1
|
Kang Y, Lehmann KS, Long H, Jefferson A, Purice M, Freeman M, Clark S. Structural basis of lipid transfer by a bridge-like lipid-transfer protein. Nature 2025:10.1038/s41586-025-08918-y. [PMID: 40269155 DOI: 10.1038/s41586-025-08918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Bridge-like lipid-transport proteins (BLTPs) are an evolutionarily conserved family of proteins that localize to membrane-contact sites and are thought to mediate the bulk transfer of lipids from a donor membrane, typically the endoplasmic reticulum, to an acceptor membrane, such as that of the cell or an organelle1. Although BLTPs are fundamentally important for a wide array of cellular functions, their architecture, composition and lipid-transfer mechanisms remain poorly characterized. Here we present the subunit composition and the cryogenic electron microscopy structure of the native LPD-3 BLTP complex isolated from transgenic Caenorhabditis elegans. LPD-3 folds into an elongated, rod-shaped tunnel of which the interior is filled with ordered lipid molecules that are coordinated by a track of ionizable residues that line one side of the tunnel. LPD-3 forms a complex with two previously uncharacterized proteins, one of which we have named Spigot and the other of which remains unnamed. Spigot interacts with the N-terminal end of LPD-3 where lipids are expected to enter the tunnel, and experiments in multiple model systems indicate that Spigot has a conserved role in BLTP function. Our LPD-3 complex structural data reveal protein-lipid interactions that suggest a model for how the native LPD-3 complex mediates bulk lipid transport and provides a foundation for mechanistic studies of BLTPs.
Collapse
Affiliation(s)
- Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Hannah Long
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Amanda Jefferson
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Maria Purice
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marc Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sarah Clark
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
2
|
Xiong X, Geden CJ, Tan Y, Zhang Y, Zhang D, Werren JH, Wang X. Genome Structure, Evolution, and Host Shift of Nosema. BIOLOGY 2024; 13:952. [PMID: 39596907 PMCID: PMC11592040 DOI: 10.3390/biology13110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Nosema is a diverse fungal genus of unicellular, obligate symbionts infecting various arthropods. We performed comparative genomic analyses of seven Nosema species that infect bees, wasps, moths, butterflies, and amphipods. As intracellular parasites, these species exhibit significant genome reduction, retaining only about half of the genes found in free-living yeast genomes. Notably, genes related to oxidative phosphorylation are entirely absent (p < 0.001), and those associated with endocytosis are significantly diminished compared to other pathways (p < 0.05). All seven Nosema genomes display significantly lower G-C content compared to their microsporidian outgroup. Species-specific 5~12 bp motifs were identified immediately upstream of start codons for coding genes in all species (p ≤ 1.6 × 10-72). Our RNA-seq data from Nosema muscidifuracis showed that this motif is enriched in highly expressed genes but depleted in lowly expressed ones (p < 0.05), suggesting it functions as a cis-regulatory element in gene expression. We also discovered diverse telomeric repeats within the genus. Phylogenomic analyses revealed two major Nosema clades and incongruency between the Nosema species tree and their hosts' phylogeny, indicating potential host switch events (100% bootstrap values). This study advances the understanding of genomic architecture, gene regulation, and evolution of Nosema, offering valuable insights for developing strategies to control these microbial pathogens.
Collapse
Affiliation(s)
- Xiao Xiong
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (X.X.); (Y.Z.)
| | - Christopher J. Geden
- Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, FL 32608, USA;
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, USA; (Y.T.); (D.Z.)
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (X.X.); (Y.Z.)
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, USA; (Y.T.); (D.Z.)
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA;
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (X.X.); (Y.Z.)
- Alabama Agricultural Experiment Station, Center for Advanced Science, Innovation and Commerce, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
3
|
Gang SS, Lažetić V. Microsporidia: Pervasive natural pathogens of Caenorhabditis elegans and related nematodes. J Eukaryot Microbiol 2024; 71:e13027. [PMID: 38702921 DOI: 10.1111/jeu.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024]
Abstract
The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.
