells. BMC Microbiol 2018; 18:64. [PMID: 29973159 PMCID: PMC6030750 DOI: 10.1186/s12866-018-1206-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Leptospira interrogans is a pathogenic, spirochetal bacterium that is responsible for leptospirosis, an emerging worldwide zoonosis. Leptospires colonize the renal proximal tubules and chronically infect the kidney. Live bacteria are excreted into urine, contaminating the environment. While it is well known that leptospires can persist in the kidneys without signs of disease for several months, the interactions of leptospires with the proximal renal epithelial tubule cells that allow the chronic renal colonization have not been elucidated yet. In the present study, we compared the interactions between a virulent, low passage (LP) strain and a cultured-attenuated, high passage (HP) strain with renal proximal tubule epithelial cells (RPTECs) to elucidate the strategies used by Leptospira to colonize the kidney. RESULTS Kinetics analysis of kidney colonization in a mouse model of chronic infection performed by quantitative real-time PCR and immunofluorescence, showed that the LP strain reached the kidney by 3 days post infection (pi) and attached to the basal membrane side of the renal epithelial cells. At 10 days pi, some leptospires were attached to the luminal side of the tubular epithelia and the number of colonizing leptospires gradually increased. On the other hand, the HP strain was cleared during hematogenous dissemination and did not colonize the kidney. Transmission electron microscopy analysis of LP-infected kidneys at 25 days pi showed aggregated leptospires and membrane vesicles attached to the epithelial brush border. Leptospiral kidney colonization altered the organization of the RPTEC brush border. An in vitro model of infection using TCMK-1 cells, showed that leptospiral infection induced a host stress response, which is delayed in LP-infected cells. CONCLUSIONS After hematogenous dissemination, leptospires create protective and replicative niches in the base membrane and luminal sides of the RPTECs. During the long-term colonization, leptospires attached to the RPTEC brush borders and membrane vesicles might be involved in the formation of a biofilm-like structure in vivo. Our results also suggested that the virulent strain is able to manipulate host cell stress responses to promote renal colonization.
Collapse
Affiliation(s)
- Takayoshi Yamaguchi
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
- Present address: Department of Food and Nutrition Science, Junior College, Sagami Women’s University, Sagamihara, Kanagawa 252-0383 Japan
| | - Naomi Higa
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| | - Arina Matsumoto
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
- Present address: Okinawa Industrial Technology Center, Okinawa, 904-2234 Japan
| | - Idam Hermawan
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510 Japan
| | - Claudia Toma
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| |
Collapse
|
21
|
Sun CH, Wacquier B, Aguilar DI, Carayol N, Denis K, Boucherie S, Valencia-Gallardo C, Simsek C, Erneux C, Lehman A, Enninga J, Arbibe L, Sansonetti P, Dupont G, Combettes L, Tran Van Nhieu G. The Shigella type III effector IpgD recodes Ca 2+ signals during invasion of epithelial cells. EMBO J 2017; 36:2567-2580. [PMID: 28701483 PMCID: PMC5579377 DOI: 10.15252/embj.201696272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/03/2017] [Accepted: 06/13/2017] [Indexed: 01/29/2023] Open
Abstract
The role of second messengers in the diversion of cellular processes by pathogens remains poorly studied despite their importance. Among these, Ca2+ virtually regulates all known cell processes, including cytoskeletal reorganization, inflammation, or cell death pathways. Under physiological conditions, cytosolic Ca2+ increases are transient and oscillatory, defining the so-called Ca2+ code that links cell responses to specific Ca2+ oscillatory patterns. During cell invasion, Shigella induces atypical local and global Ca2+ signals. Here, we show that by hydrolyzing phosphatidylinositol-(4,5)bisphosphate, the Shigella type III effector IpgD dampens inositol-(1,4,5)trisphosphate (InsP3) levels. By modifying InsP3 dynamics and diffusion, IpgD favors the elicitation of long-lasting local Ca2+ signals at Shigella invasion sites and converts Shigella-induced global oscillatory responses into erratic responses with atypical dynamics and amplitude. Furthermore, IpgD eventually inhibits InsP3-dependent responses during prolonged infection kinetics. IpgD thus acts as a pathogen regulator of the Ca2+ code implicated in a versatility of cell functions. Consistent with this function, IpgD prevents the Ca2+-dependent activation of calpain, thereby preserving the integrity of cell adhesion structures during the early stages of infection.
