1
|
Chen T, Li X, Hou P, He H, Wang H. VAPA suppresses BEFV and VSV-induced type I IFNs signaling response by targeting JAK1 for NEDD4-mediated ubiquitin-proteasome degradation. Vet Microbiol 2025; 304:110456. [PMID: 40080976 DOI: 10.1016/j.vetmic.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
VAMP-associated protein A (VAPA) binds to various proteins involved in multiple cellular processes, however, its role in the regulation of type I interferons (IFN-I) signaling has not been elucidated. In this study, we demonstrate that VAPA negatively regulates the IFN-I signaling during bovine epidemic fever virus (BEFV) and vesicular stomatitis virus (VSV) infection. Upon treatment with IFN-β, VAPA negatively regulates the JAK-STAT signaling pathway. Further studies show that VAPA inhibits the IFN-I signaling by promoting the degradation of JAK1 through the ubiquitin-proteasome system during BEFV and VSV infection. Mechanistically, VAPA facilitates the interaction between the E3 ubiquitin ligase NEDD4 and JAK1, thereby enhancing the ubiquitination and subsequent degradation of JAK1. Furthermore, viral titers are markedly reduced, and the promoting effect of VAPA on VSV or BEFV replication is attenuated in NEDD4-deficient cells. Taken together, our findings reveal a novel role for VAPA in negatively regulating the IFN-I signaling response and provide a molecular basis for the design of targeted antiviral agents.
Collapse
Affiliation(s)
- Tianhua Chen
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Xingyu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, China.
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
2
|
Jasmeen P, Gupta P, Kaur C, Gauthami S, Pyasi S, Nayak D, Hegde NR. Rescue of bovine ephemeral fever virus through reverse genetics, but inability to propagate. Virusdisease 2025; 36:48-59. [PMID: 40290774 PMCID: PMC12022207 DOI: 10.1007/s13337-024-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/22/2024] [Indexed: 04/30/2025] Open
Abstract
Bovine ephemeral fever (BEF) is caused by BEF virus (BEFV) belonging to the Genus Ephemerovirus under the Family Rhabdoviridae. The BEFV carries a single-stranded, negative-sense RNA genome. Not much is known about the various aspects of BEFV replication, its interaction with cellular proteins or the cellular response to BEFV infection. Here, we report the rescue of BEFV through reverse genetics. A full-length cDNA copy of BEFV was assembled to be driven by the RNA polymerase I (PolI) promoter. Parallely, eukaryotic expression plasmids containing BEFV sequences encoding the helper proteins N, P and L, which form the replicase complex, were generated. The expression of N and P proteins were verified by using the in-house generated and purified polyclonal sera. Transfection of the full-length cDNA copy along with the helper plasmids rescued BEFV, as evaluated by transmission electron microscopy, reverse-transcription polymerase reaction, immunofluorescence and Western blotting. However, the virus did not produce a cytopathic effect and failed to be propagated beyond a certain number of passages. The results lay the foundation for establishment of reverse genetics for BEFV but also highlight the difficulties in studying this virus.
Collapse
Affiliation(s)
- Pagala Jasmeen
- BRIC-National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre of Biotechnology, Faridabad, India
| | - Priya Gupta
- BRIC-National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre of Biotechnology, Faridabad, India
| | - Charanpreet Kaur
- BRIC-National Institute of Animal Biotechnology, Hyderabad, India
| | - Sulgey Gauthami
- BRIC-National Institute of Animal Biotechnology, Hyderabad, India
| | | | | | - Nagendra R. Hegde
- BRIC-National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre of Biotechnology, Faridabad, India
- National Institute of Animal Biotechnology, Opp. Journalist Colony, Extended Q City Road Near Gowlidoddy, Gachibowli, Hyderabad 500032 India
| |
Collapse
|
3
|
Evers P, Uguccioni SM, Ahmed N, Francis ME, Kelvin AA, Pezacki JP. miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors. Viruses 2024; 16:1844. [PMID: 39772154 PMCID: PMC11680362 DOI: 10.3390/v16121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option. In the present work, miR-24-3p was identified to inhibit SARS-CoV-2 entry, replication, and production; furthermore, this inhibition was retained against common mutations improving SARS-CoV-2 fitness. To determine the mechanism of action, bioinformatic tools were employed, identifying numerous potential effectors promoting infection targeted by miR-24-3p. Of these targets, several key host proteins for priming and facilitating SARS-CoV-2 entry were identified: furin, NRP1, NRP2, and SREBP2. With further experimental analysis, we show that miR-24-3p directly downregulates these viral entry factors to impede infection when producing virions and when infecting the target cell. Furthermore, we compare the findings with coronavirus, HCoV-229E, which relies on different factors strengthening the miR-24-3p mechanism. Taken together, the following work suggests that miR-24-3p could be an avenue to treat current coronaviruses and those likely to emerge.
Collapse
Affiliation(s)
- Parrish Evers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Spencer M. Uguccioni
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (M.E.F.); (A.A.K.)
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (M.E.F.); (A.A.K.)
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - John P. Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| |
Collapse
|
4
|
Fan L, Xiao H, Ren J, Hou Y, Cai J, Wu W, Xiang B, Lin Q, Liao M, Ren T, Chen L. Newcastle disease virus induces clathrin-mediated endocytosis to establish infection through the activation of PI3K/AKT signaling pathway by VEGFR2. J Virol 2024; 98:e0132224. [PMID: 39254313 PMCID: PMC11494881 DOI: 10.1128/jvi.01322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024] Open
Abstract
The phosphatidyl-inositol 3-kinase/serine-threonine kinase (PI3K/ AKT) signaling pathway constitutes a classical phosphorylation cascade that integrates tyrosine, lipid, and serine acid-threonine phosphorylation, affecting cell function. The pathway is vulnerable to viral infection. Newcastle disease virus (NDV) poses a significant threat to the global poultry industry; however, its mechanism of early viral cell invasion and pathogenesis remain unclear. Previous in vivo and in vitro studies have shown that NDV infection activates PI3K/AKT signaling; however, it remains unclear whether NDV establishes infection through endocytosis regulated by this pathway. This study aimed to examine whether different genotypes of NDV strains could activate the PI3K/AKT signaling pathway within 2 h of in vitro infection. This activation, which relies on PI3K phosphorylation, remains unaffected by the phosphorylation-phosphatase and tensin homolog/phosphatase and tensin homolog (p-PTEN/PTEN) signaling pathway. Moreover, inhibition of PI3K activity impedes NDV replication. Additionally, interfering with the PI3K regulatory subunit p85 has no significant effect on NDV replication. Conversely, the tyrosine kinase activity upstream of PI3K can influence AKT activation and viral replication, particularly through vascular endothelial growth factor receptor 2 (VEGFR2). Additionally, NDV F protein primarily mediates PI3K and AKT phosphorylation to activate the PI3K/AKT signaling pathway. NDV F and VEGFR2 proteins, along with the PI3K p85α subunit, interact and co-localize at the cell membrane. NDV-induced PI3K/AKT signaling pathway activation impacts clathrin-mediated endocytosis, with VEGFR2 playing a pivotal role. In conclusion, this study shows that NDV infection is established early through F protein binding to VEGFR2, activating the PI3K/AKT signaling pathway and inducing clathrin-mediated endocytosis, supporting infection prevention and control measures. IMPORTANCE Newcastle disease virus (NDV) is a threat to the global poultry industry; however, the mechanisms of NDV infection remain unclear. NDV affects the phosphatidyl-inositol 3-kinase/serine-threonine kinase (PI3K/ AKT) signaling pathway, requiring endocytosis for successful infection. Based on previous studies, we identified a close correlation between NDV infection and replication and the PI3K/AKT signaling pathway activity. This study examined the molecular mechanisms through which NDV activates the PI3K/AKT signaling pathway to regulate endocytosis and facilitate infection. This study showed that early-stage in vitro NDV infection activated the PI3K/AKT signaling pathway, enhancing clathrin-mediated endocytosis, crucial for infection onset. Notably, this process involves the interaction between NDV F protein and the vascular endothelial growth factor receptor 2 tyrosine kinase, leading to the subsequent binding and phosphorylation of the PI3K p85α regulatory subunit. This activation primes PI3K, initiating a cascade that promotes clathrin-mediated endocytosis. Our findings elucidate how NDV capitalizes on the PI3K/AKT signaling pathway to establish infection through endocytosis.
