1
|
Badwal AK, Singh S. Current trends in application of CRISPR/Cas9 in gene editing and diagnostics in Neglected tropical diseases (NTDs). Mol Biol Rep 2025; 52:259. [PMID: 39982610 DOI: 10.1007/s11033-025-10331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
Neglected tropical diseases (NTDs) include more than a dozen of diseases which despite their fatality receive less attention from the research community worldwide. High cost diagnosis of these diseases and lack of trained community which can accurately interpret them is the major drawback in the healthcare system. Nowadays, in the genetic engineering era more emphasis is given to the modern gene editing tools such as Transcription Activator-Like Effector Nucleases (TALENS), Zinc Finger Nucleases (ZFNs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) due to their unique tailoring molecular machinery. This review article details the applicability of CRISPR/Cas9 as a modern gene editing tool in case of NTD parasites such as trypanosomatids with an aim to target their virulent genes. It has been observed through a number of studies that knocking in/out virulent genes of these parasites have led to a significant decrease in infectivity, growth rates along with morphological defects. The article also mentions various advanced CRISPR/Cas based diagnostics such as Specific High-Sensitivity Enzymatic Reporter unLOCKing (SHERLOCK) and SHERLOCK4HAT which can detect parasite concentration as low as 2 attomolar/L (aM: 10- 18) and 1 parasite/µL respectively. This review also enlists various regulatory and biosafety issues, for example ecological imbalance which can arise as a consequence of CRISPR/Cas based gene drives employed to target parasitic vectors. Despite its wide applications, CRISPR/Cas is associated with several limitations like off-target effects and ecological imbalance to name a few.
Collapse
Affiliation(s)
- Amneet Kaur Badwal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
2
|
Zhang WW, Matlashewski G. Evidence for gene essentiality in Leishmania using CRISPR. PLoS One 2024; 19:e0316331. [PMID: 39775585 PMCID: PMC11684651 DOI: 10.1371/journal.pone.0316331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
The ability to determine the essentiality of a gene in the protozoan parasite Leishmania is important to identify potential targets for intervention and understanding the parasite biology. CRISPR gene editing technology has significantly improved gene targeting efficiency in Leishmania. There are two commonly used CRISPR gene targeting methods in Leishmania; the stable expression of the gRNA and Cas9 using a plasmid containing a Leishmania ribosomal RNA gene promoter (rRNA-P stable protocol) and the T7 RNA polymerase based transient gRNA expression system in promastigotes stably expressing Cas9 (T7 transient protocol). There are distinct advantages with both systems. The T7 transient protocol is excellent for high throughput gene deletions and has been used to successfully delete hundreds of Leishmania genes to study mutant phenotypes and several research labs are now using this protocol to target all the genes in L. mexicana genome. The rRNA-P stable protocol stably expresses the plasmid derived gRNA and has been used to delete or disrupt single and multicopy Leishmania genes, perform single nucleotide changes and provide evidence for gene essentiality by directly observing null mutant promastigotes dying in culture. In this study, the rRNA-P stable protocol was used to target 22 Leishmania genes in which null mutants were not generated using the T7 transient protocol. Notably, the rRNA-P stable protocol was able to generate alive null mutants for 8 of the 22 genes. These results demonstrate the rRNA-P stable protocol could be used alone or in combination with the T7 transient protocol to investigate gene essentiality in Leishmania.
Collapse
Affiliation(s)
- Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Gangwar U, Choudhury H, Shameem R, Singh Y, Bansal A. Recent development in CRISPR-Cas systems for human protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:109-160. [PMID: 39266180 DOI: 10.1016/bs.pmbts.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.
Collapse
Affiliation(s)
- Utkarsh Gangwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Risha Shameem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yashi Singh
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
4
|
Queffeulou M, Leprohon P, Fernandez-Prada C, Ouellette M, Mejía-Jaramillo AM. CRISPR-Cas9 high-throughput screening to study drug resistance in Leishmania infantum. mBio 2024; 15:e0047724. [PMID: 38864609 PMCID: PMC11253630 DOI: 10.1128/mbio.00477-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
Parasites of the genus Leishmania pose a global health threat with limited treatment options. New drugs are urgently needed, and genomic screens have the potential to accelerate target discovery, mode of action, and resistance mechanisms against these new drugs. We describe here our effort in developing a genome-wide CRISPR-Cas9 screen in Leishmania, an organism lacking a functional nonhomologous end joining system that must rely on microhomology-mediated end joining, single-strand annealing, or homologous recombination for repairing Cas9-induced double-stranded DNA breaks. A new vector for cloning and expressing single guide RNAs (sgRNAs) was designed and proven to be effective in a small pilot project while enriching specific sgRNAs during drug selection. We then developed a whole-genome library of 49,754 sgRNAs, targeting all the genes of Leishmania infantum. This library was transfected in L. infantum expressing Cas9, and these cells were selected for resistance to two antileishmanials, miltefosine and amphotericin B. The sgRNAs the most enriched in the miltefosine screen targeted the miltefosine transporter gene, but sgRNAs targeting genes coding for a RING-variant protein and a transmembrane protein were also enriched. The sgRNAs the most enriched by amphotericin B targeted the sterol 24 C methyltransferase genes and a hypothetical gene. Through gene disruption experiments, we proved that loss of function of these genes was associated with resistance. This study describes the feasibility of carrying out whole-genome CRISPR-Cas9 screens in Leishmania provided that a strong selective pressure is applied. Such a screen can be used for accelerating the development of urgently needed antileishmanial drugs.IMPORTANCELeishmaniasis, a global health threat, lacks adequate treatment options and drug resistance exacerbates the challenge. This study introduces a CRISPR-Cas9 screening approach in Leishmania infantum, unraveling mechanisms of drug resistance at a genome-wide scale. Our screen was applied against two main antileishmanial drugs, and guides were enriched upon drug selection. These guides targeted known and new targets, hence validating the use of this screen against Leishmania. This strategy provides a powerful tool to expedite drug discovery as well as potential therapeutic targets against this neglected tropical disease.
Collapse
Affiliation(s)
- Marine Queffeulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Ana María Mejía-Jaramillo
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
5
|
Chmelová Ľ, Kraeva N, Saura A, Krayzel A, Vieira CS, Ferreira TN, Soares RP, Bučková B, Galan A, Horáková E, Vojtková B, Sádlová J, Malysheva MN, Butenko A, Prokopchuk G, Frolov AO, Lukeš J, Horváth A, Škodová-Sveráková I, Feder D, Yu Kostygov A, Yurchenko V. Intricate balance of dually-localized catalase modulates infectivity of Leptomonas seymouri (Kinetoplastea: Trypanosomatidae). Int J Parasitol 2024; 54:391-400. [PMID: 38663543 DOI: 10.1016/j.ijpara.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/24/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Nearly all aerobic organisms are equipped with catalases, powerful enzymes scavenging hydrogen peroxide and facilitating defense against harmful reactive oxygen species. In trypanosomatids, this enzyme was not present in the common ancestor, yet it had been independently acquired by different lineages of monoxenous trypanosomatids from different bacteria at least three times. This observation posited an obvious question: why was catalase so "sought after" if many trypanosomatid groups do just fine without it? In this work, we analyzed subcellular localization and function of catalase in Leptomonas seymouri. We demonstrated that this enzyme is present in the cytoplasm and a subset of glycosomes, and that its cytoplasmic retention is H2O2-dependent. The ablation of catalase in this parasite is not detrimental in vivo, while its overexpression resulted in a substantially higher parasite load in the experimental infection of Dysdercus peruvianus. We propose that the capacity of studied flagellates to modulate the catalase activity in the midgut of its insect host facilitates their development and protects them from oxidative damage at elevated temperatures.
Collapse
Affiliation(s)
- Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Adam Krayzel
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Cecilia Stahl Vieira
- Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Niterói, Brazil
| | - Tainá Neves Ferreira
- Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Niterói, Brazil
| | - Rodrigo Pedro Soares
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Barbora Bučková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Barbora Vojtková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Marina N Malysheva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Alexander O Frolov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia; Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Denise Feder
- Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Niterói, Brazil; Universidade Federal Fluminense, Instituto de Biologia, Laboratório de Biologia de Insetos, Niterói, Brazil; Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia; Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
6
|
Fang W, Zhou L, Deng B, Guo B, Chen X, Chen P, Lu C, Dong Z, Pan M. Establishment of a Secretory Protein-Inducible CRISPR/Cas9 System for Nosema bombycis in Insect Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13175-13185. [PMID: 38817125 DOI: 10.1021/acs.jafc.3c08647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Gene editing techniques are widely and effectively used for the control of pathogens, but it is difficult to directly edit the genes of Microsporidia due to its unique spore wall structure. Innovative technologies and methods are urgently needed to break through this limitation of microsporidia therapies. Here, we establish a microsporidia-inducible gene editing system through core components of microsporidia secreted proteins, which could edit target genes after infection with microsporidia. We identified that Nosema bombycis NB29 is a secretory protein and found to interact with itself. The NB29-N3, which lacked the nuclear localization signal, was localized in the cytoplasm, and could be tracked into the nucleus after interacting with NB29-B. Furthermore, the gene editing system was constructed with the Cas9 protein expressed in fusion with the NB29-N3. The system could edit the exogenous gene EGFP and the endogenous gene BmRpn3 after overexpression of NB29 or infection with N. bombycis.