Collapse
Affiliation(s)
- Chun Hui Sun
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR7241, Paris, France
- MEMOLIFE Laboratory of excellence and Paris Sciences et Lettres, Paris, France
- Université Paris Sud, Orsay, France
- Inserm, UMRS1174, Orsay, France
| | - Benjamin Wacquier
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel I Aguilar
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR7241, Paris, France
- MEMOLIFE Laboratory of excellence and Paris Sciences et Lettres, Paris, France
| | - Nathalie Carayol
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR7241, Paris, France
- MEMOLIFE Laboratory of excellence and Paris Sciences et Lettres, Paris, France
| | - Kevin Denis
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR7241, Paris, France
- MEMOLIFE Laboratory of excellence and Paris Sciences et Lettres, Paris, France
| | | | - Cesar Valencia-Gallardo
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR7241, Paris, France
- MEMOLIFE Laboratory of excellence and Paris Sciences et Lettres, Paris, France
| | - Ceren Simsek
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR7241, Paris, France
- MEMOLIFE Laboratory of excellence and Paris Sciences et Lettres, Paris, France
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Lehman
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Jost Enninga
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité de la Dynamique des Interactions Hôte-Pathogène, Paris, France
| | - Laurence Arbibe
- Equipe Plasticité du Génome et Infection, INSERM UMR_S1151 - CNRS UMR8253, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris, France
| | - Philippe Sansonetti
- Département de Biologie Cellulaire et Infection, Unité de Pathogénie Microbienne Moléculaire, Paris, France
- Unité Inserm 1202, Institut Pasteur, Paris, France
- Collège de France, Paris, France
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR7241, Paris, France
- MEMOLIFE Laboratory of excellence and Paris Sciences et Lettres, Paris, France
| |
Collapse
|
22
|
Mittal R, Lisi CV, Kumari H, Grati M, Blackwelder P, Yan D, Jain C, Mathee K, Weckwerth PH, Liu XZ. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages. Front Microbiol 2016; 7:1828. [PMID: 27917157 PMCID: PMC5114284 DOI: 10.3389/fmicb.2016.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host-pathogen interaction will provide novel avenues to design effective treatment modalities against OM.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Christopher V Lisi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Patricia Blackwelder
- Chemistry Department, Center for Advanced Microscopy, University of Miami, Coral GablesFL, USA; Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key BiscayneFL, USA
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, MiamiFL, USA; Global Health Consortium and Biomolecular Science Institute, Florida International University, MiamiFL, USA
| | - Paulo H Weckwerth
- Health Sciences Department, University of Sagrado Coração Bauru, Brazil
| | - Xue Z Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| |
Collapse
|
23
|
Killackey SA, Sorbara MT, Girardin SE. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes. Front Cell Infect Microbiol 2016; 6:38. [PMID: 27066460 PMCID: PMC4814626 DOI: 10.3389/fcimb.2016.00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 01/11/2023] Open
Abstract
Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.
Collapse
Affiliation(s)
- Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada
| | | | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada; Department of Immunology, University of TorontoToronto, ON, Canada
| |
Collapse
|
24
|
Ashida H, Sasakawa C. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria. Front Cell Infect Microbiol 2016; 5:100. [PMID: 26779450 PMCID: PMC4701945 DOI: 10.3389/fcimb.2015.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2015] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of TokyoTokyo, Japan; Nippon Institute for Biological ScienceTokyo, Japan; Medical Mycology Research Center, Chiba UniversityChiba, Japan
| |
Collapse
|
25
|
Ashida H, Mimuro H, Sasakawa C. Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol 2015; 6:219. [PMID: 25999954 PMCID: PMC4423471 DOI: 10.3389/fimmu.2015.00219] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and the adaptive immune systems, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors) via the type III secretion system (T3SS) that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present and select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host-cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan ; Nippon Institute for Biological Science , Tokyo , Japan ; Medical Mycology Research Center, Chiba University , Chiba , Japan
| |
Collapse
|