Collapse
Affiliation(s)
- Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Hongtao Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuechi Hou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Juncheng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wanyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Wang C, Wang T, Dai J, Han Y, Hu R, Li N, Yang Z, Wang J. Canthin-6-one analogs block Newcastle disease virus proliferation via suppressing the Akt and ERK pathways. Poult Sci 2024; 103:103944. [PMID: 38941786 PMCID: PMC11261124 DOI: 10.1016/j.psj.2024.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/30/2024] Open
Abstract
Newcastle disease virus, a member of the Paramyxoviridae family, causes significant economic losses in poultry worldwide. To identify novel antiviral agents against NDV, 36 canthin-6-one analogs were evaluated in this study. Our data showed that 8 compounds exhibited excellent inhibitory effects on NDV replication with IC50 values in the range of 5.26 to 11.76 μM. Besides, these analogs inhibited multiple NDV strains with IC50 values within 12 μM and exerted antiviral activity against peste des petits ruminants virus (PPRV) and canine distemper virus (CDV). Among these analogs, 16 presented the strongest anti-NDV activity (IC50 = 5.26 μM) and minimum cytotoxicity (CC50 > 200 μM) in DF-1 cells. Furthermore, 16 displayed antiviral activity in different cell lines. Our results showed that 16 did not affect the viral adsorption while it can inhibit the entry of NDV by suppressing the Akt pathway. Further study found that 16-treatment inhibited the NDV-activated ERK pathway, thereby promoting the expression of interferon-related genes. Our findings reveal an antiviral mechanism of canthin-6-one analogs through inhibition of the Akt and ERK signaling pathways. These results point to the potential value of canthin-6-one analogs to serve as candidate antiviral agents for NDV.
Collapse
Affiliation(s)
- Chongyang Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, China
| | - Ting Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, China
| | - Jiangkun Dai
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Yu Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Na Li
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Junru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China.
| |
Collapse
|
6
|
Liu Y, Yang D, Jiang W, Chi T, Kang J, Wang Z, Wu F. Cell entry of bovine respiratory syncytial virus through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK pathways. Front Microbiol 2024; 15:1393127. [PMID: 38690369 PMCID: PMC11059085 DOI: 10.3389/fmicb.2024.1393127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an RNA virus with envelope that causes acute, febrile, and highly infectious respiratory diseases in cattle. However, the manner and mechanism of BRSV entry into cells remain unclear. In this study, we aimed to explore the entry manner of BRSV into MDBK cells and its regulatory mechanism. Our findings, based on virus titer, virus copies, western blot and IFA analysis, indicate that BRSV enters MDBK cells through endocytosis, relying on dynamin, specifically via clathrin-mediated endocytosis rather than caveolin-mediated endocytosis and micropinocytosis. We observed that the entered BRSV initially localizes in early endosomes and subsequently localizes in late endosomes. Additionally, our results of western blot, virus titer and virus copies demonstrate that BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways. Overall, our study suggests that BRSV enters MDBK cells through clathrin-mediated endocytosis, entered BRSV is trafficked to late endosome via early endosome, BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Dongliang Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu, China
| | - Wen Jiang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Tianying Chi
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhiliang Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| |
Collapse
|
7
|
Chang YK, Lin YJ, Cheng CY, Tsai PC, Wang CY, Nielsen BL, Liu HJ. Nucleocytoplasmic shuttling of BEFV M protein-modulated by lamin A/C and chromosome maintenance region 1 through a transcription-, carrier- and energy-dependent pathway. Vet Microbiol 2024; 291:110026. [PMID: 38364467 DOI: 10.1016/j.vetmic.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
This study demonstrates for the first time that the matrix (M) protein of BEFV is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm in a transcription-, carrier-, and energy-dependent manner. Experiments performed in both intact cells and digitonin-permeabilized cells revealed that M protein targets the nucleolus and requires carrier, cytosolic factors or energy input. By employing sequence and mutagenesis analyses, we have determined both nuclear localization signal (NLS) 6KKGKSK11 and nuclear export signal (NES) 98LIITSYL TI106 of M protein that are important for the nucleocytoplasmic shuttling of M protein. Furthermore, we found that both lamin A/C and chromosome maintenance region 1 (CRM-1) proteins could be coimmunoprecipitated and colocalized with the BEFV M protein. Knockdown of lamin A/C by shRNA and inhibition of CRM-1 by leptomycin B significantly reduced virus yield. Collectively, this study provides novel insights into nucleocytoplasmic shuttling of the BEFV M protein modulated by lamin A/C and CRM-1 and by a transcription- and carrier- and energy-dependent pathway.
