1
|
Ray S, Murad T, Arena GD, Arshad K, Arendsee Z, Herath V, Whitham SA, Casteel CL. Turnip mosaic virus infection cleaves MEDIATOR SUBUNIT16 in plants increasing plant susceptibility to the virus and its aphid vector Myzus persicae. BMC PLANT BIOLOGY 2025; 25:411. [PMID: 40170134 PMCID: PMC11963320 DOI: 10.1186/s12870-025-06411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Plant viruses both trigger and inhibit host plant defense responses, including defenses that target their insect vectors, such as aphids. Turnip mosaic viru (TuMV) infection and its protein, NIa-Pro (nuclear inclusion protease a), suppress aphid-induced plant defenses, however the mechanisms of this suppression are still largely unknown. In this study, we determined that NIa-Pro's protease activity is required to increase aphid performance on host plants and that 40 transcripts with predicted NIa-Pro cleavage sequences are regulated in Arabidopsis plants challenged with aphids and/or virus compared to healthy controls. One of the candidates, MEDIATOR 16 (MED16), regulates the transcription of ethylene (ET)/jasmonic acid (JA)-dependent defense responses against necrotrophic pathogens. We show that a nuclear localization signal is removed from MED16 by specific proteolytic cleavage in virus-infected plants and in plants overexpressing NIa-Pro in the presence of aphids. Although some cleavage was occasionally detected in the absence of virus infection, it occurred at a much higher rate in plants that were virus-infected or overexpressing NIa-Pro, especially when aphids were also present. This suggests MED16 functions in the nucleus may be impacted in virus infected plants. Consistent with this, induction of the MED16-dependent transcript of PLANT DEFENSIN 1.2 (PDF1.2), was reduced in virus-infected plants and in plants expressing NIa-Pro compared to controls, but not in plants expressing NIa-Pro C151A that lacks its protease activity. Finally, we show the performance of both the virus and the aphid vector was enhanced on med16 mutant Arabidopsis compared to controls. Overall, this study demonstrates MED16 regulates defense responses against both the virus and the aphid and provides insights into the mechanism by which TuMV suppresses anti-virus and anti-herbivore defenses.
Collapse
Affiliation(s)
- Swayamjit Ray
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, 309 Plant Science Building, Ithaca, NY, 14853, USA
| | - Tyseen Murad
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, 309 Plant Science Building, Ithaca, NY, 14853, USA
| | - Gabriella D Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, 04014-002, Brazil
| | - Kanza Arshad
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, 309 Plant Science Building, Ithaca, NY, 14853, USA
| | - Zebulun Arendsee
- Interdepartmental Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Venura Herath
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Steven A Whitham
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, USA
| | - Clare L Casteel
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, 309 Plant Science Building, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Zhao Y, Wang Y. Protein Dynamics in Plant Immunity: Insights into Plant-Pest Interactions. Int J Mol Sci 2024; 25:12951. [PMID: 39684662 DOI: 10.3390/ijms252312951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
All living organisms regulate biological activities by proteins. When plants encounter pest invasions, the delicate balance between protein synthesis and degradation becomes even more pivotal for mounting an effective defense response. In this review, we summarize the mechanisms by which plants regulate their proteins to effectively coordinate immune responses during plant-pest interactions. Additionally, we discuss the main pathway proteins through which pest effectors manipulate host protein homeostasis in plants to facilitate their infestation. Understanding these processes at the molecular level not only deepens our knowledge of plant immunity but also holds the potential to inform strategies for developing pest-resistant crops, contributing to sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanru Wang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Chen H, Su S, Yang S, Zhao T, Tang P, Luo Q, Zhong Y, Yang J. Effector MoSDT1 enhances Magnaporthe oryzae virulence and plays a dual role in regulating rice defense. PLANT PHYSIOLOGY 2024; 196:1042-1063. [PMID: 39046202 DOI: 10.1093/plphys/kiae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/16/2024] [Indexed: 07/25/2024]
Abstract
C2H2 zinc effectors are a class of pathogen proteins that play a dual role in plant-pathogen interactions, promoting pathogenicity and enhancing plant defense. In our previous research, we identified Magnaporthe oryzae Systemic Defense Trigger 1 (MoSDT1) as a C2H2 zinc effector that activates rice (Oryza sativa) defense when overexpressed in rice. However, its regulatory roles in pathogenicity and defense require further investigation. In this study, we generated an MoSDT1 overexpressing strain and 2 knockout strains of M. oryzae to assess the impact of MoSDT1 on pathogenicity, rice defense, and phenotypic characteristics. Our analyses revealed that MoSDT1 substantially influenced vegetative growth, conidia size, and conidiation, and was crucial for the virulence of M. oryzae while suppressing rice defense. MoSDT1 localized to the nucleus and cytoplasm of rice, either dependent or independent of M. oryzae delivery. Through RNA-seq, scRNA-seq, and ChIP-seq, we identified that MoSDT1 modulates rice defense by regulating the phosphorylation and ubiquitination of various rice signaling proteins, including transcription factors, transcription repressors, kinases, phosphatases, and the ubiquitin system. These findings provide valuable insights into the regulatory mechanisms of C2H2 zinc finger effector proteins and offer important foundational information for utilizing their target genes in disease resistance breeding and the design of targets for disease management.
Collapse
Affiliation(s)
- Hongfeng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shunyu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shumin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Tianqi Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanyuan Zhong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Gätjens-Boniche O, Jiménez-Madrigal JP, Whetten RW, Valenzuela-Diaz S, Alemán-Gutiérrez A, Hanson PE, Pinto-Tomás AA. Microbiome and plant cell transformation trigger insect gall induction in cassava. FRONTIERS IN PLANT SCIENCE 2023; 14:1237966. [PMID: 38126017 PMCID: PMC10731979 DOI: 10.3389/fpls.2023.1237966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
Several specialised insects can manipulate normal plant development to induce a highly organised structure known as a gall, which represents one of the most complex interactions between insects and plants. Thus far, the mechanism for insect-induced plant galls has remained elusive. To study the induction mechanism of insect galls, we selected the gall induced by Iatrophobia brasiliensis (Diptera: Cecidomyiidae) in cassava (Euphorbiaceae: Manihot esculenta Crantz) as our model. PCR-based molecular markers and deep metagenomic sequencing data were employed to analyse the gall microbiome and to test the hypothesis that gall cells are genetically transformed by insect vectored bacteria. A shotgun sequencing discrimination approach was implemented to selectively discriminate between foreign DNA and the reference host plant genome. Several known candidate insertion sequences were identified, the most significant being DNA sequences found in bacterial genes related to the transcription regulatory factor CadR, cadmium-transporting ATPase encoded by the cadA gene, nitrate transport permease protein (nrtB gene), and arsenical pump ATPase (arsA gene). In addition, a DNA fragment associated with ubiquitin-like gene E2 was identified as a potential accessory genetic element involved in gall induction mechanism. Furthermore, our results suggest that the increased quality and rapid development of gall tissue are mostly driven by microbiome enrichment and the acquisition of critical endophytes. An initial gall-like structure was experimentally obtained in M. esculenta cultured tissues through inoculation assays using a Rhodococcus bacterial strain that originated from the inducing insect, which we related to the gall induction process. We provide evidence that the modification of the endophytic microbiome and the genetic transformation of plant cells in M. esculenta are two essential requirements for insect-induced gall formation. Based on these findings and having observed the same potential DNA marker in galls from other plant species (ubiquitin-like gene E2), we speculate that bacterially mediated genetic transformation of plant cells may represent a more widespread gall induction mechanism found in nature.