Collapse
Affiliation(s)
- Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Liang Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Binyu Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Xue Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| |
Collapse
|
7
|
Asencio C, Hervé P, Morand P, Oliveres Q, Morel CA, Prouzet-Mauleon V, Biran M, Monic S, Bonhivers M, Robinson DR, Ouellette M, Rivière L, Bringaud F, Tetaud E. Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania. Mol Microbiol 2024; 121:1079-1094. [PMID: 38558208 DOI: 10.1111/mmi.15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Kinetoplastids are unicellular eukaryotic flagellated parasites found in a wide range of hosts within the animal and plant kingdoms. They are known to be responsible in humans for African sleeping sickness (Trypanosoma brucei), Chagas disease (Trypanosoma cruzi), and various forms of leishmaniasis (Leishmania spp.), as well as several animal diseases with important economic impact (African trypanosomes, including Trypanosoma congolense). Understanding the biology of these parasites necessarily implies the ability to manipulate their genomes. In this study, we demonstrate that transfection of a ribonucleoprotein complex, composed of recombinant Streptococcus pyogenes Cas9 (SpCas9) and an in vitro-synthesized guide RNA, results in rapid and efficient genetic modifications of trypanosomatids, in marker-free conditions. This approach was successfully developed to inactivate, delete, and mutate candidate genes in various stages of the life cycle of T. brucei and T. congolense, and Leishmania promastigotes. The functionality of SpCas9 in these parasites now provides, to the research community working on these parasites, a rapid and efficient method of genome editing, without requiring plasmid construction and selection by antibiotics but requires only cloning and PCR screening of the clones. Importantly, this approach is adaptable to any wild-type parasite.
Collapse
Affiliation(s)
| | - Perrine Hervé
- Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France
| | | | | | | | | | - Marc Biran
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
| | - Sarah Monic
- Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France
| | | | | | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Loïc Rivière
- Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France
| | | | | |
Collapse
|
8
|
Abdi Ghavidel A, Aghamiri S, Raee P, Mohammadi-Yeganeh S, Noori E, Bandehpour M, Kazemi B, Jajarmi V. Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Leishmania Strains. Acta Parasitol 2024; 69:121-134. [PMID: 38127288 DOI: 10.1007/s11686-023-00756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Genome manipulation of Leishmania species and the creation of modified strains are widely employed strategies for various purposes, including gene function studies, the development of live attenuated vaccines, and the engineering of host cells for protein production. OBJECTIVE Despite the introduction of novel manipulation approaches like CRISPR/Cas9 technology with significant advancements in recent years, the development of a reliable protocol for efficiently and precisely altering the genes of Leishmania strains remains a challenging endeavor. Following the successful adaptation of the CRISPR/Cas9 system for higher eukaryotic cells, several research groups have endeavored to apply this system to manipulate the genome of Leishmania. RESULTS Despite the substantial differences between Leishmania and higher eukaryotes, the CRISPR/Cas9 system has been effectively tested and applied in Leishmania. CONCLUSION: This comprehensive review summarizes all the CRISPR/Cas9 systems that have been employed in Leishmania, providing details on their methods and the expression systems for Cas9 and gRNA. The review also explores the various applications of the CRISPR system in Leishmania, including the deletion of multicopy gene families, the development of the Leishmania vaccine, complete gene deletions, investigations into chromosomal translocations, protein tagging, gene replacement, large-scale gene knockout, genome editing through cytosine base replacement, and its innovative use in the detection of Leishmania. In addition, the review offers an up-to-date overview of all double-strand break repair mechanisms in Leishmania.
Collapse
Affiliation(s)
- Afshin Abdi Ghavidel
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Khandibharad S, Singh S. Synthetic biology for combating leishmaniasis. Front Microbiol 2024; 15:1338749. [PMID: 38362504 PMCID: PMC10867266 DOI: 10.3389/fmicb.2024.1338749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the Leishmania genus. Despite the efforts to control and treat the disease, it still remains a major public health problem in many countries. Synthetic biology is a rapidly evolving interdisciplinary field that combines biology, engineering, and computer science to design and construct novel biological systems. In recent years, synthetic biology approaches have shown great promise for developing new and effective strategies to combat leishmaniasis. In this perspective, we summarize the recent advances in the use of synthetic biology for the development of vaccines, diagnostic tools, and novel therapeutics for leishmaniasis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, Pune, India
| |
Collapse
|
10
|
Fernandez‐Becerra C, Xander P, Alfandari D, Dong G, Aparici‐Herraiz I, Rosenhek‐Goldian I, Shokouhy M, Gualdron‐Lopez M, Lozano N, Cortes‐Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva A, Santarém N, Fernandez‐Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira‐Chioccola VL, Alves LR, Portillo HD, Regev‐Rudzki N, de Almeida IC, Schenkman S, Olivier M, Torrecilhas AC. Guidelines for the purification and characterization of extracellular vesicles of parasites. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e117. [PMID: 38939734 PMCID: PMC11080789 DOI: 10.1002/jex2.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 06/29/2024]
Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.
Collapse
Affiliation(s)
- Carmen Fernandez‐Becerra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- CIBERINFECISCIII‐CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Patrícia Xander
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Daniel Alfandari
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - George Dong
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Iris Aparici‐Herraiz
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | | | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Melisa Gualdron‐Lopez
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Nicholy Lozano
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Nuria Cortes‐Serra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Paula Meneghetti
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Rafael Pedro Madeira
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Ziv Porat
- Flow Cytometry UnitLife Sciences Core Facilities, WISRehovotIsrael
| | | | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrasil
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Anabela‐Cordeiro da Silva
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | - Nuno Santarém
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | | | - Marcel I. Ramirez
- EVAHPI ‐ Extracellular Vesicles and Host‐Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de TripanossomatideosInstituto Carlos Chagas‐FiocruzCuritibaParanáBrasil
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i ParasitologiaUniversitat de ValènciaBurjassotValenciaSpain
| | - Vera Lucia Pereira‐Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e MicologiaInstituto Adolfo Lutz (IAL)São PauloBrasil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão GênicaInstituto Carlos ChagasFiocruz ParanáCuritibaBrazil
- Research Center in Infectious DiseasesDivision of Infectious Disease and Immunity CHU de Quebec Research CenterDepartment of MicrobiologyInfectious Disease and ImmunologyFaculty of MedicineUniversity LavalQuebec CityQuebecCanada
| | - Hernando Del Portillo
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- ICREA Institució Catalana de Recerca i Estudis Avanc¸ats (ICREA)BarcelonaSpain
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Igor Correia de Almeida
- Department of Biological SciencesBorder Biomedical Research CenterThe University of Texas at El PasoEl PasoTexasUSA
| | - Sergio Schenkman
- Departamento de MicrobiologiaImunologia e Parasitologia, UNIFESPSão PauloBrazil
| | - Martin Olivier
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
11
|
Minet C, Chantal I, Berthier D. Recent advances in genome editing of bloodstream forms of Trypanosoma congolense using CRISPR-Cas9 ribonucleoproteins: Proof of concept. Exp Parasitol 2023; 252:108589. [PMID: 37516291 DOI: 10.1016/j.exppara.2023.108589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
African Animal Trypanosomosis (AAT or Nagana) is a vector-borne disease caused by Trypanosomatidae, genus Trypanosoma. The disease is transmitted by the bite of infected hematophagous insects, mainly tsetse flies but also other blood-sucking insects including stomoxes and tabanids. Although many trypanosome species infect animals, the main agents responsible for this disease with a strong socio-economic and veterinary health impact are Trypanosoma congolense (T. congolense or Tc), Trypanosoma vivax (T.vivax), and to a lesser extent, Trypanosoma brucei brucei (T.brucei brucei or Tbb). These parasites mainly infect livestock, including cattle, in sub-Saharan Africa, with major repercussions in terms of animal productivity and poverty for populations which are often already very poor. As there is currently no vaccine, the fight against the disease is primarily based on diagnosis, treatment and vector control. To develop new tools (particularly therapeutic tools) to fight against the disease, we need to know both the biology and the genes involved in the pathogenicity and virulence of the parasites. To date, unlike for Trypanosoma brucei (T.brucei) or Trypanosoma cruzi (T.cruzi), genome editing tools has been relatively little used to study T. congolense. We present an efficient, reproducible and stable CRISPR-Cas9 genome editing system for use in Tc bloodstream forms (Tc-BSF). This plasmid-free system is based on transient expression of Cas9 protein and the use of a ribonucleoprotein formed by the Cas9 and sgRNA complex. This is the first proof of concept of genome editing using CRISPR-Cas9 ribonucleoproteins on Tc-BSF. This adapted protocol enriches the "toolbox" for the functional study of genes of interest in blood forms of the Trypanosoma congolense. This proof of concept is an important step for the scientific community working on the study of trypanosomes and opens up new perspectives for the control of and fight against animal trypanosomosis.