Collapse
Affiliation(s)
- Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC; Depertment of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yi-Jyum Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Ching-Yuan Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chi-Young Wang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan, ROC; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC; Rong Hsing Research Center for Translational Medicine, National Chung Hsing, Taiwan, ROC.
| |
Collapse
|
8
|
Wang T, Wang L, Li W, Hou X, Chang W, Wen B, Han S, Chen Y, Qi X, Wang J. Fowl adenovirus serotype 4 enters leghorn male hepatocellular cells via the clathrin-mediated endocytosis pathway. Vet Res 2023; 54:24. [PMID: 36918926 PMCID: PMC10015710 DOI: 10.1186/s13567-023-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
Hepatitis-hydropericardium syndrome (HHS) induced by fowl adenovirus serotype-4 (FAdV-4) has caused large economic losses to the world poultry industry in recent years. HHS is characterized by pericardial effusion and hepatitis, manifesting as a swollen liver with focal necroses and petechial haemorrhage. However, the process of FAdV-4 entry into hepatic cells remains largely unknown. In this paper, we present a comprehensive study on the entry mechanism of FAdV-4 into leghorn male hepatocellular (LMH) cells. We first observed that FAdV-4 internalization was inhibited by chlorpromazine and clathrin heavy chain (CHC) knockdown, suggesting that FAdV-4 entry into LMH cells depended on clathrin. By using the inhibitor dynasore, we showed that dynamin was required for FAdV-4 entry. In addition, we found that FAdV-4 entry was dependent on membrane cholesterol, while neither the knockdown of caveolin nor the inhibition of a tyrosine kinase-based signalling cascade affected FAdV-4 infection. These results suggested that FAdV-4 entry required cholesterol but not caveolae. We also found that macropinocytosis played a role, and phosphatidylinositol 3-kinase (PI3K) was required for FAdV-4 internalization. However, inhibitors of endosomal acidification did not prevent FAdV-4 entry. Taken together, our findings demonstrate that FAdV-4 enters LMH cells through dynamin- and cholesterol-dependent clathrin-mediated endocytosis, accompanied by the involvement of macropinocytosis requiring PI3K. Our work potentially provides insight into the entry mechanisms of other avian adenoviruses.
Collapse
Affiliation(s)
- Ting Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yan Chen
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Liu J, Sun T, Liu S, Liu J, Fang S, Tan S, Zeng Y, Zhang B, Li W. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comput Biol Med 2022; 151:106298. [PMID: 36403355 PMCID: PMC9671524 DOI: 10.1016/j.compbiomed.2022.106298] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Recently, it has been reported that cepharanthine (CEP) is highly likely to be an agent against Coronavirus disease 2019 (COVID-19). In the present study, a network pharmacology-based approach combined with RNA-sequencing (RNA-seq), molecular docking, and molecular dynamics (MD) simulation was performed to determine hub targets and potential pharmacological mechanism of CEP against COVID-19. METHODS Targets of CEP were retrieved from public databases. COVID-19-related targets were acquired from databases and RNA-seq datasets GSE157103 and GSE155249. The potential targets of CEP and COVID-19 were then validated by GSE158050. Hub targets and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI) network analysis and enrichment analysis. Subsequently, molecular docking was carried out to predict the combination of CEP with hub targets. Lastly, MD simulation was conducted to further verify the findings. RESULTS A total of 700 proteins were identified as CEP-COVID-19-related targets. After the validation by GSE158050, 97 validated targets were retained. Enrichment results indicated that CEP acts on COVID-19 through multiple pathways, multiple targets, and overall cooperation. Specifically, PI3K-Akt signaling pathway is the most important pathway. Based on PPI network analysis, 9 central hub genes were obtained (ACE2, STAT1, SRC, PIK3R1, HIF1A, ESR1, ERBB2, CDC42, and BCL2L1). Molecular docking suggested that the combination between CEP and 9 central hub genes is extremely strong. Noteworthy, ACE2, considered the most important gene in CEP against COVID-19, binds to CEP most stably, which was further validated by MD simulation. CONCLUSION Our study comprehensively illustrated the potential targets and underlying molecular mechanism of CEP against COVID-19, which further provided the theoretical basis for exploring the potential protective mechanism of CEP against COVID-19.
Collapse
Affiliation(s)
- Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China
| | - Senbiao Fang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Shengyu Tan
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yucheng Zeng
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China.
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Cheshenko N, Bonanno JB, Hoffmann HH, Jangra RK, Chandran K, Rice CM, Almo SC, Herold BC. Cell-impermeable staurosporine analog targets extracellular kinases to inhibit HSV and SARS-CoV-2. Commun Biol 2022; 5:1096. [PMID: 36245045 PMCID: PMC9569420 DOI: 10.1038/s42003-022-04067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Herpes simplex virus (HSV) receptor engagement activates phospholipid scramblase triggering Akt translocation to the outer leaflet of the plasma membrane where its subsequent phosphorylation promotes viral entry. We hypothesize that this previously unrecognized outside-inside signaling pathway is employed by other viruses and that cell-impermeable kinase inhibitors could provide novel antivirals. We synthesized a cell-impermeable analog of staurosporine, CIMSS, which inhibited outer membrane HSV-induced Akt phosphorylation and blocked viral entry without inducing apoptosis. CIMSS also blocked the phosphorylation of 3-phosphoinositide dependent protein kinase 1 and phospholipase C gamma, which were both detected at the outer leaflet following HSV exposure. Moreover, vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein (VSV-S), but not native VSV or VSV pseudotyped with Ebola virus glycoprotein, triggered this scramblase-Akt outer membrane signaling pathway. VSV-S and native SARS-CoV-2 infection were inhibited by CIMSS. Thus, CIMSS uncovered unique extracellular kinase processes linked to HSV and SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Natalia Cheshenko
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, LA, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Betsy C Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Sander WJ, Kemp G, Hugo A, Pohl CH, O’Neill HG. Rotavirus-Mediated Prostaglandin E2 Production in MA104 Cells Promotes Virus Attachment and Internalisation, Resulting in an Increased Viral Load. Front Physiol 2022; 13:805565. [PMID: 35153833 PMCID: PMC8831913 DOI: 10.3389/fphys.2022.805565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Rotaviruses are one of the leading causes of severe dehydrating diarrhoea in infants and children under the age of five. Despite the introduction of vaccines, disease burden remains high in sub-Saharan Africa, with no known anti-viral treatments available. During early infection rotavirus attaches to several cellular receptors and enters the cells by either clathrin-dependent or -independent endocytosis. Prostaglandin E2, an abundant eicosanoid, is produced from arachidonic acid during rotavirus infection and inhibition of prostaglandin E2 formation have a deleterious effect on rotavirus infection. In this study, MA104 cells were supplemented with γ-linolenic acid (GLA), a precursor of arachidonic acid. Infection of supplemented cells with rotavirus SA11 led to a depletion in the relative percentages of GLA and arachidonic acid which coincided with an increased production of prostaglandin E2 as monitored by ELISA. Confocal microscopy demonstrated that prostaglandin E2 co-localises with the viroplasm-forming proteins, NSP5 and NSP2. Due to the known association of viroplasms with lipid droplets and the fact that lipid droplets are sites for prostaglandin E2 production, our results indicate a possible role for viroplasms in the production of rotavirus-induced prostaglandin E2. Replication kinetics showed that inhibitors, targeting the biosynthesis of prostaglandin E2, had negative effects on rotavirus yield, especially during the early stages of infection. Using flow cytometry and prostaglandin E2 addback experiments, we show that prostaglandin E2 enhances the attachment and internalisation of rotavirus in MA104 cells indicating a possible role for prostaglandin E2 during clathrin-mediated rotavirus entry. The production of prostaglandin E2 during rotavirus infection could serve as a possible target for anti-viral treatment.