Collapse
Affiliation(s)
- Omar Gätjens-Boniche
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
| | - Jose Pablo Jiménez-Madrigal
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
| | - Ross W. Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Sandro Valenzuela-Diaz
- Human Microbiome Research Program, Faculty of Medicine, The Helsinki University, Helsinki, Finland
| | - Alvaro Alemán-Gutiérrez
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
- Laboratorio de Genómica y Biodiversidad, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Paul E. Hanson
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Adrián A. Pinto-Tomás
- Center for Research in Microscopic Structures and Department of Biochemistry, School of Medicine, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
5
|
Rodríguez-Vázquez R, Mesa-Marín J. Plant responses to plant growth promoting bacteria: Insights from proteomics. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154031. [PMID: 37321049 DOI: 10.1016/j.jplph.2023.154031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Affiliation(s)
| | - Jennifer Mesa-Marín
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain.
| |
Collapse
|
6
|
Gu B, Parkes T, Rabanal F, Smith C, Lu FH, McKenzie N, Dong H, Weigel D, Jones JDG, Cevik V, Bevan MW. The integrated LIM-peptidase domain of the CSA1-CHS3/DAR4 paired immune receptor detects changes in DA1 peptidase inhibitors in Arabidopsis. Cell Host Microbe 2023; 31:949-961.e5. [PMID: 37167970 DOI: 10.1016/j.chom.2023.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
White blister rust, caused by the oomycete Albugo candida, is a widespread disease of Brassica crops. The Brassica relative Arabidopsis thaliana uses the paired immune receptor complex CSA1-CHS3/DAR4 to resist Albugo infection. The CHS3/DAR4 sensor NLR, which functions together with its partner, the helper NLR CSA1, carries an integrated domain (ID) with homology to DA1 peptidases. Using domain swaps with several DA1 homologs, we show that the LIM-peptidase domain of the family member CHS3/DAR4 functions as an integrated decoy for the family member DAR3, which interacts with and inhibits the peptidase activities of the three closely related peptidases DA1, DAR1, and DAR2. Albugo infection rapidly lowers DAR3 levels and activates DA1 peptidase activity, thereby promoting endoreduplication of host tissues to support pathogen growth. We propose that the paired immune receptor CSA1-CHS3/DAR4 detects the actions of a putative Albugo effector that reduces DAR3 levels, resulting in defense activation.
Collapse
Affiliation(s)
- Benguo Gu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Toby Parkes
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Fernando Rabanal
- Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Caroline Smith
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Fu-Hao Lu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neil McKenzie
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hui Dong
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| | - Volkan Cevik
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK.
| | - Michael W Bevan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
7
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
8
|
Smalley S, Hellmann H. Review: Exploring possible approaches using ubiquitylation and sumoylation pathways in modifying plant stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111275. [PMID: 35487671 DOI: 10.1016/j.plantsci.2022.111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin and similar proteins, such as SUMO, are utilized by plants to modify target proteins to rapidly change their stability and activity in cells. This review will provide an overview of these crucial protein interactions with a focus on ubiquitylation and sumoylation in plants and how they contribute to stress tolerance. The work will also explore possibilities to use these highly conserved pathways for novel approaches to generate more robust crop plants better fit to cope with abiotic and biotic stress situations.
Collapse
Affiliation(s)
- Samuel Smalley
- Washington State University, Pullman, WA 99164, United States
| | - Hanjo Hellmann
- Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
9
|
Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S. A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO J 2022; 41:e110352. [PMID: 35620914 PMCID: PMC9251887 DOI: 10.15252/embj.2021110352] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.
Collapse
Affiliation(s)
- Jia Xuan Leong
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Margot Raffeiner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Daniela Spinti
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Gautier Langin
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Andrew R Guzman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Pooja Pandey
- Department of Life Sciences, Imperial College London, London, UK
| | - Alyona E Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Boris Macek
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Frederik Börnke
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Suayib Üstün
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Faculty of Biology & Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Kitazawa Y, Iwabuchi N, Maejima K, Sasano M, Matsumoto O, Koinuma H, Tokuda R, Suzuki M, Oshima K, Namba S, Yamaji Y. A phytoplasma effector acts as a ubiquitin-like mediator between floral MADS-box proteins and proteasome shuttle proteins. THE PLANT CELL 2022; 34:1709-1723. [PMID: 35234248 PMCID: PMC9048881 DOI: 10.1093/plcell/koac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 06/01/2023]
Abstract
Plant pathogenic bacteria have developed effectors to manipulate host cell functions to facilitate infection. A certain number of effectors use the conserved ubiquitin-proteasome system in eukaryotic to proteolyze targets. The proteasome utilization mechanism is mainly mediated by ubiquitin interaction with target proteins destined for degradation. Phyllogens are a family of protein effectors produced by pathogenic phytoplasmas that transform flowers into leaves in diverse plants. Here, we present a noncanonical mechanism for phyllogen action that involves the proteasome and is ubiquitin-independent. Phyllogens induce proteasomal degradation of floral MADS-box transcription factors (MTFs) in the presence of RADIATION-SENSITIVE23 (RAD23) shuttle proteins, which recruit ubiquitinated proteins to the proteasome. Intracellular localization analysis revealed that phyllogen induced colocalization of MTF with RAD23. The MTF/phyllogen/RAD23 ternary protein complex was detected not only in planta but also in vitro in the absence of ubiquitin, showing that phyllogen directly mediates interaction between MTF and RAD23. A Lys-less nonubiquitinated phyllogen mutant induced degradation of MTF or a Lys-less mutant of MTF. Furthermore, the method of sequential formation of the MTF/phyllogen/RAD23 protein complex was elucidated, first by MTF/phyllogen interaction and then RAD23 recruitment. Phyllogen recognized both the evolutionarily conserved tetramerization region of MTF and the ubiquitin-associated domain of RAD23. Our findings indicate that phyllogen functionally mimics ubiquitin as a mediator between MTF and RAD23.
Collapse
Affiliation(s)
- Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Momoka Sasano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Ramu VS, Pal G, Oh S, Mysore KS. Proteasomal Degradation of JAZ9 by Salt- and Drought-Induced Ring Finger 1 During Pathogen Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1358-1364. [PMID: 34615361 DOI: 10.1094/mpmi-07-21-0192-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
E3 ubiquitin ligase salt- and drought-induced ring finger 1 (SDIR1) plays a novel role in modulating plant immunity against pathogens. The molecular interactors of SDIR1 during pathogen infection are not known. SDIR1-interacting jasmonate zinc-finger inflorescence meristem domain (JAZ) proteins were identified through a yeast two-hybrid (Y2H) screen. Full-length JAZ9 interacts with SDIR1 only in the presence of coronatine (a bacteria-secreted toxin) or jasmonic acid (JA) in a Y2H assay. The bimolecular fluorescence complementation and pull-down assays confirm the in planta interaction of these proteins. JAZ9 proteins, negative regulators of JA-mediated plant defense, were degraded during the pathogen infection by SDIR1 through a proteasomal pathway causing disease susceptibility against hemibiotrophic pathogens.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2021.
Collapse
Affiliation(s)
- Vemanna S Ramu
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, Haryana 121001, India
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Garima Pal
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, Haryana 121001, India
| | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Kirankumar S Mysore
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, U.S.A
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| |
Collapse
|
12
|
Tariqjaveed M, Mateen A, Wang S, Qiu S, Zheng X, Zhang J, Bhadauria V, Sun W. Versatile effectors of phytopathogenic fungi target host immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1856-1873. [PMID: 34383388 DOI: 10.1111/jipb.13162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.