Collapse
Affiliation(s)
- Cécile Minet
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Isabelle Chantal
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - David Berthier
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| |
Collapse
|
12
|
Ebrahimi S, Khosravi MA, Raz A, Karimipoor M, Parvizi P. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications. IRANIAN BIOMEDICAL JOURNAL 2023; 27:219-46. [PMID: 37873636 PMCID: PMC10707817 DOI: 10.61186/ibj.27.5.219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 12/17/2023]
Abstract
Programmable nucleases are powerful genomic tools for precise genome editing. These tools precisely recognize, remove, or change DNA at a defined site, thereby, stimulating cellular DNA repair pathways that can cause mutations or accurate replacement or deletion/insertion of a sequence. CRISPR-Cas9 system is the most potent and useful genome editing technique adapted from the defense immune system of certain bacteria and archaea against viruses and phages. In the past decade, this technology made notable progress, and at present, it has largely been used in genome manipulation to make precise gene editing in plants, animals, and human cells. In this review, we aim to explain the basic principle, mechanisms of action, and applications of this system in different areas of medicine, with emphasizing on the detection and treatment of parasitic diseases.
Collapse
Affiliation(s)
- Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Khosravi
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Moreira POL, Nogueira PM, Monte-Neto RL. Next-Generation Leishmanization: Revisiting Molecular Targets for Selecting Genetically Engineered Live-Attenuated Leishmania. Microorganisms 2023; 11:microorganisms11041043. [PMID: 37110466 PMCID: PMC10145799 DOI: 10.3390/microorganisms11041043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Despite decades of research devoted to finding a vaccine against leishmaniasis, we are still lacking a safe and effective vaccine for humans. Given this scenario, the search for a new prophylaxis alternative for controlling leishmaniasis should be a global priority. Inspired by leishmanization-a first generation vaccine strategy where live L. major parasites are inoculated in the skin to protect against reinfection-live-attenuated Leishmania vaccine candidates are promising alternatives due to their robust elicited protective immune response. In addition, they do not cause disease and could provide long-term protection upon challenge with a virulent strain. The discovery of a precise and easy way to perform CRISPR/Cas-based gene editing allowed the selection of safer null mutant live-attenuated Leishmania parasites obtained by gene disruption. Here, we revisited molecular targets associated with the selection of live-attenuated vaccinal strains, discussing their function, their limiting factors and the ideal candidate for the next generation of genetically engineered live-attenuated Leishmania vaccines to control leishmaniasis.
Collapse
Affiliation(s)
- Paulo O L Moreira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Paula M Nogueira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Rubens L Monte-Neto
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| |
Collapse
|
14
|
Kamran M, Bhattacharjee R, Das S, Mukherjee S, Ali N. The paradigm of intracellular parasite survival and drug resistance in leishmanial parasite through genome plasticity and epigenetics: Perception and future perspective. Front Cell Infect Microbiol 2023; 13:1001973. [PMID: 36814446 PMCID: PMC9939536 DOI: 10.3389/fcimb.2023.1001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Leishmania is an intracellular, zoonotic, kinetoplastid eukaryote with more than 1.2 million cases all over the world. The leishmanial chromosomes are divided into polymorphic chromosomal ends, conserved central domains, and antigen-encoding genes found in telomere-proximal regions. The genome flexibility of chromosomal ends of the leishmanial parasite is known to cause drug resistance and intracellular survival through the evasion of host defense mechanisms. Therefore, in this review, we discuss the plasticity of Leishmania genome organization which is the primary cause of drug resistance and parasite survival. Moreover, we have not only elucidated the causes of such genome plasticity which includes aneuploidy, epigenetic factors, copy number variation (CNV), and post-translation modification (PTM) but also highlighted their impact on drug resistance and parasite survival.
Collapse
Affiliation(s)
| | | | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sohitri Mukherjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | |
Collapse
|
15
|
Pal S, Dam S. CRISPR-Cas9: Taming protozoan parasites with bacterial scissor. J Parasit Dis 2022; 46:1204-1212. [PMID: 36457766 PMCID: PMC9606157 DOI: 10.1007/s12639-022-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022] Open
Abstract
The invention of CRISPR-Cas9 technology has opened a new era in which genome manipulation has become precise, faster, cheap and more accurate than previous genome editing strategies. Despite the intricacies of the genomes associated with several protozoan parasites, CRISPR-Cas9 has made a substantial contribution to parasitology. The study of functional genomics through CRISPR-Cas9 mediated gene knockout, insertion, deletion and mutation has helped in understanding intrinsic parasite biology. The invention of CRISPR-dCas9 has helped in the programmable control of protozoan gene expression and epigenetic engineering. CRISPR and CRISPR-based alternatives will continue to thrive and may aid in the development of novel anti-protozoan strategies to tame the protozoan parasites in the imminent future.
Collapse
Affiliation(s)
- Suchetana Pal
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
16
|
The ChaC family of γ-glutamyl cyclotransferases is required for Leishmania to switch to a slow growth state and for long-term survival of the parasite. J Biol Chem 2022; 298:102510. [PMID: 36126772 PMCID: PMC9586994 DOI: 10.1016/j.jbc.2022.102510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The ChaC family of γ-glutamyl cyclotransferases is conserved throughout all Kingdoms and catalyzes the degradation of GSH. So far, the ChaC family proteins in trypanosomal parasites are missing in the literature. Here, we report two members of the ChaC family of γ-glutamyl cyclotransferases (LmChaC2a and LmChaC2b) in the unicellular pathogen Leishmania. Activity measurements suggest that these proteins catalyze degradation of GSH but no other γ-glutamyl peptides. Recombinant LmChaC2a protein shows ∼17-fold lower catalytic efficiency (kcat ∼ 0.9 s−1) than LmChaC2b (kcat ∼ 15 s−1), although they showed comparable Km values (∼1.75 mM for LmChaC2a and ∼2.0 mM for LmChaC2b) toward GSH. qRT-PCR and Western blot analyses suggest that the LmChaC2a protein was found to be constitutively expressed, whereas LmChaC2b was regulated by sulfur stress. To investigate its precise physiological function in Leishmania, we generated overexpressed, knockout, and complement cell lines. Flow cytometric analyses show the presence of a higher intracellular GSH concentration and lower intracellular ROS level, indicative of a more reductive environment in null mutants. We found LmChaC2-expressing cells grow in GSH-containing sulfur-limited media, while the null mutants failed to grow, suggesting that LmChaC2 is crucial for cell growth with GSH as the only sulfur source. Null mutants, although reach the stationary phase rapidly, display impaired long-term survival, indicating that LmChaC2-mediated GSH degradation is necessary for prolonged survival. In vivo studies suggest that LmChaC2-dependent controlled GSH degradation promotes chronic infection by the parasite. Altogether, these data indicate that LmChaC2 plays an important role in GSH homeostasis in Leishmania.
Collapse
|
17
|
Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl Trop Dis 2022; 16:e0010510. [PMID: 35749562 PMCID: PMC9232130 DOI: 10.1371/journal.pntd.0010510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Diana Zagirova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Lˇubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Evgeny S. Gerasimov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
18
|
Teixeira TL, Chiurillo MA, Lander N, Rodrigues CC, Onofre TS, Ferreira ÉR, Yonamine CM, Santos JDG, Mortara RA, da Silva CV, da Silveira JF. Ablation of the P21 Gene of Trypanosoma cruzi Provides Evidence of P21 as a Mediator in the Control of Epimastigote and Intracellular Amastigote Replication. Front Cell Infect Microbiol 2022; 12:799668. [PMID: 35252026 PMCID: PMC8895596 DOI: 10.3389/fcimb.2022.799668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
P21 is an immunomodulatory protein expressed throughout the life cycle of Trypanosoma cruzi, the etiologic agent of Chagas disease. In vitro and in vivo studies have shown that P21 plays an important role in the invasion of mammalian host cells and establishment of infection in a murine model. P21 functions as a signal transducer, triggering intracellular cascades in host cells and resulting in the remodeling of the actin cytoskeleton and parasite internalization. Furthermore, in vivo studies have shown that P21 inhibits angiogenesis, induces inflammation and fibrosis, and regulates intracellular amastigote replication. In this study, we used the CRISPR/Cas9 system for P21 gene knockout and investigated whether the ablation of P21 results in changes in the phenotypes associated with this protein. Ablation of P21 gene resulted in a lower growth rate of epimastigotes and delayed cell cycle progression, accompanied by accumulation of parasites in G1 phase. However, P21 knockout epimastigotes were viable and able to differentiate into metacyclic trypomastigotes, which are infective to mammalian cells. In comparison with wild-type parasites, P21 knockout cells showed a reduced cell invasion rate, demonstrating the role of this protein in host cell invasion. However, there was a higher number of intracellular amastigotes per cell, suggesting that P21 is a negative regulator of amastigote proliferation in mammalian cells. Here, for the first time, we demonstrated the direct correlation between P21 and the replication of intracellular amastigotes, which underlies the chronicity of T. cruzi infection.