Collapse
Affiliation(s)
- Willem J. Sander
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Gabré Kemp
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Arnold Hugo
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
- *Correspondence: Hester G. O’Neill,
| |
Collapse
|
12
|
Wang C, Wang T, Dai J, An Z, Hu R, Duan L, Chen H, Wang X, Chu Z, Liu H, Wang J, Li N, Yang Z, Wang J. 1-Formyl- β-carboline Derivatives Block Newcastle Disease Virus Proliferation through Suppressing Viral Adsorption and Entry Processes. Biomolecules 2021; 11:1687. [PMID: 34827684 PMCID: PMC8616010 DOI: 10.3390/biom11111687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023] Open
Abstract
Newcastle disease virus (NDV) is one of the highly contagious pathogens causing devastating economic effects on the global poultry industry. In the present study, three 1-formyl-β-carboline derivatives (compounds 6, 7, and 9) were found to be potent inhibitors of different genotypes of NDV with IC50 values within 10 μM, which are similar to ribavirin. The virus titers were decreased by the presence of 1-formyl-β-carboline derivatives in a dose-dependent manner, and the inhibition rate was found to exceed 90% at the concentration of 20 μM. These compounds mainly suppressed the adsorption and entry processes of NDV lifecycle. Through DARTS, CETSA, and RBC binding assay, these compounds were identified as novel HN inhibitors, which could directly interact with the NDV HN protein to affect the adsorption of NDV. Furthermore, they could inhibit the entry of NDV through suppressing the PI3K/Akt pathway rather than the ERK pathway. The PI3K/Akt pathway was proved to be involved in NDV entry. Our findings reveal a unique mechanism through which 1-formyl-β-carboline derivatives restrain NDV infection. Moreover, these compounds represent suitable scaffolds for designing novel HN inhibitors.
Collapse
Affiliation(s)
- Chongyang Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Jiangkun Dai
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| | - Zhiyuan An
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Liuyuan Duan
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Hui Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Zhili Chu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Na Li
- Instrumental Analysis Center, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Junru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| |
Collapse
|
13
|
The Roles of c-Jun N-Terminal Kinase (JNK) in Infectious Diseases. Int J Mol Sci 2021; 22:ijms22179640. [PMID: 34502556 PMCID: PMC8431791 DOI: 10.3390/ijms22179640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/12/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are among the most crucial mitogen-activated protein kinases (MAPKs) and regulate various cellular processes, including cell proliferation, apoptosis, autophagy, and inflammation. Microbes heavily rely on cellular signaling pathways for their effective replication; hence, JNKs may play important roles in infectious diseases. In this review, we describe the basic signaling properties of MAPKs and JNKs in apoptosis, autophagy, and inflammasome activation. Furthermore, we discuss the roles of JNKs in various infectious diseases induced by viruses, bacteria, fungi, and parasites, as well as their potential to serve as targets for the development of therapeutic agents for infectious diseases. We expect this review to expand our understanding of the JNK signaling pathway’s role in infectious diseases and provide important clues for the prevention and treatment of infectious diseases.
Collapse
|
14
|
Zhao W, Hou P, Ma W, Jiang C, Wang H, He H. Bta-miR-101 suppresses BEFV replication via targeting NKRF. Vet Microbiol 2021; 259:109127. [PMID: 34058703 DOI: 10.1016/j.vetmic.2021.109127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/16/2021] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs), as a kind of small noncoding RNAs, have been proved to play a regulatory role in virus infection. However, the role and mechanism of cellular miRNAs in bovine transient fever virus (BEFV) infection are largely unknown. In the present study, we found that bta-miR-101 was significantly up-regulated in the Madin-Darby Bovine Kidney (MDBK) cells upon BEFV infection. Notably, bta-miR-101 mimic dramatically inhibited BEFV replication, while bta-miR-101 inhibitor facilitated BEFV replication, suggesting that bta-miR-101 acted as an anti-viral host factor restraining BEFV replication. Subsequently, NF-κB repressing factor (NKRF) was identified as a target gene of bta-miR-101 by dual luciferase reporter assay, and bta-miR-101 mimic significantly down-regulated expression of NKRF, while bta-miR-101 inhibitor up-regulated its expression, respectively. Furthermore, NKRF could induce apoptosis, and favored the replication of BEFV. Finally, bta-miR-101 inhibited BEFV-induced apoptosis via targeting NKRF to suppress virus replication. In general, our study provides a novel mechanism for bta-miR-101 to exert its antiviral function, which provides a theoretical basis for the development of antiviral strategy.
Collapse
Affiliation(s)
- Wendong Zhao
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Peili Hou
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Wenqing Ma
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Chuan Jiang
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Hongmei Wang
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Hongbin He
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| |
Collapse
|
15
|
Khezri MR, Zolbanin NM, Ghasemnejad-Berenji M, Jafari R. Azithromycin: Immunomodulatory and antiviral properties for SARS-CoV-2 infection. Eur J Pharmacol 2021; 905:174191. [PMID: 34015317 PMCID: PMC8127529 DOI: 10.1016/j.ejphar.2021.174191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Azithromycin, a member of the macrolide family of antibiotics, is commonly used to treat respiratory bacterial infections. Nevertheless, multiple pharmacological effects of the drug have been revealed in several investigations. Conceivably, the immunomodulatory properties of azithromycin are among its critical features, leading to its application in treating inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Additionally, azithromycin may directly inhibit viral load as well as its replication, or it could demonstrate indirect inhibitory impacts that might be associated with the expression of antiviral genes. Currently, coronavirus disease 2019 (COVID-19) is an extra urgent issue affecting the entire world, and it is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute respiratory distress syndrome (ARDS), which is associated with hyper inflammation due to cytokine release, is among the leading causes of death in COVID-19 patients with critical conditions. The present paper aims to review the immunomodulatory and antiviral properties of azithromycin as well as its potential clinical applications in the management of COVID-19 patients.
Collapse
Affiliation(s)
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
16
|
Lo YT, Tulloch F, Wu HC, Luke GA, Ryan MD, Chu CY. Expression and immunogenicity of secreted forms of bovine ephemeral fever virus glycoproteins applied to subunit vaccine development. J Appl Microbiol 2021; 131:1123-1135. [PMID: 33605066 DOI: 10.1111/jam.15044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/20/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022]
Abstract
AIMS Vaccines for bovine ephemeral fever virus (BEFV) are available but are difficult to produce, expensive or suffer from genetic instability. Therefore, we designed constructs encoding C-terminally truncated forms (transmembrane anchoring region deleted) of glycoproteins G and GNS such that they were secreted from the cell into the media to achieve high-level antigen expression, correct glycosylation pattern and enable further simple purification with the V5 epitope tag. METHODS AND RESULTS In this study, synthetic biology was employed to create membrane-bound and secreted forms of G and GNS glycoprotein. Mammalian cell culture was employed as an antigen expression platform, and the secreted forms of G and GNS protein were easily purified from media using a highly effective, single-step method. The V5 epitope tag was genetically fused to the C-termini of the proteins, enabling detection of the antigen through immunoblotting and immunomicroscopy. Our data demonstrated that the C-terminally truncated form of the G glycoprotein was efficiently secreted from cells into the cell media. Moreover the immunogenicity was confirmed in mice test. CONCLUSIONS The immuno-dot blots showed that the truncated G glycoprotein was present in the total cell extract, and was clearly secreted into the media, consistent with the western blotting data and live-cell images. Our strategy presented the expression of secreted, epitope-tagged, forms of the BEFV glycoproteins such that appropriately glycosylated forms of BEFV G protein was secreted from the BHK-21 cells. This indicates that high-level expression of secreted G glycoprotein is a feasible strategy for large-scale production of vaccines and improving vaccine efficacy. SIGNIFICANCE AND IMPACT OF THE STUDY The antigen expression strategy designed in this study can produce high-quality recombinant protein and reduce the amount of antigen used in the vaccine.
