1
|
Jones BS, Hu DD, Nicholson KR, Cronin RM, Weaver SD, Champion MM, Champion PA. The loss of the PDIM/PGL virulence lipids causes differential secretion of ESX-1 substrates in Mycobacterium marinum. mSphere 2024; 9:e0000524. [PMID: 38661343 PMCID: PMC11237470 DOI: 10.1128/msphere.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis. Previous studies revealed that mycobacterial strains lacking the outer lipid PDIM have impaired ESX-1 function during laboratory growth and infection. The mechanisms underlying changes in ESX-1 function are unknown. We used a proteo-genetic approach to measure phthiocerol dimycocerosate (PDIM)- and phenolic glycolipid (PGL)-dependent protein secretion in M. marinum, a non-tubercular mycobacterial pathogen that causes tuberculosis-like disease in ectothermic animals. Importantly, M. marinum is a well-established model for mycobacterial pathogenesis. Our findings showed that M. marinum strains without PDIM and PGL showed specific, significant reductions in protein secretion compared to the WT and complemented strains. We recently established a hierarchy for the secretion of ESX-1 substrates in four (I-IV) groups. Loss of PDIM differentially impacted secretion of Group III and IV ESX-1 substrates, which are likely the effectors of pathogenesis. Our data suggest that the altered secretion of specific ESX-1 substrates is responsible for the observed ESX-1-related effects in PDIM-deficient strains.IMPORTANCEMycobacterium tuberculosis, the cause of human tuberculosis, killed an estimated 1.3 million people in 2022. Non-tubercular mycobacterial species cause acute and chronic human infections. Understanding how these bacteria cause disease is critical. Lipids in the cell envelope are essential for mycobacteria to interact with the host and promote disease. Strains lacking outer lipids are attenuated for infection, but the reasons are unclear. Our research aims to identify a mechanism for attenuation of mycobacterial strains without the PDIM and PGL outer lipids in M. marinum. These findings will enhance our understanding of the importance of lipids in pathogenesis and how these lipids contribute to other established virulence mechanisms.
Collapse
Affiliation(s)
- Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel M. Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
3
|
Prevalence and species distribution of the low-complexity, amyloid-like, reversible, kinked segment structural motif in amyloid-like fibrils. J Biol Chem 2021; 297:101194. [PMID: 34537246 PMCID: PMC8551513 DOI: 10.1016/j.jbc.2021.101194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Membraneless organelles (MLOs) are vital and dynamic reaction centers in cells that compartmentalize the cytoplasm in the absence of a membrane. Multivalent interactions between protein low-complexity domains contribute to MLO organization. Previously, we used computational methods to identify structural motifs termed low-complexity amyloid-like reversible kinked segments (LARKS) that promote phase transition to form hydrogels and that are common in human proteins that participate in MLOs. Here, we searched for LARKS in the proteomes of six model organisms: Homo sapiens, Drosophila melanogaster, Plasmodium falciparum, Saccharomyces cerevisiae, Mycobacterium tuberculosis, and Escherichia coli to gain an understanding of the distribution of LARKS in the proteomes of various species. We found that LARKS are abundant in M. tuberculosis, D. melanogaster, and H. sapiens but not in S. cerevisiae or P. falciparum. LARKS have high glycine content, which enables kinks to form as exemplified by the known LARKS-rich amyloidogenic structures of TDP43, FUS, and hnRNPA2, three proteins that are known to participate in MLOs. These results support the idea of LARKS as an evolved structural motif. Based on these results, we also established the LARKSdb Web server, which permits users to search for LARKS in their protein sequences of interest.