Collapse
Affiliation(s)
- Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Abdul Mateen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanshan Qiu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinhang Zheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Institute of Microbiology, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
13
|
Chen J, Wang D, Fu ZQ. Degradation without ubiquitination: new function of a parasite effector. Trends Parasitol 2021; 37:1024-1026. [PMID: 34686422 DOI: 10.1016/j.pt.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
Like many other pathogens, the obligate parasitic bacteria phytoplasmas reply on secreted effectors to cause diseases in their plant hosts. Huang et al. revealed that a phytoplasma effector degrades plant proteins independent of ubiquitination. Bypassing this degradation step makes Arabidopsis thaliana plants resistant to this parasite effector.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
14
|
Kan CC, Mendoza-Herrera A, Levy J, Hull JJ, Fabrick JA, Tamborindeguy C. HPE1, an Effector from Zebra Chip Pathogen Interacts with Tomato Proteins and Perturbs Ubiquitinated Protein Accumulation. Int J Mol Sci 2021; 22:9003. [PMID: 34445707 PMCID: PMC8396652 DOI: 10.3390/ijms22169003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
The gram-negative bacterial genus Liberibacter includes economically important pathogens, such as 'Candidatus Liberibacter asiaticus' that cause citrus greening disease (or Huanglongbing, HLB) and 'Ca. Liberibacter solanacearum' (Lso) that cause zebra chip disease in potato. Liberibacter pathogens are fastidious bacteria transmitted by psyllids. Pathogen manipulation of the host' and vector's immune system for successful colonization is hypothesized to be achieved by Sec translocon-dependent effectors (SDE). In previous work, we identified hypothetical protein effector 1 (HPE1), an SDE from Lso, that acts as a suppressor of the plant's effector-triggered immunity (ETI)-like response. In this study, using a yeast two-hybrid system, we identify binding interactions between tomato RAD23 proteins and HPE1. We further show that HPE1 interacts with RAD23 in both nuclear and cytoplasmic compartments in planta. Immunoblot assays show that HPE1 is not ubiquitinated in the plant cell, but rather the expression of HPE1 induced the accumulation of other ubiquitinated proteins. A similar accumulation of ubiquitinated proteins is also observed in Lso infected tomato plants. Finally, earlier colonization and symptom development following Lso haplotype B infection are observed in HPE1 overexpressing plants compared to wild-type plants. Overall, our results suggest that HPE1 plays a role in virulence in Lso pathogenesis, possibly by perturbing the ubiquitin-proteasome system via direct interaction with the ubiquitin-like domain of RAD23 proteins.
Collapse
Affiliation(s)
- Chia-Cheng Kan
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (C.-C.K.); (A.M.-H.)
| | - Azucena Mendoza-Herrera
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (C.-C.K.); (A.M.-H.)
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - J. Joe Hull
- USDA-ARS, Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA; (J.J.H.); (J.A.F.)
| | - Jeffery A. Fabrick
- USDA-ARS, Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA; (J.J.H.); (J.A.F.)
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (C.-C.K.); (A.M.-H.)
| |
Collapse
|
15
|
Abstract
This introductory chapter describes the life cycle of Magnaporthe oryzae, the causal agent of rice blast disease. During plant infection, M. oryzae forms a specialized infection structure called an appressorium, which generates enormous turgor, applied as a mechanical force to breach the rice cuticle. Appressoria form in response to physical cues from the hydrophobic rice leaf cuticle and nutrient availability. The signaling pathways involved in perception of surface signals are described and the mechanism by which appressoria function is also introduced. Re-polarization of the appressorium requires a septin complex to organize a toroidal F-actin network at the base of the cell. Septin aggregation requires a turgor-dependent sensor kinase, Sln1, necessary for re-polarization of the appressorium and development of a rigid penetration hypha to rupture the leaf cuticle. Once inside the plant, the fungus undergoes secretion of a large set of effector proteins, many of which are directed into plant cells using a specific secretory pathway. Here they suppress plant immunity, but can also be perceived by rice immune receptors, triggering resistances. M. oryzae then manipulates pit field sites, containing plasmodesmata, to facilitate rapid spread from cell to cell in plant tissue, leading to disease symptom development.
Collapse
|
16
|
Abstract
In life's constant battle for survival, it takes one to kill but two to conquer. Toxin-antitoxin or toxin-antidote (TA) elements are genetic dyads that cheat the laws of inheritance to guarantee their transmission to the next generation. This seemingly simple genetic arrangement—a toxin linked to its antidote—is capable of quickly spreading and persisting in natural populations. TA elements were first discovered in bacterial plasmids in the 1980s and have recently been characterized in fungi, plants, and animals, where they underlie genetic incompatibilities and sterility in crosses between wild isolates. In this review, we provide a unified view of TA elements in both prokaryotic and eukaryotic organisms and highlight their similarities and differences at the evolutionary, genetic, and molecular levels. Finally, we propose several scenarios that could explain the paradox of the evolutionary origin of TA elements and argue that these elements may be key evolutionary players and that the full scope of their roles is only beginning to be uncovered.
Collapse
Affiliation(s)
- Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Eyal Ben-David
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
Rispe C, Legeai F, Nabity PD, Fernández R, Arora AK, Baa-Puyoulet P, Banfill CR, Bao L, Barberà M, Bouallègue M, Bretaudeau A, Brisson JA, Calevro F, Capy P, Catrice O, Chertemps T, Couture C, Delière L, Douglas AE, Dufault-Thompson K, Escuer P, Feng H, Forneck A, Gabaldón T, Guigó R, Hilliou F, Hinojosa-Alvarez S, Hsiao YM, Hudaverdian S, Jacquin-Joly E, James EB, Johnston S, Joubard B, Le Goff G, Le Trionnaire G, Librado P, Liu S, Lombaert E, Lu HL, Maïbèche M, Makni M, Marcet-Houben M, Martínez-Torres D, Meslin C, Montagné N, Moran NA, Papura D, Parisot N, Rahbé Y, Lopes MR, Ripoll-Cladellas A, Robin S, Roques C, Roux P, Rozas J, Sánchez-Gracia A, Sánchez-Herrero JF, Santesmasses D, Scatoni I, Serre RF, Tang M, Tian W, Umina PA, van Munster M, Vincent-Monégat C, Wemmer J, Wilson ACC, Zhang Y, Zhao C, Zhao J, Zhao S, Zhou X, Delmotte F, Tagu D. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest. BMC Biol 2020; 18:90. [PMID: 32698880 PMCID: PMC7376646 DOI: 10.1186/s12915-020-00820-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/22/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.
Collapse
Affiliation(s)
| | - Fabrice Legeai
- BIPAA, IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | - Paul D. Nabity
- Department of Botany and Plant Sciences, University of California, Riverside, USA
| | - Rosa Fernández
- Bioinformatics and Genomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003 Barcelona, Spain
- Present address: Institute of Evolutionary Biology (CSIC-UPF), Passeig marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Arinder K. Arora
- Department of Entomology, Cornell University, Ithaca, NY 14853 USA
| | | | | | | | - Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València Spain
| | - Maryem Bouallègue
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR01ES05 Biochimie et Biotechnologie, 2092 Tunis, Tunisia
| | - Anthony Bretaudeau
- BIPAA, IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | | | - Federica Calevro
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Catrice
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Thomas Chertemps
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Carole Couture
- SAVE, INRAE, Bordeaux Sciences Agro, Villenave d’Ornon, France
| | - Laurent Delière
- SAVE, INRAE, Bordeaux Sciences Agro, Villenave d’Ornon, France
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853 USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Keith Dufault-Thompson
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI USA
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Honglin Feng
- Department of Biology, University of Miami, Coral Gables, USA
- Current affiliation: Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, USA
| | | | - Toni Gabaldón
- Bioinformatics and Genomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Frédérique Hilliou
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Silvia Hinojosa-Alvarez
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Yi-min Hsiao
- Institute of Biotechnology and Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Present affiliation: Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sylvie Hudaverdian
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | | | - Edward B. James
- Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | - Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843 USA
| | | | - Gaëlle Le Goff
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Gaël Le Trionnaire
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | - Pablo Librado
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Shanlin Liu
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083 Guangdong Province People’s Republic of China
- BGI-Shenzhen, Shenzhen, 518083 Guangdong Province People’s Republic of China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Eric Lombaert
- Université Côte d’Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Hsiao-ling Lu
- Department of Post-Modern Agriculture, MingDao University, Changhua, Taiwan
| | - Martine Maïbèche
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Mohamed Makni
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR01ES05 Biochimie et Biotechnologie, 2092 Tunis, Tunisia
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València Spain
| | - Camille Meslin
- INRAE, Institute of Ecology and Environmental Sciences, Versailles, France
| | - Nicolas Montagné
- Sorbonne Université, Institute of Ecology and Environmental Sciences, Paris, France
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, USA
| | - Daciana Papura
- SAVE, INRAE, Bordeaux Sciences Agro, Villenave d’Ornon, France
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Yvan Rahbé
- Univ Lyon, INRAE, INSA-Lyon, CNRS, UCBL, UMR5240 MAP, F-69622 Villeurbanne, France
| | | | - Aida Ripoll-Cladellas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stéphanie Robin
- BIPAA IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | - Céline Roques
- Plateforme Génomique GeT-PlaGe, Centre INRAE de Toulouse Midi-Pyrénées, 24 Chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Pascale Roux
- SAVE, INRAE, Bordeaux Sciences Agro, Villenave d’Ornon, France
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jose F. Sánchez-Herrero
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Didac Santesmasses
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | - Rémy-Félix Serre
- Plateforme Génomique GeT-PlaGe, Centre INRAE de Toulouse Midi-Pyrénées, 24 Chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Ming Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Wenhua Tian
- Department of Botany and Plant Sciences, University of California, Riverside, USA
| | - Paul A. Umina
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Manuella van Munster
- BGPI, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Joshua Wemmer
- Department of Botany and Plant Sciences, University of California, Riverside, USA
| | - Alex C. C. Wilson
- Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI USA
| | - Chaoyang Zhao
- Department of Botany and Plant Sciences, University of California, Riverside, USA
| | - Jing Zhao
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083 Guangdong Province People’s Republic of China
- BGI-Shenzhen, Shenzhen, 518083 Guangdong Province People’s Republic of China
| | - Serena Zhao
- Department of Integrative Biology, University of Texas at Austin, Austin, USA
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | | | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| |
Collapse
|
18
|
Langin G, Gouguet P, Üstün S. Microbial Effector Proteins - A Journey through the Proteolytic Landscape. Trends Microbiol 2020; 28:523-535. [PMID: 32544439 DOI: 10.1016/j.tim.2020.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
In the evolutionary arms race between pathogens and plants, pathogens evolved effector molecules that they secrete into the host to subvert plant cellular responses in a process termed the effector-targeted pathway (ETP). During recent years the repertoire of ETPs has increased and mounting evidence indicates that the proteasome and autophagy pathways are central hubs of microbial effectors. Both degradation pathways are implicated in a broad array of cellular responses and thus constitute an attractive target for effector proteins to have a broader impact on the host. In this article we first summarize recent findings on how effectors from various pathogens modulate proteolytic pathways and then provide a network analysis of established effector targets implicated in proteolytic degradation machineries. With this network we emphasize the idea that effectors targeting proteolytic degradation pathways will affect the protein synthesis-transport and degradation triangle. We put in perspective that, in utilizing the effector diversity of microbes, we produce excellent tools to study diverse cellular pathways and their possible interplay with each other.