Collapse
Affiliation(s)
- Spencer S Gang
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, USA
| | - Vladimir Lažetić
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Wang C, Wang B, Pandey T, Long Y, Zhang J, Oh F, Sima J, Guo R, Liu Y, Zhang C, Mukherjee S, Bassik M, Lin W, Deng H, Vale G, McDonald JG, Shen K, Ma DK. A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience. Nat Commun 2022; 13:6805. [PMID: 36357390 PMCID: PMC9649747 DOI: 10.1038/s41467-022-34450-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
Cells adapt to cold by increasing levels of unsaturated phospholipids and membrane fluidity through conserved homeostatic mechanisms. Here we report an exceptionally large and evolutionarily conserved protein LPD-3 in C. elegans that mediates lipid trafficking to confer cold resilience. We identify lpd-3 mutants in a mutagenesis screen for genetic suppressors of the lipid desaturase FAT-7. LPD-3 bridges the endoplasmic reticulum (ER) and plasma membranes (PM), forming a structurally predicted hydrophobic tunnel for lipid trafficking. lpd-3 mutants exhibit abnormal phospholipid distribution, diminished FAT-7 abundance, organismic vulnerability to cold, and are rescued by Lecithin comprising unsaturated phospholipids. Deficient lpd-3 homologues in Zebrafish and mammalian cells cause defects similar to those observed in C. elegans. As mutations in BLTP1, the human orthologue of lpd-3, cause Alkuraya-Kucinskas syndrome, LPD-3 family proteins may serve as evolutionarily conserved highway bridges critical for ER-associated non-vesicular lipid trafficking and resilience to cold stress in eukaryotic cells.
Collapse
Affiliation(s)
- Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Fiona Oh
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Sima
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Ruyin Guo
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Zhang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
5
|
Watterson A, Arneaud SLB, Wajahat N, Wall JM, Tatge L, Beheshti ST, Mihelakis M, Cheatwood NY, McClendon J, Ghorashi A, Dehghan I, Corley CD, McDonald JG, Douglas PM. Loss of heat shock factor initiates intracellular lipid surveillance by actin destabilization. Cell Rep 2022; 41:111493. [PMID: 36261024 PMCID: PMC9642076 DOI: 10.1016/j.celrep.2022.111493] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cells sense stress and initiate response pathways to maintain lipid and protein homeostasis. However, the interplay between these adaptive mechanisms is unclear. Herein, we demonstrate how imbalances in cytosolic protein homeostasis affect intracellular lipid surveillance. Independent of its ancient thermo-protective properties, the heat shock factor, HSF-1, modulates lipid metabolism and age regulation through the metazoan-specific nuclear hormone receptor, NHR-49. Reduced hsf-1 expression destabilizes the Caenorhabditis elegans enteric actin network, subsequently disrupting Rab GTPase-mediated trafficking and cell-surface residency of nutrient transporters. The ensuing malabsorption limits lipid availability, thereby activating the intracellular lipid surveillance response through vesicular release and nuclear translocation of NHR-49 to both increase nutrient absorption and restore lipid homeostasis. Overall, cooperation between these regulators of cytosolic protein homeostasis and lipid surveillance ensures metabolic health and age progression through actin integrity, endocytic recycling, and lipid sensing.