Collapse
Affiliation(s)
- Thaise Lara Teixeira
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Miguel Angel Chiurillo
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | | | - Thiago Souza Onofre
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Éden Ramalho Ferreira
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Camila Miyagui Yonamine
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Renato Arruda Mortara
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Universidade Federal de Uberlândia, Uberlândia, Brazil
- *Correspondence: Claudio Vieira da Silva, ; José Franco da Silveira,
| | - José Franco da Silveira
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Claudio Vieira da Silva, ; José Franco da Silveira,
| |
Collapse
|
19
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
20
|
Beilstein S, El Phil R, Sahraoui SS, Scapozza L, Kaiser M, Mäser P. Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15020135. [PMID: 35215248 PMCID: PMC8879015 DOI: 10.3390/ph15020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
The selection of parasites for drug resistance in the laboratory is an approach frequently used to investigate the mode of drug action, estimate the risk of emergence of drug resistance, or develop molecular markers for drug resistance. Here, we focused on the How rather than the Why of laboratory selection, discussing different experimental set-ups based on research examples with Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. The trypanosomatids are particularly well-suited to illustrate different strategies of selecting for drug resistance, since it was with African trypanosomes that Paul Ehrlich performed such an experiment for the first time, more than a century ago. While breakthroughs in reverse genetics and genome editing have greatly facilitated the identification and validation of candidate resistance mutations in the trypanosomatids, the forward selection of drug-resistant mutants still relies on standard in vivo models and in vitro culture systems. Critical questions are: is selection for drug resistance performed in vivo or in vitro? With the mammalian or with the insect stages of the parasites? Under steady pressure or by sudden shock? Is a mutagen used? While there is no bona fide best approach, we think that a methodical consideration of these questions provides a helpful framework for selection of parasites for drug resistance in the laboratory.
Collapse
Affiliation(s)
- Sabina Beilstein
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Radhia El Phil
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Suzanne Sherihan Sahraoui
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Marcel Kaiser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Pascal Mäser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-284-8338
| |
Collapse
|
21
|
Cohen A, Azas N. Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens 2021; 10:1608. [PMID: 34959563 PMCID: PMC8703296 DOI: 10.3390/pathogens10121608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniases are a group of vector-borne diseases caused by infection with the protozoan parasites Leishmania spp. Some of them, such as Mediterranean visceral leishmaniasis, are zoonotic diseases transmitted from vertebrate to vertebrate by a hematophagous insect, the sand fly. As there is an endemic in more than 90 countries worldwide, this complex and major health problem has different clinical forms depending on the parasite species involved, with the visceral form being the most worrying since it is fatal when left untreated. Nevertheless, currently available antileishmanial therapies are significantly limited (low efficacy, toxicity, adverse side effects, drug-resistance, length of treatment, and cost), so there is an urgent need to discover new compounds with antileishmanial activity, which are ideally inexpensive and orally administrable with few side effects and a novel mechanism of action. Therefore, various powerful approaches were recently applied in many interesting antileishmanial drug development programs. The objective of this review is to focus on the very first step in developing a potential drug and to identify the exploratory methods currently used to screen in vitro hit compounds and the challenges involved, particularly in terms of harmonizing the results of work carried out by different research teams. This review also aims to identify innovative screening tools and methods for more extensive use in the drug development process.
Collapse
Affiliation(s)
- Anita Cohen
- IHU Méditerranée Infection, Aix Marseille University, IRD (Institut de Recherche pour le Développement), AP-HM (Assistance Publique—Hôpitaux de Marseille), SSA (Service de Santé des Armées), VITROME (Vecteurs—Infections Tropicales et Méditerranéennes), 13005 Marseille, France;
| | | |
Collapse
|
22
|
Espada CR, Quilles JC, Albuquerque-Wendt A, Cruz MC, Beneke T, Lorenzon LB, Gluenz E, Cruz AK, Uliana SRB. Effective Genome Editing in Leishmania ( Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Front Cell Infect Microbiol 2021; 11:772311. [PMID: 34858879 PMCID: PMC8631273 DOI: 10.3389/fcimb.2021.772311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Until 2015, loss-of-function studies to elucidate protein function in Leishmania relied on gene disruption through homologous recombination. Then, the CRISPR/Cas9 revolution reached these protozoan parasites allowing efficient genome editing with one round of transfection. In addition, the development of LeishGEdit, a PCR-based toolkit for generating knockouts and tagged lines using CRISPR/Cas9, allowed a more straightforward and effective genome editing. In this system, the plasmid pTB007 is delivered to Leishmania for episomal expression or integration in the β-tubulin locus and for the stable expression of T7 RNA polymerase and Cas9. In South America, and especially in Brazil, Leishmania (Viannia) braziliensis is the most frequent etiological agent of tegumentary leishmaniasis. The L. braziliensis β-tubulin locus presents significant sequence divergence in comparison with Leishmania major, which precludes the efficient integration of pTB007 and the stable expression of Cas9. To overcome this limitation, the L. major β-tubulin sequences, present in the pTB007, were replaced by a Leishmania (Viannia) β-tubulin conserved sequence generating the pTB007_Viannia plasmid. This modification allowed the successful integration of the pTB007_Viannia cassette in the L. braziliensis M2903 genome, and in silico predictions suggest that this can also be achieved in other Viannia species. The activity of Cas9 was evaluated by knocking out the flagellar protein PF16, which caused a phenotype of immobility in these transfectants. Endogenous PF16 was also successfully tagged with mNeonGreen, and an in-locus complementation strategy was employed to return a C-terminally tagged copy of the PF16 gene to the original locus, which resulted in the recovery of swimming capacity. The modified plasmid pTB007_Viannia allowed the integration and stable expression of both T7 RNA polymerase and Cas9 in L. braziliensis and provided an important tool for the study of the biology of this parasite.
Collapse
Affiliation(s)
- Caroline R. Espada
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - José Carlos Quilles
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Andreia Albuquerque-Wendt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHTM), Universidade de Lisboa (UNL), Lisbon, Portugal
| | - Mario C. Cruz
- Centro de Facilidades para Apoio à Pesquisa, Universidade de São Paulo (CEFAP-USP), São Paulo, Brazil
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Lucas B. Lorenzon
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Angela K. Cruz
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Silvia R. B. Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its " Candidatus Pandoraea novymonadis" Endosymbiont. mBio 2021; 12:e0160621. [PMID: 34399629 PMCID: PMC8406214 DOI: 10.1128/mbio.01606-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont “Candidatus Pandoraea novymonadis.” Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the “Ca. Pandoraea novymonadis” genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches.
Collapse
|
24
|
Yadavalli R, Umeda K, Waugh HA, Tracy AN, Sidhu AV, Hernández DE, Fernández Robledo JA. CRISPR/Cas9 Ribonucleoprotein-Based Genome Editing Methodology in the Marine Protozoan Parasite Perkinsus marinus. Front Bioeng Biotechnol 2021; 9:623278. [PMID: 33898400 PMCID: PMC8062965 DOI: 10.3389/fbioe.2021.623278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/09/2021] [Indexed: 11/15/2022] Open
Abstract
Perkinsus marinus (Perkinsozoa), a close relative of apicomplexans, is an osmotrophic facultative intracellular marine protozoan parasite responsible for "Dermo" disease in oysters and clams. Although there is no clinical evidence of this parasite infecting humans, HLA-DR40 transgenic mice studies strongly suggest the parasite as a natural adjuvant in oral vaccines. P. marinus is being developed as a heterologous gene expression platform for pathogens of medical and veterinary relevance and a novel platform for delivering vaccines. We previously reported the transient expression of two rodent malaria genes Plasmodium berghei HAP2 and MSP8. In this study, we optimized the original electroporation-based protocol to establish a stable heterologous expression method. Using 20 μg of pPmMOE[MOE1]:GFP and 25.0 × 106 P. marinus cells resulted in 98% GFP-positive cells. Furthermore, using the optimized protocol, we report for the first time the successful knock-in of GFP at the C-terminus of the PmMOE1 using ribonucleoprotein (RNP)-based CRISPR/Cas9 gene editing methodology. The GFP was expressed 18 h post-transfection, and expression was observed for 8 months post-transfection, making it a robust and stable knock-in system.
Collapse
Affiliation(s)
| | - Kousuke Umeda
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hannah A. Waugh
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Southern Maine Community College, South Portland, ME, United States
| | - Adrienne N. Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Colby College, Waterville, ME, United States
| | - Asha V. Sidhu
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Colby College, Waterville, ME, United States
| | - Derek E. Hernández
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Colby College, Waterville, ME, United States
| | | |
Collapse
|
25
|
Yadav N, Narang J, Chhillar AK, Rana JS. CRISPR: A new paradigm of theranostics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 33:102350. [PMID: 33359413 PMCID: PMC7831819 DOI: 10.1016/j.nano.2020.102350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Infectious and hereditary diseases are the primary cause of human mortality globally. Applications of conventional techniques require significant improvement in sensitivity and specificity in therapeutics. However, clustered regularly interspaced short palindromic repeats (CRISPRs) is an innovative genome editing technology which has provided a significant therapeutic tool exhibiting high sensitivity, fast and precise investigation of distinct pathogens in an epidemic. CRISPR technology has also facilitated the understanding of the biology and therapeutic mechanism of cancer and several other hereditary diseases. Researchers have used the CRISPR technology as a theranostic approach for a wide range of diseases causing pathogens including distinct bacteria, viruses, fungi and parasites and genetic mutations as well. In this review article, besides various therapeutic applications of infectious and hereditary diseases we have also explained the structure and mechanism of CRISPR tools and role of CRISPR integrated biosensing technology in provoking diagnostic applications.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana.