Collapse
Affiliation(s)
- Gautier Langin
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany
| | - Paul Gouguet
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany
| | - Suayib Üstün
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany.
| |
Collapse
|
19
|
Xiang QW, Bai J, Cai J, Huang QY, Wang Y, Liang Y, Zhong Z, Wagner C, Xie ZP, Staehelin C. NopD of Bradyrhizobium sp. XS1150 Possesses SUMO Protease Activity. Front Microbiol 2020; 11:386. [PMID: 32265858 PMCID: PMC7098955 DOI: 10.3389/fmicb.2020.00386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/21/2020] [Indexed: 01/19/2023] Open
Abstract
Effectors secreted by the type III protein secretion system (T3SS) of rhizobia are host-specific determinants of the nodule symbiosis. Here, we have characterized NopD, a putative type III effector of Bradyrhizobium sp. XS1150. NopD was found to possess a functional N-terminal secretion signal sequence that could replace that of the NopL effector secreted by Sinorhizobium sp. NGR234. Recombinant NopD and the C-terminal domain of NopD alone can process small ubiquitin-related modifier (SUMO) proteins and cleave SUMO-conjugated proteins. Activity was abolished in a NopD variant with a cysteine-to-alanine substitution in the catalytic core (NopD-C972A). NopD recognizes specific plant SUMO proteins (AtSUMO1 and AtSUMO2 of Arabidopsis thaliana; GmSUMO of Glycine max; PvSUMO of Phaseolus vulgaris). Subcellular localization analysis with A. thaliana protoplasts showed that NopD accumulates in nuclear bodies. NopD, but not NopD-C972A, induces cell death when expressed in Nicotiana tabacum. Likewise, inoculation tests with constructed mutant strains of XS1150 indicated that nodulation of Tephrosia vogelii is negatively affected by the protease activity of NopD. In conclusion, our findings show that NopD is a symbiosis-related protein that can process specific SUMO proteins and desumoylate SUMO-conjugated proteins.
Collapse
Affiliation(s)
- Qi-Wang Xiang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan Bai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Cai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Ying Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Liang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi Zhong
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Christian Wagner
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Diaz‐Granados A, Sterken MG, Overmars H, Ariaans R, Holterman M, Pokhare SS, Yuan Y, Pomp R, Finkers‐Tomczak A, Roosien J, Slootweg E, Elashry A, Grundler FM, Xiao F, Goverse A, Smant G. The effector GpRbp-1 of Globodera pallida targets a nuclear HECT E3 ubiquitin ligase to modulate gene expression in the host. MOLECULAR PLANT PATHOLOGY 2020; 21:66-82. [PMID: 31756029 PMCID: PMC6913204 DOI: 10.1111/mpp.12880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant-parasitic nematodes secrete effectors that manipulate plant cell morphology and physiology to achieve host invasion and establish permanent feeding sites. Effectors from the highly expanded SPRYSEC (SPRY domain with a signal peptide for secretion) family in potato cyst nematodes have been implicated in activation and suppression of plant immunity, but the mechanisms underlying these activities remain largely unexplored. To study the host mechanisms used by SPRYSEC effectors, we identified plant targets of GpRbp-1 from the potato cyst nematode Globodera pallida. Here, we show that GpRbp-1 interacts in yeast and in planta with a functional potato homologue of the Homology to E6-AP C-Terminus (HECT)-type ubiquitin E3 ligase UPL3, which is located in the nucleus. Potato lines lacking StUPL3 are not available, but the Arabidopsis mutant upl3-5 displaying a reduced UPL3 expression showed a consistently small but not significant decrease in susceptibility to cyst nematodes. We observed a major impact on the root transcriptome by the lower levels of AtUPL3 in the upl3-5 mutant, but surprisingly only in association with infections by cyst nematodes. To our knowledge, this is the first example that a HECT-type ubiquitin E3 ligase is targeted by a pathogen effector and that a member of this class of proteins specifically regulates gene expression under biotic stress conditions. Together, our data suggest that GpRbp-1 targets a specific component of the plant ubiquitination machinery to manipulate the stress response in host cells.
Collapse
Affiliation(s)
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Hein Overmars
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Roel Ariaans
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Martijn Holterman
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Somnath S. Pokhare
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- ICAR National Rice Research InstituteCuttack753006India
| | - Yulin Yuan
- Department of Plant SciencesUniversity of IdahoMoscowUSA
| | - Rikus Pomp
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Anna Finkers‐Tomczak
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
- KeyGene N.V.WageningenNetherlands
| | - Jan Roosien
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Erik Slootweg
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Abdenaser Elashry
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Strube Research GmbHHauptstrasse 138387SöllingenGermany
| | | | - Fangming Xiao
- Department of Plant SciencesUniversity of IdahoMoscowUSA
| | - Aska Goverse
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
21
|
Zhao C, Rispe C, Nabity PD. Secretory RING finger proteins function as effectors in a grapevine galling insect. BMC Genomics 2019; 20:923. [PMID: 31795978 PMCID: PMC6892190 DOI: 10.1186/s12864-019-6313-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background All eukaryotes share a conserved network of processes regulated by the proteasome and fundamental to growth, development, or perception of the environment, leading to complex but often predictable responses to stress. As a specialized component of the ubiquitin-proteasome system (UPS), the RING finger domain mediates protein-protein interactions and displays considerable versatility in regulating many physiological processes in plants. Many pathogenic organisms co-opt the UPS through RING-type E3 ligases, but little is known about how insects modify these integral networks to generate novel plant phenotypes. Results Using a combination of transcriptome sequencing and genome annotation of a grapevine galling species, Daktulosphaira vitifoliae, we identified 138 putatively secretory protein RING-type (SPRINGs) E3 ligases that showed structure and evolutionary signatures of genes under rapid evolution. Moreover, the majority of the SPRINGs were more expressed in the feeding stage than the non-feeding egg stage, in contrast to the non-secretory RING genes. Phylogenetic analyses indicated that the SPRINGs formed clusters, likely resulting from species-specific gene duplication and conforming to features of arthropod host-manipulating (effector) genes. To test the hypothesis that these SPRINGs evolved to manipulate cellular processes within the plant host, we examined SPRING interactions with grapevine proteins using the yeast two-hybrid assay. An insect SPRING interacted with two plant proteins, a cellulose synthase, CSLD5, and a ribosomal protein, RPS4B suggesting secretion reprograms host immune signaling, cell division, and stress response in favor of the insect. Plant UPS gene expression during gall development linked numerous processes to novel organogenesis. Conclusions Taken together, D. vitifoliae SPRINGs represent a novel gene expansion that evolved to interact with Vitis hosts. Thus, a pattern is emerging for gall forming insects to manipulate plant development through UPS targeting.