Collapse
Affiliation(s)
- Abigail Watterson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonja L B Arneaud
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naureen Wajahat
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan M Wall
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lexus Tatge
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shaghayegh T Beheshti
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melina Mihelakis
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas Y Cheatwood
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacob McClendon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Atossa Ghorashi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ishmael Dehghan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chase D Corley
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Insights from C. elegans into Microsporidia Biology and Host-Pathogen Relationships. EXPERIENTIA SUPPLEMENTUM 2022; 114:115-136. [PMID: 35544001 PMCID: PMC9208714 DOI: 10.1007/978-3-030-93306-7_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microsporidia are poorly understood, ubiquitous eukaryotic parasites that are completely dependent on their hosts for replication. With the discovery of microsporidia species naturally infecting the genetically tractable transparent nematode C. elegans, this host has been used to explore multiple areas of microsporidia biology. Here we review results about microsporidia infections in C. elegans, which began with the discovery of the intestinal-infecting species Nematocida parisii. Recent findings include new species identification in the Nematocida genus, with more intestinal-infecting species, and also a species with broader tissue tropism, the epidermal and muscle-infecting species Nematocida displodere. This species has a longer polar tube infection apparatus, which may enable its wider tissue range. After invasion, multiple Nematocida species appear to fuse host cells, which likely promotes their dissemination within host organs. Localized proteomics identified Nematocida proteins that have direct contact with the C. elegans intestinal cytosol and nucleus, and many of these host-exposed proteins belong to expanded, species-specific gene families. On the host side, forward genetic screens have identified regulators of the Intracellular Pathogen Response (IPR), which is a transcriptional response induced by both microsporidia and the Orsay virus, which is also a natural, obligate intracellular pathogen of the C. elegans intestine. The IPR constitutes a novel immune/stress response that promotes resistance against microsporidia, virus, and heat shock. Overall, the Nematocida/C. elegans system has provided insights about strategies for microsporidia pathogenesis, as well as innate defense pathways against these parasites.
Collapse
|
7
|
Imaging of Actin Cytoskeleton in the Nematode Caenorhabditis elegans. Methods Mol Biol 2021. [PMID: 34542852 DOI: 10.1007/978-1-0716-1661-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The nematode Caenorhabditis elegans is one of the major model organisms in cell and developmental biology. This organism is easy to culture in laboratories and suitable for microscopic investigation of the cytoskeleton. Because the worms are small and transparent, the actin cytoskeleton in many tissues and cells can be observed with appropriate visualization techniques without sectioning or dissection. This chapter describes the introduction to representative methods for imaging the actin cytoskeleton in C. elegans and a protocol for staining worms with fluorescent phalloidin.
Collapse
|
8
|
Tamim El Jarkass H, Reinke AW. The ins and outs of host-microsporidia interactions during invasion, proliferation and exit. Cell Microbiol 2020; 22:e13247. [PMID: 32748538 DOI: 10.1111/cmi.13247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Microsporidia are a large group of fungal-related obligate intracellular parasites. They are responsible for infections in humans as well as in agriculturally and environmentally important animals. Although microsporidia are abundant in nature, many of the molecular mechanisms employed during infection have remained enigmatic. In this review, we highlight recent work showing how microsporidia invade, proliferate and exit from host cells. During invasion, microsporidia use spore wall and polar tube proteins to interact with host receptors and adhere to the host cell surface. In turn, the host has multiple defence mechanisms to prevent and eliminate these infections. Microsporidia encode numerous transporters and steal host nutrients to facilitate proliferation within host cells. They also encode many secreted proteins which may modulate host metabolism and inhibit host cell defence mechanisms. Spores exit the host in a non-lytic manner that is dependent on host actin and endocytic recycling proteins. Together, this work provides a fuller picture of the mechanisms that these fascinating organisms use to infect their hosts.
Collapse
Affiliation(s)
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Egge N, Arneaud SLB, Wales P, Mihelakis M, McClendon J, Fonseca RS, Savelle C, Gonzalez I, Ghorashi A, Yadavalli S, Lehman WJ, Mirzaei H, Douglas PM. Age-Onset Phosphorylation of a Minor Actin Variant Promotes Intestinal Barrier Dysfunction. Dev Cell 2020; 51:587-601.e7. [PMID: 31794717 DOI: 10.1016/j.devcel.2019.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/17/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022]
Abstract
Age-associated decay of intercellular interactions impairs the cells' capacity to tightly associate within tissues and form a functional barrier. This barrier dysfunction compromises organ physiology and contributes to systemic failure. The actin cytoskeleton represents a key determinant in maintaining tissue architecture. Yet, it is unclear how age disrupts the actin cytoskeleton and how this, in turn, promotes mortality. Here, we show that an uncharacterized phosphorylation of a low-abundant actin variant, ACT-5, compromises integrity of the C. elegans intestinal barrier and accelerates pathogenesis. Age-related loss of the heat-shock transcription factor, HSF-1, disrupts the JUN kinase and protein phosphatase I equilibrium which increases ACT-5 phosphorylation within its troponin binding site. Phosphorylated ACT-5 accelerates decay of the intestinal subapical terminal web and impairs its interactions with cell junctions. This compromises barrier integrity, promotes pathogenesis, and drives mortality. Thus, we provide the molecular mechanism by which age-associated loss of specialized actin networks impacts tissue integrity.