Collapse
Affiliation(s)
- Y-T Lo
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - F Tulloch
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St. Andrews, UK
| | - H-C Wu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - G A Luke
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St. Andrews, UK
| | - M D Ryan
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St. Andrews, UK
| | - C-Y Chu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
17
|
Khezri MR. PI3K/AKT signaling pathway: a possible target for adjuvant therapy in COVID-19. Hum Cell 2021; 34:700-701. [PMID: 33432441 PMCID: PMC7800287 DOI: 10.1007/s13577-021-00484-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad Rafi Khezri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Sero Road, 5715799313, Urmia, Iran.
| |
Collapse
|
18
|
Akt Interacts with Usutu Virus Polymerase, and Its Activity Modulates Viral Replication. Pathogens 2021; 10:pathogens10020244. [PMID: 33672588 PMCID: PMC7924047 DOI: 10.3390/pathogens10020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Usutu virus (USUV) is a flavivirus that mainly infects wild birds through the bite of Culex mosquitoes. Recent outbreaks have been associated with an increased number of cases in humans. Despite being a growing source of public health concerns, there is yet insufficient data on the virus or host cell targets for infection control. In this work we have investigated whether the cellular kinase Akt and USUV polymerase NS5 interact and co-localize in a cell. To this aim, we performed co-immunoprecipitation (Co-IP) assays, followed by confocal microscopy analyses. We further tested whether NS5 is a phosphorylation substrate of Akt in vitro. Finally, to examine its role in viral replication, we chemically silenced Akt with three inhibitors (MK-2206, honokiol and ipatasertib). We found that both proteins are localized (confocal) and pulled down (Co-IP) together when expressed in different cell lines, supporting the fact that they are interacting partners. This possibility was further sustained by data showing that NS5 is phosphorylated by Akt. Treatment of USUV-infected cells with Akt-specific inhibitors led to decreases in virus titers (>10-fold). Our results suggest an important role for Akt in virus replication and stimulate further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral target.
Collapse
|
19
|
Tseng HH, Huang WR, Cheng CY, Chiu HC, Liao TL, Nielsen BL, Liu HJ. Aspirin and 5-Aminoimidazole-4-carboxamide Riboside Attenuate Bovine Ephemeral Fever Virus Replication by Inhibiting BEFV-Induced Autophagy. Front Immunol 2020; 11:556838. [PMID: 33329515 PMCID: PMC7732683 DOI: 10.3389/fimmu.2020.556838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Recent study in our laboratory has demonstrated that BEFV-induced autophagy via activation of the PI3K/Akt/NF-κB and Src/JNK pathways and suppression of the PI3K-AKt-mTORC1 pathway is beneficial for virus replication. In the current study, we found that both aspirin and 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) siginificantly attenuated virus replication by inhibiting BEFV-induced autophagy via suppressing the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways as well as inducing reversion of the BEFV-suppressed PI3K-Akt-mTORC1 pathway. AICAR reversed the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways at the early to late stages of infection and induced reversion of the BEFV-suppressed PI3K-AKt-mTORC1 pathway at the late stage of infection. Our findings reveal that inhibition of BEFV-induced autophagy by AICAR is independent of AMPK. Furthermore, we found that AICAR transcriptionally downregulates the ATG related genes ULK1, Beclin 1, and LC3 and enhances Atg7 degradation by the proteasome pathway. Aspirin suppresses virus replication by inhibiting BEFV-induced autophagy. It directly suppressed the NF-κB pathway and reversed the BEFV-activated Src/JNK pathway at the early stage of infection and reversed the BEFV-suppressed PI3K/Akt/mTOR pathway at the late stage of infection. The current study provides mechanistic insights into the effects of aspirin and AICAR on BEFV replication through suppression of BEFV-induced autophagy.
Collapse
Affiliation(s)
- Hsu-Hung Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yuan Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
20
|
Robb CT, Goepp M, Rossi AG, Yao C. Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19. Br J Pharmacol 2020; 177:4899-4920. [PMID: 32700336 PMCID: PMC7405053 DOI: 10.1111/bph.15206] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the novel coronavirus disease 2019 (COVID-19), a highly pathogenic and sometimes fatal respiratory disease responsible for the current 2020 global pandemic. Presently, there remains no effective vaccine or efficient treatment strategies against COVID-19. Non-steroidal anti-inflammatory drugs (NSAIDs) are medicines very widely used to alleviate fever, pain, and inflammation (common symptoms of COVID-19 patients) through effectively blocking production of prostaglandins (PGs) via inhibition of cyclooxyganase enzymes. PGs can exert either proinflammatory or anti-inflammatory effects depending on the inflammatory scenario. In this review, we survey the potential roles that NSAIDs and PGs may play during SARS-CoV-2 infection and the development and progression of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
21
|
Blanco J, Cameirao C, López MC, Muñoz-Barroso I. Phosphatidylinositol-3-kinase-Akt pathway in negative-stranded RNA virus infection: a minireview. Arch Virol 2020; 165:2165-2176. [PMID: 32740830 DOI: 10.1007/s00705-020-04740-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022]
Abstract
The PI3K/Akt signalling pathway is a crucial signalling cascade that regulates transcription, protein translation, cell growth, proliferation, cell survival, and metabolism. During viral infection, viruses exploit a variety of cellular pathways, including the well-known PI3K/Akt signalling pathway. Conversely, cells rely on this pathway to stimulate an antiviral response. The PI3K/Akt pathway is manipulated by a number of viruses, including DNA and RNA viruses and retroviruses. The aim of this review is to provide up-to-date information about the role of the PI3K-Akt pathway in infection with members of five different families of negative-sense ssRNA viruses. This pathway is hijacked for viral entry, regulation of endocytosis, suppression of premature apoptosis, viral protein expression, and replication. Although less common, the PI3K/Akt pathway can be downregulated as an immunomodulatory strategy or as a mechanism for inducing autophagy. Moreover, the cell activates this pathway as an antiviral strategy for interferon and cytokine production, among other strategies. Here, we present new data concerning the role of this pathway in infection with the paramyxovirus Newcastle disease virus (NDV). Our data seem to indicate that NDV uses the PI3K/Akt pathway to delay cell death and increase cell survival as a means of improving its replication. The interference of negative-sense ssRNA viruses with this essential pathway might have implications for the development of antiviral therapies.