Collapse
|
4
|
The tryptophan biosynthetic pathway is essential for Mycobacterium tuberculosis to cause disease. Biochem Soc Trans 2021; 48:2029-2037. [PMID: 32915193 PMCID: PMC7609029 DOI: 10.1042/bst20200194] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is the most significant cause of death from a single infectious agent worldwide. Antibiotic-resistant strains of M. tuberculosis represent a threat to effective treatment, and the long duration, toxicity and complexity of current chemotherapy for antibiotic-resistant disease presents a need for new therapeutic approaches with novel modes of action. M. tuberculosis is an intracellular pathogen that must survive phagocytosis by macrophages, dendritic cells or neutrophils to establish an infection. The tryptophan biosynthetic pathway is required for bacterial survival in the phagosome, presenting a target for new classes of antitubercular compound. The enzymes responsible for the six catalytic steps that produce tryptophan from chorismate have all been characterised in M. tuberculosis, and inhibitors have been described for some of the steps. The innate immune system depletes cellular tryptophan in response to infection in order to inhibit microbial growth, and this effect is likely to be important for the efficacy of tryptophan biosynthesis inhibitors as new antibiotics. Allosteric inhibitors of both the first and final enzymes in the pathway have proven effective, including by a metabolite produced by the gut biota, raising the intriguing possibility that the modulation of tryptophan biosynthesis may be a natural inter-bacterial competition strategy.
Collapse
|
5
|
Rothchild AC, Olson GS, Nemeth J, Amon LM, Mai D, Gold ES, Diercks AH, Aderem A. Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response to Mycobacterium tuberculosis in vivo. Sci Immunol 2020; 4:4/37/eaaw6693. [PMID: 31350281 DOI: 10.1126/sciimmunol.aaw6693] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Alveolar macrophages (AMs) are the first cells to be infected during Mycobacterium tuberculosis (M.tb.) infection. Thus, the AM response to infection is the first of many steps leading to initiation of the adaptive immune response required for efficient control of infection. A hallmark of M.tb. infection is the slow initiation of the adaptive response, yet the mechanisms responsible for this are largely unknown. To study the initial AM response to infection, we developed a system to identify, sort, and analyze M.tb.-infected AMs from the lung within the first 10 days of infection. In contrast to what has been previously described using in vitro systems, M.tb.-infected AMs up-regulate a cell-protective antioxidant transcriptional signature that is dependent on the lung environment but not bacterial virulence. Computational approaches including pathway analysis and transcription factor motif enrichment analysis identify NRF2 as a master regulator of the response. Using knockout mouse models, we demonstrate that NRF2 drives expression of the cell-protective signature in AMs and impairs the control of early bacterial growth. AMs up-regulate a substantial pro-inflammatory response to M.tb. infection only 10 days after infection, yet comparisons with bystander AMs from the same infected animals demonstrate that M.tb.-infected AMs generate a less robust inflammatory response than the uninfected cells around them. Our findings demonstrate that the initial macrophage response to M.tb. in the lung is far less inflammatory than has previously been described by in vitro systems and may impede the overall host response to infection.
Collapse
Affiliation(s)
- Alissa C Rothchild
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Gregory S Olson
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.,Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Johannes Nemeth
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Lynn M Amon
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Elizabeth S Gold
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Alan H Diercks
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Buchrieser C. Celebrating the career and legacy of Professor Pascale Cossart. Mol Microbiol 2020; 113:535-537. [PMID: 32185834 DOI: 10.1111/mmi.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| |
Collapse
|
7
|
Huang L, Nazarova EV, Russell DG. Mycobacterium tuberculosis. BACTERIA AND INTRACELLULARITY 2020:127-138. [DOI: 10.1128/9781683670261.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine; Cornell University; Ithaca NY 14853
| | - Evgeniya V. Nazarova
- Microbiology and Immunology, College of Veterinary Medicine; Cornell University; Ithaca NY 14853
| | - David G. Russell
- Microbiology and Immunology, College of Veterinary Medicine; Cornell University; Ithaca NY 14853
| |
Collapse
|
8
|
Knobloch P, Koliwer-Brandl H, Arnold FM, Hanna N, Gonda I, Adenau S, Personnic N, Barisch C, Seeger MA, Soldati T, Hilbi H. Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Cell Microbiol 2020; 22:e13163. [PMID: 31945239 DOI: 10.1111/cmi.13163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium-containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid-bound mycobactin (MBT) and the water-soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe-MBT or Fe-cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe-cMBT promoted the growth of wild-type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild-type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra- and intracellular growth of the pathogen.