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India.
| | | | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat.
| |
Collapse
|
26
|
Bartholomeu DC, Teixeira SMR, Cruz AK. Genomics and functional genomics in Leishmania and Trypanosoma cruzi: statuses, challenges and perspectives. Mem Inst Oswaldo Cruz 2021; 116:e200634. [PMID: 33787768 PMCID: PMC8011669 DOI: 10.1590/0074-02760200634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
The availability of Trypanosomatid genomic data in public databases has opened myriad experimental possibilities that have contributed to a more comprehensive understanding of the biology of these parasites and their interactions with hosts. In this review, after brief remarks on the history of the Trypanosoma cruzi and Leishmania genome initiatives, we present an overview of the relevant contributions of genomics, transcriptomics and functional genomics, discussing the primary obstacles, challenges, relevant achievements and future perspectives of these technologies.
Collapse
Affiliation(s)
- Daniella C Bartholomeu
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | | | - Angela Kaysel Cruz
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| |
Collapse
|
27
|
Kirti A, Sharma M, Rani K, Bansal A. CRISPRing protozoan parasites to better understand the biology of diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:21-68. [PMID: 33934837 DOI: 10.1016/bs.pmbts.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Precise gene editing techniques are paramount to gain deeper insights into the biological processes such as host-parasite interactions, drug resistance mechanisms, and gene-function relationships. Discovery of CRISPR-Cas9 system has spearheaded mechanistic understanding of protozoan parasite biology as evident from the number of reports in the last decade. Here, we have described the use of CRISPR-Cas9 in understanding the biology of medically important protozoan parasites such as Plasmodium, Leishmania, Trypanosoma, Babesia and Trichomonas. In spite of intrinsic difficulties in genome editing in these protozoan parasites, CRISPR-Cas9 has acted as a catalyst for faster generation of desired transgenic parasites. Modifications in the CRISPR-Cas9 system for improving the efficiency have been useful in better understanding the molecular mechanisms associated with repair of double strand breaks in the parasites. Moreover, improvement in reagents used for CRISPR mediated gene editing have been instrumental in addressing the issue of non-specificity and toxicity for therapeutic use. These application-based modifications may help in further increasing the efficiency of gene editing in protozoan parasites.
Collapse
Affiliation(s)
- Apurva Kirti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Komal Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
28
|
Sar P, Dalai S. CRISPR/Cas9 in epigenetics studies of health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:309-343. [PMID: 34127198 DOI: 10.1016/bs.pmbts.2021.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetics is the heritable phenotypic changes without altering the genotype. Epigenetic processes are such as histone methylation, acetylation, ubiquitination, sumoylation, phosphorylation, ADP ribosylation, DNA methylation and non-coding RNAs interactions associated with structural changes in chromatin. The change of structure is either open chromatin for "active" state or closed chromatin for "inactive" state, that regulates important biological phenomenon like chromatin condensation, gene expression, DNA repair, cellular development, differentiation and homeostasis, etc. However, dysregulation of epigenetic patterns causes diseases like cancer, diabetes, neurological disorder, infectious diseases, autoimmunity etc. Besides, the most important clinical uses of Epigenetics studies are i. identification of disease biomarkers and ii. development of their therapeutics. Epigenetic therapies include epi-drugs, combinatorial therapy, nanocarriers, plant-derived products that are being used for changing the epigenetic pattern to reverse gene expression. However, the developed epi- drugs cause off-target gene and transposable elements activation; promote mutagenesis and carcinogenesis in normal cells, are the major hurdles regarding their clinical use. Therefore, advanced epigenetic therapeutics are required to develop target-specific epigenetic modifications to reverse gene expression pattern. CRISPR-Cas9 (Clustered Regularly Interspaced Palindrome Repeats-associated protein 9) system-mediated gene activation mechanism paves new methods of target-specific epigenetic therapeutics to cure diseases. In this chapter, we discuss how CRISPR/Cas9 and dCas9 have recently been engineered for epigenome editing. Different strategies have been discussed used for epigenome editing based on their efficacy and complexity. Last but not least we have discussed the limitations, different uses of CRISPR/Cas9 and dCas9 in the area of genetic engineering.
Collapse
Affiliation(s)
- Pranati Sar
- Institute of Science, NIRMA University, Ahmedabad, India.
| | - Sarat Dalai
- Institute of Science, NIRMA University, Ahmedabad, India.
| |
Collapse
|
29
|
Dong J, Zhang N, Zhao P, Li J, Cao L, Wang X, Li X, Yang J, Zhang X, Gong P. Disruption of Dense Granular Protein 2 (GRA2) Decreases the Virulence of Neospora caninum. Front Vet Sci 2021; 8:634612. [PMID: 33681332 PMCID: PMC7933011 DOI: 10.3389/fvets.2021.634612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 01/18/2023] Open
Abstract
Neospora caninum causes abortions in cattle and nervous system dysfunction in dogs. Dense granular proteins (GRAs) play important roles in virulence; however, studies on NcGRA functions are limited. In the present study, multiple methods, including site-directed mutagenesis; CRISPR/Cas9 gene editing; Western blotting; quantitative polymerase chain reaction; confocal microscopy; plaque, invasion, egress, and replication assays; animal assays of survival rate and parasite burden; and hematoxylin-eosin staining, were used to characterize the NcGRA2 protein, construct an NcGRA2 gene disruption (ΔNcGRA2) strain, and explore its virulence in vivo and vitro. The results showed that NcGRA2 shared 31.31% homology with TgGRA2 and was colocalized with NcGRA6 at the posterior end of tachyzoites and the intravacuolar network of parasitophorous vacuoles (PVs). Cell fractionation analysis showed that NcGRA2 behaved as a transmembrane and membrane-coupled protein. The ΔNcGRA2 strain was constructed by coelectroporation of the NcGRA2-targeting CRISPR plasmid (pNc-SAG1-Cas9:U6-SgGRA2) and DHFR-TS DNA donor and verified at the protein, genome, and transcriptional levels and by immunofluorescence localization analysis. The in vitro virulence results showed that the ΔNcGRA2 strain displayed smaller plaques, similar invasion and egress abilities, and slower intracellular growth. The in vivo virulence results showed a prolonged survival time, lower parasite burden, and mild histopathological changes. Overall, the present study indicates that NcGRA2, as a dense granular protein, forms the intravacuolar network structure of PVs and weakens N. caninum virulence by slowing proliferation. These data highlight the roles of NcGRA2 and provide a foundation for research on other protein functions in N. caninum.
Collapse
Affiliation(s)
- Jingquan Dong
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Nan Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lili Cao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ju Yang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
Testing the CRISPR-Cas9 and glmS ribozyme systems in Leishmania tarentolae. Mol Biochem Parasitol 2020; 241:111336. [PMID: 33166572 DOI: 10.1016/j.molbiopara.2020.111336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 02/03/2023]
Abstract
Leishmania parasites include important pathogens and model organisms and are even used for the production of recombinant proteins. However, functional genomics and the characterization of essential genes are often limited in Leishmania because of low-throughput technologies for gene disruption or tagging and the absence of components for RNA interference. Here, we tested the T7 RNA polymerase-dependent CRISPR-Cas9 system by Beneke et al. and the glmS ribozyme-based knock-down system in the model parasite Leishmania tarentolae. We successfully deleted two reference genes encoding the flagellar motility factor Pf16 and the salvage-pathway enzyme adenine phosphoribosyltransferase, resulting in immotile and drug-resistant parasites, respectively. In contrast, we were unable to disrupt the gene encoding the mitochondrial flavoprotein Erv. Cultivation of L. tarentolae in standard BHI medium resulted in a constitutive down-regulation of an episomal mCherry-glmS reporter by 40 to 60%. For inducible knock-downs, we evaluated the growth of L. tarentolae in alternative media and identified supplemented MEM, IMDM and McCoy's 5A medium as candidates. Cultivation in supplemented MEM allowed an inducible, glucosamine concentration-dependent down-regulation of the episomal mCherry-glmS reporter by more than 70%. However, chromosomal glmS-tagging of the genes encoding Pf16, adenine phosphoribosyltransferase or Erv did not reveal a knock-down phenotype. Our data demonstrate the suitability of the CRISPR-Cas9 system for the disruption and tagging of genes in L. tarentolae as well as the limitations of the glmS system, which was restricted to moderate efficiencies for episomal knock-downs and caused no detectable phenotype for chromosomal knock-downs.