Collapse
Affiliation(s)
- Nathan Egge
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonja L B Arneaud
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pauline Wales
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melina Mihelakis
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacob McClendon
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles Savelle
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ian Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Atossa Ghorashi
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - William J Lehman
- Department of Structural Biology, Boston University, Boston, MA 02118, USA
| | - Hamid Mirzaei
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Han B, Takvorian PM, Weiss LM. Invasion of Host Cells by Microsporidia. Front Microbiol 2020; 11:172. [PMID: 32132983 PMCID: PMC7040029 DOI: 10.3389/fmicb.2020.00172] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Microsporidia are found worldwide and both vertebrates and invertebrates can serve as hosts for these organisms. While microsporidiosis in humans can occur in both immune competent and immune compromised hosts, it has most often been seen in the immune suppressed population, e.g., patients with advanced HIV infection, patients who have had organ transplantation, those undergoing chemotherapy, or patients using other immune suppressive agents. Infection can be associated with either focal infection in a specific organ (e.g., keratoconjunctivitis, cerebritis, or hepatitis) or with disseminated disease. The most common presentation of microsporidiosis being gastrointestinal infection with chronic diarrhea and wasting syndrome. In the setting of advanced HIV infection or other cases of profound immune deficiency microsporidiosis can be extremely debilitating and carries a significant mortality risk. Microsporidia are transmitted as spores which invade host cells by a specialized invasion apparatus the polar tube (PT). This review summarizes recent studies that have provided information on the composition of the spore wall and PT, as well as insights into the mechanism of invasion and interaction of the PT and spore wall with host cells during infection.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Peter M. Takvorian
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
11
|
Yuan W, Zhou Y, Fan Y, Tao YJ, Zhong W. Orsay δ Protein Is Required for Nonlytic Viral Egress. J Virol 2018; 92:e00745-18. [PMID: 29743360 PMCID: PMC6026750 DOI: 10.1128/jvi.00745-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Nonenveloped gastrointestinal viruses, such as human rotavirus, can exit infected cells from the apical surface without cell lysis. The mechanism of such nonlytic exit is poorly understood. The nonenveloped Orsay virus is an RNA virus infecting the intestine cells of the nematode Caenorhabditis elegans Dye staining results suggested that Orsay virus exits from the intestine of infected worms in a nonlytic manner. Therefore, the Orsay virus-C. elegans system provides an excellent in vivo model to study viral exit. The Orsay virus genome encodes three proteins: RNA-dependent RNA polymerase, capsid protein (CP), and a nonstructural protein, δ. δ can also be expressed as a structural CP-δ fusion. We generated an ATG-to-CTG mutant virus that had a normal CP-δ fusion but could not produce free δ due to the lack of the start codon. This mutant virus showed a viral exit defect without obvious phenotypes in other steps of viral infection, suggesting that δ is involved in viral exit. Ectopically expressed free δ localized near the apical membrane of intestine cells in C. elegans and colocalized with ACT-5, an intestine-specific actin that is a component of the terminal web. Orsay virus infection rearranged ACT-5 apical localization. Reduction of the ACT-5 level via RNA interference (RNAi) significantly exacerbated the viral exit defect of the δ mutant virus, suggesting that δ and ACT-5 functionally interact to promote Orsay virus exit. Together, these data support a model in which the viral δ protein interacts with the actin network at the apical side of host intestine cells to mediate the polarized, nonlytic egress of Orsay virus.IMPORTANCE An important step of the viral life cycle is how viruses exit from host cells to spread to other cells. Certain nonenveloped viruses can exit cultured cells in nonlytic ways; however, such nonlytic exit has not been demonstrated in vivo In addition, it is not clear how such nonlytic exit is achieved mechanistically in vivo Orsay virus is a nonenveloped RNA virus that infects the intestine cells of the nematode C. elegans It is currently the only virus known to naturally infect C. elegans Using this in vivo model, we show that the δ protein encoded by Orsay virus facilitates the nonlytic exit of the virus, possibly by interacting with host actin on the apical side of worm intestine cells.