Collapse
Affiliation(s)
- Paulina Knobloch
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | | | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Sophia Adenau
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Sanchez KG, Ferrell MJ, Chirakos AE, Nicholson KR, Abramovitch RB, Champion MM, Champion PA. EspM Is a Conserved Transcription Factor That Regulates Gene Expression in Response to the ESX-1 System. mBio 2020; 11:e02807-19. [PMID: 32019792 PMCID: PMC7002343 DOI: 10.1128/mbio.02807-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Pathogenic mycobacteria encounter multiple environments during macrophage infection. Temporally, the bacteria are engulfed into the phagosome, lyse the phagosomal membrane, and interact with the cytosol before spreading to another cell. Virulence factors secreted by the mycobacterial ESX-1 (ESAT-6-system-1) secretion system mediate the essential transition from the phagosome to the cytosol. It was recently discovered that the ESX-1 system also regulates mycobacterial gene expression in Mycobacterium marinum (R. E. Bosserman, T. T. Nguyen, K. G. Sanchez, A. E. Chirakos, et al., Proc Natl Acad Sci U S A 114:E10772-E10781, 2017, https://doi.org/10.1073/pnas.1710167114), a nontuberculous mycobacterial pathogen, and in the human-pathogenic species M. tuberculosis (A. M. Abdallah, E. M. Weerdenburg, Q. Guan, R. Ummels, et al., PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). It is not known how the ESX-1 system regulates gene expression. Here, we identify the first transcription factor required for the ESX-1-dependent transcriptional response in pathogenic mycobacteria. We demonstrate that the gene divergently transcribed from the whiB6 gene and adjacent to the ESX-1 locus in mycobacterial pathogens encodes a conserved transcription factor (MMAR_5438, Rv3863, now espM). We prove that EspM from both M. marinum and M. tuberculosis directly and specifically binds the whiB6-espM intergenic region. We show that EspM is required for ESX-1-dependent repression of whiB6 expression and for the regulation of ESX-1-associated gene expression. Finally, we demonstrate that EspM functions to fine-tune ESX-1 activity in M. marinum Taking the data together, this report extends the esx-1 locus, defines a conserved regulator of the ESX-1 virulence pathway, and begins to elucidate how the ESX-1 system regulates gene expression.IMPORTANCE Mycobacterial pathogens use the ESX-1 system to transport protein substrates that mediate essential interactions with the host during infection. We previously demonstrated that in addition to transporting proteins, the ESX-1 secretion system regulates gene expression. Here, we identify a conserved transcription factor that regulates gene expression in response to the ESX-1 system. We demonstrate that this transcription factor is functionally conserved in M. marinum, a pathogen of ectothermic animals; M. tuberculosis, the human-pathogenic species that causes tuberculosis; and M. smegmatis, a nonpathogenic mycobacterial species. These findings provide the first mechanistic insight into how the ESX-1 system elicits a transcriptional response, a function of this protein transport system that was previously unknown.
Collapse
Affiliation(s)
- Kevin G Sanchez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Micah J Ferrell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Alexandra E Chirakos
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Kathleen R Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
10
|
Bussi C, Gutierrez MG. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev 2019; 43:341-361. [PMID: 30916769 PMCID: PMC6606852 DOI: 10.1093/femsre/fuz006] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/26/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains one of the deadliest infectious diseases with over a billion deaths in the past 200 years (Paulson 2013). TB causes more deaths worldwide than any other single infectious agent, with 10.4 million new cases and close to 1.7 million deaths in 2017. The obstacles that make TB hard to treat and eradicate are intrinsically linked to the intracellular lifestyle of Mtb. Mtb needs to replicate within human cells to disseminate to other individuals and cause disease. However, we still do not completely understand how Mtb manages to survive within eukaryotic cells and why some cells are able to eradicate this lethal pathogen. Here, we summarise the current knowledge of the complex host cell-pathogen interactions in TB and review the cellular mechanisms operating at the interface between Mtb and the human host cell, highlighting the technical and methodological challenges to investigating the cell biology of human host cell-Mtb interactions.