Collapse
Affiliation(s)
- Chaoyang Zhao
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | | | - Paul D Nabity
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
22
|
Ying X, Wan M, Hu L, Zhang J, Li H, Lv D. Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus. Int J Mol Sci 2019; 20:E5575. [PMID: 31717281 PMCID: PMC6888081 DOI: 10.3390/ijms20225575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. HLB is associated with the non-culturable bacterium, Candidatus Liberibacter asiaticus (CaLas) in the United States. The virulence mechanism of CaLas is largely unknown, partly because of the lack of a mutant library. In this study, Tobacco mosaic virus (TMV) and Nicotiana benthamiana (N. benthamiana) were used for large-scale screening of the virulence factors of CaLas. Agroinfiltration of 60 putative virulence factors in N. benthamiana led to the identification of four candidates that caused severe symptoms in N. benthamiana, such as growth inhibition and cell death. CLIBASIA_05150 and CLIBASIA_04065C (C-terminal of CLIBASIA_04065) could cause cell death in the infiltrated leaves at five days post infiltration. Two low-molecular-weight candidates, CLIBASIA_00470 and CLIBASIA_04025, could inhibit plant growth. By converting start codon to stop codon or frameshifting, the four genes lost their harmful effects to N. benthamiana. It indicated that the four virulence factors functioned at the protein level rather than at the RNA level. The subcellular localization of the four candidates was determined by confocal laser scanning microscope. CLIBASIA_05150 located in the Golgi apparatus; CLIBASIA_04065 located in the mitochondrion; CLIBASIA_00470 and CLIBASIA_04025 distributed in cells as free GFP. The host proteins interacting with the four virulence factors were identified by yeast two-hybrid. The host proteins interacting with CLIBASIA_00470 and CLIBASIA_04025 were overlapping. Based on the phenotypes, the subcellular localization and the host proteins identified by yeast two-hybrid, CLIBASIA_00470 and CLIBASIA_04025, functioned redundantly. The hypothesis of CaLas virulence was proposed. CaLas affects citrus development and suppresses citrus disease resistance, comprehensively, in a complicated manner. Ubiquitin-mediated protein degradation might play a vital role in CaLas virulence. Deep characterization of the interactions between the identified virulence factors and their prey will shed light on HLB. Eventually, it will help in developing HLB-resistant citrus and save the endangered citrus industry worldwide.
Collapse
Affiliation(s)
- Xiaobao Ying
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA;
| | - Mengyuan Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Linshuang Hu
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Jinghua Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Hui Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
| | - Dianqiu Lv
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
23
|
Strohmayer A, Moser M, Si-Ammour A, Krczal G, Boonrod K. ' Candidatus Phytoplasma mali' Genome Encodes a Protein that Functions as an E3 Ubiquitin Ligase and Could Inhibit Plant Basal Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1487-1495. [PMID: 31241412 DOI: 10.1094/mpmi-04-19-0107-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytoplasmas are the causative agent of numerous diseases of plant species all over the world, including important food crops. The mode by which phytoplasmas multiply and behave in their host is poorly understood and often based on genomic data. We used yeast two-hybrid screening to find new protein-protein interactions between the causal agent of apple proliferation 'Candidatus Phytoplasma mali' and its host plant. Here, we report that the 'Ca. P. mali' strain PM19 genome encodes a protein PM19_00185 that interacts with at least six different ubiquitin-conjugating enzymes (UBC; E2) of Arabidopsis thaliana. An in vitro ubiquitination assay showed that PM19_00185 is enzymatically active as E3 ligase with A. thaliana E2 UBC09 and Malus domestica E2 UBC10. We show that a nonhost bacteria (Pseudomonas syringae pv. tabaci) can grow in transgenic A. thaliana plant lines expressing PM19_00185. A connection of phytoplasma effector proteins with the proteasome proteolytic pathway has been reported before. However, this is, to our knowledge, the first time that a phytoplasma effector protein with E3 ligase activity has been reported.
Collapse
Affiliation(s)
- Alisa Strohmayer
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Mirko Moser
- Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund March, San Michele All'Adige, Italy
| | - Azeddine Si-Ammour
- Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund March, San Michele All'Adige, Italy
| | - Gabi Krczal
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Kajohn Boonrod
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| |
Collapse
|
24
|
Chen J, Zhao J, Yang S, Chen Z, Zhang Z. Prediction of Protein Ubiquitination Sites in Arabidopsis thaliana. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190311141647] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
As one of the most important reversible protein post-translation modification
types, ubiquitination plays a significant role in the regulation of many biological processes,
such as cell division, signal transduction, apoptosis and immune response. Protein ubiquitination
usually occurs when ubiquitin molecule is attached to a lysine on a target protein, which is also
known as “lysine ubiquitination”.
Objective:
In order to investigate the molecular mechanisms of ubiquitination-related biological
processes, the crucial first step is the identification of ubiquitination sites. However, conventional
experimental methods in detecting ubiquitination sites are often time-consuming and a large number
of ubiquitination sites remain unidentified. In this study, a ubiquitination site prediction method
for Arabidopsis thaliana was developed using a Support Vector Machine (SVM).
Methods:
We collected 3009 experimentally validated ubiquitination sites on 1607 proteins in A.
thaliana to construct the training set. Three feature encoding schemes were used to characterize
the sequence patterns around ubiquitination sites, including AAC, Binary and CKSAAP. The maximum
Relevance and Minimum Redundancy (mRMR) feature selection method was employed to
reduce the dimensionality of input features. Five-fold cross-validation and independent tests were
used to evaluate the performance of the established models.
Results:
As a result, the combination of AAC and CKSAAP encoding schemes yielded the
best performance with the accuracy and AUC of 81.35% and 0.868 in the independent test.
We also generated an online predictor termed as AraUbiSite, which is freely accessible at:
http://systbio.cau.edu.cn/araubisite.
Conclusion:
We developed a well-performed prediction tool for large-scale ubiquitination site
identification in A. thaliana. It is hoped that the current work will speed up the process of identification
of ubiquitination sites in A. thaliana and help to further elucidate the molecular mechanisms
of ubiquitination in plants.
Collapse
Affiliation(s)
- Jiajing Chen
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianan Zhao
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Chen
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Bai P, Park C, Shirsekar G, Songkumarn P, Bellizzi M, Wang G. Role of lysine residues of the Magnaporthe oryzae effector AvrPiz-t in effector- and PAMP-triggered immunity. MOLECULAR PLANT PATHOLOGY 2019; 20:599-608. [PMID: 30548752 PMCID: PMC6637882 DOI: 10.1111/mpp.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Magnaporthe oryzae is an important fungal pathogen of both rice and wheat. However, how M. oryzae effectors modulate plant immunity is not fully understood. Previous studies have shown that the M. oryzae effector AvrPiz-t targets the host ubiquitin-proteasome system to manipulate plant defence. In return, two rice ubiquitin E3 ligases, APIP6 and APIP10, ubiquitinate AvrPiz-t for degradation. To determine how lysine residues contribute to the stability and function of AvrPiz-t, we generated double (K1,2R-AvrPiz-t), triple (K1,2,3R-AvrPiz-t) and lysine-free (LF-AvrPiz-t) mutants by mutating lysines into arginines in AvrPiz-t. LF-AvrPiz-t showed the highest protein accumulation when transiently expressed in rice protoplasts. When co-expressed with APIP10 in Nicotiana benthamiana, LF-AvrPiz-t was more stable than AvrPiz-t and was less able to degrade APIP10. The avirulence of LF-AvrPiz-t on Piz-t:HA plants was less than that of AvrPiz-t, which led to resistance reduction and lower accumulation of the Piz-t:HA protein after inoculation with the LF-AvrPiz-t-carrying isolate. Chitin- and flg22-induced production of reactive oxygen species (ROS) was higher in LF-AvrPiz-t than in AvrPiz-t transgenic plants. In addition, LF-AvrPiz-t transgenic plants were less susceptible than AvrPiz-t transgenic plants to a virulent isolate. Furthermore, both AvrPiz-t and LF-AvrPiz-t interacted with OsRac1, but the suppression of OsRac1-mediated ROS generation by LF-AvrPiz-t was significantly lower than that by AvrPiz-t. Together, these results suggest that the lysine residues of AvrPiz-t are required for its avirulence and virulence functions in rice.