Collapse
Affiliation(s)
- Javier Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain
| | - Cristina Cameirao
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - María Carmen López
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.
| |
Collapse
|
22
|
Li L, Wu H, Li Q, Chen J, Xu K, Xu J, Su X. SOCS3-deficient lung epithelial cells uptaking neutrophil-derived SOCS3 worsens lung influenza infection. Mol Immunol 2020; 125:51-62. [PMID: 32645550 DOI: 10.1016/j.molimm.2020.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/30/2020] [Accepted: 06/21/2020] [Indexed: 12/25/2022]
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of TBK1 and interferon pathway and the expression of SOCS3 is closely correlated with symptoms of influenza patients. However, whether deletion of Socs3 in the lung epithelial cells would affect influenza lung replication and inflammation in vivo is unknown. To test this, we approached the influenza infected Socs3f/f and SpcCre.Socs3f/f mice. We first found that knockdown of Socs3 in lung epithelial cells reduced influenza replication. However, in the in vivo study, there was a reduction of SOCS3 in the influenza-infected neutrophils coincided with an increase of SOCS3 in the CD45-CD326+ lung epithelial cells in PR8-infected SpcCre.Socs3f/f mice. SOCS3-deficient neutrophils expressed higher levels of IL-17 that enhanced chemokine expression in the lung epithelial cells. Lung SOCS3-dificient epithelial cells increased expression of GM-CSF and PGE2 which promoted SpcCre.Socs3f/f neutrophils to yield SOCS3. SpcCre.Socs3f/f lung epithelial cells internalized SOCS3 released from GM-CSF + PGE2-stimulated SpcCre.Socs3f/f neutrophils, which could boost influenza replication in the lung epithelial cells. Thus, in the in vivo study, deletion of SOCS3 from lung epithelium could be nullified by the uptake from SOCS3 from infiltrated neutrophils. In addition, deletion of Socs3 from myeloid cells reduced lung influenza infection, but increased lung inflammation. Taken together, deletion of SOCS3 could suppress influenza replication, but intracellular SOCS3 communication between neutrophils and lung epithelial cells confounds this effect.
Collapse
Affiliation(s)
- Ling Li
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiya Wu
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingmei Li
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaifeng Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jinfu Xu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai China.
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
23
|
Cheng CY, Tseng HH, Chiu HC, Chang CD, Nielsen BL, Liu HJ. Bovine ephemeral fever virus triggers autophagy enhancing virus replication via upregulation of the Src/JNK/AP1 and PI3K/Akt/NF-κB pathways and suppression of the PI3K/Akt/mTOR pathway. Vet Res 2019; 50:79. [PMID: 31601269 PMCID: PMC6785866 DOI: 10.1186/s13567-019-0697-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/09/2019] [Indexed: 12/30/2022] Open
Abstract
Autophagy plays an important role in cellular response to pathogens. However, the impact of the autophagy machinery on bovine ephemeral fever virus (BEFV) infection is not yet determined. A recent study in our laboratory demonstrated that BEFV triggers simultaneously the PI3K/Akt/NF-κB and Src/JNK-AP1 pathways in the stage of virus binding to enhance virus entry. In this work, we report that BEFV induces autophagy via upregulation of the PI3K/Akt/NF-κB and Src/JNK/AP1 pathways in the early to middle stages of infection and suppresses the PI3K/Akt/mTOR pathway at the late stage of infection. To activate NF-κB, BEFV promotes degradation of IκBα and activates Akt to stimulate NF-κB translocation into the nucleus. Immunoprecipitation assays revealed that BEFV disrupts Beclin 1 and Bcl-2 interaction by JNK-mediated Bcl-2 phosphorylation, thereby activating autophagy. Overexpression of Bcl-2 reversed the BEFV-induced increase in the LC3 II levels. Suppression of autophagy either by knockdown of autophagy-related genes with shRNAs or treatment with a pharmacological inhibitor 3-MA reduced BEFV replication, suggesting that BEFV-induced autophagy benefits virus replication. Our results revealed that the BEFV M protein is one of the viral proteins involved in inducing autophagy via suppression of the PI3K/Akt/mTORC1 pathway. Furthermore, degradation of p62 was observed by immunoblotting, suggesting that BEFV infection triggers a complete autophagic response. Disruption of autophagosome-lysosome fusion by depleting LAMP2 resulted in reduction of virus yield, suggesting that formation of autolysosome benefits virus production.
Collapse
Affiliation(s)
- Ching-Yuan Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hsu-Hung Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan.,Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, 402, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ching-Dong Chang
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan. .,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan. .,Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan. .,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
24
|
Wei M, Zhang Y, Aweya JJ, Wang F, Li S, Lun J, Zhu C, Yao D. Litopenaeus vannamei Src64B restricts white spot syndrome virus replication by modulating apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:313-321. [PMID: 31351111 DOI: 10.1016/j.fsi.2019.07.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The Src family kinases (SFK) are involved in signaling transductions that regulate numerous biological activities including host-virus interaction. These features of SFK have been well explored in vertebrates, however, in shrimp, the invertebrate SFK family member Src64B, has not been characterized and therefore its role in shrimp-virus interaction remains unknown. In this study, two Litopenaeus vannamei Src64B isoforms (designated LvSrc64B1 and LvSrc64B2) were first cloned and their role in white spot syndrome virus (WSSV) infection was explored. Bioinformatics analysis revealed that LvSrc64B1 and LvSrc64B2 were similar to other Src64B family members, with high homology in primary and tertiary structures, and contained the conserved SFK functional domains, as well as the putative myristylation and phosphorylation sites. Tissue distribution analysis showed that both LvSrc64B isoforms were ubiquitously expressed, albeit distinctively in the tested tissues. In addition, transcript levels of LvSrc64B1 and LvSrc64B2 were significantly induced following WSSV challenge and had similar expression patterns. Furthermore, siRNA-mediated knockdown of LvSrc64B1 and LvSrc64B2 followed by WSSV infection resulted in increased expression of viral genes, enhanced viral DNA replication, and elevation of hemocytes apoptosis. Depletion of LvSrc64B1 and LvSrc64B2 also reduced shrimp survival upon WSSV infection. In conclusion, the current data strongly suggest that Src64B is a host factor that inhibits WSSV replication by modulating apoptosis in shrimp.