Collapse
Affiliation(s)
- Claudio Bussi
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Maximiliano G Gutierrez
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| |
Collapse
|
11
|
Huang L, Nazarova EV, Russell DG. Mycobacterium tuberculosis: Bacterial Fitness within the Host Macrophage. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0001-2019. [PMID: 30848232 PMCID: PMC6459685 DOI: 10.1128/microbiolspec.bai-0001-2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium tuberculosis has evolved to become the single greatest cause of death from an infectious agent. The pathogen spends most of its infection cycle in its human host within a phagocyte. The bacterium has evolved to block the normal maturation and acidification of its phagosome and resides in a vacuole contiguous with the early endosomal network. Cytokine-mediated activation of the host cell can overcome this blockage, and an array of antimicrobial responses can limit its survival. The survival of M. tuberculosis in its host cell is fueled predominantly by fatty acids and cholesterol. The ability of M. tuberculosis to degrade sterols is an unusual metabolic characteristic that was likely retained from a saprophytic ancestor. Recent results with fluorescent M. tuberculosis reporter strains demonstrate that bacterial survival differs with the host macrophage population. Tissue-resident alveolar macrophages, which are biased towards an alternatively activated, M2-like phenotype, are more permissive to bacterial growth than monocyte-derived, inflammatory, M1-like interstitial macrophages. The differential growth of the bacterium in these different phagocyte populations appears to be linked to host cell metabolism.
Collapse
Affiliation(s)
- Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Evgeniya V Nazarova
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
12
|
Ufimtseva E, Eremeeva N, Bayborodin S, Umpeleva T, Vakhrusheva D, Skornyakov S. Mycobacterium tuberculosis with different virulence reside within intact phagosomes and inhibit phagolysosomal biogenesis in alveolar macrophages of patients with pulmonary tuberculosis. Tuberculosis (Edinb) 2018; 114:77-90. [PMID: 30711161 DOI: 10.1016/j.tube.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is a dangerous airborne disease caused by Mycobacterium tuberculosis (Mtb) and characterized by a tight interplay between pathogen and host cells, mainly alveolar macrophages. Studies of the mechanisms of Mtb survival within human cells during TB disease are extremely important for the development of new strategies and drugs for TB treatment. We have used the ex vivo cultures of alveolar macrophages and histological sections obtained from the resected lungs of patients with pulmonary TB to establish the unique features of Mtb lifestyle in host cells. Our data indicate that Mtb with different virulence, as single and in colonies, with or without cording morphology, are exclusively intravacuolar pathogens with intact phagosomal membranes in viable host cells of TB patients and Mtb-infected guinea pig. Mycobacteria were detected in the cytoplasm and/or damaged vacuoles only in alveolar macrophages with morphological signs of cell death after prolonged ex vivo culture, however Mtb were found inside phagosomes in viable alveolar macrophages or cells with apoptotic/necrotic morphology in the same ex vivo cell culture. The Mtb phagosomes interacted with human different endocytic pathways, but inhibited phagolysosomal biogenesis, while intracellular vesicles containing Mtb products were fused with lysosomes in the same host cells.