Collapse
Affiliation(s)
- Wang Yuan
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Ying Zhou
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Yanlin Fan
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Yizhi J Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Weiwei Zhong
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
12
|
Ren M, Zhao L, Ding X, Krasteva N, Rui Q, Wang D. Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 2018; 15:26. [PMID: 29929559 PMCID: PMC6013870 DOI: 10.1186/s12989-018-0262-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/21/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Intestinal barrier is crucial for animals against translocation of engineered nanomaterials (ENMs) into secondary targeted organs. However, the molecular mechanisms for the role of intestinal barrier against ENMs toxicity are still largely unclear. The intestine of Caenorhabditis elegans is a powerful in vivo experimental system for the study on intestinal function. In this study, we investigated the molecular basis for intestinal barrier against toxicity and translocation of graphene oxide (GO) using C. elegans as a model animal. RESULTS Based on the genetic screen of genes required for the control of intestinal development at different aspects using intestine-specific RNA interference (RNAi) technique, we identified four genes (erm-1, pkc-3, hmp-2 and act-5) required for the function of intestinal barrier against GO toxicity. Under normal conditions, mutation of any of these genes altered the intestinal permeability. With the focus on PKC-3, an atypical protein kinase C, we identified an intestinal signaling cascade of PKC-3-SEC-8-WTS-1, which implies that PKC-3 might regulate intestinal permeability and GO toxicity by affecting the function of SEC-8-mediated exocyst complex and the role of WTS-1 in maintaining integrity of apical intestinal membrane. ISP-1 and SOD-3, two proteins required for the control of oxidative stress, were also identified as downstream targets for PKC-3, and functioned in parallel with WTS-1 in the regulation of GO toxicity. CONCLUSIONS Using C. elegans as an in vivo assay system, we found that several developmental genes required for the control of intestinal development regulated both the intestinal permeability and the GO toxicity. With the focus on PKC-3, we raised two intestinal signaling cascades, PKC-3-SEC-8-WTS-1 and PKC-3-ISP-1/SOD-3. Our results will strengthen our understanding the molecular basis for developmental machinery of intestinal barrier against GO toxicity and translocation in animals.
Collapse
Affiliation(s)
- Mingxia Ren
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| | - Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| | - Xuecheng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| |
Collapse
|
13
|
Pan G, Bao J, Ma Z, Song Y, Han B, Ran M, Li C, Zhou Z. Invertebrate host responses to microsporidia infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:104-113. [PMID: 29428490 DOI: 10.1016/j.dci.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 05/06/2023]
Abstract
Microsporidia are a group of fungi-like intracellular and unicellular parasites, which infect nearly all animals. As "master parasites", over 1400 microsporidian species have been described to date. Microsporidia infections in economical invertebrates (e.g., silkworm, shrimp) cause huge financial losses, while other microsporidia infections in daphnia, nematode, locust, honeybee and mosquito play important roles in the regulation of their population size. Research investigating invertebrate host responses following microsporidia infections has yielded numerous interesting results, especially pertaining to the innate immune response to these pathogens. In this review, we comparatively summarize the invertebrate host responses to various microsporidia infections. We discuss numerous critical events in host responses including ubiquitin-mediated resistance, production of reactive oxygen species, melanization and innate immune pathways, and the increased basic metabolism and the accumulation of juvenile hormone in infected hosts. Recent studies progressing our understanding of microsporidia infection are also highlighted. Collectively, these advances shed more light on general rules of invertebrate host immune responses and pathogenesis mechanisms of microsporidia, and concurrently offer valuable clues for further research on the crosstalk between hosts and intracellular pathogens.