Collapse
Affiliation(s)
- Menghao Wei
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jingsheng Lun
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
25
|
Zhang Y, Zhu L, Cao G, Sahib Zar M, Hu X, Wei Y, Xue R, Gong C. Cell entry of BmCPV can be promoted by tyrosine-protein kinase Src64B-like protein. Enzyme Microb Technol 2018; 121:1-7. [PMID: 30554639 DOI: 10.1016/j.enzmictec.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 11/15/2022]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a non-enveloped dsRNA virus, which specifically infect the midgut epithelium of B. mori. BmCPV enters permissive cells via clathrin-dependent endocytosis employing β1 integrin mediated internalization. Until now, the cell entry mechanism of BmCPV has not been known clearly. Here, we investigated whether tyrosine-protein kinase Src64B-like is involved in the cell entry of BmCPV. The Src64B-like gene was cloned and expressed in Escherichia coli (E. coli), and the recombinant protein Src64B-like was used to immunize mouse for preparation of anti-Src64B-like polyclonal antibody (pAb). After Src64B-like gene was silenced by RNAi, the infection of BmCPV was reduced by 59.48% ± 2.18% and 92.22% ± 1.12% in vitro and in vivo autonomously. Contrary to it, BmCPV infection could be enhanced by increasing the expression of Src64B-like. In addition, immunofluorescence assay showed that Src64B-like protein did not co-localize with BmCPV in the cultured BmN cells during viral infection. These results indicate that Src64B-like protein participates and plays an important role in the cell entry of BmCPV, but not contacting directly with BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; Institute of Synthetic Biology (iSynBio), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xuevuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
26
|
Gu W, Wang Y, Qiu Z, Dong J, Wang Y, Chen J. Maternal exposure to nonylphenol during pregnancy and lactation induces microglial cell activation and pro-inflammatory cytokine production in offspring hippocampus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:525-533. [PMID: 29635194 DOI: 10.1016/j.scitotenv.2018.03.329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/11/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Recently, environmental nonylphenol (NP) exposure in the fetus and child has received increasing attention because of its potentially deleterious effects on the central nervous system (CNS). Microglia (MG), resident immune cells in the CNS, are vital to CNS homeostasis and defense against exogenous chemicals, which makes them a potentially sensitive target of NP. The present study aims to explore the effects of maternal NP exposure during pregnancy and lactation on MG in offspring hippocampus, the production of pro-inflammatory cytokines by MG, and associated underlying mechanisms. We found that maternal NP exposure increased the production of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in offspring hippocampus. Increases in both activation and number of MG were observed in offspring hippocampus. Increased phosphorylation of Akt was found to co-localize with hippocampal MG, while increased phosphorylation of c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were observed in offspring hippocampus. Activator protein 1 (AP-1), an inflammatory transcription factor, was also activated in the hippocampus of pups subjected to maternal NP exposure. These results suggest that maternal NP exposure might activate MG in offspring hippocampus. This activation seems to subsequently increase the production of IL-1β, IL-6, and TNF-α. Furthermore, Akt/MAPK/AP-1 signaling may be involved in this activation of MG and increased production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Weijia Gu
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Zhenmin Qiu
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China.
| |
Collapse
|
27
|
Xiong Y, Li KX, Wei H, Jiao L, Yu SY, Zeng L. Eph/ephrin signalling serves a bidirectional role in lipopolysaccharide‑induced intestinal injury. Mol Med Rep 2018; 18:2171-2181. [PMID: 29901151 PMCID: PMC6072232 DOI: 10.3892/mmr.2018.9169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence has demonstrated that Eph/ephrin signalling may serve a central role in intestinal diseases. However, whether erythropoietin-producing hepatocellular (Eph)/ephrin signalling is associated with the development of post-infectious irritable bowel syndrome (PI-IBS) is still unknown. In the present study, the role of Eph/Ephrin signalling in lipopolysaccharide (LPS)-induced intestinal injury was evaluated in vivo and in vitro. LPS treatment significantly increased the levels of proinflammatory mediators [monocyte chemoattractant protein-1, tumour necrosis factor α, interleukin (IL)-1β, IL-6, intercellular adhesion molecule 1 and vascular cell adhesion molecule-1], activated the EphA2-Ephrin A1, protein kinase B (Akt)-nuclear factor (NF)-κB, Src-NF-κB and Wnt/β-catenin signalling pathways, and inhibited EphB1-Ephrin B3 signalling in colon tissues, and primary cultured enteric neuronal and glial cells. Notably, EphA2 monoclonal antibody (mAb) treatment or Ephrin B3 overexpression could partially alleviate the LPS-induced upregulation of proinflammatory mediators, and Akt-NF-κB, Src-NF-κB and Wnt/β-catenin signalling pathways. In addition, EphA2 mAb treatment could partially inhibit LPS-induced inactivation of EphB-Ephrin B3 signalling, while Ephrin B3 overexpression could abrogate LPS-induced activation of EphA2-Ephrin A1 signalling. EphB1/Ephrin B3 signalling may antagonise the EphA2/Ephrin A1-dependent pathway following LPS treatment. The results associated with the EphA2 signaling pathway, indicated that Eph/ephrin signalling may serve a bidirectional role in LPS-induced intestinal injury. Eph/ephrin signalling may be a novel therapeutic target for LPS-induced intestinal injury and potentially PI-IBS.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Kai-Xue Li
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Hong Wei
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Lu Jiao
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Shao-Yong Yu
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205‑2195, USA
| | - Li Zeng
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
28
|
Gu W, Wang Y, Qiu Z, Dong J, Wang Y, Chen J. Mitogen-activated protein kinase signaling is involved in nonylphenol-induced proinflammatory cytokines secretion by BV2 microglia. J Appl Toxicol 2018; 38:958-967. [DOI: 10.1002/jat.3602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Weijia Gu
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Zhenmin Qiu
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| |
Collapse
|
29
|
Kew VG, Wills MR, Reeves MB. LPS promotes a monocyte phenotype permissive for human cytomegalovirus immediate-early gene expression upon infection but not reactivation from latency. Sci Rep 2017; 7:810. [PMID: 28400599 PMCID: PMC5429787 DOI: 10.1038/s41598-017-00999-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of myeloid cells is closely linked with the differentiation status of the cell. Haematopoietic progenitors and CD14+ monocytes are usually non-permissive for lytic gene expression which can lead to the establishment of latent infections. In contrast, differentiation to macrophage or dendritic cell (DC) phenotypes promotes viral reactivation or renders them permissive for lytic infection. The observation that high doses of Lipopolysaccharide (LPS) drove rapid monocyte differentiation in mice led us to investigate the response of human monocytes to HCMV following LPS stimulation in vitro. Here we report that LPS triggers a monocyte phenotype permissiveness for lytic infection directly correlating with LPS concentration. In contrast, addition of LPS directly to latently infected monocytes was not sufficient to trigger viral reactivation which is likely linked with the failure of the monocytes to differentiate to a DC phenotype. Interestingly, we observe that this effect on lytic infection of monocytes is transient, appears to be dependent on COX-2 activation and does not result in a full productive infection. Thus LPS stimulated monocytes are partially permissive lytic gene expression but did not have long term impact on monocyte identity regarding their differentiation and susceptibility for the full lytic cycle of HCMV.