Collapse
Affiliation(s)
- Elena Ufimtseva
- Laboratory of Medical Biotechnology, Research Institute of Biochemistry, Federal Research Center of Fundamental and Translational Medicine, 2 Timakova Street, 630117, Novosibirsk, Russia; Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Natalya Eremeeva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Sergey Bayborodin
- Shared Center for Microscopic Analysis of Biological Objects, Federal Research Center Institute of Cytology and Genetics, 10 Lavrentyeva Prospect, 630090, Novosibirsk, Russia.
| | - Tatiana Umpeleva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Diana Vakhrusheva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Sergey Skornyakov
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| |
Collapse
|
13
|
Singh A, Kendall SL, Campanella M. Common Traits Spark the Mitophagy/Xenophagy Interplay. Front Physiol 2018; 9:1172. [PMID: 30294276 PMCID: PMC6158333 DOI: 10.3389/fphys.2018.01172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
Selective autophagy contributes to the wellbeing of eukaryotic cells by recycling cellular components, disposing damaged organelles, and removing pathogens, amongst others. Both the quality control process of selective mitochondrial autophagy (Mitophagy) and the defensive process of intracellular pathogen-engulfment (Xenophagy) are facilitated via protein assemblies which have shared molecules, a prime example being the Tank-Binding Kinase 1 (TBK1). TBK1 plays a central role in the immunity response driven by Xenophagy and was recently shown to be an amplifying mechanism in Mitophagy, bring to attention the potential cross talk between the two processes. Here we draw parallels between Xenophagy and Mitophagy, speculating on the inhibitory mechanisms of specific proteins (e.g., the 18 kDa protein TSPO), how the preferential sequestering toward one of the two pathways may undermine the other, and in this way impair cellular response to pathogens and cellular immunity. We believe that an in depth understanding of the commonalities may present an opportunity to design novel therapeutic strategies targeted at both the autonomous and non-autonomous processes of selective autophagy.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Sharon L Kendall
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom.,UCL Consortium for Mitochondrial Research, London, United Kingdom
| |
Collapse
|
14
|
Djeffal S, Mamache B, Elgroud R, Hireche S, Bouaziz O. Prevalence and risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria. Vet World 2018; 11:1102-1108. [PMID: 30250370 PMCID: PMC6141290 DOI: 10.14202/vetworld.2018.1102-1108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/29/2018] [Indexed: 11/23/2022] Open
Abstract
AIM The aim of this study was to provide information on the prevalence of Salmonella serotypes and to identify risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria. MATERIALS AND METHODS This study was conducted on 32 poultry farms and five slaughterhouses in the province of Skikda (northeastern Algeria). A questionnaire was answered by the poultry farmers and slaughterhouses' managers. Biological samples (cloacal swabs, droppings, caeca, livers, and neck skins) and environmental ones (water, feed, surface wipes, rinsing water, and sticking knife swabbing) were taken to assess the Salmonella contamination status. RESULTS Nearly 34.37% of the poultry farms and all the slaughterhouses were contaminated with Salmonella. The isolated Salmonella strains belonged to two major serotypes: Kentucky and Heidelberg followed by Enteritidis, Virginia, and Newport. There was an evident heterogeneous distribution of serotypes in poultry farms and slaughterhouses. Only one factor (earth floor) was significantly associated with Salmonella contamination in poultry houses (p<0.05). CONCLUSION A high prevalence rate of Salmonella contamination was found in poultry farms and slaughterhouses in Skikda region. These results showed the foremost hazardous role of poultry production in the spread and persistence of Salmonella contamination in the studied region.