Collapse
Affiliation(s)
- Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zhengang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yue Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Bing Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
14
|
GIBSON AMANDAK, MORRAN LEVIT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2018. [DOI: 10.21307/jofnem-2017-083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Gibson AK, Morran LT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2017; 49:357-372. [PMID: 29353923 PMCID: PMC5770282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 06/07/2023] Open
Abstract
Many of the outstanding questions in disease ecology and evolution call for combining observation of natural host-parasite populations with experimental dissection of interactions in the field and the laboratory. The "rewilding" of model systems holds great promise for this endeavor. Here, we highlight the potential for development of the nematode Caenorhabditis elegans and its close relatives as a model for the study of disease ecology and evolution. This powerful laboratory model was disassociated from its natural habitat in the 1960s. Today, studies are uncovering that lost natural history, with several natural parasites described since 2008. Studies of these natural Caenorhabditis-parasite interactions can reap the benefits of the vast array of experimental and genetic tools developed for this laboratory model. In this review, we introduce the natural parasites of C. elegans characterized thus far and discuss resources available to study them, including experimental (co)evolution, cryopreservation, behavioral assays, and genomic tools. Throughout, we present avenues of research that are interesting and feasible to address with caenorhabditid nematodes and their natural parasites, ranging from the maintenance of outcrossing to the community dynamics of host-associated microbes. In combining natural relevance with the experimental power of a laboratory supermodel, these fledgling host-parasite systems can take on fundamental questions in evolutionary ecology of disease.
Collapse
Affiliation(s)
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
16
|
Abstract
Microsporidia comprise a phylum of obligate intracellular pathogens related to fungi that infect virtually all animals. Recently, the nematode Caenorhabditis elegans has been developed as a convenient model for studying microsporidia infection in a whole-animal host through the identification and characterization of a natural microsporidian pathogen of this commonly studied laboratory organism. The C. elegans natural microsporidian pathogen is named Nematocida parisii, and it causes a lethal intestinal infection in C. elegans. Comparison of the genomes of N. parisii and its closely related species Nematocida sp. 1, together with the genomes of other microsporidian species, has provided insight into the evolutionary events that led to the emergence of the large, specialized microsporidia phylum. Cell biology studies of N. parisii infection in C. elegans have shown how N. parisii restructures host intestinal cells and, in particular, how it hijacks host exocytosis for nonlytic exit to facilitate transmission. Recent results also show how the host responds to infection with ubiquitin-mediated responses, and how a natural variant of C. elegans is able to clear N. parisii infection, but only during early life. Altogether, these studies provide insight into the mechanisms of microsporidia pathogenesis using a whole-animal host.
Collapse
|
17
|
Shah A, Kannambath S, Herbst S, Rogers A, Soresi S, Carby M, Reed A, Mostowy S, Fisher MC, Shaunak S, Armstrong-James DP. Calcineurin Orchestrates Lateral Transfer of Aspergillus fumigatus during Macrophage Cell Death. Am J Respir Crit Care Med 2017; 194:1127-1139. [PMID: 27163634 PMCID: PMC5114448 DOI: 10.1164/rccm.201601-0070oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Pulmonary aspergillosis is a lethal mold infection in the immunocompromised host. Understanding initial control of infection and how this is altered in the immunocompromised host are key goals for comprehension of the pathogenesis of pulmonary aspergillosis. OBJECTIVES To characterize the outcome of human macrophage infection with Aspergillus fumigatus and how this is altered in transplant recipients on calcineurin inhibitor immunosuppressants. METHODS We defined the outcome of human macrophage infection with A. fumigatus, as well as the impact of calcineurin inhibitors, through a combination of single-cell fluorescence imaging, transcriptomics, proteomics, and in vivo studies. MEASUREMENTS AND MAIN RESULTS Macrophage phagocytosis of A. fumigatus enabled control of 90% of fungal germination. However, fungal germination in the late phagosome led to macrophage necrosis. During programmed necroptosis, we observed frequent cell-cell transfer of A. fumigatus between macrophages, which assists subsequent control of germination in recipient macrophages. Lateral transfer occurred through actin-dependent exocytosis of the late endosome in a vasodilator-stimulated phosphoprotein envelope. Its relevance to the control of fungal germination was also shown by direct visualization in our zebrafish aspergillosis model in vivo. The calcineurin inhibitor FK506 (tacrolimus) reduced cell death and lateral transfer in vitro by 50%. This resulted in uncontrolled fungal germination in macrophages and also resulted in hyphal escape. CONCLUSIONS These observations identify programmed, necrosis-dependent lateral transfer of A. fumigatus between macrophages as an important host strategy for controlling fungal germination. This process is critically dependent on calcineurin. Our studies provide fundamental insights into the pathogenesis of pulmonary aspergillosis in the immunocompromised host.