Collapse
|
31
|
Zheng Z, Chen J, Ma G, Satoskar AR, Li J. Integrative genomic, proteomic and phenotypic studies of Leishmania donovani strains revealed genetic features associated with virulence and antimony-resistance. Parasit Vectors 2020; 13:510. [PMID: 33046138 PMCID: PMC7552375 DOI: 10.1186/s13071-020-04397-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
Background Leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Emerging drug resistance of Leishmania species poses threaten to the effective control and elimination programme of this neglected tropical disease. Methods In this work, we conducted drug-resistance testing, whole genome resequencing and proteome profiling for a recently reported clinical isolate with supposed drug resistance (HCZ), and two reference sensitive strains (DD8 and 9044) of Leishmania donovani, to explore molecular mechanisms underlying drug resistance in this parasite. Results With reference to DD8 and 9044 strains, HCZ isolate showed higher-level virulence and clear resistance to antimonials in promastigote culture, infected macrophages and animal experiment. Pairwise genomic comparisons revealed genetic variations (86 copy number variations, 271 frameshift mutations in protein-coding genes and two site mutations in non-coding genes) in HCZ isolate that were absent from the reference sensitive strains. Proteomic analysis indicated different protein expression between HCZ isolate and reference strains, including 69 exclusively detected proteins and 82 consistently down-/upregulated molecules in the HCZ isolate. Integrative analysis showed linkage of 12 genomic variations (gene duplication, insertion and deletion) and their protein expression changes in HCZ isolate, which might be associated with pathogenic and antimony-resistant phenotype. Functional annotation analyses further indicated that molecules involved in nucleotide-binding, fatty acid metabolism, oxidation-reduction and transport might play a role in host-parasite interaction and drug-resistance. Conclusions This comprehensive integrative work provided novel insights into the genetic basis underlying virulence and resistance, suggesting new aspects to be investigated for a better intervention against L. donovani and associated diseases.![]()
Collapse
Affiliation(s)
- Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.,Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus, USA.,Department of Microbiology, Ohio State University, Columbus, USA
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes (Basel) 2020; 11:genes11101159. [PMID: 33007987 PMCID: PMC7601497 DOI: 10.3390/genes11101159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/18/2023] Open
Abstract
The protozoan parasite Leishmania (Viannia) braziliensis (L. braziliensis) is the main cause of human tegumentary leishmaniasis in the New World, a disease affecting the skin and/or mucosal tissues. Despite its importance, the study of the unique biology of L. braziliensis through reverse genetics analyses has so far lagged behind in comparison with Old World Leishmania spp. In this study, we successfully applied a cloning-free, PCR-based CRISPR–Cas9 technology in L. braziliensis that was previously developed for Old World Leishmania major and New World L. mexicana species. As proof of principle, we demonstrate the targeted replacement of a transgene (eGFP) and two L. braziliensis single-copy genes (HSP23 and HSP100). We obtained homozygous Cas9-free HSP23- and HSP100-null mutants in L. braziliensis that matched the phenotypes reported previously for the respective L. donovani null mutants. The function of HSP23 is indeed conserved throughout the Trypanosomatida as L. majorHSP23 null mutants could be complemented phenotypically with transgenes from a range of trypanosomatids. In summary, the feasibility of genetic manipulation of L. braziliensis by CRISPR–Cas9-mediated gene editing sets the stage for testing the role of specific genes in that parasite’s biology, including functional studies of virulence factors in relevant animal models to reveal novel therapeutic targets to combat American tegumentary leishmaniasis.
Collapse
|
33
|
Yagoubat A, Corrales RM, Bastien P, Lévêque MF, Sterkers Y. Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends Parasitol 2020; 36:745-760. [DOI: 10.1016/j.pt.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
|
34
|
Beneke T, Gluenz E. Bar-seq strategies for the LeishGEdit toolbox. Mol Biochem Parasitol 2020; 239:111295. [PMID: 32659298 DOI: 10.1016/j.molbiopara.2020.111295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022]
Abstract
The number of fully sequenced genomes increases steadily but the function of many genes remains unstudied. To accelerate dissection of gene function in Leishmania spp. and other kinetoplastids we previously developed a streamlined pipeline for CRISPR-Cas9 gene editing, which we termed LeishGEdit. To facilitate high-throughput mutant screens we have adapted this pipeline by barcoding mutants with unique 17-nucleotide barcodes, allowing loss-of-function screens in mixed populations. Here we present primer design and analysis tools that facilitate these bar-seq strategies. We have developed a standalone easy-to-use pipeline to design CRISPR primers suitable for the LeishGEdit toolbox for any given genome and have generated a list of 14,995 barcodes. Barcodes and oligo sequences are now accessible through our website www.leishgedit.net allowing researchers to pursue bar-seq experiments in all currently available TriTrypDB genomes (release 41). This will streamline CRISPR bar-seq assays in kinetoplastids, enabling pooled mutant screens across the community.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK; The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
35
|
Damasceno JD, Reis-Cunha J, Crouch K, Beraldi D, Lapsley C, Tosi LRO, Bartholomeu D, McCulloch R. Conditional knockout of RAD51-related genes in Leishmania major reveals a critical role for homologous recombination during genome replication. PLoS Genet 2020; 16:e1008828. [PMID: 32609721 PMCID: PMC7360064 DOI: 10.1371/journal.pgen.1008828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/14/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Homologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins. To answer this question, we have employed a combined CRISPR/Cas9 and DiCre approach to rapidly generate and assess the effect of conditional ablation of RAD51 and three RAD51-related proteins in Leishmania major. Using this approach, we demonstrate that loss of any of these HR factors is not immediately lethal but in each case growth slows with time and leads to DNA damage and accumulation of cells with aberrant DNA content. Despite these similarities, we show that only loss of RAD51 or RAD51-3 impairs DNA synthesis and causes elevated levels of genome-wide mutation. Furthermore, we show that these two HR factors act in distinct ways, since ablation of RAD51, but not RAD51-3, has a profound effect on DNA replication, causing loss of initiation at the major origins and increased DNA synthesis at subtelomeres. Our work clarifies questions regarding the importance of HR to survival of Leishmania and reveals an unanticipated, central role for RAD51 in the programme of genome replication in a microbial eukaryote.
Collapse
Affiliation(s)
- Jeziel D. Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| | - João Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Dario Beraldi
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Luiz R. O. Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil
| | - Daniella Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| |
Collapse
|
36
|
Altamura F, Rajesh R, Catta-Preta CMC, Moretti NS, Cestari I. The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Dev Res 2020; 83:225-252. [PMID: 32249457 DOI: 10.1002/ddr.21664] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Human trypanosomiasis and leishmaniasis are vector-borne neglected tropical diseases caused by infection with the protozoan parasites Trypanosoma spp. and Leishmania spp., respectively. Once restricted to endemic areas, these diseases are now distributed worldwide due to human migration, climate change, and anthropogenic disturbance, causing significant health and economic burden globally. The current chemotherapy used to treat these diseases has limited efficacy, and drug resistance is spreading. Hence, new drugs are urgently needed. Phenotypic compound screenings have prevailed as the leading method to discover new drug candidates against these diseases. However, the publication of the complete genome sequences of multiple strains, advances in the application of CRISPR/Cas9 technology, and in vivo bioluminescence-based imaging have set the stage for advancing target-based drug discovery. This review analyses the limitations of the narrow pool of available drugs presently used for treating these diseases. It describes the current drug-based clinical trials highlighting the most promising leads. Furthermore, the review presents a focused discussion on the most important biological and pharmacological challenges that target-based drug discovery programs must overcome to advance drug candidates. Finally, it examines the advantages and limitations of modern research tools designed to identify and validate essential genes as drug targets, including genomic editing applications and in vivo imaging.
Collapse
Affiliation(s)
- Fernando Altamura
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Rishi Rajesh
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | | | - Nilmar S Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Igor Cestari
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
37
|
Pountain AW, Barrett MP. Untargeted metabolomics to understand the basis of phenotypic differences in amphotericin B-resistant Leishmania parasites. Wellcome Open Res 2020; 4:176. [PMID: 32133420 PMCID: PMC7041363 DOI: 10.12688/wellcomeopenres.15452.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Protozoan
Leishmania parasites are responsible for a range of clinical infections that represent a substantial challenge for global health. Amphotericin B (AmB) is increasingly used to treat
Leishmania infection, so understanding the potential for resistance to this drug is an important priority. Previously we described four independently-derived AmB-resistant
L. mexicana lines that exhibited resistance-associated genetic lesions resulting in altered sterol content. However, substantial phenotypic variation between these lines, including differences in virulence attributes, were not fully explained by these changes. Methods: To identify alterations in cellular metabolism potentially related to phenotypic differences between wild-type and AmB-resistant lines, we extracted metabolites and performed untargeted metabolomics by liquid chromatography-mass spectrometry. Results: We observed substantial differences in metabolite abundance between lines, arising in an apparently stochastic manner. Concerted remodeling of central carbon metabolism was not observed; however, in three lines, decreased abundance of several oligohexoses was observed. Given that the oligomannose mannogen is an important virulence factor in
Leishmania, this could relate to loss of virulence in these lines. Increased abundance of the reduced forms of the oxidative stress-protective thiols trypanothione and glutathione was also observed in multiple lines. Conclusions: This dataset will provide a useful resource for understanding the molecular basis of drug resistance in
Leishmania, and suggests a role for metabolic changes separate from the primary mechanism of drug resistance in determining the phenotypic profile of parasite lines subjected to experimental selection of resistance.