Collapse
Affiliation(s)
- Samia Djeffal
- GSPA Research Laboratory (Management of Animal Health and Productions), Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine, Algeria
| | - Bakir Mamache
- Department of Veterinary Sciences, Institute of Veterinary and Agronomic Sciences, University Hadj Lakhdar, Batna, Algeria
| | - Rachid Elgroud
- GSPA Research Laboratory (Management of Animal Health and Productions), Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine, Algeria
| | - Sana Hireche
- GSPA Research Laboratory (Management of Animal Health and Productions), Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine, Algeria
| | - Omar Bouaziz
- GSPA Research Laboratory (Management of Animal Health and Productions), Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
15
|
Evolution of virulence in the Mycobacterium tuberculosis complex. Curr Opin Microbiol 2018; 41:68-75. [DOI: 10.1016/j.mib.2017.11.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
16
|
Queval CJ, Brosch R, Simeone R. The Macrophage: A Disputed Fortress in the Battle against Mycobacterium tuberculosis. Front Microbiol 2017; 8:2284. [PMID: 29218036 PMCID: PMC5703847 DOI: 10.3389/fmicb.2017.02284] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of human tuberculosis (TB), has plagued humans for thousands of years. TB still remains a major public health problem in our era, causing more than 4,400 deaths worldwide every day and killing more people than HIV. After inhaling Mtb-contaminated aerosols, TB primo-infection starts in the terminal lung airways, where Mtb is taken up by alveolar macrophages. Although macrophages are known as professional killers for pathogens, Mtb has adopted remarkable strategies to circumvent host defenses, building suitable conditions to survive and proliferate. Within macrophages, Mtb initially resides inside phagosomes, where its survival mostly depends on its ability to take control of phagosomal processing, through inhibition of phagolysosome biogenesis and acidification processes, and by progressively getting access to the cytosol. Bacterial access to the cytosolic space is determinant for specific immune responses and cell death programs, both required for the replication and the dissemination of Mtb. Comprehension of the molecular events governing Mtb survival within macrophages is fundamental for the improvement of vaccine-based and therapeutic strategies in order to help the host to better defend itself in the battle against the fierce invader Mtb. In this mini-review, we discuss recent research exploring how Mtb conquers and transforms the macrophage into a strategic base for its survival and dissemination as well as the associated defense strategies mounted by host.
Collapse
Affiliation(s)
| | | | - Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| |
Collapse
|
17
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Abstract
The interaction between Mycobacterium tuberculosis and its host cell is highly complex and extremely intimate. Were it not for the disease, one might regard this interaction at the cellular level as an almost symbiotic one. The metabolic activity and physiology of both cells are shaped by this coexistence. We believe that where this appreciation has greatest significance is in the field of drug discovery. Evolution rewards efficiency, and recent data from many groups discussed in this review indicate that M. tuberculosis has evolved to utilize the environmental cues within its host to control large genetic programs or regulons. But these regulons may represent chinks in the bacterium's armor because they include off-target effects, such as the constraint of the metabolic plasticity of M. tuberculosis. A prime example is how the presence of cholesterol within the host cell appears to limit the ability of M. tuberculosis to fully utilize or assimilate other carbon sources. And that is the reason for the title of this review. We believe firmly that, to understand the physiology of M. tuberculosis and to identify new drug targets, it is imperative that the bacterium be interrogated within the context of its host cell. The constraints induced by the environmental cues present within the host cell need to be preserved and exploited. The M. tuberculosis-infected macrophage truly is the "minimal unit of infection."
Collapse
|
19
|
Abstract
Faithful replication and maintenance of the genome are essential to the ability of any organism to survive and propagate. For an obligate pathogen such as Mycobacterium tuberculosis that has to complete successive cycles of transmission, infection, and disease in order to retain a foothold in the human population, this requires that genome replication and maintenance must be accomplished under the metabolic, immune, and antibiotic stresses encountered during passage through variable host environments. Comparative genomic analyses have established that chromosomal mutations enable M. tuberculosis to adapt to these stresses: the emergence of drug-resistant isolates provides direct evidence of this capacity, so too the well-documented genetic diversity among M. tuberculosis lineages across geographic loci, as well as the microvariation within individual patients that is increasingly observed as whole-genome sequencing methodologies are applied to clinical samples and tuberculosis (TB) disease models. However, the precise mutagenic mechanisms responsible for M. tuberculosis evolution and adaptation are poorly understood. Here, we summarize current knowledge of the machinery responsible for DNA replication in M. tuberculosis, and discuss the potential contribution of the expanded complement of mycobacterial DNA polymerases to mutagenesis. We also consider briefly the possible role of DNA replication-in particular, its regulation and coordination with cell division-in the ability of M. tuberculosis to withstand antibacterial stresses, including host immune effectors and antibiotics, through the generation at the population level of a tolerant state, or through the formation of a subpopulation of persister bacilli-both of which might be relevant to the emergence and fixation of genetic drug resistance.