Collapse
Affiliation(s)
- V G Kew
- Department of Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - M R Wills
- Department of Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | - M B Reeves
- Institute of Immunity & Transplantation, UCL Division of Infection & Immunity, Royal Free Hospital, London, NW3 2PF, UK.
| |
Collapse
|
30
|
Feng J, Cao Z, Wang L, Wan Y, Peng N, Wang Q, Chen X, Zhou Y, Zhu Y. Inducible GBP5 Mediates the Antiviral Response via Interferon-Related Pathways during Influenza A Virus Infection. J Innate Immun 2017; 9:419-435. [PMID: 28376501 DOI: 10.1159/000460294] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/08/2017] [Indexed: 12/18/2022] Open
Abstract
Guanylate binding protein (GBP) 5 belongs to the GBP family, which is involved in important cellular processes, including signal transduction, translation, vesicle trafficking, and exocytosis. Structurally, GBPs display a high degree of homology and share highly conserved GTP-binding or hydrolysis domains. GBP5 was reported to be a critical cellular factor in inflammasome assembly. However, little is known about its role in the host antiviral innate immune response. In this study, we found that GBP5 expression was significantly elevated in influenza patients and influenza A virus-infected A549 human lung epithelial cells. The overexpression of GBP5 inhibited virus replication by enhancing the expression of virus-induced interferon (IFN) and IFN-related effectors. Knockdown of GBP5 had the opposite effect. Moreover, GBP5 enhanced endogenous IFN expression by interacting with the NF-κB-essential modulator complex and stimulating NF-κB signaling. Additionally, the expression of proinflammatory factors, such as IL-6, IL-8, tumor necrosis factor-α, cyclooxygenase-2, and inducible nitric oxide synthase, was also activated by GBP5. Taken together, our results reveal that GBP5 inhibited virus replication through the activation of IFN signaling and proinflammatory factors.
Collapse
Affiliation(s)
- Jian Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Infectious Bursal Disease Virus Activates c-Src To Promote α4β1 Integrin-Dependent Viral Entry by Modulating the Downstream Akt-RhoA GTPase-Actin Rearrangement Cascade. J Virol 2017; 91:JVI.01891-16. [PMID: 27881656 DOI: 10.1128/jvi.01891-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
While the entry of infectious bursal disease virus (IBDV) is initiated by the binding of the virus to the two major receptors integrin and HSP90, the signaling events after receptor binding and how they contribute to virus entry remain elusive. We show here that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src both in DF-1 chicken fibroblasts and in vivo in the bursa of Fabricius from specific-pathogen-free (SPF) chickens. Importantly, inactivated IBDV fails to stimulate c-Src Y416 phosphorylation, and a very virulent IBDV strain induces a much higher level of c-Src Y416 phosphorylation than does an attenuated strain. Inhibition of c-Src activation by an Src kinase inhibitor or expression of a c-Src dominant negative mutant results in a significant decrease in the internalization of IBDV but has little effect on virus adhesion. Furthermore, short hairpin RNA (shRNA) downregulation of integrin, either the α4 or β1 subunit, but not HSP90 remarkably attenuates IBDV-induced c-Src Y416 phosphorylation, resulting in a decrease in IBDV internalization but not virus adhesion. Moreover, interestingly, inhibition of either c-Src downstream of the phosphatidylinositol 3-kinase (PI3K)/Akt-RhoA signaling cascade or actin rearrangement leads to a significant decrease in IBDV internalization irrespective of the IBDV-induced high levels of c-Src phosphorylation. Cumulatively, our results suggest a novel feed-forward model whereby IBDV activates c-Src for benefiting its cell entry via an integrin-mediated pathway by the activation of downstream PI3K/Akt-RhoA signaling and cytoskeleton actin rearrangement. IMPORTANCE While IBDV-caused immunosuppression is highly related to viral invasion, the molecular basis of the cellular entry of IBDV remains elusive. In this study, we demonstrate that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src to promote virus internalization but not virus adhesion. The ability to induce the level of c-Src Y416 phosphorylation correlates with the pathogenicity of an IBDV strain. IBDV-induced c-Src Y416 activation is α4β1 integrin but not HSP90 dependent and involves the activation of the downstream PI3K/Akt-RhoA GTPase-actin rearrangement cascade. Thus, our findings provide new insights into the IBDV infection process and the potential for c-Src as a candidate target for the development of IBDV therapeutic drugs.
Collapse
|
32
|
Wetzel DM, Rhodes EL, Li S, McMahon-Pratt D, Koleske AJ. The Src kinases Hck, Fgr and Lyn activate Arg to facilitate IgG-mediated phagocytosis and Leishmania infection. J Cell Sci 2016; 129:3130-43. [PMID: 27358479 DOI: 10.1242/jcs.185595] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is a devastating disease that disfigures or kills nearly two million people each year. Establishment and persistence of infection by the obligate intracellular parasite Leishmania requires repeated uptake by macrophages and other phagocytes. Therefore, preventing uptake could be a novel therapeutic strategy for leishmaniasis. Amastigotes, the life cycle stage found in the human host, bind Fc receptors and enter macrophages primarily through immunoglobulin-mediated phagocytosis. However, the host machinery that mediates amastigote uptake is poorly understood. We have previously shown that the Arg (also known as Abl2) non-receptor tyrosine kinase facilitates L. amazonensis amastigote uptake by macrophages. Using small-molecule inhibitors and primary macrophages lacking specific Src family kinases, we now demonstrate that the Hck, Fgr and Lyn kinases are also necessary for amastigote uptake by macrophages. Src-mediated Arg activation is required for efficient uptake. Interestingly, the dual Arg and Src kinase inhibitor bosutinib, which is approved to treat cancer, not only decreases amastigote uptake, but also significantly reduces disease severity and parasite burden in Leishmania-infected mice. Our results suggest that leishmaniasis could potentially be treated with host-cell-active agents such as kinase inhibitors.
Collapse
Affiliation(s)
- Dawn M Wetzel
- Department of Pediatrics, Yale University, New Haven, CT 06520, USA
| | - Emma L Rhodes
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shaoguang Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Diane McMahon-Pratt
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT 06520, USA
| | - Anthony J Koleske
- Department of Molecular Biochemistry and Biophysics, Yale University, CT 06520, USA Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
33
|
Important Role of the IL-32 Inflammatory Network in the Host Response against Viral Infection. Viruses 2015; 7:3116-29. [PMID: 26087456 PMCID: PMC4488729 DOI: 10.3390/v7062762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022] Open
Abstract
The pro-inflammatory cytokine interleukin (IL)-32 has gained much attention recently because of its important role in the inflammatory network. Since the discovery of IL-32 in 2005, our appreciation for its diverse roles continues to grow. Recent studies have discovered the antiviral effects induced by IL-32 and its associated regulatory mechanisms. The interactions between IL-32 and various cytokines including cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interferon (IFN)-λ1, interleukin (IL)-6, and soluble IL-6 receptor have been described. This review aims to integrate these new findings into explicit concepts and raises the intriguing possibility of IL-32 as a therapeutic target.
Collapse
|