Collapse
Affiliation(s)
- Andrew W Pountain
- Wellcome Center for Integrative Parasitology, University of Glasgow, Glasgow, G12 8TA, UK.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Michael P Barrett
- Wellcome Center for Integrative Parasitology, University of Glasgow, Glasgow, G12 8TA, UK.,Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| |
Collapse
|
38
|
Hu D, Tang X, Ben Mamoun C, Wang C, Wang S, Gu X, Duan C, Zhang S, Suo J, Deng M, Yu Y, Suo X, Liu X. Efficient Single-Gene and Gene Family Editing in the Apicomplexan Parasite Eimeria tenella Using CRISPR-Cas9. Front Bioeng Biotechnol 2020; 8:128. [PMID: 32158750 PMCID: PMC7052334 DOI: 10.3389/fbioe.2020.00128] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/10/2020] [Indexed: 12/26/2022] Open
Abstract
Eimeria species are pathogenic protozoa with a wide range of hosts and the cause of poultry coccidiosis, which results in huge economic losses to the poultry industry. These parasites encode a genome of ∼8000 genes that control a highly coordinated life cycle of asexual replication and sexual differentiation, transmission, and virulence. However, the function and physiological importance of the large majority of these genes remain unknown mostly due to the lack of tools for systematic analysis of gene functions. Here, we report the first application of CRISPR-Cas9 gene editing technology in Eimeria tenella for analysis of gene function at a single gene level as well as for systematic functional analysis of an entire gene family. Using a transgenic line constitutively expressing Cas9, we demonstrated successful and efficient loss of function through non-homologous end joining as well as guided homologous recombination. Application of this approach to the study of the localization of EtGRA9 revealed that the gene encodes a secreted protein whose cellular distribution varied during the life cycle. Systematic disruption of the ApiAp2 transcription factor gene family using this approach revealed that 23 of the 33 factors expressed by this parasite are essential for development and survival in the host. Our data thus establish CRISPR-Cas9 as a powerful technology for gene editing in Eimeria and will set the stage for systematic functional analysis of its genome to understand its biology and pathogenesis, and will make it possible to identify and validate new targets for coccidiosis therapy.
Collapse
Affiliation(s)
- Dandan Hu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Choukri Ben Mamoun
- Department of Internal Medicine and Microbial Pathogenesis, School of Medicine, Yale University, New Haven, CT, United States
| | - Chaoyue Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Si Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaolong Gu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunhui Duan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sixin Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinxia Suo
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Miner Deng
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yonglan Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Zabala-Peñafiel A, Todd D, Daneshvar H, Burchmore R. The potential of live attenuated vaccines against Cutaneous Leishmaniasis. Exp Parasitol 2020; 210:107849. [PMID: 32027892 DOI: 10.1016/j.exppara.2020.107849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous Leishmaniasis is a serious public health problem, typically affecting poor populations with limited access to health care. Control is largely dependent on chemotherapies that are inefficient, costly and challenging to deliver. Vaccination is an attractive and feasible alternative because long-term protection is typical in patients who recover from the disease. No human vaccine is yet approved for use, but several candidates are at various stages of testing. Live attenuated parasites, which stimulate long-term immune protection, have potential as effective vaccines, and their challenges relating to safety, formulation and delivery can be overcome. Here we review current data on the potential of live attenuated Leishmania vaccines and discuss possible routes to regulatory approval.
Collapse
Affiliation(s)
- A Zabala-Peñafiel
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - D Todd
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - H Daneshvar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - R Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
40
|
Yagoubat A, Crobu L, Berry L, Kuk N, Lefebvre M, Sarrazin A, Bastien P, Sterkers Y. Universal highly efficient conditional knockout system in
Leishmania
, with a focus on untranscribed region preservation. Cell Microbiol 2020; 22:e13159. [DOI: 10.1111/cmi.13159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Akila Yagoubat
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Lucien Crobu
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions, Microscopie Electronique et Analytique, CNRSUniversity of Montpellier Montpellier France
| | - Nada Kuk
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Michèle Lefebvre
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Amélie Sarrazin
- Montpellier RIO Imaging Facility, Montpellier BIOCAMPUSUniversity of Montpellier, Arnaud de Villeneuve Campus Imaging Facility‐Institut de Génétique Humaine‐CNRS Montpellier France
| | - Patrick Bastien
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Yvon Sterkers
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| |
Collapse
|
41
|
Lander N, Chiurillo MA, Docampo R. CRISPR/Cas9 Technology Applied to the Study of Proteins Involved in Calcium Signaling in Trypanosoma cruzi. Methods Mol Biol 2020; 2116:177-197. [PMID: 32221922 PMCID: PMC10411612 DOI: 10.1007/978-1-0716-0294-2_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chagas disease is a vector-borne tropical disease affecting millions of people worldwide, for which there is no vaccine or satisfactory treatment available. It is caused by the protozoan parasite Trypanosoma cruzi and considered endemic from North to South America. This parasite has unique metabolic and structural characteristics that make it an attractive organism for basic research. The genetic manipulation of T. cruzi has been historically challenging, as compared to other pathogenic protozoans. However, the use of the prokaryotic CRISPR/Cas9 system for genome editing has significantly improved the ability to generate genetically modified T. cruzi cell lines, becoming a powerful tool for the functional study of proteins in different stages of this parasite's life cycle, including infective trypomastigotes and intracellular amastigotes. Using the CRISPR/Cas9 method that we adapted to T. cruzi, it has been possible to perform knockout, complementation and in situ tagging of T. cruzi genes. In our system we cotransfect T. cruzi epimastigotes with an expression vector containing the Cas9 sequence and a single guide RNA, together with a donor DNA template to promote DNA break repair by homologous recombination. As a result, we have obtained homogeneous populations of mutant epimastigotes using a single resistance marker to modify both alleles of the gene. Mitochondrial Ca2+ transport in trypanosomes is critical for shaping the dynamics of cytosolic Ca2+ increases, for the bioenergetics of the cells, and for viability and infectivity. In this chapter we describe the most effective methods to achieve genome editing in T. cruzi using as example the generation of mutant cell lines to study proteins involved in calcium homeostasis. Specifically, we describe the methods we have used for the study of three proteins involved in the calcium signaling cascade of T. cruzi: the inositol 1,4,5-trisphosphate receptor (TcIP3R), the mitochondrial calcium uniporter (TcMCU) and the calcium-sensitive pyruvate dehydrogenase phosphatase (TcPDP), using CRISPR/Cas9 technology as an approach to establish their role in the regulation of energy metabolism.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
42
|
Zhang WW, Lypaczewski P, Matlashewski G. Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania. Methods Mol Biol 2020; 2116:199-224. [PMID: 32221923 DOI: 10.1007/978-1-0716-0294-2_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas9 is an RNA guided endonuclease derived from the bacterium Streptococcus pyogenes. Due to its simplicity, versatility, and high efficiency, it has been widely used for genome editing in a variety of organisms including the protozoan parasite Leishmania, the causative agent of human leishmaniasis. Compared to the traditional homologous recombination gene targeting method, CRISPR-Cas9 has been shown to be a more efficient method to delete or disrupt Leishmania genes, generate point mutations, and add tags to endogenous genes. Notably, the stable CRISPR expression systems were shown to delete multicopy family Leishmania genes and genes present in multiploid chromosomes, identify essential Leishmania genes, and create specific chromosome translocations. In this chapter, we describe detailed procedures on using the stable CRISPR expression system for genome editing in Leishmania. These procedures include CRISPR targeting site selection, gRNA design, cloning single and double gRNA coding sequences into the Leishmania CRISPR vector pLdCN, oligonucleotide donor and drug resistance selection donor design, Leishmania cell transfection, screening, and isolation of CRISPR-edited mutants. As the principles of gene editing are generally similar, many of these procedures could also apply to the transient Leishmania CRISPR systems described by other labs.
Collapse
Affiliation(s)
- Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
43
|
Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nat Commun 2019; 10:5627. [PMID: 31819054 PMCID: PMC6901541 DOI: 10.1038/s41467-019-13344-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Current genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs. We associate genes linked to lipid metabolism or to ribosome/translation functions with miltefosine or paromomycin resistance, respectively. We prove by allelic replacement and CRISPR-Cas9 gene-editing that the essential protein kinase CDPK1 is crucial for paromomycin resistance. We have linked CDPK1 in translation by functional interactome analysis, and provide evidence that CDPK1 contributes to antimonial resistance in the parasite. This screen is powerful in exploring networks of drug resistance in an organism with diploid to mosaic aneuploid genome, hence widening the scope of its applicability. Here, Bhattacharya et al. chemically mutagenize Leishmania and identify genes associated with resistance to miltefosine and paromomycin by next generation sequencing. The study shows that a protein kinase (CDPK1) can mediate resistance to paromomycin by affecting translation.