Collapse
|
20
|
The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio 2017; 8:mBio.00148-17. [PMID: 28270579 PMCID: PMC5340868 DOI: 10.1128/mbio.00148-17] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cell wall of Mycobacterium tuberculosis is composed of unique lipids that are important for pathogenesis. Indeed, the first-ever genetic screen in M. tuberculosis identified genes involved in the biosynthesis and transport of the cell wall lipid PDIM (phthiocerol dimycocerosates) as crucial for the survival of M. tuberculosis in mice. Here we show evidence for a novel molecular mechanism of the PDIM-mediated virulence in M. tuberculosis We characterized the DNA interaction and the regulon of Rv3167c, a transcriptional repressor that is involved in virulence regulation of M. tuberculosis, and discovered that it controls the PDIM operon. A loss-of-function genetic approach showed that PDIM levels directly correlate with the capacity of M. tuberculosis to escape the phagosome and induce host cell necrosis and macroautophagy. In conclusion, our study attributes a novel role of the cell wall lipid PDIM in intracellular host cell modulation, which is important for host cell exit and dissemination of M. tuberculosisIMPORTANCEMycobacterium tuberculosis is a major human pathogen that has coevolved with its host for thousands of years. The complex and unique cell wall of M. tuberculosis contains the lipid PDIM (phthiocerol dimycocerosates), which is crucial for virulence of the bacterium, but its function is not well understood. Here we show that PDIM expression by M. tuberculosis is negatively regulated by a novel transcriptional repressor, Rv3167c. In addition, we discovered that the escape of M. tuberculosis from its intracellular vacuole was greatly augmented by the presence of PDIM. The increased release of M. tuberculosis into the cytosol led to increased host cell necrosis. The discovery of a link between the cell wall lipid PDIM and a major pathogenesis pathway of M. tuberculosis provides important insights into the molecular mechanisms of host cell manipulation by M. tuberculosis.
Collapse
|
21
|
Abstract
Tuberculosis (TB) is an airborne infectious disease caused by organisms of the Mycobacterium tuberculosis complex. Although primarily a pulmonary pathogen, M. tuberculosis can cause disease in almost any part of the body. Infection with M. tuberculosis can evolve from containment in the host, in which the bacteria are isolated within granulomas (latent TB infection), to a contagious state, in which the patient will show symptoms that can include cough, fever, night sweats and weight loss. Only active pulmonary TB is contagious. In many low-income and middle-income countries, TB continues to be a major cause of morbidity and mortality, and drug-resistant TB is a major concern in many settings. Although several new TB diagnostics have been developed, including rapid molecular tests, there is a need for simpler point-of-care tests. Treatment usually requires a prolonged course of multiple antimicrobials, stimulating efforts to develop shorter drug regimens. Although the Bacillus Calmette-Guérin (BCG) vaccine is used worldwide, mainly to prevent life-threatening TB in infants and young children, it has been ineffective in controlling the global TB epidemic. Thus, efforts are underway to develop newer vaccines with improved efficacy. New tools as well as improved programme implementation and financing are necessary to end the global TB epidemic by 2035.
Collapse
|
22
|
Abstract
Mycobacterium tuberculosis uses sophisticated secretion systems, named 6 kDa early secretory antigenic target (ESAT6) protein family secretion (ESX) systems (also known as type VII secretion systems), to export a set of effector proteins that helps the pathogen to resist or evade the host immune response. Since the discovery of the esx loci during the M. tuberculosis H37Rv genome project, structural biology, cell biology and evolutionary analyses have advanced our knowledge of the function of these systems. In this Review, we highlight the intriguing roles that these studies have revealed for ESX systems in bacterial survival and pathogenicity during infection with M. tuberculosis. Furthermore, we discuss the diversity of ESX systems that has been described among mycobacteria and selected non-mycobacterial species. Finally, we consider how our knowledge of ESX systems might be applied to the development of novel strategies for the treatment and prevention of disease.
Collapse
|