Collapse
Affiliation(s)
- Pengfei Bai
- Department of Plant PathologyOhio State UniversityColumbusOH43210
| | - Chan‐Ho Park
- Department of Plant PathologyOhio State UniversityColumbusOH43210
| | - Gautam Shirsekar
- Department of Plant PathologyOhio State UniversityColumbusOH43210
| | | | - Maria Bellizzi
- Department of Plant PathologyOhio State UniversityColumbusOH43210
| | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOH43210
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
26
|
Li P, Liu C, Deng WH, Yao DM, Pan LL, Li YQ, Liu YQ, Liang Y, Zhou XP, Wang XW. Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathog 2019; 15:e1007607. [PMID: 30789967 PMCID: PMC6400417 DOI: 10.1371/journal.ppat.1007607] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/05/2019] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Most plant viruses are vectored by insects and the interactions of virus-plant-vector have important ecological and evolutionary implications. Insect vectors often perform better on virus-infected plants. This indirect mutualism between plant viruses and insect vectors promotes the spread of virus and has significant agronomical effects. However, few studies have investigated how plant viruses manipulate plant defenses and promote vector performance. Begomoviruses are a prominent group of plant viruses in tropical and sub-tropical agro-ecosystems and are transmitted by whiteflies. Working with the whitefly Bemisia tabaci, begomoviruses and tobacco, we revealed that C2 protein of begomoviruses lacking DNA satellites was responsible for the suppression of plant defenses against whitefly vectors. We found that infection of plants by tomato yellow leaf curl virus (TYLCV), one of the most devastating begomoviruses worldwide, promoted the survival and reproduction of whitefly vectors. TYLCV C2 protein suppressed plant defenses by interacting with plant ubiquitin. This interaction compromised the degradation of JAZ1 protein, thus inhibiting jasmonic acid defense and the expression of MYC2-regulated terpene synthase genes. We further demonstrated that function of C2 protein among begomoviruses not associated with satellites is well conserved and ubiquitination is an evolutionarily conserved target of begomoviruses for the suppression of plant resistance to whitefly vectors. Taken together, these results demonstrate that ubiquitination inhibition by begomovirus C2 protein might be a general mechanism in begomovirus, whitefly and plant interactions.
Collapse
Affiliation(s)
- Ping Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chao Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hao Deng
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Dan-Mei Yao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yun-Qin Li
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yan Liang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xue-Ping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Regulation of Plant Immunity by the Proteasome. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:37-63. [DOI: 10.1016/bs.ircmb.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Blaazer CJH, Villacis-Perez EA, Chafi R, Van Leeuwen T, Kant MR, Schimmel BCJ. Why Do Herbivorous Mites Suppress Plant Defenses? FRONTIERS IN PLANT SCIENCE 2018; 9:1057. [PMID: 30105039 PMCID: PMC6077234 DOI: 10.3389/fpls.2018.01057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/28/2018] [Indexed: 05/03/2023]
Abstract
Plants have evolved numerous defensive traits that enable them to resist herbivores. In turn, this resistance has selected for herbivores that can cope with defenses by either avoiding, resisting or suppressing them. Several species of herbivorous mites, such as the spider mites Tetranychus urticae and Tetranychus evansi, were found to maximize their performance by suppressing inducible plant defenses. At first glimpse it seems obvious why such a trait will be favored by natural selection. However, defense suppression appeared to readily backfire since mites that do so also make their host plant more suitable for competitors and their offspring more attractive for natural enemies. This, together with the fact that spider mites are infamous for their ability to resist (plant) toxins directly, justifies the question as to why traits that allow mites to suppress defenses nonetheless seem to be relatively common? We argue that this trait may facilitate generalist herbivores, like T. urticae, to colonize new host species. While specific detoxification mechanisms may, on average, be suitable only on a narrow range of similar hosts, defense suppression may be more broadly effective, provided it operates by targeting conserved plant signaling components. If so, resistance and suppression may be under frequency-dependent selection and be maintained as a polymorphism in generalist mite populations. In that case, the defense suppression trait may be under rapid positive selection in subpopulations that have recently colonized a new host but may erode in relatively isolated populations in which host-specific detoxification mechanisms emerge. Although there is empirical evidence to support these scenarios, it contradicts the observation that several of the mite species found to suppress plant defenses actually are relatively specialized. We argue that in these cases buffering traits may enable such mites to mitigate the negative side effects of suppression in natural communities and thus shield this trait from natural selection.
Collapse
Affiliation(s)
- C. Joséphine H. Blaazer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ernesto A. Villacis-Perez
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Rachid Chafi
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas Van Leeuwen
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Bernardus C. J. Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Zhong C, Ren Y, Qi Y, Yu X, Wu X, Tian Z. PAMP-responsive ATL gene StRFP1 and its orthologue NbATL60 positively regulate Phytophthora infestans resistance in potato and Nicotiana benthamiana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:47-57. [PMID: 29576086 DOI: 10.1016/j.plantsci.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/11/2023]
Abstract
Ubiquitination is a post-translational modification that plays a crucial role during the regulation of plant immune signalling. The plant ATL family consists of a large number of putative RING type ubiquitin ligases. We show that potato ATL family gene StRFP1 and its orthologue NbATL60 from N. benthamiana both respond to Phytophthora infestans culture filtrate (CF) and flg22 induction. StRFP1 positively regulates immunity against P. infestans in potato. Ectopic transient expression of StRFP1 or expression of NbATL60 in N. benthamiana also enhances late blight resistance. By contrast, silencing NbATL60 in N. benthamiana reduces late blight resistance and leads to plant growth inhibition. Both StRFP1 and NbATL60 localize to the plasma membrane and intracellular puncta and possess E3 Ligase activity in vitro. Furthermore we demonstrate that the RING finger domain mutants of StRFP1 and NbATL60 lost E3 ligase activity and fail to suppress P. infestans colonization in N. benthamiana, indicating that E3 ligase activity is critical for StRFP1 and NbATL60 to regulate immunity. Overexpression or RNA interference of StRFP1 in transgenic potato led to increased or decreased expression of PTI maker genes (WRKY7, WRKY8, ACRE31 and Pti5) respectively. Similarly silencing of NbATL60 in N. benthamiana decreases expression of these PTI marker genes. Moreover, VIGS of NbATL60 in N. benthamiana did not compromise P. infestans PAMP INF1 or R2/Avr2, R3a/AVR3a, Rx/Cp and Pto/AvrPto triggered cell death. These results indicate that ATL genes StRFP1 and NbATL60 contribute to basal immunity (PTI) in Solanaceous plants.