Collapse
Affiliation(s)
| | | | | | | | - Simona Soresi
- 3 Lung Transplant Unit, Royal Brompton and Harefield Hospitals, Harefield, United Kingdom
| | - Martin Carby
- 3 Lung Transplant Unit, Royal Brompton and Harefield Hospitals, Harefield, United Kingdom
| | - Anna Reed
- 3 Lung Transplant Unit, Royal Brompton and Harefield Hospitals, Harefield, United Kingdom
| | - Serge Mostowy
- 4 Medical Research Council Centre for Molecular Bacteriology and Infection
| | | | - Sunil Shaunak
- 6 Department of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom; and
| | | |
Collapse
|
18
|
Schulenburg H, Félix MA. The Natural Biotic Environment of Caenorhabditis elegans. Genetics 2017; 206:55-86. [PMID: 28476862 PMCID: PMC5419493 DOI: 10.1534/genetics.116.195511] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel, Germany
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, L'université de Recherche Paris Sciences et Lettres, 75005, France
| |
Collapse
|
19
|
Zhang G, Sachse M, Prevost MC, Luallen RJ, Troemel ER, Félix MA. A Large Collection of Novel Nematode-Infecting Microsporidia and Their Diverse Interactions with Caenorhabditis elegans and Other Related Nematodes. PLoS Pathog 2016; 12:e1006093. [PMID: 27942022 PMCID: PMC5179134 DOI: 10.1371/journal.ppat.1006093] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/22/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022] Open
Abstract
Microsporidia are fungi-related intracellular pathogens that may infect virtually all animals, but are poorly understood. The nematode Caenorhabditis elegans has recently become a model host for studying microsporidia through the identification of its natural microsporidian pathogen Nematocida parisii. However, it was unclear how widespread and diverse microsporidia infections are in C. elegans or other related nematodes in the wild. Here we describe the isolation and culture of 47 nematodes with microsporidian infections. N. parisii is found to be the most common microsporidia infecting C. elegans in the wild. In addition, we further describe and name six new species in the Nematocida genus. Our sampling and phylogenetic analysis further identify two subclades that are genetically distinct from Nematocida, and we name them Enteropsectra and Pancytospora. Interestingly, unlike Nematocida, these two genera belong to the main clade of microsporidia that includes human pathogens. All of these microsporidia are horizontally transmitted and most specifically infect intestinal cells, except Pancytospora epiphaga that replicates mostly in the epidermis of its Caenorhabditis host. At the subcellular level in the infected host cell, spores of the novel genus Enteropsectra show a characteristic apical distribution and exit via budding off of the plasma membrane, instead of exiting via exocytosis as spores of Nematocida. Host specificity is broad for some microsporidia, narrow for others: indeed, some microsporidia can infect Oscheius tipulae but not its sister species Oscheius sp. 3, and conversely some microsporidia found infecting Oscheius sp. 3 do not infect O. tipulae. We also show that N. ausubeli fails to strongly induce in C. elegans the transcription of genes that are induced by other Nematocida species, suggesting it has evolved mechanisms to prevent induction of this host response. Altogether, these newly isolated species illustrate the diversity and ubiquity of microsporidian infections in nematodes, and provide a rich resource to investigate host-parasite coevolution in tractable nematode hosts.
Collapse
Affiliation(s)
- Gaotian Zhang
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, Inserm, ENS, PSL Research University, Paris, France
- School of Life Sciences, East China Normal University, Shanghai, China
| | | | | | - Robert J. Luallen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Marie-Anne Félix
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, Inserm, ENS, PSL Research University, Paris, France
| |
Collapse
|