Collapse
|
44
|
LmxM.22.0250-Encoded Dual Specificity Protein/Lipid Phosphatase Impairs Leishmania mexicana Virulence In Vitro. Pathogens 2019; 8:pathogens8040241. [PMID: 31744234 PMCID: PMC6969907 DOI: 10.3390/pathogens8040241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation/dephosphorylation is an important regulatory mechanism that controls many key physiological processes. Numerous pathogens successfully use kinases and phosphatases to internalize, replicate, and survive, modifying the host′s phosphorylation profile or signal transduction pathways. Multiple phosphatases and kinases from diverse bacterial pathogens have been implicated in human infections before. In this work, we have identified and characterized the dual specificity protein/lipid phosphatase LmDUSP1 as a novel virulence factor governing Leishmania mexicana infection. The LmDUSP1-encoding gene (LmxM.22.0250 in L. mexicana) has been acquired from bacteria via horizontal gene transfer. Importantly, its orthologues have been associated with virulence in several bacterial species, such as Mycobacterium tuberculosis and Listeria monocytogenes. Leishmania mexicana with ablated LmxM.22.0250 demonstrated severely attenuated virulence in the experimental infection of primary mouse macrophages, suggesting that this gene facilitates Leishmania pathogenicity in vertebrates. Despite significant upregulation of LmxM.22.0250 expression in metacyclic promastigotes, its ablation did not affect the ability of mutant cells to differentiate into virulent stages in insects. It remains to be further investigated which specific biochemical pathways involve LmDUSP1 and how this facilitates the parasite′s survival in the host. One of the interesting possibilities is that LmDUSP1 may target host′s substrate(s), thereby affecting its signal transduction pathways.
Collapse
|
45
|
Grewal JS, Catta-Preta CM, Brown E, Anand J, Mottram JC. Evaluation of clan CD C11 peptidase PNT1 and other Leishmania mexicana cysteine peptidases as potential drug targets. Biochimie 2019; 166:150-160. [DOI: 10.1016/j.biochi.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
46
|
Orrego LM, Cabello-Donayre M, Vargas P, Martínez-García M, Sánchez C, Pineda-Molina E, Jiménez M, Molina R, Pérez-Victoria JM. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major. FASEB J 2019; 33:13367-13385. [PMID: 31553893 DOI: 10.1096/fj.201901274rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme is an essential molecule synthetized through a broadly conserved 8-step route that has been lost in trypanosomatid parasites. Interestingly, Leishmania reacquired by horizontal gene transfer from γ-proteobacteria the genes coding for the last 3 enzymes of the pathway. Here we show that intracellular amastigotes of Leishmania major can scavenge heme precursors from the host cell to fulfill their heme requirements, demonstrating the functionality of this partial pathway. To dissect its role throughout the L. major life cycle, the significance of L. major ferrochelatase (LmFeCH), the terminal enzyme of the route, was evaluated. LmFeCH expression in a heterologous system demonstrated its activity. Knockout promastigotes lacking lmfech were not able to use the ferrochelatase substrate protoporphyrin IX as a source of heme. In vivo infection of Phlebotomus perniciosus with knockout promastigotes shows that LmFeCH is not required for their development in the sandfly. In contrast, the replication of intracellular amastigotes was hampered in vitro by the deletion of lmfech. However, LmFeCH-/- parasites produced disease in a cutaneous leishmaniasis murine model in a similar way as control parasites. Therefore, although L. major can synthesize de novo heme from macrophage precursors, this activity is dispensable being an unsuited target for leishmaniasis treatment.-Orrego, L. M., Cabello-Donayre, M., Vargas, P., Martínez-García, M., Sánchez, C., Pineda-Molina, E., Jiménez, M., Molina, R., Pérez-Victoria, J. M. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major.
Collapse
Affiliation(s)
- Lina M Orrego
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - María Cabello-Donayre
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Paola Vargas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Clara Sánchez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Maribel Jiménez
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Molina
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| |
Collapse
|
47
|
CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci 2019; 232:116636. [DOI: 10.1016/j.lfs.2019.116636] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
|
48
|
Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. mSphere 2019; 4:4/4/e00408-19. [PMID: 31434745 PMCID: PMC6706467 DOI: 10.1128/msphere.00408-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CRISPR-Cas9 genome editing relies on an efficient double-strand DNA break (DSB) and repair. Contrary to mammalian cells, the protozoan parasite Leishmania lacks the most efficient nonhomologous end-joining pathway and uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair to repair DSBs. Here, we reveal that Leishmania predominantly uses single-strand annealing (SSA) (>90%) instead of MMEJ (<10%) for DSB repair (DSBR) following CRISPR targeting of the miltefosine transporter gene, resulting in 9-, 18-, 20-, and 29-kb sequence deletions and multiple gene codeletions. Strikingly, when targeting the Leishmania donovani LdBPK_241510 gene, SSA even occurred by using direct repeats 77 kb apart, resulting in the codeletion of 15 Leishmania genes, though with a reduced frequency. These data strongly indicate that DSBR is not efficient in Leishmania, which explains why more than half of DSBs led to cell death and why the CRISPR gene-targeting efficiency is low compared with that in other organisms. Since direct repeat sequences are widely distributed in the Leishmania genome, we predict that many DSBs created by CRISPR are repaired by SSA. It is also revealed that DNA polymerase theta is involved in both MMEJ and SSA in Leishmania Collectively, this study establishes that DSBR mechanisms and their competence in an organism play an important role in determining the outcome and efficacy of CRISPR gene targeting. These observations emphasize the use of donor DNA templates to improve gene editing specificity and efficiency in Leishmania In addition, we developed a novel Staphylococcus aureus Cas9 constitutive expression vector (pLdSaCN) for gene targeting in Leishmania IMPORTANCE Due to differences in double-strand DNA break (DSB) repair mechanisms, CRISPR-Cas9 gene editing efficiency can vary greatly in different organisms. In contrast to mammalian cells, the protozoan parasite Leishmania uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair (HDR) to repair DSBs but lacks the nonhomologous end-joining pathway. Here, we show that Leishmania predominantly uses single-strand annealing (SSA) instead of MMEJ for DSB repairs (DSBR), resulting in large deletions that can include multiple genes. This strongly indicates that the overall DSBR in Leishmania is inefficient and therefore can influence the outcome of CRISPR-Cas9 gene editing, highlighting the importance of using a donor DNA to improve gene editing fidelity and efficiency in Leishmania.
Collapse
|
49
|
Vergnes B, Gazanion E, Mariac C, Du Manoir M, Sollelis L, Lopez-Rubio JJ, Sterkers Y, Bañuls AL. A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. J Antimicrob Chemother 2019; 74:3231-3239. [DOI: 10.1093/jac/dkz334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
For almost a century, antimonials have remained the first-line drugs for the treatment of leishmaniasis. However, little is known about their mode of action and clinical resistance mechanisms.
Objectives
We have previously shown that Leishmania nicotinamidase (PNC1) is an essential enzyme for parasite NAD+ homeostasis and virulence in vivo. Here, we found that parasites lacking the pnc1 gene (Δpnc1) are hypersusceptible to the active form of antimony (SbIII) and used these mutant parasites to better understand antimony’s mode of action and the mechanisms leading to resistance.
Methods
SbIII-resistant WT and Δpnc1 parasites were selected in vitro by a stepwise selection method. NAD(H)/NADP(H) dosages and quantitative RT–PCR experiments were performed to explain the susceptibility differences observed between strains. WGS and a marker-free CRISPR/Cas9 base-editing approach were used to identify and validate the role of a new resistance mutation.
Results
NAD+-depleted Δpnc1 parasites were highly susceptible to SbIII and this phenotype could be rescued by NAD+ precursor or trypanothione precursor supplementation. Δpnc1 parasites could become resistant to SbIII by an unknown mechanism. WGS revealed a unique amino acid substitution (H451Y) in an EF-hand domain of an orphan calcium-dependent kinase, recently named SCAMK. When introduced into a WT reference strain by base editing, the H451Y mutation allowed Leishmania parasites to survive at extreme concentrations of SbIII, potentiating the rapid emergence of resistant parasites.
Conclusions
These results establish that Leishmania SCAMK is a new central hub of antimony’s mode of action and resistance development, and uncover the importance of drug tolerance mutations in the evolution of parasite drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yvon Sterkers
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
- Department of Parasitology-Mycology, Faculty of Medicine, University Hospital Center of Montpellier, Univ. Montpellier, Montpellier, France
| | | |
Collapse
|
50
|
Lander N, Chiurillo MA. State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids. J Eukaryot Microbiol 2019; 66:981-991. [PMID: 31211904 DOI: 10.1111/jeu.12747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
CRISPR/Cas9 technology has revolutionized biology. This prokaryotic defense system against foreign DNA has been repurposed for genome editing in a broad range of cell tissues and organisms. Trypanosomatids are flagellated protozoa belonging to the order Kinetoplastida. Some of its most representative members cause important human diseases affecting millions of people worldwide, such as Chagas disease, sleeping sickness and different forms of leishmaniases. Trypanosomatid infections represent an enormous burden for public health and there are no effective treatments for most of the diseases they cause. Since the emergence of the CRISPR/Cas9 technology, the genetic manipulation of these parasites has notably improved. As a consequence, genome editing is now playing a key role in the functional study of proteins, in the characterization of metabolic pathways, in the validation of alternative targets for antiparasitic interventions, and in the study of parasite biology and pathogenesis. In this work we review the different strategies that have been used to adapt the CRISPR/Cas9 system to Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., as well as the research progress achieved using these approaches. Thereby, we will present the state-of-the-art molecular tools available for genome editing in trypanosomatids to finally point out the future perspectives in the field.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|