Collapse
Affiliation(s)
- Cheng Zhong
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Kaili University, Kaili, Guizhou, 556011, People's Republic of China.
| | - Yajuan Ren
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiaoling Yu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
30
|
García-Cano E, Hak H, Magori S, Lazarowitz SG, Citovsky V. The Agrobacterium F-Box Protein Effector VirF Destabilizes the Arabidopsis GLABROUS1 Enhancer/Binding Protein-Like Transcription Factor VFP4, a Transcriptional Activator of Defense Response Genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:576-586. [PMID: 29264953 PMCID: PMC5953515 DOI: 10.1094/mpmi-07-17-0188-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Agrobacterium-mediated genetic transformation not only represents a technology of choice to genetically manipulate plants, but it also serves as a model system to study mechanisms employed by invading pathogens to counter the myriad defenses mounted against them by the host cell. Here, we uncover a new layer of plant defenses that is targeted by A. tumefaciens to facilitate infection. We show that the Agrobacterium F-box effector VirF, which is exported into the host cell, recognizes an Arabidopsis transcription factor VFP4 and targets it for proteasomal degradation. We hypothesize that VFP4 resists Agrobacterium infection and that the bacterium utilizes its VirF effector to degrade VFP4 and thereby mitigate the VFP4-based defense. Indeed, loss-of-function mutations in VFP4 resulted in differential expression of numerous biotic stress-response genes, suggesting that one of the functions of VFP4 is to control a spectrum of plant defenses, including those against Agrobacterium tumefaciens. We identified one such gene, ATL31, known to mediate resistance to bacterial pathogens. ATL31 was transcriptionally repressed in VFP4 loss-of-function plants and activated in VFP4 gain-of-function plants. Gain-of-function lines of VFP4 and ATL31 exhibited recalcitrance to Agrobacterium tumorigenicity, suggesting that A. tumefaciens may utilize the host ubiquitin/proteasome system to destabilize transcriptional regulators of the host disease response machinery.
Collapse
Affiliation(s)
- Elena García-Cano
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Hagit Hak
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
- Corresponding author: Hagit Hak;
| | - Shimpei Magori
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Sondra G. Lazarowitz
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
31
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
32
|
Zhou B, Zeng L. Conventional and unconventional ubiquitination in plant immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:1313-1330. [PMID: 27925369 PMCID: PMC6638253 DOI: 10.1111/mpp.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/16/2023]
Abstract
Ubiquitination is one of the most abundant types of protein post-translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non-degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
- Southern Regional Collaborative Innovation Center for Grain and Oil CropsHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
33
|
Witzel K, Üstün S, Schreiner M, Grosch R, Börnke F, Ruppel S. A Proteomic Approach Suggests Unbalanced Proteasome Functioning Induced by the Growth-Promoting Bacterium Kosakonia radicincitans in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:661. [PMID: 28491076 PMCID: PMC5405128 DOI: 10.3389/fpls.2017.00661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Endophytic plant growth-promoting bacteria have significant impact on the plant physiology and understanding this interaction at the molecular level is of particular interest to support crop productivity and sustainable production systems. We used a proteomics approach to investigate the molecular mechanisms underlying plant growth promotion in the interaction of Kosakonia radicincitans DSM 16656 with Arabidopsis thaliana. Four weeks after the inoculation, the proteome of roots from inoculated and control plants was compared using two-dimensional gel electrophoresis and differentially abundant protein spots were identified by liquid chromatography tandem mass spectrometry. Twelve protein spots were responsive to the inoculation, with the majority of them being related to cellular stress reactions. The protein expression of 20S proteasome alpha-3 subunit was increased by the presence of K. radicincitans. Determination of proteasome activity and immuno blotting analysis for ubiquitinated proteins revealed that endophytic colonization interferes with ubiquitin-dependent protein degradation. Inoculation of rpn12a, defective in a 26S proteasome regulatory particle, enhanced the growth-promoting effect. This indicates that the plant proteasome, besides being a known target for plant pathogenic bacteria, is involved in the establishment of beneficial interactions of microorganisms with plants.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Misas-Villamil JC, van der Burgh AM, Grosse-Holz F, Bach-Pages M, Kovács J, Kaschani F, Schilasky S, Emon AEK, Ruben M, Kaiser M, Overkleeft HS, van der Hoorn RAL. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:418-430. [PMID: 28117509 DOI: 10.1111/tpj.13494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
The proteasome is a nuclear-cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions, but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveal that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 [PtoDC3000(ΔhQ)] whilst the activity profile of the β1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community, and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Aranka M van der Burgh
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Friederike Grosse-Holz
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane, Oxford, OX1 3RB, UK
| | - Marcel Bach-Pages
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane, Oxford, OX1 3RB, UK
| | - Judit Kovács
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Farnusch Kaschani
- Chemical Biology, Universität Duisburg-Essen, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Sören Schilasky
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Asif E K Emon
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Mark Ruben
- Gorlaeus Laboratories, Institute of Chemistry and Netherlands Proteomics Centre, 2333 CC, Leiden, The Netherlands
| | - Markus Kaiser
- Chemical Biology, Universität Duisburg-Essen, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Hermen S Overkleeft
- Gorlaeus Laboratories, Institute of Chemistry and Netherlands Proteomics Centre, 2333 CC, Leiden, The Netherlands
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane, Oxford, OX1 3RB, UK
| |
Collapse
|
35
|
Üstün S, Sheikh A, Gimenez-Ibanez S, Jones A, Ntoukakis V, Börnke F. The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors. PLANT PHYSIOLOGY 2016; 172:1941-1958. [PMID: 27613851 PMCID: PMC5100764 DOI: 10.1104/pp.16.00808] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
Recent evidence suggests that the ubiquitin-proteasome system is involved in several aspects of plant immunity and that a range of plant pathogens subvert the ubiquitin-proteasome system to enhance their virulence. Here, we show that proteasome activity is strongly induced during basal defense in Arabidopsis (Arabidopsis thaliana). Mutant lines of the proteasome subunits RPT2a and RPN12a support increased bacterial growth of virulent Pseudomonas syringae pv tomato DC3000 (Pst) and Pseudomonas syringae pv maculicola ES4326. Both proteasome subunits are required for pathogen-associated molecular pattern-triggered immunity responses. Analysis of bacterial growth after a secondary infection of systemic leaves revealed that the establishment of systemic acquired resistance (SAR) is impaired in proteasome mutants, suggesting that the proteasome also plays an important role in defense priming and SAR In addition, we show that Pst inhibits proteasome activity in a type III secretion-dependent manner. A screen for type III effector proteins from Pst for their ability to interfere with proteasome activity revealed HopM1, HopAO1, HopA1, and HopG1 as putative proteasome inhibitors. Biochemical characterization of HopM1 by mass spectrometry indicates that HopM1 interacts with several E3 ubiquitin ligases and proteasome subunits. This supports the hypothesis that HopM1 associates with the proteasome, leading to its inhibition. Thus, the proteasome is an essential component of pathogen-associated molecular pattern-triggered immunity and SAR, which is targeted by multiple bacterial effectors.
Collapse
Affiliation(s)
- Suayib Üstün
- Plant Metabolism Group, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany (S.Ü., F.B.);
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (A.S., S.G.-I., A.J., V.N.);
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain (S.G.-I.); and
- Institut of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (F.B.)
| | - Arsheed Sheikh
- Plant Metabolism Group, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany (S.Ü., F.B.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (A.S., S.G.-I., A.J., V.N.)
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain (S.G.-I.); and
- Institut of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (F.B.)
| | - Selena Gimenez-Ibanez
- Plant Metabolism Group, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany (S.Ü., F.B.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (A.S., S.G.-I., A.J., V.N.)
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain (S.G.-I.); and
- Institut of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (F.B.)
| | - Alexandra Jones
- Plant Metabolism Group, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany (S.Ü., F.B.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (A.S., S.G.-I., A.J., V.N.)
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain (S.G.-I.); and
- Institut of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (F.B.)
| | - Vardis Ntoukakis
- Plant Metabolism Group, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany (S.Ü., F.B.);
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (A.S., S.G.-I., A.J., V.N.);
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain (S.G.-I.); and
- Institut of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (F.B.)
| | - Frederik Börnke
- Plant Metabolism Group, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany (S.Ü., F.B.);
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (A.S., S.G.-I., A.J., V.N.);
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain (S.G.-I.); and
- Institut of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (F.B.)
| |
Collapse
|
36
|
Bègue H, Jeandroz S, Blanchard C, Wendehenne D, Rosnoblet C. Structure and functions of the chaperone-like p97/CDC48 in plants. Biochim Biophys Acta Gen Subj 2016; 1861:3053-3060. [PMID: 27717811 DOI: 10.1016/j.bbagen.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity. SCOPE OF REVIEW p97 is also conserved in plants (CDC48) but its functions are less understood. In the present review we intended to present the state of the art of the structure, regulation and functions of CDC48 in plants. MAJOR CONCLUSIONS Evidence accumulated underline that CDC48 plays a crucial role in development, cell cycle regulation and protein turnover in plants. Furthermore, its involvement in plant immunity has recently emerged and first interacting partners have been identified, shedding light on its putative cellular activities. GENERAL SIGNIFICANCE Identification of emerging functions of CDC48 in plants opens new roads of research in immunity and provides new insights into the mechanisms of protein quality control.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Cécile Blanchard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
37
|
|
38
|
Ghannam A, Jacques A, de Ruffray P, Kauffmann S. NtRING1, putative RING-finger E3 ligase protein, is a positive regulator of the early stages of elicitin-induced HR in tobacco. PLANT CELL REPORTS 2016; 35:415-28. [PMID: 26542819 DOI: 10.1007/s00299-015-1893-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE NtRING1 is a RING-finger protein with a putative E3 ligase activity. NtRING1 regulates HR establishment against different pathogens. Loss-/gain-of-function of NtRING1 altered early stages of HR phenotype establishment. Plant defence responses against pathogens often involve the restriction of pathogens by inducing a hypersensitive response (HR). cDNA clones DD11-39, DD38-11 and DD34-26 were previously obtained from a differential screen aimed at characterising tobacco genes with an elicitin-induced HR-specific pattern of expression. Our precedent observations suggested that DD11-39, DD38-11 and DD34-26 might play roles in the HR establishment. Only for DD11-39 a full-length cDNA sequence was obtained and the corresponding protein encoded for a type-HC RING-finger/putative E3 ligase protein which we termed NtRING1. The expression of NtRING1 was upregulated upon HR induction by elicitin, Ralstonia solanacearum, or tobacco mosaic virus (TMV) in tobacco. Silencing of NtRING1 remarkably delayed the establishment of elicitin-induced HR in tobacco as well as the expression of different early induction genes in tissues undergoing HR. Accordingly, transient overexpression of NtRING1 accelerated the HR launching upon elicitin treatment. Taking together, our data suggests that NtRING1 plays a functional role in the early establishment of HR.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France.
- Laboratory Functional Genomics for Plant Immunomodulation, Plant Pathology Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria.
| | - Alban Jacques
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
- Ecole d'ingénieurs de Purpan, Laboratoire d'Agro-Physiologie, 75 voie du TOEC, 31076, Toulouse Cedex 3, France
| | - Patrice de Ruffray
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Serge Kauffmann
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
39
|
Walton A, Stes E, Cybulski N, Van Bel M, Iñigo S, Durand AN, Timmerman E, Heyman J, Pauwels L, De Veylder L, Goossens A, De Smet I, Coppens F, Goormachtig S, Gevaert K. It's Time for Some "Site"-Seeing: Novel Tools to Monitor the Ubiquitin Landscape in Arabidopsis thaliana. THE PLANT CELL 2016; 28:6-16. [PMID: 26744219 PMCID: PMC4746685 DOI: 10.1105/tpc.15.00878] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 05/19/2023]
Abstract
Ubiquitination, the covalent binding of the small protein modifier ubiquitin to a target protein, is an important and frequently studied posttranslational protein modification. Multiple reports provide useful insights into the plant ubiquitinome, but mostly at the protein level without comprehensive site identification. Here, we implemented ubiquitin combined fractional diagonal chromatography (COFRADIC) for proteome-wide ubiquitination site mapping on Arabidopsis thaliana cell cultures. We identified 3009 sites on 1607 proteins, thereby greatly increasing the number of known ubiquitination sites in this model plant. Finally, The Ubiquitination Site tool (http://bioinformatics.psb.ugent.be/webtools/ubiquitin_viewer/) gives access to the obtained ubiquitination sites, not only to consult the ubiquitination status of a given protein, but also to conduct intricate experiments aiming to study the roles of specific ubiquitination events. Together with the antibodies recognizing the ubiquitin remnant motif, ubiquitin COFRADIC represents a powerful tool to resolve the ubiquitination maps of numerous cellular processes in plants.
Collapse
Affiliation(s)
- Alan Walton
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Nicolas Cybulski
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Michiel Van Bel
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Sabrina Iñigo
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Evy Timmerman
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Jefri Heyman
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
40
|
Regulatory Proteolysis in Arabidopsis-Pathogen Interactions. Int J Mol Sci 2015; 16:23177-94. [PMID: 26404238 PMCID: PMC4632692 DOI: 10.3390/ijms161023177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022] Open
Abstract
Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.
Collapse
|
41
|
Bhattacharjee S, Noor JJ, Gohain B, Gulabani H, Dnyaneshwar IK, Singla A. Post-translational modifications in regulation of pathogen surveillance and signaling in plants: The inside- (and perturbations from) outside story. IUBMB Life 2015; 67:524-32. [PMID: 26177826 DOI: 10.1002/iub.1398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
In its lifetime a plant is exposed to pathogens of diverse types. Although methods of surveillance are broadly pathogen-individualized, immune signaling ultimately connect to common core networks maintained by key protein hubs. Defense elicitations modulate these hubs to re-allocate energy from central metabolic pathway into processes that execute immunity. Because unregulated defenses severely decrease growth and productivity of the host, signaling regulators within the networks function to achieve cellular equilibrium once the threat is minimized. Protein modifications by post-translational processes regulate the molecular switches and crosstalks between interconnected pathways spatially and temporally. Covalent modification of host targets connected to hubs are strategies used by most virulent effectors and result in re-routing signals to suppress host defenses. Resistance is a result of activation of specialized classes of receptors that short-circuit effector activities by co-localizing via post-translational modifications (PTMs) with effector targets. Despite advancement in proteome methodologies, our understanding of how PTMs regulate plant defenses remains elusive. This review presents protein-modifications as forefront regulators of plant innate immunity.
Collapse
Affiliation(s)
- Saikat Bhattacharjee
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Jewel Jameeta Noor
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Bornali Gohain
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hitika Gulabani
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | | | - Ankit Singla
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
42
|
Motion GB, Amaro TM, Kulagina N, Huitema E. Nuclear processes associated with plant immunity and pathogen susceptibility. Brief Funct Genomics 2015; 14:243-52. [PMID: 25846755 PMCID: PMC4513213 DOI: 10.1093/bfgp/elv013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant-microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants.
Collapse
|
43
|
Banfield MJ. Corrigendum: Perturbation of host ubiquitin systems by plant pathogen/pest effector proteins. Cell Microbiol 2015. [PMCID: PMC4738585 DOI: 10.1111/cmi.12427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark J. Banfield
- Department of Biological Chemistry; John Innes Centre; Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
44
|
Morgan RE, Chudasama V, Moody P, Smith MEB, Caddick S. A novel synthetic chemistry approach to linkage-specific ubiquitin conjugation. Org Biomol Chem 2015; 13:4165-8. [PMID: 25736233 PMCID: PMC4372856 DOI: 10.1039/c5ob00130g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/24/2015] [Indexed: 11/21/2022]
Abstract
Ubiquitination is of great importance as the post-translational modification of proteins with ubiquitin, or ubiquitin chains, facilitates a number of vital cellular processes. Herein we present a facile method of preparing various ubiquitin conjugates under mild conditions using michael acceptors based on dibromo-maleimides and dibromo-pyridazinediones.
Collapse
Affiliation(s)
- Rachel E. Morgan
- Department of Chemistry , University College London , 20 Gordon Street , London , UK . ; Fax: +44 (0)20 7679 7463 ; Tel: +44 (0)20 3108 5071
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , UK . ; Fax: +44 (0)20 7679 7463 ; Tel: +44 (0)20 3108 5071
| | - Paul Moody
- Department of Chemistry , University College London , 20 Gordon Street , London , UK . ; Fax: +44 (0)20 7679 7463 ; Tel: +44 (0)20 3108 5071
| | - Mark E. B. Smith
- Department of Chemistry , University College London , 20 Gordon Street , London , UK . ; Fax: +44 (0)20 7679 7463 ; Tel: +44 (0)20 3108 5071
| | - Stephen Caddick
- Department of Chemistry , University College London , 20 Gordon Street , London , UK . ; Fax: +44 (0)20 7679 7463 ; Tel: +44 (0)20 3108 5071
| |
Collapse
|